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Abstract

Redistricting reformers have proposed many solutions to the problem of partisan

gerrymandering but they all require either bipartisan consensus or the agreement of

both parties on the legitimacy of a neutral third party to resolve disputes. In this

paper we propose a new method for drawing district maps, the Define-Combine Proce-

dure, that substantially reduces partisan gerrymandering without requiring a neutral

third party or bipartisan agreement. One party defines a map of 2N equal-population

contiguous districts. Then the second party combines pairs of contiguous districts to

create the final map of N districts. Using real-world geographic and electoral data, we

use simulations and map-drawing algorithms to show that this procedure dramatically

reduces the advantage conferred to the party controlling the redistricting process and

leads to less biased maps without requiring cooperation or non-partisan actors.
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Following the 2020 Census, every state in the United States redrew their Congressional

and legislative district boundaries (for an overview see Warshaw, McGhee and Migurski

(Forthcoming)). Many city councils, school boards, county commissions, and other represen-

tative bodies are also in the process of drawing new maps. Redistricting creates opportunities

for political actors to benefit certain groups over others. In particular, partisan gerryman-

dering is used to advantage one political party, even enabling a party to win a majority of

the seats in a legislative chamber without winning a majority of votes in the election. For

example, in 2018, Republican candidates for the Wisconsin State Assembly won only 45%

of the state-wide vote but, due to partisan gerrymandering, won 63 of 99 seats (64%).

Gerrymandering hinders democratic representation. When districts are drawn to amplify

disproportionately some voices over others, public policy is less likely to reflect constituent

preferences. Gerrymandering also allows parties to undermine electoral competition by draw-

ing districts that create, enhance, or lock in a partisan advantage and shield representatives

from accountability.

Current reforms for partisan gerrymandering, including bipartisan or non-partisan com-

missions, all require either bipartisan cooperation or a neutral third-party actor, such as a

judge, special master, or independent tie-breaker, trusted by both political parties, to se-

lect a fair map. However, in today’s hyper-partisan environment, there are few such actors

considered able to fulfill this role fairly by both sides, and attempts at cooperation have

generated acrimony. Intense controversies continue to surround redistricting, even in states

that have enacted anti-gerrymandering reforms.

We propose a new method for drawing maps, the Define-Combine Procedure (DCP),

which reduces partisan gerrymandering without a neutral third party or bipartisan cooper-

ation. We develop a simple framework that allows each party to act in their own partisan

self-interest but achieves a significantly fairer map than would be drawn by either party on

its own. We divide the districting process into two stages. Suppose a state must be divided

into N equal-population districts. One party—the “definer”—draws 2N contiguous, equal-
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population districts. Then, the second party—the “combiner”—selects contiguous pairs of

districts from the set defined by the first party to create the final districts. This method

produces N equally populated, contiguous districts. By dividing the responsibility of draw-

ing districts into two separate stages, in which each party retains complete autonomy in

their own stage, the parties counteract each other’s partisan ambitions while maintaining

considerable flexibility to achieve other objectives, including maintaining compactness and

communities of interest. We show that DCP produces maps with large reductions in bias

advantaging either political party. Using simulations based on real-world geographic and

electoral data, we assess DCP’s performance in all states where congressional redistricting

occurs. To our knowledge, this represents the first effort to date demonstrating how a new

map-drawing procedure could lead to tangible improvements across such a wide variety of

geographic and electoral contexts.

Limitations of Current Partisan Gerrymandering Fixes

Reformers have sought to reduce partisan gerrymandering by shifting redistricting author-

ity from partisan legislatures to nonpartisan independent redistricting commissions. State

legislatures draw districts in over half of the U.S. states, with the remainder relying on com-

missions (see Appendix Table A.1). However, a majority of commission-based states are

not actually independent from interference by a state legislature, and those that are rely

on a member or members to act neutrally, sometimes touching off controversy—as when

the Governor of Arizona sought to impeach the independent chair of her state’s commission

(Druke, 2017).

The 2020 cycle revealed some of the challenges of independent redistricting commissions.

In New York and Ohio, the commissions failed to produce maps, and the state legislatures

passed maps that were found to be partisan gerrymanders by each state’s Supreme Court.

A popular initiative passed in 2018 in Utah establishing an independent commission was
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altered by Republican state legislators in 2020, allowing them to bypass the commission’s

proposed districts. In Virginia, the commission had an equal number of Democratic and

Republican members and failed to agree on a map, forcing the state Supreme Court to ap-

point a special master. Even in states where commissions did pass maps—such as Michigan

and Colorado—the process engendered heated accusations of partisan and racial gerryman-

dering.1 Appendix A.1.1 further details challenges presented by redistricting in legislatures,

commissions, and through litigation.

Academic researchers have proposed a variety of approaches to measuring and identifying

partisan gerrymandering, including methods to quantify partisan gerrymandering and using

simulations to identify when a map is a partisan gerrymander (e.g. Stephanopoulos and

McGhee, 2018; Chen and Rodden, 2015). Others have drawn inspiration from the cake-

cutting problem to propose processes by which actual maps could be drawn fairly. While this

logic has inspired several redistricting proposals (Landau, Reid and Yershov, 2009; Pegden,

Procaccia and Yu, 2017; Ely, 2019; Alexeev and Mixon, 2019; Brams, 2020), none of the

existing work on map-drawing processes has addressed implementation across different states

or electoral contexts using real-world data. The complexity of most previous proposals also

precludes real-world application or even simulation using modern computing techniques.

Appendix A.1.2 describes these proposals.

DCP contrasts with the existing proposals in several ways. First, it does not require either

forging bipartisan support between parties or appointing a third-party arbiter to resolve points

of difference. A procedure that sidesteps these common stumbling blocks could reduce the

contentious political disputes that accompany decennial redistricting, leading to fairer maps

and less partisan acrimony. Second, DCP is a process-based solution; it does not require

courts to define and agree on an empirical standard for partisan gerrymandering. State

1In Michigan, Democratic state legislators argued that the commission’s districts
discriminated against Black voters: https://www.bridgemi.com/michigan-government/

michigan-supreme-court-dismisses-redistricting-suit-over-black-representation. In Col-
orado, Democrats and Hispanic advocacy groups argued the map discriminated against Hispanic voters:
https://coloradosun.com/2021/11/01/colorado-congressional-map-approved-supreme-court/.
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courts could resolve redistricting disputes by ordering the parties to use DCP to draw a

remedial map. Third, DCP is simple and could be implemented efficiently. Several other

proposed solutions have appealing game-theoretic properties but in practice require multiple

rounds of bargaining or map-drawing and are difficult or impossible to solve computationally;

in contrast, DCP’s two-stage process efficiently produces a complete and valid districting

plan.

The Define-Combine Procedure

Suppose a state needs to be divided into N contiguous, equally-populated, single-member

districts. Elections in the state are contested by two parties, A and B. We assume that

both parties are risk-neutral seat-maximizers; their goal is to win as many of the N seats as

possible in the next election.2

We consider two methods of drawing district maps. First, one party has unilateral control

of the process. Given a set of potential valid maps, when party i draws the maps, it will

select a map that maximizes the number of seats it wins. Under this method of redistricting,

we should expect that, where possible, party i will maximize partisan advantage relative to

party j by strategically cracking and packing party j’s voters to minimize the seats won by

party j. In many cases, it will be possible for party i to win a substantially larger share of

the seats than its statewide vote share.

This method, which we will call the “unilateral redistricting process” (URP), approxi-

mates the redistricting process in states where one party controls redistricting for a given

map. While other factors, such as incumbency or vote margins in close seats, factor into

districting decisions, gerrymandering for partisan gain is a primary objective for the party in

power. For example, when independent experts have used map-drawing software to simulate

thousands of possible maps in a state, the observed maps in states where redistricting is

2Parties may also have other goals. For example, parties might seek to maximize bias, or they might
have preferences over the level of responsiveness in the plan (Katz, King and Rosenblatt, 2020).
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controlled by a single party often appear to be among the most partisan possible.3

The second method we consider is our own innovation, the two-stage Define-Combine

Procedure. In this model, map-drawing is divided between the two parties but in each stage

one party acts unilaterally.

Suppose Party A acts in the first stage as the “Definer,” and Party B acts in the second

stage as the “Combiner.”

1. Party A defines a set of 2N contiguous, equally populated districts. To avoid confusion

with the following stage, we refer to these units as subdistricts.

2. Party B creates the final map of N districts by combining pairs of 2 contiguous sub-

districts.

Appendix A.2 describes the properties of the model. The optimal solution can be found

with backward induction. Given the subdistricts defined by A, B will select the combination

that maximizes the number of seats B will win. Knowing this, A selects the set of subdistricts

that minimizes the number of seats B can win in the second stage.

Appendix A.3 provides an in-depth application of URP and DCP to the state of Iowa to

illustrate the intuition from the perspectives of the two parties.

Evaluating the Define-Combine Procedure Using Simu-

lations

To evaluate DCP, we use map-drawing algorithms to simulate and compare both redistricting

procedures. Unlike other studies of gerrymandering that use simulation methods, we are

interested not in the distribution of possible outcomes in each state but rather in the limit—

the most extreme possible map drawn by each party using each process. To identify these

3Research on redistricting in Florida (Chen and Rodden, 2015), Maryland (Cho and Liu, 2016), Wisconsin
(Chen, 2017), Virginia (Magleby and Mosesson, 2018), and Pennsylvania (Duchin, 2018) find that chosen
plans in states with URPs are extreme outliers as compared to the set of simulated possible maps.
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maps, we employ the “shortburst” algorithm (Cannon et al., 2020), which begins with a

starting map and assigns it a numerical score, such as the number of seats won by a given

party.4 The algorithm then generates a set of N variations of the starting map in a “burst,”

calculates a score for each using the same scoring function, and selects the map with the

highest score (or the starting map if there is no improvement). We repeat this burst process

until the score remains stable. As Cannon et al. (2020) shows, this approach finds more

extreme plans than those identified by random walks and other distributional approaches.

Appendix A.4 provides our detailed methodology.

To simulate maps drawn under unilateral redistricting, we apply the shortburst algorithm

to find the maps that maximize seats won for each party. For each state and party, we run 10

separate sets of simulations. We (1) generate a random starting map, (2) run the shortburst

algorithm 2000 times, generating 10 maps per burst, and (3) save the final map. The scoring

function maximizes first the number of seats won by the party and second the party’s vote

share in the next closest district.5

Second, we use a “nested shortburst” algorithm to simulate DCP. For each state and

party we run 10 separate sets of simulations. We (1) generate a random starting map of 2N

districts and (2) run the shortburst burst algorithm 250 times, with 10 maps generated per

burst. However, we score each using a second iteration of the shortburst algorithm, which

finds the pairing of districts that maximizes seats for the second party. This approach gives

both parties the benefit of actively trying to maximize their own seat advantage, rather than

looking at a random set of proposals and choosing the best option.

Using election data from the Voting and Election Science Team (2022) merged with 2020

census data from the ALARM Project (Kenny and McCartan, 2021), we ran simulations

for every state with at least two congressional districts. We measure partisanship using the

2020 presidential election results. For each simulation we use a 1% population deviation

4Implemented in the redist package at https://alarm-redist.github.io/redist/reference/

redist_shortburst.html.
5This scoring function finds extreme gerrymanders more efficiently than scoring based on seats won alone.
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constraint (using 2020 total population), a simple compactness constraint, and require all

districts to be contiguous.6

Results

We compare the performance of DCP to two key benchmarks—simulated unilateral redis-

tricting and actual, adopted plans—along a variety of different metrics. The metrics we

examine include: (1) the advantage, which we will term definer’s advantage, conferred to

the map-drawing party by a redistricting procedure; (2) deviation from proportionality; (3)

deviation from a fairness target (e.g., that accounts for geographic biases in a state that

might advantage one party); and, (4) partisan bias induced by a redistricting procedure.7

Appendix A.5 describes these measures in detail. We are agnostic as to the metric used

to evaluate a given redistricting plan; our goal is to show the performance of DCP, and its

benefits, across a variety of measures.

The simulation results reveal that DCP dramatically reduces the partisan advantage

conferred to a map maker as compared to URP. Figure 1 presents four maps that compare

seats won by each party under four redistricting procedures. The top two maps show the

results of the unilateral redistricting simulations, with Democrats redistricting on the left

and Republicans redistricting on the right; the bottom two maps show the results of DCP.

Of the 429 seats redistricted in the simulations, Democrats win 335 (78.1%) when they

draw the maps unilaterally in every state. When Republicans draw all maps unilaterally,

Democrats win 132 seats (30.8%). The simulations reveal a possible swing of 203 seats

between parties through unilateral redistricting. These results represent a theoretical maxi-

mum for the shift in seats that could occur due to partisan gerrymandering. Our unilateral

6Weakening the compactness constraint does not substantially affect our results. We do not employ
other constraints to comply with the Voting Rights Act or state redistricting laws. Appendix A.6.6 presents
a test of DCP with constraints to comply with the VRA.

7Partisan bias is the difference between seat share and vote share when votes are split evenly between
the parties. For proportionality, we examine the difference between the two-party vote share and seat share.
For a fairness target, we take the midpoint of the most extreme maps possible under each party’s simulated
unilateral redistricting procedure (Benadè, Procaccia and Tucker-Foltz, 2021).
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simulations are more extreme than those actually drawn in many states considered to be

partisan gerrymanders because we impose limited constraints and maximize seats won with

a strict 50% of the vote cutoff (rather than creating a “toss-up” category).

As illustrated in the bottom two maps, DCP dramatically reduces the swing of seats

between parties; in many states the difference in seats won based on who defines and who

combines falls to either zero or one. When Democrats draw the Define-stage map, they

win 244 (56.9%) seats; when Republicans draw the Define-stage map, Democrats win 211

(50.8%) seats. When calculating the difference state by state (since some parties have a

second- rather than first-mover advantage), the swing between parties based on first-mover

versus second-mover status amounts to 38 seats, eliminating over 80% of the swing in seats

theoretically possible under unilateral partisan control of redistricting. Tables reporting the

full underlying results are available in Appendix A.6.1. State by state results are available

in Appendix A.6.4.

Table 1 summarizes the results for Definer’s Advantage for URP and DCP, along with the

other metrics we consider (we do not report a quantity for Definer’s Advantage for Adopted

plans because we do not observe seat share under the counterfactual that the out-party

controlled the redistricting process—though we report an imputed value in Appendix A.6.2).

The next two metrics evaluate the redistricting procedures based on deviations from target

outcomes, specifically proportionality and a geometric fairness target (defined in Benadè,

Procaccia and Tucker-Foltz (2021) as the average of the worst- and best-case map for each

party). We evaluate each of these metrics based on current party control of the redistricting

process in each state. For instance, for a simulated unilateral map for the party in power we

calculate the deviation in seat share from the (1) seat share proportional to a state’s vote

share, and (2) seat share based on the geometric fairness target. The first of these metrics

illustrates how much proportional representation would improve based upon a state’s switch

to DCP; the second illustrates how much closer to a geometric target a switch to DCP would

achieve.
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Figure 1: Maps of Simulation Results by Method and Party: These figures report the full set results for URP and DCP
simulations, exhibiting which party wins each congressional district. Blue hexagons tally Democratic wins; red hexagons tally
Republican wins.
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Metric URP DCP
Adopted
Plan

Definer’s Advantage 0.473 0.089
Deviation from Proportionality 0.270 0.159 0.187
Deviation from Fairness Target 0.237 0.058 0.090
Partisan Bias 0.303 0.060 0.073

Table 1: DCP Performance Versus Alternatives: This table reports the performance
of the DCP as compared to unilateral redistricting and adopted plans along several different
metrics. Definer’s Advantage for adopted plans is omitted since it would involve interpolating
seat share under the scenario where the opposing party held control over the redistricting
process. Partisan Bias is calculated only for states with 2020 Democratic Presidential Vote
Share between 45% and 55%.

For both metrics, DCP improves upon both the simulated outcomes from URP as well as

adopted plans (rows 2 and 3 in Table 1). We estimate, for example, that if every state drew

their map according to a unilateral process controlled by the majority party of the lower

house of the state legislature, and then switched to DCP with the same party serving as the

definer, deviation from proportionality would be cut by over one third and deviation from

the fairness target would be cut by three quarters. Appendix A.6.3 reports full results broken

out by state redistricting procedure. DCP achieves reduced deviations from proportionality

compared to enacted maps in states with Legislature or Political redistricting procedures and

has comparable or slightly greater deviations from proportionality compared to enacted maps

in states with Independent Commissions and Courts or Special Masters. DCP improves upon

adopted plans regardless of redistricting procedure in terms of deviations from the geometric

fairness target.

Finally, to determine partisan bias for adopted plans, we gathered data on partisan biases

from PlanScore.8 We replicated the partisan bias calculation for our simulated URP and

DCP maps in the same states that PlanScore evaluated partisan bias. For this set of states,

we find DCP dramatically reduces partisan bias compared to URP and modestly reduces

partisan bias compared to adopted plans in the states (full results in Appendix A.6.5).

8Available at https://planscore.campaignlegal.org/. PlanScore calculates this metric for states
with Democratic vote share between 45% and 55% (AZ, CO, FL, GA, MI, MN, NC, NM, NV, PA, TX, VA,
WI).
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Most of the improvements compared to enacted maps come from states where legislatures

controlled redistricting (see Appendix A.6.3).

Overall DCP exhibits significant improvements compared to our benchmark procedures

across a range of different metrics. Importantly, the comparison to enacted maps is not

one to one, since our DCP simulations necessarily assume fewer constraints than real-world

redistricters face. Thus, the fact that we still observe similar or less extreme maps in our

simulations illustrates the powerful tendency of DCP to temper extreme redistricting out-

comes.

Finally, we note that real-world examples have just one geographic distribution of voters

per state. To test the robustness of DCP and to explore its properties, we also use simulated

grid maps that allow for (1) different voter distributions with varying degrees of geographic

clustering and (2) different levels of state-wide partisanship, (3) varying objectives beyond

seat maximization for the redistricting parties, and (4) varying numbers of districts for a fixed

total population. In Appendix A.7, we explore how each of these extensions influence the

properties of URP and DCP. Overall, DCP continues to reduce gerrymandering dramatically

when varying the degree of state-wide partisanship, the geographic clustering, the parties’

objective functions, and the number of districts.

Conclusion

DCP features simple rules, clear strategies for each party, and an efficient framework that

can be implemented in every state. One obstacle to implementation for past theoretical

approaches has been the difficulty for decision makers in either party to predict outcomes

in the real world. DCP, as we have demonstrated, can be applied to real-world geographic

data, which allows analysts to predict outcomes and reduce uncertainty surrounding the

redistricting process. Furthermore, DCP significantly reduces the advantages conferred to

the redistricting party and results in maps more likely to reflect the will of voters. These
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advantages hold up across a variety of different contexts reflecting the political and geo-

graphic heterogeneity of the states, as well as across a number of different measures of a

map’s fairness and level of bias.

There are many challenges in using automated algorithms to aid in the redistricting

process (Cho and Cain, 2020). In some cases, advances in computing power and the ability

of politicians to consider a large range of maps exacerbates partisan gerrymandering, rather

than alleviating it, as partisan mapmakers use map-drawing algorithms to devise increasingly

gerrymandered maps. DCP provides an approach that utilizes advances in computing to

produce less biased maps—ones where the process-based algorithm itself constrains partisan

motives.

Political parties will almost always oppose ceding power, but this is doubly so when the

choices they face require embracing significant uncertainty about future political outcomes.

Because DCP is a two-stage game, solvable with existing computing resources, it represents a

step towards providing an alternative mechanism to court, legislature, or commission-based

redistricting that is feasible to implement. This framework gives parties the autonomy to

respect communities of interest, geographic boundaries, and other political concerns—that

is, to internalize the wide range of factors that play important roles in decisions about

redistricting—while nonetheless tempering the partisan biases that emerge during redistrict-

ing. By involving both parties but setting them in opposition to each other, rather than

requiring bipartisan cooperation or independent third-party mediators, DCP offers a parti-

san solution to the extraordinarily partisan process that is redistricting.
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A.1 Limitations of Current Partisan Gerrymandering Fixes

We can divide current solutions to partisan gerrymandering into two classes. First, there are

solutions that are currently used in at least one of the fifty states. These include, for exam-

ple, legislature-involved redistricting commissions, independent redistricting commissions,

and judicial intervention to reduce partisan gerrymandering. Second, there are proposals—

generally put forth by researchers—that move beyond currently implemented solutions and

lay out some other mechanism by which maps are drawn. These include methods where the

parties draw districts by alternating back and forth; many of these approaches are inspired

by the cake-cutting problem and principles of fair division (i.e., how to divide a good, such

as a cake, fairly between two parties) (Brams and Taylor, 1996).

A.1.1 Already-Implemented Solutions

Citizens have expressed deep dissatisfaction with redistricting procedures currently adopted

in the states. For example, fewer than 25% of respondents in the Cooperative Congressional

Election Survey answered affirmatively when asked whether redistricting in their state was

fair (Schaffner and Ansolabehere, 2015).9 In a number of states, voters or legislators have

responded by establishing redistricting commissions that are meant to de-politicize the map-

making process and produce districts that are more fair.

Table A.1 reports the specific type of commission used in each commission-based state.10

In total, 29 states11 draw their Congressional district maps through the legislature exclusively,

while the rest use some sort of redistricting commission. The redistricting process in the

majority of commission-based states, however, is not in fact independent from the state

legislature. Of the 21 states that use some form of redistricting commissions, only nine states

have truly independent commissions that are able to create maps without input or approval

of the state legislature. Advisory commissions assist the legislature as it draws district

boundaries, but the legislature approves the maps. Political or politician commissions are

mainly comprised of elected officials. In backup-commission states, a commission, sometimes

comprised of politicians or politician-appointed members, only plays a role if the legislature

fails to pass a districting plan within a certain time period. Finally, independent commissions

are distinct from the others as they do not include public officials or legislators.12

9Though commission-based states did register significantly higher approval rates than legislature-based
states.

10We use classifications from Justin Levitt’s website, All About Redistricting: Who Draws the Lines?,
with some additional classification (Levitt, 2020).

11Four of these 29 states have only have one Congressional districts and do not actually engage in Con-
gressional redistricting.

12Selection methods for independent commissions vary significantly—in Arizona, Idaho, Montana, and
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All told, 12 of the 21 commission-based states do not have a redistricting process for

their Congressional districts that is meaningfully independent from the state legislature;

as a result, the map-drawing process remains subject to the same partisan pressures as in

states with legislature-drawn maps. Two of the nine states with truly independent commis-

sions, Alaska and Montana, use their commissions to draw state legislative districts but since

they only have one Congressional district their commissions do not engage in Congressional

redistricting. Of the remaining states that have established independent redistricting com-

missions for redrawing their Congressional districts, nearly all rely on a member or members

to act neutrally (often these members are not affiliated with either of the two major political

parties). The logic behind this design is that the two parties will have to appeal to a neutral

arbiter—the independent member(s) of the commission—in order to achieve a majority and

pass a map. In theory, this could cause both parties to curb their partisan gerrymandering

efforts in order to create a fairer map appealing to a neutral (and presumably more moderate)

commission member.13

Scholars have not reached a consensus on the benefits of independent commissions. One

study examines the efficacy of redistricting commissions in seven Western states and com-

pares them to five non-commission states in the West, and finds that redistricting commis-

sions do not out-perform legislatures when judged by the metric of drawing compact, com-

petitive districts that preserve preexisting political boundaries (Miller and Grofman, 2013).

(On the other hand, the same authors find that commissions seem to excel at producing maps

“on time” that avoid litigation.) Others have found that there are more competitive districts

in commission-drawn maps in the 1990s and 2000s redistricting cycles (Carson and Crespin,

2004), and that independent commissions are more likely to follow traditional redistricting

principles, including compactness, splitting fewer political subdivisions, and preserving the

cores of existing districts (Edwards et al., 2017). Recent research using simulations to con-

sider a set of alternative maps that could have been enacted by independent commissions

Washington majority and minority party leaders appoint commissioners, while judges make appointment
decisions in Colorado. Alaska has two members chosen by the governor, two by party leaders in the state
legislature, and the last by the state supreme court chief justice. California has a process that involves
narrowing a pool of applicants down, randomly selecting some members, and then having those members
choose the remaining members. Eight of New York’s commissioners are appointed by politicians from each
party, and the last two members are chosen by the appointees and must not have been a registered Democrat
or Republican in the past five years. Utah’s independent commission has members chosen by state legislators,
with the governor choosing the commission chair, though all commission members must not be affiliated with
any political party nor have voted in any political party’s primary elections in the past five years. Michigan’s
independent commission members were selected randomly from a pool of qualified applicants.

13Only Idaho (6 members) andWashington (4 members and 1 non-voting member) have perfectly balanced
(by partisanship) independent commissions, and in these cases some bipartisan cooperation is needed for them
to successfully create district maps. Researchers have illustrated that, in practice, balanced commissions may
produce incumbent-protecting gerrymanders (McDonald, 2004).
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finds that independent commissions insulate incumbent legislators to the same degree that

party-controlled legislative redistricting does, suggesting that independent commissions may

not be as neutral as many suppose (Henderson, Hamel and Goldzimer, 2018).

The effectiveness of independent commissions also hinges crucially on who staffs them.

A Brennan Center report notes that “the strength and independence of the [commissioner]

selection process was, by far, the most important determinant of a commission’s success”

(Redistricting Commissions: What Works, 2018). Even with an independent staffing pro-

cess, however, independent commissions do not quell the partisan anger over redistricting

controversies. Those who have studied independent commissions note that “the decisions

of such commissions may generate partisan rancor comparable to what we see from states

where one party entirely controls the redistricting process and engages in a partisan gerry-

mander” (Miller and Grofman, 2013, p. 648), and that “[o]ften, commissioners have strong

common prior beliefs about the likely partisanship of the tiebreaker, and therefore balk at

compromise during initial negotiations. Once chosen, the tiebreaker then sides with one of

the parties and a partisan plan is adopted” (McDonald, 2004, p. 383). Similarly, the Bren-

nan Center report notes that “states that used a tiebreaker model popular in earlier reforms

experienced much lower levels of satisfaction, mainly because the tiebreaker tended to end

up siding with one party or the other, resulting in a winner-take-all effect” (Redistricting

Commissions: What Works, 2018).

Last of all, the establishment of an independent redistricting commission is not a realistic

options for many citizens. According to the National Conference of State Legislatures,

slightly more than half of U.S. states do not have a legislative process allowing statutes

or state constitutional amendments by initiative.14 Of the 24 states that do, nine have

independent redistricting commissions already. The states with the most intense partisan

gerrymandering do not have an initiative process, and legislatures in those states are also very

unlikely to voluntarily relinquish authority over redistricting to an independent commission.

For example in Maryland, North Carolina, Pennsylvania, Texas, Virginia, and Wisconsin,

voters cannot feasibly establish non-partisan independent redistricting commissions because

these states do not have an initiative process.

These problems with the creation and effectiveness of commissions show that independent

redistricting commissions do not offer a silver-bullet solution to partisan gerrymandering in

most states. Regardless of who draws the lines, many states have instead looked to the

courts for relief from partisan gerrymandering. Existing legal remedies, however, have met

with several obstacles.

14See https://www.ncsl.org/research/elections-and-campaigns/initiative-and-referendum-processes.
aspx.
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One of the largest obstacles to effective judicial intervention is that courts lack effective

guidelines and standards to adjudicate partisan gerrymandering litigation. At a minimum,

courts must decide (1) how to measure and evaluate partisan gerrymandering,15 (2) how to

compare multiple maps,16 and (3) at what threshold there is too much partisan gerrymander-

ing. But none of these three issues have been settled. Any solution needs to cut through the

“sociological gobbledygook” in a way perceived as non-partisan and legally sound (quoting

Chief Justice Roberts during Oral Arguments for Gill v. Whitford, October 3, 2017). Ad-

ditionally, the Supreme Court’s decision Rucho v. Common Cause (2019) effectively barred

the federal judicial from future intervention in partisan gerrymandering litigation. This has

left state courts to adjudicate partisan gerrymandering claims, and relegates the judicial

intervention option to a much less effective state-by-state approach.

State Supreme Courts have recently struck down redistricting plans for being unconsti-

tutional partisan gerrymanders (according to state law). Most recently, both Ohio’s and

New York’s legislature-passed redistricting plans were struck down as impermissible parti-

san gerrymanders (in Ohio, League of Women Voters of Ohio v. Ohio Redistricting Comm,

2022; in New York, Harkenrider v. Hochul, 2022). In Florida, the courts based their decision

in League of Women Voters v. Detzner (2015) on a “Fair Districts” amendment prohibit-

ing partisan gerrymandering, which voters had previously added to the state constitution

through a popular initiative.17 In both Pennsylvania (League of Women Voters v. Common-

wealth of Pennsylvania, 2018) and North Carolina (League of Women Voters v. Rucho, 2018;

reconsidered and reaffirmed 2019), the courts relied on more generic language in the state

constitutions ensuring “free elections.”18 Only some states, however, have existing state laws

15There exists no legal consensus on how to best identify instances of partisan gerrymandering, despite
a plethora of new partisan gerrymandering metrics developed in the past few decades. Since the Supreme
Court’s decision in Vieth v. Jubelirer (2004), finding a standard to judge partisan gerrymandering has
remained a challenge. Measures like the Efficiency Gap (Stephanopoulos and McGhee, 2015), the Mean-
Median Difference (McDonald and Best, 2015), and Partisan Fairness (King and Browning, 1987; Grofman
and King, 2007) have grown increasingly common, but courts have not settled on one. Each approach has
some mix of desirable and undesirable features (Stephanopoulos and McGhee, 2018).

16Courts sometimes rely on simulated or counterfactual election results in order to create a distribution
of possible maps against which the actual or proposed redistricting plans can be compared. Current com-
putational limitations make it impossible to create the full distribution of possible maps, so simulations rely
on creating a representative sample of possible maps as a baseline (Cho and Liu, 2016). Experts continue to
debate whether particular simulation methods create a “true” distribution of possible maps, and the courts
must navigate among competing methods, (Cirincione, Darling and O’Rourke, 2000; Altman and McDonald,
2011; Chen and Rodden, 2013; Chen and Cottrell, 2016; Cho and Liu, 2016; Magleby and Mosesson, 2018;
Duchin, 2018a; Fifield et al., 2020).

17Amendment 5: “Legislative districts or districting plans may not be drawn to favor or disfavor
an incumbent or political party.” https://web.archive.org/web/20101208155829/http://projects.

palmbeachpost.com/yourvote/ballot_question/florida/2010/amendment-5-and-6-2010/.
18For North Carolina, the courts concluded that the redistricting process was not consistent with a broad

reading of Section 10 of the North Carolina State Constitution, which states that “All elections shall be
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or constitutional amendments that provide a legal basis to limit partisan gerrymandering.

For example, while 30 states have some version of “free election” clauses in their constitu-

tions, only 18 also require “equal” or “open” elections.19 Notably, of 41 the states that do

not have an independent redistricting commission, 18 of them have neither a “free election”

clause nor an “open” or “equal” provision in their state constitutions.

Overall, the existing attempts to fix partisan gerrymandering have resulted in a patchwork

of solutions with highly limited effectiveness. Many voters live in states that cannot feasibly

implement the commission-based solutions that have had success in other states, and judicial

intervention is limited to state courts which often do not have constitutional provisions that

allow them to reduce partisan gerrymandering. And lack of citizen-led initiative procedures

in many states makes it impossible for voters to solve this issue without the help and approval

of their partisan state legislators. This insufficient patchwork leaves citizens with little

recourse to address the degradation of representation in their states caused by partisan

gerrymandering.

A.1.2 Other Proposed Solutions

Some of the most promising alternative solutions to gerrymandering draw inspiration from

the cake-cutting problem; how do two people perform the fair division of a piece of cake

without the need of third-party intervention? The solution is to arbitrarily choose one as

the first mover; she divides the cake and then the second-mover may choose between either

of the pieces. This logic, applied to geography, has inspired several redistricting proposals.

One proposal is to have an independent third party divide the state into two and then

each party negotiates over who gets to redistrict one section of the state (Landau, Reid and

Yershov, 2009). The parties each independently redistrict their agreed-upon parts of the

state. Combining the two sections results in a final map. In another proposal, each of two

parties alternate back and forth drawing district maps (Pegden, Procaccia and Yu, 2017).

Termed “I-cut-you-freeze,” the protocol involves a back and forth where one party draws a

map, the other party freezes in place one district from that map, and then redraws a new

district map for the remaining area in the state. The players alternate between “cutting”

and “freezing” until producing a full map.

Neither of these approaches has seen any take-up in the real world. The difficulties of

implementing these solutions in practice are several-fold. In the first proposal, the process

requires a neutral third party to take the initial step of dividing the state into two parts,

free.” Similarly in Pennsylvania, the courts found that the challenged map violated the “Free and Equal
Elections” Clause (Article 1, Section 5) of the Pennsylvania State Constitution.

19See https://www.ncsl.org/research/redistricting/free-equal-election-clauses-in-state-constitutions.
aspx
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which has proven to be a stumbling block in the past (Landau, Reid and Yershov, 2009).

Both approaches abstract from real-world geographies and do not place constraints on how

voters are assigned to districts (Landau, Reid and Yershov, 2009; Pegden, Procaccia and Yu,

2017). Furthermore, because they involve multiple stages of bargaining between the parties,

these approaches are impractical to simulate in real-world contexts using actual geographies

and voter rolls. Thus, lack of information about implementation and potential results with

real electoral geography and population information make it unlikely that decision makers

would adopt these protocols.

Other researchers have proposed a protocol with a similar “I-cut-you-freeze” style, but

with an explicitly spatial addition to the process (Ely, 2019). The first party draws a full

set of districts. Any district that is convex20 is locked into place. However, the second party

has the ability to redraw any non-convex districts so that they are convex. This two-stage

process assures the creation of a map without misshapen districts. However, this proposal

also meets with some practical issues. First, in some states it is likely not possible to meet

equal population requirements while also maintaining convex districts. Second, even states

with convex districts can be extraordinarily biased in favor of one party, depending on the

geographical distribution of voters (Alexeev and Mixon, 2019). A final proposal involves a

method that divides the state in two and allows each party to redistrict their half, with the

additional constraint that each party draws a share of districts roughly proportional to the

party’s statewide vote share in the last Congressional election (Brams, 2020). In essence,

this method seeks to let the parties create their fair share of gerrymandered districts.

All of the proposed solutions involve either a third-party neutral arbiter, are difficult to

implement in practice, or have uncertain outcomes that are hard if not impossible to predict

computationally. Our Define-Combine Procedure is designed to address these difficulties.

Unlike the already-implemented fixes or other proposed solutions, DCP does not require an

independent third party to ensure that districts are fair, and it is possible to predict the

outcomes of DCP using simulations. An additional benefit is that DCP could be combined

with many existing solutions or proposals - for example, by having an existing redistricting

commission use DCP to create legislative maps for a state, or by first freezing certain districts

and then using DCP on the rest to produce a final map. This represents a substantial step

towards implementing a process-based solution to the problem of partisan gerrymandering.

20For a district to be convex, a straight line can be drawn between any two points in the district and all
of the line remains inside the district.
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Table A.1: Redistricting Procedures by State

Legislature Only (31) Legislature-Involved Commissions (10) Independent
Advisory (4) Political (3) Backup (3) Commissions (9)

Alabama Minnesota Pennsylvania Iowa Hawaii Connecticut Alaska∗

Arkansas Mississippi Rhode Island Maine New Jersey Indiana Arizona
Delaware∗ Missouri South Carolina Utah Virginia Ohio1 California
Florida Nebraska South Dakota∗ Vermont∗ Colorado
Georgia Nevada Tennessee Idaho
Illinois New Hampshire Texas Michigan
Kansas New Mexico West Virginia Montana

Kentucky North Carolina Wisconsin New York
Louisiana North Dakota∗ Wyoming∗ Washington
Maryland Oklahoma

Massachusetts Oregon

Source: Justin Levitt, All About Redistricting: Who Draws the Lines?, website: https://redistricting.lls.edu/

redistricting-101/who-draws-the-lines/, along with authors’ classifications.
Advisory Commission: Assists the legislature in drawing the maps, but the legislature has the ultimate power to approve or
alter the final district maps; Political Commission: Legislature as a whole isn’t officially involved, but the members of the
commission are politicians or elected officials; Backup Commission: Steps in if the legislature does not pass a districting plan
by a certain deadline—these backup commissions vary in their composition and procedures as well, but are almost always com-
prised of politicians (governor, secretary of state, state legislators, or members selected by political leadership); Independent
Commission: Commissions that have no politicians or elected officials on them, and whose maps are not subject to legislature
approval.
1 Ohio has a seven-person politician commission that draws lines if the legislature does not create a map with three-fifths legis-
lature support. The commission’s map must have the support of two minority party legislators, who are required to be on the
commission. If both the legislature and politician commission fail to enact a map, the majority party can adopt a map without
minority support that would last for four years. https://redistricting.lls.edu/state/ohio/
*State only has one U.S. House district; state legislative redistricting authority used for classification.

7

https://redistricting.lls.edu/redistricting-101/who-draws-the-lines/
https://redistricting.lls.edu/redistricting-101/who-draws-the-lines/
https://redistricting.lls.edu/state/ohio/


A.2 The Define-Combine Procedure

Suppose a state (or city, school district, or other entity engaged in redistricting) with popula-

tion P needs to be divided into N contiguous single-member districts with equal population
P/N. Elections in the state are contested by two parties, A and B. We assume for simplicity

that all people in the state vote in all elections, and their voting decision is based solely on

their personal partisan preference; the makeup of their district and the candidates who run

have no impact on their vote choice.21 Let vA be the number of votes in the state for Party

A, and vB = P − vA be the number of votes for Party B. For each district d, let vdA and

vdB be the number of votes in the district for each party. A districting map M is a set of N

districts, and each district is itself a set of P/N specific voters. Thus, for this framework there

is a finite set of possible maps M (though it grows extraordinarily large as the population P

increases). And, for any map, both parties can foresee the number of votes they will receive

in each district and the number of districts that they will win.

We first assume that both parties are seat-maximizers; their goal is to win as many of

the N seats as possible in the next election22:

UA(M) =

∑N
d=1 sd
N

where

sd =


1 if νdA > νdB

1/2 if νdA = νdB

0 if νdA < νdB

and the utility of Party B is UB(M) = 1 − UA(M). Both parties are risk-neutral; they are

indifferent between winning one district and tying in two districts (with a 50% chance of

winning the election in each). Ui is equivalent to the percentage of seats won by party i.23

21The levels of turnout and vote choice are not essential to this game. The most important things are (1)
that districting does not affect vote choice, and (2) each party can anticipate which districts they will win
and lose (or the probability of winning and losing). Additionally, our baseline example abstracts away from
the incumbency advantage, but it could be incorporated as well into voter decision-making.

22Later in the paper we consider instances where parties may have other goals. For example, parties
might seek to maximize bias, or they might have preferences over the level of responsiveness in the plan
(Katz, King and Rosenblatt, 2020).

23Our characterization here is of a one-shot game. Parties and candidates need not account for uncertainty
in future elections or shifting voter preferences over time.
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The Unilateral Redistricting Process

We consider two methods of drawing district maps. In the first method, one party has

unilateral control of the process. Given a set of potential valid maps M, when party i

draws the maps, it will select a map M̃i ∈ M that maximizes Ui.
24 Under this method of

redistricting, we should expect that, where possible, party i will maximize partisan advantage

relative to party j by strategically cracking and packing party j’s voters to minimize the

seats won by party j. In many cases, it will be possible for party i to win a substantially

larger share of the seats than its statewide vote share.

This method, which we will call the “unilateral redistricting process” (URP), approxi-

mates the redistricting process in states where one party controls redistricting for a given

map. The party in control seeks to maximize the number of seats it will win in the next

election. While other factors, such as incumbency or vote margins in close seats, factor into

districting decisions, gerrymandering for partisan gain is a primary objective for the party in

power. For example, when independent experts have used map-drawing software to simulate

thousands of possible maps in a state, the observed maps in states where redistricting is

controlled by a single party often appear to be among the most partisan possible.25

The Define-Combine Procedure

The second method we consider is our own innovation, the two-stage Define-Combine Pro-

cedure. In this model, the power to draw the map is divided between the two parties (i.e.,

the players in the game are Party A and Party B), but in each stage of the process one party

acts unilaterally.

Suppose Party A acts in the first stage as the “Definer,” and Party B acts in the second

stage as the “Combiner.” The game proceeds as follows:

1. Party A defines a set of 2N contiguous, equally populated districts. To avoid confusion

with the following stage, we refer to these districts as subdistricts.26

2. Party B creates the final map of N districts by combining pairs of 2 contiguous sub-

districts.

24In practice, there will be a large number of maps in M (even in some of the simple examples here, there
may be millions or billions of legal maps). Thus, M does not have to be the complete set of feasible maps,
but rather a subset of all feasible maps in which Ui varies.

25Research on redistricting in Florida (Chen and Rodden, 2015), Maryland (Cho and Liu, 2016), Wisconsin
(Chen, 2017), Virginia (Magleby and Mosesson, 2018), and Pennsylvania (Duchin, 2018b) find that chosen
plans in states with URPs are extreme outliers as compared to the set of simulated possible maps.

26A related game could involve defining kN subdistricts where k is a positive integer greater than 2.
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Party A moves first and so has a strategy profile consisting of a selection of a map

MA ∈ M, the set of all maps with 2N valid districts.27 Party B combines subdistricts to

create a map MB ∈ Q(MA), where Q(MA) is the set of valid groupings of the subdistricts in

MA.
28

Party B, the second mover, will select a best-response to any proposed set of subdistricts.

The strategy σB is a mapping from the set of valid groupings of sub-districts to a single map,

M̂B, such that

M̂B ≡ σB(MA) ∈ argmax UB(Q(MA)).

Because voters themselves are indivisible and the districts in this setup consist of sets of

voters, any game has a fixed number of possible districts.Also, the second-mover knows what

the first mover has chosen to do. In a finite extensive game with perfect information, such as

DCP, there exists a subgame perfect equilibrium (Osborne et al., 2004, p. 173). Furthermore,

it can be solved using backward induction. For the map MA selected by Party A, Party B

will examine all of the possible maps it could draw, Q(MA). From these possibilities, it will

select the map M̂B ∈ Q(MA) that maximizes the percentage of seats won by Party B. For

every possible map MA ∈ M, Party A can anticipate what ultimate map MB Party B would

draw. Therefore, it selects the map M̂A that maximizes the percentage of seats won by Party

A subject to Party B’s best-response pairings, with payoff UA(σB(M̂A)).
29

This procedure reduces partisan gerrymandering by limiting the efficacy of the most

important strategy for gerrymandering—packing the opposing party’s voters into as few

noncompetitive districts as possible (Friedman and Holden, 2008). Consider a state, to be

divided into five districts, with voters evenly divided between the two parties. If Republicans

can draw one district with 80% Democrats, they could likely draw the four remaining districts

to produce Republican wins by a narrow margin. However, this “packing” strategy fails under

DCP—if Republicans draw two 80% Democratic subdistricts, then in the combine stage

Democrats would refuse to combine the subdistricts and instead pair them with neighboring

Republican subdistricts to win the two resulting districts. While specific political geographies

can still enable packing in some places, the ability to do so is significantly constrained.

27Valid districts are contiguous (except where required by geographic features such as islands) and have
equal population. We do not impose any compactness, split geography, or other restrictions, but such
limitations could be included here. The one exception to this is that valid districts may not include “donuts,”
where one district entirely encircles another.

28To rule out a Definer drawing maps with one or fewer valid Combine stage responses, the procedure can
also require a Define stage map MA with more than one valid Combine state map in Q(MA). For evaluation
of real-world state and congressional district maps in this paper, we require |Q(MA)| > 10. We have found
that this restriction rarely binds in practice.

29Equivalent to minimizing the percentage of seats won by opposing Party B.
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A.3 A Simple Example: Iowa

A simple example illustrates the DCP framework. Consider a (simplified) map of Iowa, as in

Figure A.1, with 30 equally-populated precincts and an overall statewide vote share of 50%

for the Democrats and 50% for the Republicans.30

Suppose redistricting requires that the state be divided into five equally populated con-

tiguous districts (which could occur if Iowa were to gain an additional Congressional district

due to reapportionment). Given that each of the thirty precincts has the same population,

the state must be divided into five districts of six precincts each. Under these assumptions,

there are 27,250 possible maps.

Figure A.1: A simplified map of Iowa with 30 equally populated precincts. Dark red (blue)
precincts denote higher Republican (Democratic) vote shares.

If Democrats re-draw the map unilaterally and maximize the number of seats won, they

can construct a map where they win four seats and Republicans win one seat. Figure A.2(a)

shows one such map (out of many equivalent possibilities) drawn by the Democrats uni-

laterally. Districts won by Democrats (Republicans) are denoted with a blue (red) outline.

In this example, Republicans are packed into District 4, and Democrats win majorities in

Districts 1, 2, 3, and 5. Conversely, as illustrated in Figure A.2(b), when Republicans act

unilaterally, the opposite result is possible; Republicans win four seats, and Democrats win

one.

30We used a 2016 Iowa precinct shape file to generate the map, simplifying by creating thirty precincts
with equal population. Vote share in each precinct is based on 2016 Presidential election totals, with a
uniform swing applied to each precinct so that the statewide average is 50% for each party. Note that
two-party Democratic vote share in Iowa averaged over the 2012 and 2016 presidential elections is 49%, so
this scenario does not stray far from reality.
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(a) Best map for Democrats (b) Best map for Republicans
Dems. win 4–1 Reps. win 4–1
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Figure A.2: Examples of Valid Maps for Iowa (simplified).

(a) Dems. Define; Reps. Combine (b) Reps. Define; Dems. Combine
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Figure A.3: Define-Combine Procedure Results for Iowa (simplified)

We now apply DCP to this simple example. In the first stage, the defining party will

draw a map consisting of ten contiguous subdistricts, each with three precincts. There are

7,713 valid divisions of this map of Iowa. In the second stage, the combining party selects

contiguous pairs of subdistricts to create the final district map. The number of possible

combinations in the second stage varies based on the subdistricts defined in the first stage.

In this example, the number of combinations varies from 2 to 20 possibilities.

For any possible proposed map (i.e., for each sub game), the defining party analyzes

the resulting combinations and determines the best-response for the combining party. The

defining party chooses the map that minimizes the utility that the combining party gets

from making the optimal pairing in the sub game. Given the distribution of voters in our

running example, Figure A.3 presents the results of DCP for this simple example if the

Democrats go first, on the left, and if the Republicans go first, on the right. In this example,
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there are multiple equilibria and we present just one graphically. The defined subdistrict plan

selected by the Democrats results in three seats for Democrats and two seats for Republicans.

The Republicans cannot choose any other combination of these subdistricts to improve the

outcome. Similarly, if the Republicans move first, then in equilibrium the Republicans win

three seats and the Democrats win two seats. Thus, DCP reduces the advantage conferred

to the map-drawer/definer. Under URP, there is a three-seat (of five total seats) difference

in partisan outcomes depending on who controls the process, while under DCP there is only

a one-seat difference depending on who draws the define-stage map.31

31We will denote this difference based on first-mover status as δ. So, for URP δU.5 = 0.8 − 0.2 = 0.6 and
for DCP δD.5 = 0.6− 0.4 = 0.2.
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A.4 Simulation Details

We use two different applications of shortburst algorithms to generate our results. First,

we apply a simple implementation of shortburst to find the map that maximizes seats won

by each party under unilateral redistricting. For each state, chamber, and party, we run 10

separate sets of simulations. In each simulation, we (1) generate a random starting map, (2)

run the shortburst algorithm 2000 times, with 10 maps generated per burst, and (3) save

the final map. We use a scoring function that maximizes first the number of seats won by

the party, and second the party’s vote share in the next closest district.32 Across 10 separate

chains for each state, we ultimately simulate and score 200,000 plans, selecting the most

extreme result for each party.33

Second, we use a “nested shortburst” algorithm to simulate the Define-Combine Proce-

dure. For each state, chamber, and party we run 10 separate sets of simulations. In each

simulation, we (1) generate a random starting map of 2N districts, (2) run the shortburst

burst algorithm 250 times, with 10 maps generated per burst. Importantly, our scoring

function for these maps involves a second iteration of the scoring algorithm. Instead of cal-

culating the seats won, we use a different shortburst algorithm to generate different pairings

of districts and maximize the seats won by the second party. In particular, for every first

stage map generated, we next run 50 shortbursts of the pairing algorithm and generate 20

different combinations in each burst—generating different pairings of districts and searching

for the instance that maximizes seats won by the second party. Thus, the second implemen-

tation of the algorithm maximizes seats for the second party across 1,000 possible maps for

each define-stage map generated, and then the first algorithm uses that as the score when

maximizing seats for the first party.34 This approach gives both parties the benefit of actively

trying to maximize their own advantage, rather than looking at a random set of proposals

and choosing the best option.35

The full R code and data to run our simulations is included with the replication data.

32We find that this scoring function more efficiently finds extreme gerrymanders than scoring based on
seats won alone.

33If a map is generated where the districting party is able to win every district in the state, the shortburst
algorithm is terminated and additional maps are not simulated.

34For states with seven or fewer congressional districts, we enumerate all possible combinations in the
second stage and use the map that yields the most seats for the combining party as the score for the first
stage.

35An earlier version of this manuscript used a random sampling approach rather than shortburst. Our
results with the shortburst algorithm are more extreme — parties under both processes are able to win more
seats, but the overall pattern of the results is similar.
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A.5 Measurement of Redistricting Plans

Consider an electoral system with seats-votes function SM(ν1, . . . , νN) for a map M , which

takes as an input district-level vote shares ν1, . . . , νN and yields as an output a seat share.36

The state-wide vote share V is the average of district-level vote shares (importantly, elections

with identical state-wide average vote share V but different realizations of ν1, . . . , νN could

result in different winning candidates). Conditioning on a state-wide vote share V , we can

find the average seat share by taking the expected value of the function, over the joint

distribution for ν1, . . . , νN—e.g., E (SM(ν1, . . . , νN) | V ) = SM(V ). Note that SM(0.5) ̸= 0.5

indicates an electoral system with partisan bias, which could be due to inherent geographic

bias (Chen and Rodden, 2013), gerrymandering, or both.

The definer’s advantage depends on how the seat share changes when Party A unilaterally

redistricts compared to when Party B unilaterally redistricts, for example in a 50-50 state

δU.5 = SM̃A
(0.5) − SM̃B

(0.5). Similarly, δD.5 = SM̂A
(0.5) − SM̂B

(0.5) indicates the definer’s

advantage under DCP. A large positive value for δU.5 indicates that the party controlling the

URP can reap a significant electoral advantage through gerrymandering; a large positive

value for δD.5 indicates that the definer or first-mover in DCP can reap a significant electoral

advantage. A negative value indicates a second-mover advantage or combiner’s advantage.

Redistricting procedures that minimize the absolute value of this quantity tend towards

providing both parties equal treatment.

Partisan gerrymandering may pose a problem for an electoral system if there exist large

differences in seats won depending on which party controls the redistricting process. Consider

a state with unilateral redistricting and vote share V = 0.5; suppose Party A wins 75% of the

seats if it draws the map whereas Party B wins 70% of the seats if it draws the map. Such a

map appears to confer a large partisan advantage to whichever party controls redistricting;

45% of seats in the legislature change hands depending on the party that draws the map.

Alternatively, suppose that Party A wins 52% of the seats if it draws the map, and Party B

wins 50% of the seats if it draws the map. In this case, partisan gerrymandering represents

a smaller problem, with a swing of 2 percentage points depending on the party controlling

the process.

Second, to determine how a redistricting procedure affects partisan bias, we directly

compare seat shares for each procedure when the two parties evenly split votes, which we

estimate by a uniform swing. If |SM̃A
(0.5)| > |SM̂A

(0.5)| (where M̃A denotes the optimal

map for Party A from unilateral redistricting, and M̂A the optimal map for Party A from

DCP, then DCP reduces bias due to redistricting as compared to URP.

36Notation used here is similar to Katz, King, and Rosenblatt (Katz, King and Rosenblatt, 2020).
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Third, to determine a method’s deviation from proportionality, we simply compare the

Democratic seat share under a plan to the vote share under the plan. Thus, |SM̃A
− V | >

|SM̂A
(0.5)−V | denotes a case where the URP map for Party A deviates from proportionality

more than the DCP map.

Fourth, to determine a method’s deviation from a fairness target, we first define such

a target by following a similar definition to the one in Benadè, Procaccia and Tucker-Foltz

(2021), which proposes a geometric target that is the average of the outcomes under the

worst and best possible map partitions in a state for a given party. In our framework, this is

equal to θ =
S
M̃A

(V )−S
M̃B

(V )

2
. Under this framework, a map M performs better than a map

N when |SM(V )− θ| < |SN(V )− θ|.
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A.6 Additional Simulation Results

A.6.1 Simulation Tables

State Seats R Alone R Then D D Then R D Alone
AL 7 0 0 1 3
AR 4 0 0 1 1
FL 28 4 12 10 19
GA 14 2 6 6 11
IL 17 9 11 11 14
KS 4 0 1 2 2
KY 6 0 0 1 2
LA 6 0 1 1 3
MA 9 9 9 9 9
MO 8 0 2 3 5
MS 4 0 0 1 2
NE 3 0 0 1 1
NM 3 1 2 3 3
NV 4 1 2 3 3
OK 5 0 0 0 1
OR 6 2 3 5 6
RI 2 2 2 2 2
SC 7 0 1 3 4
TN 9 0 1 2 4
TX 38 6 19 17 28
WV 2 0 0 0 0

Table A.2: Legislatures Redistricting: Simulation Results
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State Seats R Alone R Then D D Then R D Alone
CT 5 4 5 5 5
MD 8 5 6 8 8
MN 8 2 4 4 7
NC 14 1 5 6 11
NH 2 1 2 2 2
NY 26 16 20 22 26
PA 17 4 7 8 12
VA 11 4 7 8 10
WI 8 1 3 4 6

Table A.3: Court or Special Master Redistricting: Simulation Results

State Seats R Alone R Then D D Then R D Alone
AZ 9 1 4 4 8
CO 8 1 4 5 7
MI 13 2 6 5 10

Table A.4: Independent Commission Redistricting: Simulation Results

State Seats R Alone R Then D D Then R D Alone
HI 2 2 2 2 2
IA 4 0 0 2 3
IN 9 0 1 2 4
ME 2 1 2 2 2
NJ 12 6 8 10 12
OH 15 0 5 4 11
UT 4 0 0 1 2

Table A.5: Political Redistricting: Simulation Results
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A.6.2 Assessing Definer’s Advantage for DCP versus Enacted Plans

Making a comparison of DCP’s results for Definer’s Advantage to the Definer’s Advantage

for actual, enacted plans presents several complications because we do not observe the coun-

terfactual of how the minority party (e.g., the party not controlling redistricting in a state)

would behave when enacting their plan. In this section, we impose an additional assumption

about the behavior of the party in order to be able to estimate Definer’s Advantage for

enacted plans.

To compare in terms of Definer’s Advantage, we first interpolate the Democratic seat

share for the counterfactual where the current minority party controlled the redistricting

process. We find the difference between the theoretical maximum number of seats the cur-

rent party in power could win (estimated from URP) and the number of seats the party is

projected to win based on the enacted map. We then impute the difference for the coun-

terfactual where the minority party redistricted. The maintained assumption is that each

party would deviate from its most extreme map by the same margin.

Under this assumption, controlling the redistricting procedure in each state leads to a

swing between the parties of 17.6% of seats on average. Compared to this benchmark, DCP

reduces the advantage conferred to the redistricting party by roughly half.

A.6.3 Assessing Performance of DCP versus Enacted Plans by State Redis-

tricting Procedure

This Appendix Section describes simulated DCP results as compared to enacted plans, de-

pending on the redistricting procedure implemented in each state. DCP achieves improve-

ments compared to adopted plans, particularly with regard to reducing the extent of devia-

tion from the geometric fairness target. Table A.6 presents the metrics for DCP versus the

other benchmarks broken out by state redistricting procedure. DCP achieves reductions in

deviation from the fairness target compared to adopted plans across all of the redistricting

procedure types. We view this metric as one of our most informative since the geometric

fairness target essentially captures the seat share for a map that grants neither party an

advantage due to unilateral redistricting. It also accounts for the natural advantages one

party may have in a state due to a state’s geography and how it interacts with the spatial

distribution of voters. Along this dimension, DCP performs better better than URP and

better than adopted maps regardless of the method used (court or special master, commis-

sions, legislature, etc.). One reason this may depart from the results for partisan bias is that

we calculate the fairness target for all states (rather than just the subset used for partisan

bias calculations).
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Metric Category URP DCP
Adopted
Plan

Definer’s Advantage Court or Special Master 0.495 0.081 0.121
Definer’s Advantage Independent Commission 0.417 0.052 0.125
Definer’s Advantage Legislature 0.468 0.097 0.204
Definer’s Advantage Political 0.562 0.146 0.271
Deviation from Proportionality
(Actual State Party Control) Court or Special Master 0.257 0.144 0.107
Deviation from Proportionality
(Actual State Party Control) Independent Commission 0.279 0.179 0.172
Deviation from Proportionality
(Actual State Party Control) Legislature 0.265 0.142 0.217
Deviation from Proportionality
(Actual State Party Control) Political 0.296 0.216 0.268
Deviation from Fairness Target
(Actual State Party Control) Court or Special Master 0.247 0.056 0.066
Deviation from Fairness Target
(Actual State Party Control) Independent Commission 0.208 0.036 0.062
Deviation from Fairness Target
(Actual State Party Control) Legislature 0.234 0.062 0.105
Deviation from Fairness Target
(Actual State Party Control) Political 0.281 0.094 0.135
Partisan Bias Court or Special Master 0.302 0.060 0.040
Partisan Bias Independent Commission 0.350 0.067 0.058
Partisan Bias Legislature 0.287 0.057 0.100

Table A.6: DCP Performance Versus Alternatives, by Redistricting Procedure:
Breaking results out by redistricting procedure, this table reports the performance of the
Define-Combine Procedure (DCP) as compared to unilateral (URP) and adopted plans along
several different metrics. The cells in italics are based on interpolated values for Definer’s
Advantage. This quantity is calculated by interpolating the seat share under the scenario
where the opposing party held control over the redistricting process. The partisan bias
calculations do not include any states with a “Political” redistricting process. Partisan Bias
is calculated only for states with 2020 Democratic Presidential Vote Share between 45% and
55%.
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For partisan bias, DCP clearly reduces bias compared to the adopted plans in states with

legislature drawn maps (from 10% to 5.7%). In states with maps drawn by independent

commissions, courts or special masters, DCP achieves comparable or slightly higher levels

of bias. Importantly, these partisan bias simulations are for a limited set of states, impose a

different set of constraints, and assume parties are seat-maximizers—so this is not a perfect

comparison. Nonetheless, given that DCP achieves comparable results, we think it suggests

that in practice DCP would perform comparably (or better) in terms of partisan bias to

maps produced by commissions, courts or special master—all without requiring agreement

on an independent third-party arbiter or cooperation between the parties.

Figure A.4, which plots Appendix seat share for a state and method (y-axis) against

the geometric fairness target, summarizes these state-by-state results. We focus here on

states with at least four congressional districts and a URP midpoint between 0.3 and 0.7,

as redistricting matters primarily in states with some degree of support for more than one

political party. Among all states that did not ultimately default to maps drawn by a court

or special master, the outcome from DCP is closer to a proportional one than the actual

outcome achieved in the state. The figure illustrates how the actual redistricting outcomes,

represented by the point where a line with an arrow originates, are less proportional than

the DCP outcome in states where redistricting occurred by independent commissions, leg-

islatures, or politician-controlled commissions. The two exceptions we observe are in states

with plans drawn by Courts or Special Masters; specifically, we observe that DCP produces a

slightly more majoritarian outcome in Virginia and North Carolina than the maps produced

for these states, which are both proportional to the geometric fairness target.

A.6.4 State-by-State Shortburst Comparisons, 2020 Presidential Election Demo-

cratic Vote Share

Figures A.5, A.6, and A.7 compare DCP outcomes to several other benchmarks for each

state. The benchmarks include simulated URP outcomes, actual seat projections based on

the post-2020 redistricting cycle, and 2020 Presidential election vote share. We group results

by redistricting process: Legislatures, Independent Commissions, Politician-controlled,37 and

Court or Special Master. Several key patterns emerge. In some states, the partisan compo-

sition tilts so far in the direction of one party that it makes no difference who draws the map

or which process is used (see Hawaii, Idaho, Massachusetts, Montana and Rhode Island).

However, in states with mixed partisanship, notable differences emerge between the results

from DCP and the other benchmarks.

37These include states where state legislatures retain influence over the redistricting process but may have
backup commissions, advisory commissions, or commissions composed by or of politicians
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Figure A.4: Comparing DCP to Actual Outcomes: This figure displays the comparison
between DCP and the actual outcome based on the state’s post-2020 redistricting process.
The x-axis reports the midpoint between URP outcomes. The y-axis reports the Appendix
seat share for a redistricting procedure. The point where each line originates denotes the
projected outcome of the post-2020 redistricting. The point of each arrow denotes the
DCP projected outcome. For reference, we also include a 45 degree line (e.g., proportional
representation) and a line illustrating seat shares for an unbiased but majoritarian electoral
system that follows the cube law. The sample includes states with four or more congressional
districts and a URP midpoint between 0.3 and 0.7. First-mover for DCP is determined based
upon the party controlling redistricting or (where not applicable) the majority party in each
state.
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First, as noted in the nationwide results, DCP reduces the sizable gap in seats compared

to when one party unilaterally draws district maps. For example, in Virginia, we find

that Democrats could draw maps where they win nine of eleven Congressional districts.

In contrast, Republicans could draw maps where Democrats win only three Congressional

districts—a gap of 6 seats or 55% of seats. Under DCP, the gap shrinks dramatically to 1

seat depending on the party that moves first. Overall, eight of forty-three states exhibit a

two seat gap, twenty-one states exhibit a one seat gap, and fourteen states exhibit a zero

seat gap under DCP. In every state where URP produces more than a one seat difference in

seats, DCP narrows the range of outcomes as compared to URP, regardless of which party

defines subdistricts and which party combines them. All states other than California, Florida,

Ohio and Texas exhibit a first-mover or definer’s advantage (all states with large numbers

of districts; we later explore the relationship between number of districts and first-mover

advantage in more detail).
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Figure A.5: State by State Simulation Benchmarks: This figure displays DCP (labelled “D/R then R/D”) results to several
other benchmarks for state congressional districts where legislatures performed redistricting in the post-2020 redistricting cycle.
Points labelled “D/R Alone” denote unilateral redistricting. Points labelled “D/R/O Actual” denote the actual outcome for the
state in terms of projected seats after redistricting occurred. The small “X” mark denotes 2020 Presidential Election Democratic
vote share, also reported in parentheses under each state name.
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Figure A.6: State by State Simulation Benchmarks: This figure compares DCP (labeled “D/R then R/D”) results to
several other benchmarks for state congressional districts where commissions or politicians guided redistricting in the post-2020
redistricting cycle. Points labelled “D/R Alone” denote simulated unilateral redistricting. Points labelled “D/R Actual” or
“Commission” denote the actual outcome for the state in terms of projected seats after redistricting occurred. The small “X”
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Figure A.7: State by State Simulation Benchmarks: This figure displays DCP (labeled
“D/R then R/D”) results to several other benchmarks for state congressional districts where
a court or special master guided redistricting in the post-2020 redistricting cycle. Points
labelled “D/R Alone” denote simulated unilateral redistricting. Points labelled “Courts or
Special Master” denote the actual outcome for the state in terms of projected seats after
redistricting occurred. The small “X” mark denotes 2020 Presidential Election Democratic
vote share, also reported in parentheses under each state name.
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A.6.5 Simulation Results After Uniform Swing
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Figure A.8: This figure compares DCP (labeled “D/R then R/D”) results to unilateral
redistricting for states where we have performed a uniform swing so that statewide 2020
Democratic Presidential vote share is evenly split between the parties. States included
had an original Democratic vote share between 45% and 55%. Points labelled “D/R Alone”
denote simulated unilateral redistricting. The small “X” mark denotes the geometric fairness
target for the 50-50 maps (e.g., the average of the most extreme map in terms of Democratic
seats won and Republican seats won).
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State Seats R Alone R Then D D Then R D Alone
FL 28 5 13 13 21
GA 14 1 5 6 11
NM 3 1 1 2 3
NV 4 1 2 3 3
TX 38 11 21 20 31

Table A.7: Legislatures Redistricting: Simulation Results After Uniform Swing

State Seats R Alone R Then D D Then R D Alone
MN 8 1 4 3 6
NC 14 1 6 7 11
PA 17 4 7 7 11
VA 11 2 5 6 9
WI 8 1 3 4 7

Table A.8: Court or Special Master Redistricting: Simulation Results After Uniform
Swing

State Seats R Alone R Then D D Then R D Alone
AZ 9 1 4 4 8
CO 8 1 4 5 7
MI 13 2 6 5 10

Table A.9: Independent Commission Redistricting: Simulation Results After Uniform
Swing

State Seats R Alone R Then D D Then R D Alone
IA 4 1 2 3 3
OH 15 1 7 7 13

Table A.10: Political Redistricting: Simulation Results After Uniform Swing
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A.6.6 Compliance with the Voting Rights Act

One potential concern for adopting the Define-Combine Procedure is the ability to use it to

draw maps while complying with the federal Voting Rights Act, in particular by preserving

majority-minority districts. If a set number of majority-minority districts are drawn, will

DCP continue to produce similar results for each party if used for the remaining districts?

To consider the possibility of VRA compliance, we ran a series of simulations in Georgia as

follows:

1. Using 2020 census data and VTDs, use the shortburst algorithm to generate four

majority-Black districts.

2. Remove the four majority-Black districts from map (effectively freezing these districts).

3. Run the unilateral and DCP simulation algorithms (as described above) to generate

the boundaries of the remaining ten Congressional Districts, and record the results

from each algorithm.

The above procedure was run ten times. In each simulation the boundaries of the four

majority-Black districts were different (but were all concentrated in the Atlanta Metro area).

Figure A.9 shows the results of the simulations. Across all ten simulations, there are sub-

stantial gaps in the number of Democratic seats with unilateral redistricting (4–5 seats), but

much smaller gaps under DCP. In four of the simulations, both parties reached the same

number of Democratic seats, in five simulations there was a one-seat difference, and in one

simulation (likely due to the particular boundaries of the four majority-Black districts) there

was a two-seat gap.

These results demonstrate that if the VRA districts can be drawn and then frozen in

place, DCP can still produce an equitable result that reduces partisan gerrymandering in

the remainder of the state.
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Figure A.9: Simulation Results for Georgia Congressional Districts, with Four Majority-
Black Districts for VRA Compliance
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A.7 Grid Maps

We now extend the analysis by simulating thousands of different distributions of voters on a

grid map and then identifying the maps selected by each party under unilateral redistricting

and under DCP.

A.7.1 Grid Map Simulations

The simulations proceed in four steps:

1. Define a grid of P precincts; each will have the same population.

2. Generate a random distribution of voters in each precinct. Instead of making each

precinct either one Party A voter or one Party B voter, each precinct contains the

same population size, but with a randomly selected percentage of voters supporting

each party. First, we pick a target vote share m for Party A in the grid as a whole. We

vary this across simulations in 2.5% increments from 30% to 70%. For each target vote

share, we draw a vote share for each precinct from a truncated normal distribution

with mean m.38 We repeat this process 100 times for each level of m, resulting in 1,700

different distributions of voters.

3. Generate potential maps for the grid:

(a) Generate a set of possible maps of N districts, and a set of possible maps of 2N

districts. For the simple 30-unit grid, we generated every possible map. For more

complex grids, we generated a random sample of maps.

(b) For the set of 2N districts, generate all possible plans that combine pairs of

contiguous districts. For the simple grid, we generated every possible combination,

and for more complex grids we generated a random sample of combinations.

4. For each distribution of voters, examine the set of generated maps to identify:

(a) The best map for Party A, if Party A chooses a map unilaterally.

(b) The best map for Party B, if Party B chooses a map unilaterally.

(c) The map Party A would choose if it goes first under the Define-Combine Proce-

dure.

(d) The map Party B would choose if it goes first under the Define-Combine Proce-

dure.

38The truncated normal distribution is bounded at 0 and 1 and has a standard deviation of 0.25.
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For each identified map we calculate the number of seats won by each party.

A.7.2 Varying Partisan Composition of Voters

Figure A.10 presents the results for a 30-voter grid (5 districts of 6 voters each). The x-

axis corresponds to the share of voters supporting Party A, and the y-axis to the share

of seats won by Party A. The dotted lines illustrate the average across simulations when

Party A (in blue) and Party B (in red) draw the district maps unilaterally. The solid lines

display the averages for DCP, with the blue (red) line corresponding to Party A (B) as the

definer followed by Party B (A) as the combiner. When one party dominates state-wide vote

share (e.g., more than 75% of vote), the results remain similar no matter who controls the

unilateral process and no matter if DCP is implemented. However, when both parties are

competitive in terms of vote share, significant differences emerge. At V = 0.5, the advantage

conferred by drawing maps unilaterally is δU.5 ≡ 0.8− 0.2 = 0.6, or three seats. Under DCP

the first-mover advantage is δD.5 ≡ 0.6− 0.4 = 0.2, or one seat. All told, implementing DCP

on a map evenly divided between the parties will reduce the advantage of the redistricters, as

compared to their opponents, by a seat share of 0.4 or 2 seats. DCP does offer the defining

party a first-mover advantage in this context of one additional seat over the combiner.

The definer’s advantage in DCP declines as the size of the grid and/or the number

of districts increases. Figure A.11 displays the average number of seats won for a larger

hexagonal grid where 150 precincts are divided into 15 districts. While there is still a

substantial gap in seat share when parties draw maps unilaterally, the seat shares under

DCP converge, no matter who moves first. For example, when voters in the 150 precinct grid

are split evenly between the parties and there is unilateral redistricting, the party drawing

the map gets a seat premium roughly equal to half of all seats on average (δU.5 = 0.54). In

contrast, under DCP the seat share remains nearly the same no matter which party goes

first (δD.5 = .007).

Figure A.12 plots the values of δUV and δDV against vote share for the 150 precinct grid.

Partisan advantage due to unilateral redistricting (δUV ) peaks when the state is evenly split.

In contrast, the partisan advantage under DCP (δDV ) remains relatively low across the full

distribution. While it increases slightly for vote shares in the range 0.37-0.45 and 0.55-0.63,

the defining party still receives an advantage of less than one of sixteen seats, compared

to an advantage equal to four of sixteen seats at those same vote shares under unilateral

redistricting. Across all vote shares, DCP reduces the partisan advantage of going first and

substantially limits the ability of each party to gerrymander.

Because we randomly generate these grid maps, the average geographic bias due to clus-

tering of partisans is zero for any vote share. As a result, we may identify bias due to
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Figure A.10: Results for Voter Distribution Simulations on a Simple Grid. Each simulation
uses a 5x6 grid.
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Figure A.11: Results for Voter Distribution Simulations on a Larger Grid (150 precincts; 15
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Figure A.12: Differences in Seat Shares from Switch in Redistricting Party on the 150
Precinct Grid

redistricting by a direct examination of the seat shares for unilateral redistricting and for

DCP. For both maps simulated in this section, DCP reduces bias most when votes are evenly

split; as a party’s vote share increases, the gap in biases due to redistricting procedure nar-

row, until converging for vote shares 0.6 and above.

The figures above present average numbers of wins for each party or the average values

of δU and δD, across 1,700 different random distributions of voters across the grids (100

distributions for each mean level of vote share for Party A, from 30% to 70% in increments

of 2.5%). However, we also would like to know how DCP performs not just on average but

for every possible map. That is, are there any distributions of voters for which DCP does

not represent a meaningful improvement over the unilateral case? To address this question,

we examine the results from each separate distribution of voters. For each voter distribution

on the 150 precinct grid, we calculated δU , δD, and the difference between them. If δD = δU ,

then, for that particular voter distribution, DCP fails to improve the outcome. Figure A.13

presents scatter plots showing, for each mean level of Party A vote share, the values of δU

(on the x-axis) and δD (on the y-axis). Points are sized by the number of times that result

is realized in each of the 100 simulations for each vote share level. In all cases, δD < δU . In

other words, DCP improved the outcome in all 1,100 cases by a meaningful margin.
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Figure A.13: Values of δU and δD for each simulated voter distribution on the 150 precinct
grid.
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A.7.3 Alternative Objectives to Maximizing Seats Won in Next Election

In the simulations above, both parties sought to maximize seats won. However, parties

may have objectives other than maximizing current seat share. These differing objectives

could include maximizing the odds of maintaining a majority, or preventing losses in future

elections rather than just the impending one.

Katz, King and Rosenblatt (2020) notes that if a majority party controls the redistricting

process but is worried about the future (i.e., “running scared”), then the party may favor

plans that maximize partisan bias and minimize responsiveness to insulate the party from

future partisan swings. In contrast, if a party expects to win a majority of the vote in future

elections, they may seek to create districts that are microcosms of the state as a whole by

maximizing responsiveness and minimizing bias (Katz, King and Rosenblatt, 2020). Further

complicating matters, the objectives of competing parties could also differ, since a party

seeking to maintain a partisan advantage will likely have goals that differ from the party

seeking to gain one.

To explore the implications of asymmetric utility functions, we simulated redistricting

games where the competing parties had differing objectives: Party A is confident about the

future and maximizes responsiveness while Party B is running scared and seeks to maximize

bias.39Figure A.14 illustrates results when Party A earns a vote share over 0.5. The key

point revealed by this exercise is that the main findings we obtained when both parties

maximized current seats won still hold up. DCP reduces the level of bias as well as the

definer’s advantage for state-wide vote shares between roughly 0.5 and 0.65. For vote shares

above 0.65, the underlying advantage of Party A is so great that the redistricting procedure

no longer matters and Party A simply wins all the seats.

A.7.4 Geographic Partisan Clustering

Geographic clustering of partisans affects the ability of parties to gerrymander. The cluster-

ing of Democratic voters in cities can lead to “unintentional gerrymandering”—even district

maps drawn with no intention to gerrymander, such as randomly generated maps, still ex-

hibit partisan biases disadvantaging Democrats due to partisan differences in geographic

concentration of voters (Chen and Rodden, 2013). High levels of clustering disadvantage the

clustered party since its votes are more likely to be inefficiently grouped together, leading to

more “wasted” votes (Stephanopoulos and McGhee, 2015). Similar arguments may apply to

39Party A maximizes utility by chooising the option that provides the maximum level of responsiveness.
When multiple plans produce the same value of responsiveness, Party A uses wins as tiebreaker. Similarly,
Party B maximizes bias and uses wins as a tiebreaker. Katz, King and Rosenblatt (2020) finds a tradeoff
between bias and wins, such that maximizing one should generally reduce the other as well.
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Figure A.14: Asymmetric Utility Functions: Party A maximizes responsiveness and Party
B maximizes bias.

racial gerrymandering, given differential levels of geographic clustering of racial groups (Ma-

gleby and Mosesson, 2018). DCP’s effectiveness at reducing partisan gerrymandering, along

with the size of the advantage conferred to the first versus second mover, might similarly

depend in part on the level of geographic clustering. We explore that possibility here.

We examine two different elements of clustering: (1) overall clustering of partisans, and

(2) differential clustering of one political party.

To examine overall clustering, we employ Moran’s I, a common measure of spatial au-

tocorrelation (Moran, 1948) used in academic political science research and legal work on

redistricting (Mayer, 2016).40 Moran’s I ranges from −1 to 1, with more positive values

denoting increased clustering. For example, a 5-by-6 grid with all Party A voters located

on the left and all Party B voters on the right yields a Moran’s I of 0.796; a grid with each

party’s voters distributed evenly yields a Moran’s I of −1 (see Figure A.18). A Moran’s I of

0 indicates randomly dispersed voters with neither clustering nor a pattern of “even” disper-

sion. Appendix A.7.6 illustrates maps with varying levels of Moran’s I values and provides

additional details on Moran’s I calculations.

We first randomly assign single voters to 5-by-6 grids of precincts, setting the probability

that a voter supports Party A equal to 50%. For each randomly-drawn grid, we evaluate

map-drawing under both unilateral redistricting and DCP, and we also calculate Moran’s I

for each grid map. Figure A.15 plots the relationship between seats won by Party A and the

40See Cho and Gimpel (2012) for a discussion of the use of various clustering measures in research
on American Politics. Scholars recognize Moran’s I as a valid measure geographic clustering of partisans
(Stephanopoulos, 2018).
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Figure A.15: Results by Clustering, Vote Shares = 50%

amount of geographic partisan clustering when Party A support is fixed at 50%.

As clustering increases, the definer’s advantage (δU.5) for unilateral redistricting increases

slightly as well. Going from the lowest observed level of Moran’s I to the highest increases

δU.5 by about 0.2. How does DCP perform under different levels of geographic partisan

clustering? When clustering is low, DCP removes the definer/first-mover advantage (e.g.,

δD.5 = 0). When clustering is high, even under DCP there remains a small but significant

definer/first-mover advantage. Nonetheless, DCP’s performance varies only slightly due to

clustering in this example, and at all levels of clustering DCP dramatically reduces the

advantage of the definer compared maps drawn under unilateral redistricting. Even at the

highest levels of observed clustering, DCP eliminates at least 80% of the definer’s advantage

observed in unilateral redistricting (e.g., 1 − δD.5
δU.5

≥ 0.8). Overall, then, map-wide clustering

does not appear to meaningfully alter our general results for the definer’s advantage.41,42 In

terms of bias induced by the redistricting process, note that—for any level of Moran’s I—

there is no underlying geographic bias on average since voter locations are assigned randomly.

Under these conditions, DCP reduces bias as compared to URP independently of the level

of clustering.

41Figures A.20 illustrate the relationship between seats won and clustering for different values of state-wide
vote share V .

42In addition, note that the range of clustering in our grid examples does not span the full range of
possible values of Moran’s I. We do not observe many maps that have negative Moran’s I values simply
because they are highly unlikely to occur by our random sampling procedure. (See Appendix A.7.6 for more
details.) This is not a limitation of our analysis of the effects of clustering on gerrymandering or DCP for
two reasons: first, in a case where partisans are very evenly dispersed (Moran’s I values close to −1), it
becomes impossible to gerrymander because there is no way to “crack” or “pack” partisans together, so bias
in these maps (under either unilateral redistricting or DCP) will be close to 0. Second, when using real
data on partisanship to calculate measures of the dispersion of partisans, all states show significant levels of
partisan geographic clustering.
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Another way to examine the effect of geographic bias is to compare the partisan advantage

for one party from the full sample of simulated maps to the results from choosing a map

using URP or DCP. In our grid simulations, we simulate 100 random draws of voters for each

vote share level. We can use the 100 independent draws when vote shares are perfectly split

between the parties to calculate the average wins across all maps for each vote draw, and

we can compare it to the selected maps for each vote draw. Figure A.16 plots the results.

Across the 100 draws, geographic bias (the x-axis) varies by about 5% in favor of each party.

Geographic bias favoring Party A correlates positively with Party A seat share under either

redistricting procedure. As geographic bias decreases, we see less variation in outcomes, and

expect both parties to evenly divide the seats.
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Figure A.16: Relationship Between Geographic Bias and Outcomes for Simulated Grids
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A.7.5 Number of Districts and Definer’s Advantage

To explore the relationship between number of districts and the advantage conferred by

controlling the redistricting process (e.g., as the one drawing the map under unilateral redis-

tricting or as the Definer under DCP), we simulated potential maps for a hexagonal grid. For

all maps, we had a fixed population (4000 hexagons or precincts), fixed vote shares (evenly

split between the parties), no systematic voter clustering, and varying numbers of districts

to be drawn. The number of districts ranged between 4 and 200. As a result, maps with

fewer districts exhibit a higher population to district ratio while maps with more districts

had a lower population to district ratio.

As Figure A.17 illustrates, unilateral redistricting exhibits a hump shape in terms of

the advantage conferred to the party controlling the redistricting process. This advantage

peaks for a state with eight districts and then declines. In contrast, under DCP the definer’s

advantage is highest for small numbers of districts, turns slightly negative (i.e., indicating a

combiner’s advantage / second-mover advantage) and then converges towards zero.
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Figure A.17: Relationship Between Number of Districts and First- and Second-Mover Ad-
vantage. We generated a 63x64 grid of 4,000 hexagons, each with equal population, and used
GerryChain to generate potential maps with different numbers of districts. We generated
sets of 10,000 maps each, with 8, 10, 16, 20, 40, 50, 80, 100, 200, 250, and 400 subdistricts,
resulting in 4, 5, 8, 10, 20, 25, 40, 50, 100, 125, and 200 final districts. We generated 25
different voter distributions, each with mean of 50% for each party, and calculated the maps
selected by each party under the four methods...
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These results raise several questions. First, why does the advantage conferred to the

unilateral redistricter appear to be maximized at a relatively low (but not at the lowest)

number of districts? To see why, first recall that voters split the vote evenly between both

parties. As a result, at least one district will always need to register a majority for the

redistricting party’s opponent.43 This leads to optimal gerrymandering where a party packs

the opponent into as few districts as possible. For example, in a map with 4 districts and

an evenly split vote, the redistricter packs half of the opposing party voters into one district

and distributes the remaining half equally into the three remaining districts. This approach

also works at 8 districts, where the unilateral redistricter can win 7 of 8 seats.

If a state had an evenly split vote and no contiguity constraint, then a redistricter could

pack opposing party voters into one district and win all remaining districts no matter the

number of districts. However, because districts must be contiguous, geography begins to

limit how efficiently voters may be packed and cracked. As the number of districts increases,

this problem increasingly limits the level of gerrymandering. In our example, once the

unilateral redistricter must draw 200 districts, he or she is able to edge out only a 0.2

definer’s advantage. As the number of districts converges to the number of individuals in

the state, the advantage from controlling redistricting will diminish to zero.

Second, why does DCP begin to exhibit a second-mover/combiner’s advantage once the

number of districts surpasses some threshold? Note first that no matter the number of dis-

tricts the combine step prevents the definer from fully taking advantage of the ability to pack

and crack. Attempts to do so can be mitigated through the combine step. However, once the

definer must draw over some threshold number of districts, then the second-mover/combiner

has so many possible options (on average) that he or she can wrest some of the ability to

pack and crack back from the definer. To take this to an extreme, consider a case where

the definer is drawing as many sub-districts as there are people in a state. In this case, the

second-mover/combiner faces a problem equivalent to unilateral redistricting (i.e., taking

the full population N and creating N
2
districts); the combiner therefore retains advantages

similar to those of a unilateral redistricter outlined earlier in this section.

43The proof: Suppose each party comprised half of each district (and breaking ties randomly would lead
to an expected number of wins for each party equal to half the number of districts). Then any change in the
balance of voters between districts will create a majority for each party in at least one other district. Hence
no other configuration of voters can be reached without each party winning at least one district.
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A.7.6 Partisan Clustering Calculations

We use Moran’s I as a measure of the degree of geographic clustering among partisans, both

in our simulated grid example and with the precinct-level election data for each of the states

in our analysis. We use the following formula to calculate Moran’s I:

I =
N

W

∑
i

∑
j wij(vi − V )(vj − V )∑

i(vi − V )

Where N is the number of spatial units, vi and vj are the vote shares of grid square

i and j respectively, V is the average of the vote share across the entire simple grid, wij

are spatial weights, and W is equal to the sum of the weights
∑

ij wij. In the simple grid

analysis presented in Appendix A.7.4, the vote shares vi and vj will either be 0 or 1 and we

use “neighbor” weights such that wij = 1 if grid squares i and j are adjacent rook neighbors

and 0 otherwise.

Figure A.18 shows examples of different configurations of voters along with the corre-

sponding Moran’s I measure for each, holding the overall map vote share for each party at

a constant 0.5. Figure A.18 (a) displays a high clustering scenario, where all voters from

each party are packed on either side of the grid, with a Moran’s I of 0.796. Figure A.18

(b) shows the case where voters from each party are perfectly evenly spread out across the

grid, resulting in a Moran’s I of −1. Figure A.18 (c) shows a case where Moran’s I is ap-

proximately 0, indicating neither clustering nor a tendency towards even dispersion. And

Figure A.18 (d) shows an example of a “city” of Party A voters (white dots) surrounded by

Party B voters (black dots), and demonstrates that in this sort of geographic setup Moran’s

I is 0.479, indicating significant geographic clustering.

Figure A.19 (a) and (b) demonstrate scenarios where the overall vote share for Party A

(white dots) of the map is much lower than V = 0.5, but the geographic clustering of Party

A voters remains high. Figure A.19 (c) and (d) show random draws from our simulation

procedure, this time again with the vote shares of each party set to 0.5, but with only a

slightly positive (c) or slightly negative (d) Moran’s I clustering measure.

The range of Moran’s I in the clustering results presented in Appendix A.7.4 with our

simple grid simulations are limited due to the fact that our random sampling procedure for

the partisanship of each voter makes it highly unlikely that very negative values of Moran’s

I will occur naturally. This is because, in general, there are many different possible ways

to cluster voters — in one corner of the map, in another corner, in the middle, etc. — but

only a small number of ways to have voters evenly dispersed. For example, in order to have

a Moran’s I of −1, voters of each partisan affiliation need to be evenly spread across the

entire map (see Figure A.18 (b)). Given a probability of 50% that a voter will be for Party
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A or Party B, this means that the probability of Moran’s I being exactly −1 is equal to

2 × (0.530), which is approximately 1-in-500 million.44 This is not a significant limitation

of our clustering analysis because a map with clustering close to −1 become impossible to

gerrymander and, when looking at real precinct-level map data, all states we use in our paper

demonstrate significant geographic clustering of partisans.

Figure A.20 plots the relationship between seats won by Party A and Moran’s I (as shown

in Figure A.15), but with each plot depicting results for a different overall Party A vote share,

ranging from 40% to 60%. In general, the pattern is similar to the case where statewide vote

share is split 50-50; in all cases, δD.5 is substantially lower than δU.5, indicating a significant

reduction in the advantage conferred to the party controlling the redistricting process and

in bias due to redistricting. Thus, even if vote shares of each party vary in addition to level

of geographic clustering of political parties, DCP still proves effective.

44There are two possible ways to do have perfect dispersion - one starting with a black dot in the corner
and alternating across the rest of the grid, and one starting with a white dot.
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Figure A.18: Ranges of Moran’s I with Different Vote Distributions
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Figure A.19: Samples of Moran’s I with Different Vote Distributions
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Figure A.20: Define-Combine Results, by Vote Share and Moran’s I, 40%-60%
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