
-- --

A Comparison of Trace-Sampling Techniques for Multi-Megabyte Caches1

R. E. Kessler, Mark D. Hill, and David A. Wood

University of Wisconsin
Computer Sciences Department

Madison, Wisconsin 53706
{kessler, markhill, david}@cs.wisc.edu

ABSTRACT

This paper compares the trace-sampling techniques of set sampling and time sampling. Using the
multi-billion-reference traces of Borg et al., we apply both techniques to multi-megabyte caches,
where sampling is most valuable. We evaluate whether either technique meets a 10% sampling goal:
a method meets this goal if, at least 90% of the time, it estimates the trace’s true misses per instruc-
tion with ≤ 10% relative error using ≤ 10% of the trace. Results for these traces and caches show that
set sampling meets the 10% sampling goal, while time sampling does not. We also find that cold-start
bias in time samples is most effectively reduced by the technique of Wood et al. Nevertheless, over-
coming cold-start bias requires tens of millions of consecutive references.

Index Terms - Cache memory, cache performance, cold start, computer architecture, memory sys-
tems, performance evaluation, sampling techniques, trace-driven simulation.

1. Introduction

Computer designers commonly use trace-driven simulation to evaluate alternative CPU caches [SMIT82].

But as cache sizes reach one megabyte and more, traditional trace-driven simulation requires very long traces

(e.g., billions of references) to determine steady-state performance [BOKW90, STON90]. But long traces are

expensive to obtain, store, and use.

We can avoid simulating long traces by using trace-sampling techniques. Let the cache performance of a

small portion of the trace be an observation and a collection of observations be a sample. Sampling theory tells

how to predict cache performance of the full trace, given a sample of unbiased observations [COCH77, MIFJ90].

With additional assumptions, we can also estimate how far the true value is likely to be from the estimate.

�����������������������������������
1. R. E. Kessler was supported in part by a summer internship at Digital Equipment Corporation and graduate fellow-

ships from the National Science Foundation and the University of Wisconsin Alumni Research Foundation. He is now em-
ployed by Cray Research, Inc. Mark D. Hill is supported in part by the National Science Foundation (MIPS-8957278 and
CCR-8902536), A.T.& T. Bell Laboratories, Cray Research Foundation and Digital Equipment Corporation. David A.
Wood is supported in part by the National Science Foundation (CCR-9157366) and the University of Wisconsin Graduate
School.

- 1 -

-- --

���

Time

Cache
Sets

Time-Space Diagram of Memory References

Vertical Slice

Horizontal Slice(Space)

Figure 1. Sampling as Vertical and Horizontal Time-Space Slices.

This figure shows a time-space diagram of a simulation with a very short trace. The time (position within
the trace) and cache set of each reference is marked with an ×. An observation in set sampling is the cache
performance of one set. References that determine a single set’s performance appear in an horizontal slice
of this figure. An observation in time sampling is the cache performance of an interval of consecutive
references. These references appear in a vertical slice of this figure.

���

Two important trace-sampling techniques are set sampling [HEIS90, PUZA85] and time sampling

[LAPI88, LAHA88]. An observation in set sampling is the cache performance for the references to a single set

(depicted as a horizontal slice in Figure 1), while an observation in time sampling is the cache performance of the

references in a single time-contiguous trace interval (a vertical slice in Figure 1). Laha et al. [LAPI88] and Wood

et al. [WOHK91] referred to an observation of references in a time-contiguous interval as a ‘‘sample’’. We use

sample to refer to a collection of observations to be consistent with statistics terminology [MIFJ90].

This study is the first to compare set sampling and time sampling. We use eight multi-billion-reference

traces of large workloads that include multiprogramming but not operating system references [BOKW90], and

concentrate on multi-megabyte caches, where sampling is most needed. For each trace and cache, we examine

how well set and time samples from a trace predict the misses per instruction (MPI) of the entire trace. We say a

sampling method is effective if it meets the 10% sampling goal: a method meets this goal if, at least 90% of the

time, it estimates the trace’s true misses per instruction with ≤ 10% relative error using ≤ 10% of the trace.

It is critical that readers note that the 10% sampling goal evaluates using samples from a trace to estimate

that trace’s MPI. We do not formally address how our traces relate to the population of all traces, because we

- 2 -

-- --

know of no research that quantitatively characterizes that population. Like most trace-driven studies, we describe

our traces and leave it to the reader to decide whether they are representative of a larger population. Section 2.4

discusses the reasoning behind the 10% sampling goal in more detail.

With our traces and caches, we find several results pertaining to set sampling (Section 3). First, how we

compute MPI is important. We find that it is much less accurate to normalize misses by the instruction fetches to

the sampled sets than by the fraction of sampled sets times all instruction fetches. Second, instead of selecting the

sets in a sample at random, selecting sets that share several index bit values reduces simulation time, facilitates the

simulation of cache hierarchies, and still accurately predicts the trace’s MPI. Third, and most important, set sam-

pling is effective. For our traces and caches, it typically meets the 10% sampling goal.

For time-sampling (Section 4), we first compare techniques for overcoming cold-start bias [EASF78], i.e.,

determining the MPI for a particular trace interval without knowing the initial cache state. We consider leaving

the cold-start bias unchanged, recording metrics only during the second half of each interval, recording metrics

only for initialized sets [LAPI88, STON90], stitching intervals together [AGHH88], and Wood et al.’s model for

predicting the initialization reference miss ratio [WOHK91]. For our traces and caches, we obtain two results.

First, on average, the technique of Wood et al. minimizes the cold-start bias better than the other techniques.

Second, for the multi-megabyte caches we studied, interval lengths of tens of millions of instructions and larger

are needed to reduce the effects of cold-start.

Then using Wood et al.’s technique to mitigate cold-start bias, we find that time sampling fails to meet the

10% sampling goal for our traces and caches, because: (1) many intervals are needed to capture workload varia-

tion, and (2) long intervals are necessary to overcome cold-start bias. As a result, for these traces and caches, set

sampling is more effective than time sampling for estimating MPI. Set sampling is not appropriate, however, for

caches with time-dependent behavior (e.g., prefetching) or interactions between sets (e.g., a single write buffer).

We do not consider other (non-sampling) techniques that reduce trace data storage, such as, Mache

[SAMP89], stack deletion and snapshot method [SMIT77], trace (tape) stripping [PUZA85, WANB90], or exploiting

spatial locality [AGAH90]. These techniques can be used in addition to the sampling considered in this study. We

also do not consider Przybylski’s prefix technique [PRZY88], which prepends all previously-referenced unique

addresses to each time-observation. This method seems unattractive for multi-megabyte caches where each time-

observation requires its own prefix and each prefix must be very large for programs that can exercise multi-

megabyte caches.

- 3 -

-- --

2. Methodology

This section describes the traces, caches, and performance metric we use in later sections.

2.1. The Traces

The traces used in the study were collected at DEC Western Research Laboratory (WRL)

[BOKL89, BOKW90] on a DEC WRL Titan [NIEL86], a load/store (‘‘RISC’’) architecture. Each trace consists of

the execution of three to six billion instructions of large workloads, including multiprogramming but not operating

system references. The traces of the multiprogrammed workloads represent the actual execution interleaving of

the processes on the traced system. The traces reference from eight to over one hundred megabytes of unique

memory locations. These traces are sufficiently long to overcome the cold-start intervals of even the large caches

considered in this study. We chose programs with large memory requirements because of the likelihood that large

application sizes will become more common as main memories of hundreds of megabytes become available.

Table 1 describes traces in detail. The Mult2 trace includes a series of compiles, a printed circuit board

router, a VLSI design rule checker, and a series of simple programs commonly found on UNIX2 systems, all exe-

cuting in parallel (about 40 megabytes active at any time) with an average of 134,000 instructions executed

between each process switch. The Mult2.2 trace is the Mult2 workload with a switch interval of 214,000 instruc-

tions. The Mult1 trace includes the processes in the Mult2 trace plus an execution of the system loader (the last

phase of compilation) and a Scheme (Lisp variant) program (75 megabytes active) and has a switch interval of

138,000 instructions. The Mult1.2 trace is the Mult1 workload with a switch interval of 195,000 instructions.

The Tv trace is of a VLSI timing verifier (96 megabytes). Sor is a uniprocessor successive-over-relaxation algo-

rithm that uses large, sparse matrices (62 megabytes). Tree is a Scheme program that searches a large tree data

structure (64 megabytes). Lin is a power supply analyzer that uses sparse matrices (57 megabytes).

2.2. Cache Assumptions

This study focuses on multi-megabyte unified (both instructions and data cached together) caches. Earlier

work has shown that both techniques are effective for smaller caches [LAPI88, PUZA85]. We vary the size and

set-associativity of these caches over a range of sizes from 1-megabyte to 16-megabytes and associativities from

direct-mapped to four-way. The caches do no prefetching, use write-back and write-allocate policies, and have
�����������������������������������

2. Trademark AT&T Bell Laboratories.

- 4 -

-- --

���
� ���

Workload Description
� �� ���

Mult1 A multiprogram workload consisting of: (1) Make C compiling portions of the Magic
source code, (2) Grr routing the DECstation 3100 Printed Circuit Board (16 megabytes),
(3) Magic Design Rule Checking the MultiTitan CPU chip (20 megabytes), (4) Tree
given 10 megabytes of working space solving the same problem as the Tree workload,
(5) another Make that largely consists of a call to Xld to load the Magic object code (20
megabytes), and (6) an infinite loop shell of interactive Unix commands (cp, cat, ex, rm,
ps -aux, ls -l /*). The trace skipped about the first billion instructions so the larger pro-
grams, Grr, Magic, Tree, and Xld, were able to initialize their large data structures and
start using them. The process switch interval was approximately 200,000 instruction cy-
cles.

	 	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
Mult1.2 The same workload as Mult1 except the process switch interval is approximately 400,000

basic instruction cycles.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Mult2 The Mult1 workload excluding the Xld (Make) run (5) and the Tree program (4). Mult2
has a lower degree of multiprogramming and is smaller than Mult1.

� ���
Mult2.2 The same workload as Mult2 except the process switch interval is approximately 400,000

basic instruction cycles.
� ���

Tv A uniprogram workload of Tv analyzing the timing of the DEC WRL MultiTitan CPU
chip. Tv required 12.5 billion instructions to complete the timing analysis. About the
first 10 billion instructions build a very large linked data structure. The final 2-3 billion
instructions traverse the structure. The end of the execution of Tv was captured on tape.

 ��
Sor A uniprogram workload of the Sor program doing matrix manipulations on a 800,000 by

200,000 sparse matrix with approximately 4 million (0.0025%) of the matrix entries be-
ing non-zero. About the first billion instructions create the large matrices. The rest of
the program is the matrix operations. The trace captures a portion of the matrix opera-
tions, excluding initialization.

� ���
Tree A uniprogram workload consisting of the Tree program. Tree has two major phases that

were traced. About the first half of the instructions build a large tree structure that
represents a Unix-like hierarchical directory structure. The rest of the instructions search
this tree to find the largest member.

� ���
Lin A uniprogram workload of Linear analyzing the power supply of a register file. Normal-

ly, the program tries to minimize the amount of work it must do by combining circuit
structures. The trace was collected by disabling some of these combining operations to
produce a bigger problem, possibly reflecting the larger problems of the future.

� ���
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 1. A Description of the Studied Workloads.

This table consists of a description of the user-only (no kernel references) workloads used in this study.
Four workloads are uniprogrammed and two are multiprogrammed workloads. The uniprogrammed work-
loads consist of the largest programs. Several smaller programs were grouped with some standard Unix
programs to produce the multiprogrammed workloads.

���

128-byte blocks. The caches use virtual-indexing (i.e., select the set of a reference using the reference’s virtual

address) with PID-hashing, an approximation to real-indexing. PID-hashing means that we exclusive-or the upper

eight index bits from the virtual address with the process identifier (PID) of the currently executing process. We

also examined several real-indexed caches and found that they produced results similar to those in this paper,

which is not surprising since real-indexed cache performance is often close to virtual-indexed cache performance.

- 5 -

-- --

The non-direct-mapped caches use a random replacement policy, which was easier to handle in the our simulation

environment than is least-recently-used replacement.

Since multi-megabyte caches are likely to be used in a cache hierarchy, we simulate them as alternative

secondary caches placed behind a fixed primary cache. The primary caches are split (separate) instruction and

data caches that are 32-kilobytes each, direct-mapped, 32-byte blocks, do no prefetching, use virtual indexing, and

write-back and write-allocate policies. We do not evaluate primary cache tradeoffs in this study since secondary

cache performance is unaffected by the primary caches when their sizes differ by at least a factor of eight

[PRHH89].

2.3. The Performance Metric: Misses Per Instruction

We measure cache performance with misses per instruction (MPI) rather than miss ratio. For comparing

the performance of alternative unified secondary caches, MPI is equivalent to Przybylski’s global miss ratio

[PRHH89]. Specifically, a cache’s MPI is equal to its global miss ratio times the average number of processor

references (instruction fetches and data references) per instruction.

2.4. The 10% Sampling Goal

Given a particular trace and cache, let MPItrue be MPI obtained by simulating the complete trace with an

initially empty cache (the true MPI of the complete trace). We say a sampling method is effective (for that trace

and cache) if it meets the following goal:

Definition 1: 10% Sampling Goal

A method meets the 10% sampling goal if, at least 90% of the time, it estimates the trace’s true
misses per instruction with ≤ 10% relative error using ≤ 10% of the trace.

The 10% sampling goal evaluates using samples from a trace to estimate MPItrue (that trace’s MPI). As dis-

cussed in the introduction, we do not formally address how our traces relate to the population of all traces,

because we know of no research that quantitatively characterizes that population. For this reason, readers must

choose between accepting our results (by assuming our traces are representative of their workload) and re-

applying our techniques to their traces. We share this failure of generalizing to the population of all traces with all

trace-driven cache studies we are aware of.

We chose ≤ 10% of the references in a trace and ≤ 10% relative error using our experience with cache

design and evaluation. We expect cache designers would not confront the intellectual complexity of sampling for

- 6 -

-- --

less than a factor of ten reduction in trace size. We also expect many cache designers would consider negligible a

10% relative error in estimating a trace’s MPI, since MPI variations between traces often exceed factors of ten.

Nevertheless, other cache designers may wish to choose stricter or looser criteria and re-apply the techniques

described in this paper.

3. Set Sampling

We first examine set sampling, where an observation is the MPI of a single set and a sample is a collection

of single-set observations. Section 3.1 discusses how to compute a set sample’s MPI and why it should not con-

tain random sets, while Section 3.2 examines how well set sampling predicts MPItrue , the MPI of a full trace.

3.1. Constructing Set Samples

3.1.1. Calculating the MPI of a Sample

In this section, we find that how we compute MPI is important; specifically, it is much less accurate to nor-

malize misses by the instruction fetches to the sampled sets than by the fraction of sampled sets times all instruc-

tion fetches. Consider a cache with s sets. For each set i, let missi and instrni be the number of the misses and

instruction fetches to set i. Let S be a sample containing all references to n sets.

We consider two ways to calculate the MPI of sample S, MPIˆ
S, which both require two counters to process

a trace. Both use one counter to accumulate the number of the misses to the sets in the sample. At the end of the

trace, this counter equals
i ∈ S
Σ missi .

The sampled-instructions method uses the second counter to accumulate the instruction fetches to the sets in

the sample (
i ∈ S
Σ instrni) and computes MPIˆ

S with:

MPIˆ
S =

i ∈ S
Σ instrni

i ∈ S
Σ missi

����������������� .

The fraction-instructions method uses the second counter to to accumulate the instruction fetches to all sets

in the cache (
i =1
Σ
s

instrni) and computes MPIˆ
S with:

MPIˆ
S =

s
n���

i =1
Σ
s

instrni

i ∈ S
Σ missi

��������������������� .

- % -

-- --

An alternative view of the effort required for these two methods is to consider the information that must be

saved from the full trace if cache simulation is not done when gathering the trace. Both methods require that all

references to the sampled sets be saved. The fraction-instructions method also requires a count of the number of

instruction fetches in the full trace. Since most trace-gathering tools accommodate adding a counter, we consider

the difficulty of obtaining data for the two methods comparable.

In addition, statistics for the fraction-instructions method are simpler than for sampled-instructions method.

Since the fraction-instructions method normalizes the number of misses by a constant (for a given sample size n

and number of sets s), its MPI estimates can be handled as simple random variables. MPI estimates for the

sampled-instructions method, on the other hand, should be modeled as the ratio of two random variables.

We empirically compare the two methods by computing their coefficients of variation across all set samples

S (j) obtained with the constant-bits method, a systematic sampling method described in Section 3.1.2:

CV =
MPItrue

√ k
1���

j =1
Σ
k

(MPIˆ
S(j) − MPItrue)2

��� , (1)

where k =
n
s��� is the number of samples [COCH77] (p. 208). CV is the true coefficient of variation, because we

compare the MPI’s of all set samples from the finite population with the trace’s true MPI. We do not compare the

methods with expected error,
k
1���

j =1
Σ
k

(MPIˆ
S(j) − MPItrue), because the expected error of all set samples from the finite

population is always zero.

Experimental results, illustrated in Table 2, show that the fraction-instructions method performs much

better, never having a coefficient of variation more than one-tenth the sampled-instructions method. The differ-

ence is infinite for the Sor and Lin traces because loops confine many instruction fetches to a few sets.

We also investigated normalizing missi with total references per set and data references per set [KESS91].

These methods perform similarly to the sampled-instructions method and not as well as the fraction-instructions

method. We did not consider calculating MPIˆ
S with

n
1���

i ∈ S
Σ instrni

missi����������� , because Puzak [PUZA85] showed estimating

miss ratio with the arithmetic mean of the per-set miss ratios is inferior to dividing the misses to sampled sets by

the references to sampled sets (the miss-ratio equivalent of the sampled-instructions method). For a sample con-

taining all sets, Puzak’s work also implies
s
1���

i =1
Σ
s

instrni

missi����������� ≠ MPItrue .

- 8 -

-- --

 �
!"!�!

Coefficient of Variation (percent)Trace MPItrue × 1000 fraction-instructions sampled-instructions#"#�#
Mult1 0.70 2.3% 35.2%

Mult1.2 0.69 1.9% 28.9%
Mult2 0.61 1.9% 24.2%

Mult2.2 0.59 1.3% 24.3%
Tv 1.88 0.6% 139.0%
Sor 7.54 0.3% ∞
Tree 0.59 6.8% 191.9%
Lin 0.09 7.6% ∞

$"$�$
%%
%
%
%
%
%
%
%
%
%
%
%

%%
%
%
%
%
%
%
%
%
%
%
%

%%
%
%
%
%
%
%
%
%
%
%
%

%%
%
%
%
%
%
%
%
%
%
%
%

Table 2. Coefficient of Variation of MPI Computations.

This table illustrates the accuracy of computing the full trace MPI (column two) for several traces with the
fraction-instructions and sampled-instructions methods. The accuracy is evaluated with the coefficient of
variation (Equation 1) for the MPI estimates from a 4-megabyte direct-mapped secondary cache with 16
set samples of 1/16 the full trace each. The set samples are constructed with the constant bits method
described in the next section. Results show that the fraction-instructions method is far superior to the
sampled-instructions method.

&�&

Since the fraction-instructions method performed better than the other methods examined, we will use it for

the obtaining the remaining set sampling results.

3.1.2. The Constant-Bits Method

We now examine two methods for selecting sets to form a sample. We show why systematic samples con-

structed via constant-bits offer advantages over random samples.

Assume that we want to evaluate three caches with samples that contain about 1/16-th the references in a

full trace. Let the caches choose a reference’s set with bit selection (i.e., the index bits are the least-significant

address bits above the block offset) and have the following parameters:

Cache A: 32-kilobyte direct-mapped cache with 32-byte blocks (therefore its index bits are bits 14-5, assuming

references are byte addresses with bit 0 being least-significant),

Cache B: 1-megabyte two-way set-associative cache with 128-byte blocks (index bits 18-7), and

Cache C: 16-megabyte direct-mapped cache with 128-byte blocks (index bits 23-7).

One method for selecting the sets in a sample is to choose them at random [PUZA85]. To evaluate cache A

with references to random sets, we randomly select 64 of its 1024 sets (1/16-th), filter the full trace to extract

references to those sets, and then simulate cache A. For cache B, we select 128 of its 2048 sets, filter and simu-

late. Similarly for cache C, we use 8192 of its 131072 sets. As illustrated in Figure 2a, selecting sets at random

- 9 -

-- --

'�'

full trace

three
filtered

simulate
each cache

sets of
each cache

filter with
random

(a) selecting sets at random for each cache (b) selecting sets that share constant bits

A

B

C

traces
full trace

one
filtered

simulate
each cache

A

B

Ctrace

constant
bits

filter with
four

Figure 2. Two Methods for Selecting the Sets in a Sample.

This figure illustrates selecting sets for samples of three alternative caches (A, B, and C) using (a) random
sets and (b) constant bits. When sets are selected at random, each simulation must be begin by filtering the
full trace. With constant-bits, on the other hand, a filtered trace can drive the simulation of any cache
whose index bits contain the constant bits.

(�(

requires that each simulation begin by extracting references from the full trace. Furthermore, since primary and

secondary caches usually have different sets, it is not clear how to simulate a hierarchy of cache when sets are

selected at random.

A second method, which we call constant-bits, selects references rather than sets [STON90] (p. 59). The

constant-bits method forms a filtered trace that includes all references that have the same value in some address

bits. This filtered trace can then be used to simulate any cache whose index bits include the constant bits3

[KESS91]. For example, if we filter a trace by retaining all references that have the binary value 0000 (or one of

the other 15 values) in address bits 11-8, then we can then use the filtered trace to select 1/16-th of the sets in any

cache whose block size is 256 bytes or less and whose size divided by associativity exceeds 2 kilobytes. These
)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)�)

3. This description assumes bit selection, i.e., the set-indexing bits come directly from the address of the memory access
[SMIT82]. The scenario is more complicated with other than simple bit-selection cache indexing. In particular, since we
use PID-hashing in this study, we ensured that the hashed index bits did not overlap with the constant bits. Note that
though we use virtual-indexing, one can apply the constant-bits technique to real-indexed caches, and to hierarchical
configurations with both real and virtual indexed caches if the constant bits are below the page boundary.

- 10 -

-- --

�

full trace

one
filtered

each secondary
cache

P

trace

constant
bits

filter with
four A

B

C

simulate

primary
cache

simulate

one
filtered
trace of
cache P
misses

Figure 3. Using Constant-Bits Samples with a Hierarchy.

This figure illustrates how to use constant-bits samples to simulate a primary cache (P) and three alterna-
tive secondary caches (A, B and C).

+�+

caches include caches A, B, and C, the primary caches used in this study (32-byte blocks, 32 kilobytes, direct-

mapped) and all secondary caches (128-byte blocks, 1-16 megabytes, 1-4-way set-associative) considered in this

paper.

Constant-bits samples have two advantages over random samples. First, as illustrated in Figure 2b, using

constant-bits samples reduces simulation time by allowing a filtered trace to drive the simulations of more than

one alternative cache. Second, constant-bits samples make it straightforward to simulate hierarchies of caches

(when all caches index with the constant bits). As illustrated in Figure 3, we may simulate the primary cache once

and then use a trace of its misses to simulate alternative secondary caches.

One complexity of using constant-bits samples is that they are not random samples, since sets are selected

systematically via certain bit patterns. Intuitively, constant-bits samples may work better than random samples if

spreading the sampled sets throughout the cache captures more workload variation than selecting random sets.

Constant-bits samples could perform worse than random samples, however, for workloads that use their address

space systematically (e.g., frequent accesses to a large, fixed stride vector).

Cochran [COCH77] (Chapter 8) develops a theory of systematic samples, which we review in Appendix A.

Since the sample mean for both random and systematic samples are unbiased estimates of the population mean,

- 11 -

-- --

,�,
-.-�-

Fraction of Sets in SampleTrace MPItrue × 1000 1/16 1/64
/./�/

Mult1 0.70 1.78 1.71
Mult1.2 0.69 1.39 1.27
Mult2 0.61 1.02 1.80

Mult2.2 0.59 1.85 1.96
Tv 1.88 1.94 0.74
Sor 7.54 26.05 19.45
Tree 0.59 0.94 0.99
Lin 0.09 1.26 1.35

0.0�0
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1

Table 3. Random Sample Variance over Systematic Sample Variance.

For each trace with a 4-megabyte, direct-mapped cache, this table shows the variance of the sample mean
from a random sample (Equation A1 in Appendix A) divided by the variance of the sample mean from a
systematic sample mean (Equation A2). Systematic samples for 1/16 (1/64) contain all references to sets
with a fixed value in bits 11-8 (12-7). Some entries marked ‘‘N/A’’ are not available, because the PID
hashing overlapped with the constant bits. Values greater than one indicate that systematic samples are
more accurately predict MPItrue than do random samples.

2�2

systematic sampling yields more accurate estimates of the population mean if and only if the variance of the sys-

tematic sample mean is less than the variance of a random sample mean

We examine this empirically in Table 3. For each trace with a 4-megabyte, direct-mapped cache, Table 3

displays the variance of the random sample mean divided by the variance of the systematic sample mean obtained

with the constant bits method. Values greater than one indicate that systematic samples are more accurate than

random samples; we see that systematic samples are more accurate or comparable to random samples in all cases.

Since the constant-bits method is easier to use random samples and provides similar or better precision, we

use the constant-bits method to construct set samples throughout the rest of this paper.

3.2. What Fraction of the Full Trace is Needed?

This section examines how well set samples estimate the MPI of a full trace. For reasons discussed above,

we construct samples with the constant-bits method and calculate MPI estimate for a sample with the fraction-

instructions method. We first look at the accuracy of set sampling when MPItrue is known; then we show how to

construct confidence intervals for MPItrue when it is not known.

Table 4 quantifies the error between set samples and MPItrue for several traces, direct-mapped cache sizes,

and sample sizes. We measure errors with coefficient of variation calculated using Equation 1. Table 10 in

Appendix C gives the corresponding results for two-way set-associative caches.

- 12 -

-- --

3�3
4�4

1/16 of Sets 1/64 of SetsTrace Size MPItrue × 1000 ≤ ±10% CV ≤ ±10% CV5�5
1M 1.55 16/16 4.3% N/A N/A
4M 0.70 16/16 2.3% 62/64 4.8%Mult1

16M 0.33 16/16 1.6% 64/64 2.7%6�6
1M 1.45 16/16 2.9% N/A N/A
4M 0.69 16/16 1.9% 62/64 4.1%Mult1.2

16M 0.32 16/16 1.5% 63/64 3.2%7�7
1M 1.24 16/16 3.4% N/A N/A
4M 0.61 16/16 1.9% 64/64 2.9%Mult2

16M 0.26 16/16 2.3% 64/64 3.3%8�8
1M 1.18 16/16 2.7% N/A N/A
4M 0.59 16/16 1.3% 64/64 2.5%Mult2.2

16M 0.27 16/16 1.8% 64/64 3.4%9�9
1M 2.63 16/16 1.9% N/A N/A
4M 1.88 16/16 0.6% 64/64 2.1%Tv

16M 1.03 16/16 0.6% 64/64 2.0%:�:
1M 14.77 16/16 0.4% N/A N/A
4M 7.54 16/16 0.3% 64/64 0.7%Sor

16M 1.97 16/16 0.0% 64/64 0.1%;�;
1M 2.16 15/16 5.6% N/A N/A
4M 0.59 14/16 6.8% † 6/64 13.6% †Tree

16M 0.30 15/16 4.1% 61/64 6.5%<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<
1M 1.16 16/16 3.3% N/A N/A
4M 0.09 14/16 7.6% † 54/64 15.0% †Lin

16M 0.02 16/16 0.3% 64/64 0.5%=�=
>>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

>>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

>>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

>>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

>>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Table 4. Set Sampling Precision for Direct Mapped.

For direct-mapped caches, this table shows the actual MPI of the full trace, MPItrue , the fraction of set sam-
ples with less than or equal to ±10% relative error and the coefficient of variation of the set-sampling MPI
estimates, calculated using Equation 1. We construct samples with the constant-bits method. Samples for
1/16 and 1/64 hold bits 11-8 and 12-7 constant, respectively. Some entries marked ‘‘N/A’’ are not avail-
able, because the PID hashing overlapped with the constant bits. Except where marked with a dagger (†),
at least 90% of the samples (≥ 15 of 16 or ≥ 58 of 64) have relative errors of less than or equal to ±10%.

?�?

The key result is that, for this data and for four-way set-associative caches not shown here, set sampling

generally meets the 10% sampling goal. Consider the columns labeled ‘‘1/16’’ in Tables 4 and 10, which

correspond to samples using 1/16-th of the sets and therefore will contain less than 10% of the trace on average.

Only Lin and Tree with 4-megabyte direct-mapped caches, marked with daggers, fail to have at least 90% of the

constant-bits samples with relative errors of less than or equal to ±10%. (And they both have only 2 of 16 sam-

ples with more than ±10% relative error.) Data also show the set sampling performs well even if 1/64th of the sets

are sampled.

We also observe that increasing associativity from direct-mapped to two-way reduces corresponding

coefficients of variation by more than 50%. We conjecture that set sampling works better for two-way set-

associative caches because they have fewer conflict misses than direct-mapped caches [HILS89]. A high rate of

- 13 -

-- --

@�@
A A�A

90% Confidence Intervals that Contain MPItrueB B�BB B�B
1/16 of Sets 1/64 of SetsTrace Normal? fraction percent fraction percent

C C�C
Mult1 yes 16/16 100% 61/64 95%

Mult1.2 yes 16/16 100% 60/64 94%
Mult2 yes 15/16 94% 61/64 95%

Mult2.2 yes 16/16 100% 63/64 98%
Tv no 16/16 100% 51/64 78%
Sor yes 16/16 100% 64/64 100%
Tree no 12/16 75% 47/64 73%
Lin no 16/16 100% 62/64 97%

D D�D
EE
E
E
E
E
E
E
E
E
E
E
E
E
E

EE
E
E
E
E
E
E
E
E
E
E
E

EE
E
E
E
E
E
E
E
E
E
E
E

EE
E
E
E
E
E
E
E
E
E
E
E

EE
E
E
E
E
E
E
E
E
E
E
E
E
E

Table 5. Set-Sampling Error Prediction.

For a 4-megabyte direct-mapped secondary cache and various traces and fraction of sets, this table gives
the fraction and percent of 90% confidence intervals that contained MPItrue . In all cases where the per-set
MPI are normal, 90% confidence intervals usefully estimate how far MPIˆ

S is likely to be from MPItrue .

F�F

conflict misses to a few sets can make those sets poor predictors of overall behavior.

Finally, in practical applications of set sampling, we want to estimate the error of an MPI estimate, using

only the information contained within the sample (i.e., not using knowledge of MPItrue as did Tables 4 and 10).

As Appendix B describes, we do this by calculating 90% confidence intervals, assuming (a) random samples and

(b) that our estimate of the mean is normally distributed. Since variance of observations within our systematic

samples is often greater than variance of the population, assumption (a) will tend make our confidence intervals

larger than they necessary. For finite populations, assumption (b) will generally hold if the underlying population

is not highly skewed ([COCH77], Section 2.11).

We empirically studied the usefulness of confidence intervals two ways. First, we tested the validity of

assumption (b) using normal scores plots (not shown) for sets of 4-megabyte direct-mapped caches [MIFJ90] (p.

172). Results show that assumption (b) is valid for the four multiprogramming traces (Mult1, Mult1.2, Mult2 and

Mult2.2) and Sor, but not for Tv, Tree and Lin. Tree and Lin both have several "hot sets", and these outliers

significantly skew their distributions. This suggests that confidence intervals for uniprogrammed traces should not

be considered meaningful without additional evidence. Second, we examined how often the 90% confidence

intervals actually included the true mean. Table 5 displays data for constant-bits set samples and a 4-megabyte

direct-mapped cache. Results show that the true mean lies within the 90% confidence intervals of at least 90% of

the samples for all traces where the normal approximation appears valid.

- 14 -

-- --

3.3. Advantages and Disadvantages of Set Sampling

The most important advantage of set sampling is that, for our simulations, it meets the 10% sampling goal

(Definition 1). Especially for the multiprogrammed traces, a set sample automatically includes references from

many execution phases, so an individual sample can accurately characterize the MPI of a full trace, including its

temporal variability. The reduced trace data requirements of set sampling allow for simulation of longer traces,

and therefore more algorithmic phases, in a smaller amount of time. Besides the data reduction, set sampling also

reduces the memory required to simulate a cache. A set sample containing 1/16 of the full trace needs to simulate

only 1/16 of the sets.

Set sampling does have its limitations. Even with the constant bits method, the full trace must be retained if

one wishes to study caches that do not index with the constant bits. Furthermore, set sampling may not accurately

model caches whose performance is affected by interactions between references to different sets. The effective-

ness of a prefetch into one set, for example, may depend on how many references are made to other sets before

the prefetched block is first used. Similarly, the performance of a cache with a write buffer may be affected by

how often the write buffer fills up due to a burst of writes to many sets.

4. Time Sampling

The alternative to set sampling is time sampling. Here an observation is the MPI of a sequence of time-

contiguous references and is called an interval. Section 4.1 discusses determining the MPI for a sample, while

Section 4.2 examines using a sample to estimate MPI for the full trace.

4.1. Reducing Cold-Start Bias in Time Samples

To significantly reduce trace storage and simulation time, we must estimate the true MPI for an interval

without knowledge of initial cache state, i.e., the cache state at the beginning of the interval. This problem is sim-

ply the well-known cold-start problem applied to each interval [EASF78].

The cold-start problem is a key difficulty for time sampling. Sampling theory assumes that a sample is col-

lection of observations, where each observation gives the true value for some member of the population. Set sam-

pling meets this assumption, because computing the true MPI of a set, given all references to the set, is straightfor-

ward. Due to the cold-start problem, however, statistics for time sampling are calculated with estimates of the

MPI of each interval, rather than the true values of each interval. Any bias in the interval estimates will, of

course, remain in all statistics, including the sample mean.

- 15 -

-- --

G�G
H"H�H

Technique Description
I"I�II"I�I

COLD COLD assumes that the initial cache state is empty. While this assumption does not af-
fect misses to full sets or hits to any set, it causes COLD to overestimate MPI, because
references that appear to miss to (partially) empty sets may or may not be misses when
simulated with the (true) initial cache state. These potential misses are often called cold-
start misses [EASF78].

J"J�J
HALF HALF uses the first half of the instructions in an interval to (partially) initialize the cache,

and estimates MPI with the remaining instructions.
K"K�K

PRIME PRIME estimates MPI with references to ‘‘initialized’’ sets. A set in a direct-mapped
cache is initialized once it is filled [STON90], while a set in a set-associative cache is ini-
tialized after it is filled and a non-most-recently-used block has been referenced
[LAPI88].

L"L�L
STITCH STITCH approximates the cache state at the beginning of an interval with the cache state

at the end of the previous interval [AGHH88]. Thus one creates a trace for a sample by
stitching it’s intervals together.

M"M�M
INITMR Like COLD, INITMR simulates an interval beginning with an empty initial cache state.

Instead of assuming that all cold-start misses miss, however, INITMR uses Wood et al.’s
µ̂split to estimate the fraction of cold-start misses that would have missed if the initial
cache state was known [WOHK91]. The estimate is based on (1) the fraction of time that
a cache block frame holds a block that will not be referenced before it is replaced, and
(2) the fraction of the cache loaded during the cold-start simulation of an interval. When
we could not estimate (1) with the references in an interval, we assume it to be 0.7 (based
on the data in Table 2 of [WOHK91]).

N"N�N
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

Table 6. Techniques for Mitigating Cold-Start.P�P

We compare how well the five techniques described in Table 6 mitigate the cold-start problem in multi-

megabyte caches. We will find that none of the five effectively reduce cold-start bias with short intervals (e.g., <

10 million instructions for 1-megabyte caches).

For a particular trace and cache, we evaluate a cold-start technique as follows. We select the number of

instructions in an interval, called the interval length, and collect a systematic sample S of size n =30 intervals

spaced equally in the trace. (We chose 30, because it is a commonly-used sample size [MIFJ90].) We use the

cold-start technique to estimate the MPI for each interval, mpiˆ
i , and calculate an MPI estimate for sample S with:

MPIˆ
S =

n
1Q�Q

i =1
Σ
n

mpiˆ
i .

Since with time sampling each interval has the same number of instructions, it is meaningful to compute MPIˆ
S

with the arithmetic mean of the mpiˆ
i’s.

Since we have the full trace, we can simulate each interval with its initial cache state to determine the

interval’s true MPI, mpii , and calculate the true MPI for the sample, MPIS, with
n
1R�R

i =1
Σ
n

mpii . We evaluate how

- 16 -

-- --

well a technique reduces cold-start bias in a sample S with4:

BIASS =
MPIS

MPIˆ
S − MPISSTS�S�S�S�S�S�S�S�S�S�S .

It is important to distinguish MPItrue , MPIS, and MPIˆ
S. MPItrue is misses per instruction for all references in the

trace (as if all references in the trace are simulated). MPIS is the misses per instruction of references in the obser-

vations of sample S, given each observation starts with its true initial cache state (as if all references since the last

observation had been simulated without recording whether they hit or missed). MPIˆ
S is the misses per instruction

of references in the observations of sample S, given each observation starts with an initial cache state approxi-

mated by some cold-start technique.

Since BIASS compares MPIˆ
S with MPIS, rather than MPItrue , it measures cold-start bias in the sample, not

how well the sample predicts MPItrue . We consider how well time samples predict MPItrue in Section 4.2.

We evaluate BIASS for five cold-start techniques, eight traces, four interval lengths (100 thousand, 1 mil-

lion, 10 million, and 100 million instructions), three cache sizes (1, 4, and 16 megabytes) and two associativities

(direct-mapped and four-way). Since space precludes us from displaying 192 cases for each cold-start technique,

we present several subsets of the data.

For a 10-million-instruction interval length, Table 7 displays BIASS for direct-mapped caches, while Table

11 in Appendix C gives similar data for four-way set-associative caches. The data show several trends. First,

most BIASS’s are large, especially for caches larger than one megabyte. This suggests that intervals longer than

many previously published traces are needed to effectively reduce cold-start bias for multi-megabyte caches.

Second, COLD, HALF and STITCH tend to overestimate MPIS. COLD does so because it assumes that all cold-

start misses miss. Similarly, HALF tends to overestimate MPIS when the first half of the trace does not

sufficiently fill the cache. HALF can underestimate the sample’s MPI, however, when the second half of most of

a sample’s intervals have a lower MPI than the whole of each interval. We believe STITCH overestimates MPIS,

because (due to temporal locality) references are less likely to miss when simulated with an interval’s true initial

state than with the final state from the previous interval [WOOD90]. Third, PRIME underestimates MPIS for
U�U�U�U�U�U�U�U�U�U�U�U�U�U�U�U�U�U

4. We calculate BIASS for PRIME with the secondary cache’s local miss ratio rather than MPI, because counting the
number of instructions is not straightforward when some sets are initialized but others are not. Since BIASS is a relative er-
ror, we expect that calculating it with local miss ratio will be comparable to calculating it with MPI.

- 17 -

-- --

V�V
W W�W

CacheTrace Size MPIS × 1000 COLD HALF PRIME STITCH INITMR
X X�X

1M 1.45 +18% +5% -18% +23% +0%
4M 0.62 +77% +27% -50% +52% -11%Mult1

16M 0.28 +233% +114% -80% +131% -12%Y Y�Y
1M 1.57 +16% +2% -18% +2% +2%
4M 0.77 +66% +25% -51% +27% -5%Mult1.2

16M 0.37 +200% +103% -80% +90% -3%Z Z�Z
1M 1.21 +18% +2% -26% +23% -3%
4M 0.60 +70% +31% -62% +53% -24%Mult2

16M 0.25 +264% +168% -85% +147% -9%[[�[
1M 1.18 +19% +15% -27% +29% -1%
4M 0.62 +71% +50% -61% +56% -13%Mult2.2

16M 0.29 +233% +180% -84% +141% -3%\ \�\
1M 2.55 +4% -0% -33% +32% -2%
4M 1.76 +15% +9% -56% +37% -4%Tv

16M 0.95 +79% +61% -76% +71% +37%]]�]
1M 15.68 +0% -0% -5% -11% -0%
4M 8.08 +18% +2% -18% -8% +6%Sor

16M 2.00 +190% +60% -76% -8% +114%^ ^�^
1M 2.00 +13% -0% -10% +29% -1%
4M 0.51 +107% +8% -50% +43% +24%Tree

16M 0.30 +217% +35% -77% +69% +18%_ _�_
1M 0.75 +20% +7% -29% -0% +16%
4M 0.06 +1113% +535% -62% +217% +903%Lin

16M 0.01 +4648% +2248% ---% +873% +1037%` `�`
aa
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

aa
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

aa
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

aa
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

Table 7. Bias of Cold-Start Techniques With Direct-Mapped Caches.

This table displays BIASS for five cold-start techniques, eight traces, interval length of 10 million instruc-
tions, three direct-mapped cache sizes (1, 4, and 16 megabytes).

b�b

direct-mapped caches. PRIME calculates MPIS by effectively assuming that cold-start misses are as likely to miss

as any other reference. Wood et al. [WOHK91] have shown, however, that this assumption is false, and that

cold-start misses are much more likely to miss than randomly-chosen references. PRIME is more accurate for

four-way set-associative caches, where the heuristic of ignoring initial references to a most-recently-referenced

block mitigates the underestimation. Fourth, INITMR did not consistently underestimate or overestimate MPIS.

Finally, the large biases for the Lin trace with 4- and 16-megabyte caches are probably not important, because

Lin’s true MPI’s are so small.

Table 8 addresses which cold-start technique is best for these traces and caches. For each the five cold-start

techniques, we compute BiasS for all 192 cases. We award a point in the ‘‘10%’’ category for biases less than

±10% and award one in the ‘‘Win’’ category for the cold-start technique closest to being unbiased. Multiple

points are awarded in the case of ties. The final row of Table 8 gives totals. HALF and INITMR have twice the

‘‘10%’’ score of the other approaches, while INITMR has more ‘‘Wins’’ than all the other approaches combined.

- 18 -

-- --

c�c
d�d�d�d�d�d�d�d�ded�d�d�d�d�d�d�d�d�d�d�d�d�d�d�ded�d�d�d�d�d�d�d�d�d�d�d�d�d�d�ded�d�d�d�d�d�d�d�d�d�d�d�d�d�d�ded�d�d�d�d�d�d�d�d�d�d�d�d�d�d�d�ded�d�d�d�d�d�d�d

Cache Interval COLD HALF PRIME STITCH INITMR

Length f f�fSize (Mill) 10% Win 10% Win 10% Win 10% Win 10% Wing�g�g�g�g�g�g�g�geg�g�g�g�g�g�g�g�g�g�g�g�g�g�g�geg�g�g�g�g�g�g�g�g�g�g�g�g�g�g�geg�g�g�g�g�g�g�g�g�g�g�g�g�g�g�geg�g�g�g�g�g�g�g�g�g�g�g�g�g�g�g�geg�g�g�g�g�g�g�g
0.1 2 0 2 5 0 2 0 0 0 9
1 2 1 4 4 3 5 1 2 3 5

10 4 2 15 13 7 1 4 3 12 81M

100 16 5 16 7 16 6 6 2 16 12h�h�h�h�h�h�h�h�heh�h�h�h�h�h�h�h�h�h�h�h�h�h�h�heh�h�h�h�h�h�h�h�h�h�h�h�h�h�h�heh�h�h�h�h�h�h�h�h�h�h�h�h�h�h�heh�h�h�h�h�h�h�h�h�h�h�h�h�h�h�h�heh�h�h�h�h�h�h�h
0.1 0 0 0 0 0 1 1 2 1 13
1 0 0 0 1 1 2 2 1 4 13

10 1 0 6 6 0 1 2 1 10 84M

100 7 1 14 4 3 2 5 3 12 7i�i�i�i�i�i�i�i�iei�i�i�i�i�i�i�i�i�i�i�i�i�i�i�iei�i�i�i�i�i�i�i�i�i�i�i�i�i�i�iei�i�i�i�i�i�i�i�i�i�i�i�i�i�i�iei�i�i�i�i�i�i�i�i�i�i�i�i�i�i�i�iei�i�i�i�i�i�i�i
0.1 0 0 0 0 0 0 0 0 0 16
1 0 0 0 0 0 0 1 2 0 14

10 0 0 0 0 0 1 2 4 6 1116M

100 0 0 3 2 1 0 5 9 5 5j�j�j�j�j�j�j�j�jej�j�j�j�j�j�j�j�j�j�j�j�j�j�j�jej�j�j�j�j�j�j�j�j�j�j�j�j�j�j�jej�j�j�j�j�j�j�j�j�j�j�j�j�j�j�jej�j�j�j�j�j�j�j�j�j�j�j�j�j�j�j�jej�j�j�j�j�j�j�jj�j�j�j�j�j�j�j�jej�j�j�j�j�j�j�j�j�j�j�j�j�j�j�jej�j�j�j�j�j�j�j�j�j�j�j�j�j�j�jej�j�j�j�j�j�j�j�j�j�j�j�j�j�j�jej�j�j�j�j�j�j�j�j�j�j�j�j�j�j�j�jej�j�j�j�j�j�j�j
0.1 2 0 2 5 0 3 1 2 1 38
1 2 1 4 5 4 7 5 5 7 32

10 5 2 21 19 7 3 8 8 28 27All

100 23 6 33 13 20 8 16 14 33 24
k�k�k�k�k�k�k�k�kek�k�k�k�k�k�k�k�k�k�k�k�k�k�k�kek�k�k�k�k�k�k�k�k�k�k�k�k�k�k�kek�k�k�k�k�k�k�k�k�k�k�k�k�k�k�kek�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�kek�k�k�k�k�k�k�kk�k�k�k�k�k�k�k�kek�k�k�k�k�k�k�k�k�k�k�k�k�k�k�kek�k�k�k�k�k�k�k�k�k�k�k�k�k�k�kek�k�k�k�k�k�k�k�k�k�k�k�k�k�k�kek�k�k�k�k�k�k�k�k�k�k�k�k�k�k�k�kek�k�k�k�k�k�k�k

All All 32 9 60 42 31 21 29 29 69 121
l�l�l�l�l�l�l�l�lel�l�l�l�l�l�l�l�l�l�l�l�l�l�l�lel�l�l�l�l�l�l�l�l�l�l�l�l�l�l�lel�l�l�l�l�l�l�l�l�l�l�l�l�l�l�lel�l�l�l�l�l�l�l�l�l�l�l�l�l�l�l�lel�l�l�l�l�l�l�l
mm
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m

mm
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m

mm
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m

mm
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m

mm
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m

mm
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m

mm
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m

Table 8. Scoring of Different Cold-Start Techniques.

This table displays scores of the cold-start techniques for 192 cases: the eight traces, four interval lengths
(100 thousand, 1 million, 10 million, and 100 million instructions), three cache sizes (1, 4, and 16 mega-
bytes) and two associativities (direct-mapped and four-way). We award a point in the ‘‘10%’’ category if
−10% ≤ BiasS ≤ 10% and award one in the ‘‘Win’’ category for the cold-start technique closest to being
unbiased (log | BiasS | closest to zero). Multiple points are awarded in the case of ties.

n�n

While HALF performs well in many cases, INITMR performs best overall. While results for other traces and

cache could differ, the theory behind INITMR [WOHK91] and this experimental evidence strongly support

INITMR. For these reasons, we will use it in the rest of this paper.

Table 9 illustrates how well INITMR performs with three direct-mapped caches (1, 4, and 16 megabytes)

and all four interval lengths (100,000, 1,000,000, 10,000,000, and 100,000,000 instructions). As expected, it

reduces bias more effectively as the interval lengths get longer or cache size gets smaller, because cold-start

becomes less dominant. The most striking aspect of this data is that INITMR, the best method, still performs terri-

bly for intervals containing 100,000 and 1,000,000 instructions. This should not be not surprising, since the

number of block frames in the caches (e.g., 8192 for 1-megabyte caches) far exceeds the number of true misses in

these intervals (e.g., 1550 equals 1,000,000 instructions times a 0.00155 MPI for Mult1). Furthermore, it appears

that INITMR does not adequately mitigate cold-start bias unless interval lengths are, at least, 10 million instruc-

tions for 1-megabyte caches, 100 million instructions for 4-megabyte caches, and more than 100 million instruc-

tions for 16-megabyte caches. These results are consistent with the rule-of-thumb that trace length should be

- 19 -

-- --

o�o
pqp�p

Cache Interval Length (Millions of Instructions)Trace Size MPItrue × 1000 0.1 1 10 100rqr�r
Mult1 1M 1.55 86% 47% 0%* 0%*

4M 0.70 156% 120% -11% -3%*
16M 0.33 281% 335% -12% -17%sqs�s

Mult1.2 1M 1.45 103% 21% 2%* 0%*
4M 0.69 123% 63% -5% -2%*

16M 0.32 400% 100% -3% -17%tqt�t
Mult2 1M 1.24 49% 20% -3%* 0%*

4M 0.61 48% 39% -24% 0%*
16M 0.26 212% 146% -9% -3%uqu�u

Mult2.2 1M 1.18 127% 24% -1%* 0%*
4M 0.59 127% 60% -13% 0%*

16M 0.27 170% 106% -3% 8%vqv�v
Tv 1M 2.63 36% -10% -2%* 0%*

4M 1.88 34% -9% -4% 0%*
16M 1.03 145% 39% 37% 12%wqw�w

Sor 1M 14.77 -41% -3%* 0%* 0%*
4M 7.54 -27% 44% 6%* 0%*

16M 1.97 83% 386% 114% -2%*xqx�x
Tree 1M 2.16 249% 36% -1%* 0%*

4M 0.59 1407% 121% 24% -7%*
16M 0.30 796% 198% 18% -37%yqy�y

Lin 1M 1.16 -30% -14% 16% 1%*
4M 0.09 1437% 946% 903% 113%

16M 0.02 2567% 1318% 1037% 176%zqz�z
{{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

Table 9. BIASS of INITMR Time-Sample MPI Estimates.

This table displays BIASS for INITMR with eight traces, four interval lengths, three direct-mapped cache
sizes (1, 4, and 16 megabytes). We mark entries with an asterisk (‘‘*’’) if, on average, interval lengths are
sufficient to (a) fill at least half the cache and (b) there are at least as many misses to full sets as cold-start
misses.

|�|

increased by a factor of eight each time the cache size quadruples [STON90].

As Table 9 also illustrates, however, we can determine when INITMR is likely to perform well. We

marked each entry in the table with an asterisk (‘‘*’’) if, on average, the interval length was sufficient to (a) fill at

least half the cache and (b) there were at least as many misses to full sets as cold-start misses. All values BiasS

marked with an asterisk are less than ±10%. Nevertheless, they imply that for multi-megabyte caches each inter-

val should contain more instructions than have previously been present in many ‘‘full’’ traces.

- 20 -

-- --

}�}

10.001 0.01 0.1 1
Fraction of Full Trace Data

0.
1

10
1

R
at

io
 o

f
Sa

m
pl

e
E

st
im

at
e

to
 F

ul
l T

ra
ce

 M
PI

INITMR Estimates

100 Million Instructions
10 Million Instructions

1 Million Instructions

10.001 0.01 0.1 1
Fraction of Full Trace Data

Unbiased

1

10

100

(a) Cones for MPIˆ
S (b) Cones for MPIS (no hat)

Figure 4. Cones for Time Sampling with Mult1.2.

This figure displays cones for MPIˆ
S (left) and MPIS (right) for the Mult1.2 trace and a 4-megabyte direct-

mapped cache. For an interval length and sample size (whose product gives the fraction of the trace used)
the height of a cone displays the range of the middle 90% of estimates from many samples.

Estimates are unbiased only if they are vertically centered on the horizontal line at 1.0. For an interval
length of 1 million instructions, for example, all MPIˆ

S displayed here are biased (by cold-start bias not re-
moved by INITMR), while all MPIS are unbiased.

~�~

4.2. What Fraction of the Full Trace is Needed?

This section examines how accurately time samples estimate MPItrue , the MPI of the full trace. We estimate

the MPI of a sample S, MPIˆ
S, with the arithmetic mean of MPI estimates for each interval in the sample, where

we use INITMR to reduce (but regrettably not eliminate) the cold-start bias of each interval.

Figure 4a illustrates how we summarize the data. (We use a graphically display here instead of coefficient

of variation, because we believe it provides more insight. We did not use a graphical display with set sampling,

because we did not have enough samples to smooth the data.) For the Mult1.2 traces and a 4-megabyte direct-

mapped cache, it plots MPIˆ
S /MPItrue on the logarithmic y-axis and the fraction of the full trace contained in the

sample on the logarithmic x-axis. Consider the cone at the far left. We use 3000 1-million-instruction intervals to

calculate its shape. The left edge, near 0.00025, gives the fraction of the trace used in a sample of one interval.

- 21 -

-- --

We determine the end-points of the left edge with the empirical distribution of MPIˆ
S for single-interval samples.

The upper end-point gives the 95-th percentile, while the lower gives the 5-th percentile. Thus, the length of the

left edge is the range of the middle 90% of the MPIˆ
S’s. We compute other vertical slices similarly. A vertical line

(not shown) in the same cone at 0.01 (40 × 0.00025), for example, gives the range of the middle 90% of the

MPIS’s for samples of 40 intervals each. The other two cones are for interval lengths of 10 million instructions

(300 intervals) and 100 million instructions (30 intervals). The right graph gives similar data for MPIS, where we

calculate the MPI of each interval with its true initial cache state.

A time sample would meet the 10% sampling goal (Definition 1) if (a) the sample’s size times the length of

each interval were less than 10% of the trace (e.g., to the left of x-axis value 0.1 in Figure 4a) and (b) the cone lies

between 0.9 and 1.1 (on the y-axis). Unfortunately, none of the three cones for Mult1.2 qualify. The cone for 1-

million-instruction intervals is narrow enough but biased too far above 1.0, while the cones of 10 million and 100

million instructions are too wide.

We found similar results for the rest of the traces, displayed in Figures 5a and 5b of Appendix C. The cones

for the multiprogrammed traces are similar to those of Mult1.2, although Mult2 and Mult2.2 have more cold-start

bias. The cones for the single applications, Tree, Tv, Sor and Lin, are more idiosyncratic, reflecting application-

specific behavior. The cones of Sor, for example, are skewed by Sor’s behavior of alternating between low and

high MPI (with a period of around 300 million instructions [BOKW90]).

Thus, for these traces and caches (and for direct-mapped and four-way, 1- and 16-megabyte caches

[KESS91]), time sampling fails to meet the 10% sampling goal. Furthermore, even if we eliminate cold-start bias,

accurate estimates of MPItrue must use hundred of millions of instructions to capture temporal workload varia-

tions. With Mult1.2 and a 4-megabyte direct-mapped cache, Figure 4b shows that MPIS is within 10% of MPItrue

(for 90% of the samples examined) only with samples of 200 intervals of length 1 million instructions, 65 10-

million-instruction intervals, or 20 100-million-instruction intervals. (For much smaller caches, Laha et al. found

a sample size of 35 intervals to be sufficient [LAPI88].) This is roughly a factor of three decrease in sample size

as interval length is multiplied by ten.

Finally, we investigate whether the error in MPIˆ
S can be estimated from information within the sample

itself. We calculate 90% confidence intervals with the same methods as were used for set sampling (Appendix B).

These methods, however, provided no information on the magnitude of cold-start bias, because they assume a

sample is made up of unbiased observations. Since the cold-start bias (that was not removed by INITMR) is

- 22 -

-- --

significant in many cases, 90% confidence intervals for time samples often do not contain MPItrue 90% of the

time.

Confidence intervals did work in a few cases where samples contained 30 or more intervals and interval

lengths were long enough to make cold-start bias negligible [KESS91]. These cases, however, failed to meet the

10% sampling goal because the samples contained much more than 10% of the trace. Confidence intervals also

worked for MPIS (whose expected value is MPItrue because it has no cold-start bias), when samples contain at

least 30 intervals.

4.3. Advantages and Disadvantages of Time Sampling

The major advantage of time sampling is that it is the only sampling technique available for caches with

timing-dependent behavior (e.g., that prefetch or are lockup-free [KROF81]) or shared structures across sets (e.g.,

write buffers or victim caching [JOUP90]). Furthermore, the cold-start techniques for time sampling can be

applied to any full-trace simulation, since a ‘‘full’’ trace is just a single, long observation from a system’s work-

load.

However, in these simulations, time sampling fails to meet the 10% sampling goal for multi-megabyte

caches, because it needed long intervals to mitigate cold-start bias and many intervals to capture temporal work-

load variation. For the cold start techniques we examined, set sampling is more effective than time sampling at

estimating the MPI’s of our traces with multi-megabyte caches.

5. Conclusions

A straightforward application of trace-driven simulation to multi-megabyte caches requires very long traces

that strain computing resources. Resource demands can be greatly reduced using set sampling or time sampling.

Set sampling estimates cache performance using information from a collection of sets, while time sampling uses

information from a collection of trace intervals.

This study is the first to apply set sampling and time sampling to multi-megabyte caches, where they are

most useful. We use eight billion-reference traces of large workloads that include multiprogramming but not

operating system references [BOKW90]. Given a trace and cache, we examine how well both techniques predict

the misses per instruction (MPI) of the entire trace. We say a sampling method is effective if it meets the 10%

sampling goal: a method meets this goal if, at least 90% of the time, it estimates the trace’s true misses per

instruction with ≤ 10% relative error using ≤ 10% of the trace. Like most trace-driven simulation studies, we do

- 23 -

-- --

not formally address how our traces relate to the population of all traces. Readers may accept our results (by

assuming our traces are representative of their workload) or re-apply our techniques to their traces.

With our traces and caches, we obtained several results for set sampling. First, how we compute MPI is

important. We find that it is much less accurate to normalize misses by the instruction fetches to the sampled sets

than by the fraction of sampled sets times all instruction fetches. Second, constructing samples from sets that

share some common index bit values works well, since such samples can be used to accurately predict the MPI of

multiple alternative caches and caches in hierarchies. Third, sets for our multiprogramming traces behave

sufficiently close to normal that confidence intervals are meaningful and accurate. Last and most important, for

our traces and caches, set sampling meets the 10% sampling goal.

With our traces and caches, results for time sampling include the following. First, INITMR (Wood et al.’s

µ̂split [WOHK91]) was the most effective technique for reducing cold-start bias, although using half the references

in a trace interval to (partially) initialize a cache often performed well. Second, interval lengths must be long to

mitigate cold-start bias (10 million instructions for 1-megabyte caches, 100 million instructions for 4-megabyte

caches, and more than 100 million instructions for 16-megabyte caches). Third and most important, for these

traces and caches, time sampling does not meet the 10% sampling goal: we needed more than 10% of a trace to

get (trace) interval lengths that adequately mitigated cold-start bias and have enough intervals in a sample to make

accurate predictions.

Thus, we found that for our traces, set sampling is more effective than time sampling for estimating MPI of

the multi-megabyte caches. There are situations, however, when set sampling is not applicable, such as for caches

that have time-dependent behavior (e.g., prefetching) or structures used by many sets (e.g., write buffers). In

these cases, researchers must choose between using an entire trace and using time sampling. Since any trace can

be considered a time sample of size one, either approach requires care to reduce the effect of cold-start bias.

6. Acknowledgments

We would like to thank The Western Research Laboratory of Digital Equipment Corporation, especially

Anita Borg and David Wall, for the traces used in this study. Joel Bartlett, Renato De Leone, Jeremy Dion, Norm

Jouppi, Bob Mayo, and Don Stark all were a tremendous help in providing traceable applications. Paul Vixie and

Colleen Hawk helped to store the traces. Paul Beebe and the Systems Lab were able to satisfy our enormous com-

puting needs. Mike Litzkow and Miron Livny adapted Condor to the requirements of these simulations. Harold

- 24 -

-- --

Stone gave comments on an earlier version of this work, while Sarita Adve, Vikram Adve, Garth Gibson and the

anonymous referees scrutinized drafts of this paper.

7. Bibliography

[AGHH88] A. AGARWAL, J. HENNESSY and M. HOROWITZ, ‘‘Cache Performance of Operating System and
Multiprogramming Workloads,’’ ACM Transactions on Computer Systems, vol. 6, no. 4, November
1988, pp. 393-431.

[AGAH90] A. AGARWAL and M. HUFFMAN, ‘‘Blocking: Exploiting Spatial Locality for Trace Compaction,’’
Proceedings of the Conference on Measurement and Modeling of Computer Systems, 1990, pp. 48-57.

[BOKL89] A. BORG, R. E. KESSLER, G. LAZANA and D. W. WALL, ‘‘Long Address Traces from RISC
Machines: Generation and Analysis,’’ Research Report 89/14, Western Research Laboratory, Digital
Equipment Corporation, Palo Alto, CA, September 1989.

[BOKW90] A. BORG, R. E. KESSLER and D. W. WALL, ‘‘Generation and Analysis of Very Long Address
Traces,’’ Proceedings of the 17th Annual International Symposium on Computer Architecture, 1990,
pp. 270-279.

[COCH77] W. G. COCHRAN, Sampling Techniques, John Wiley & Sons, Inc., 3rd Edition, 1977.

[EASF78] M. C. EASTON and R. FAGIN, ‘‘Cold-Start vs. Warm-Start Miss Ratios,’’ Communications of the
ACM, vol. 21, no. 10, October 1978, pp. 866-872.

[HEIS90] P. HEIDELBERGER and H. S. STONE, ‘‘Parallel Trace-Driven Cache Simulation by Time Partitioning,’’
IBM Research Report RC 15500 (#68960), February 1990.

[HILS89] M. D. HILL and A. J. SMITH, ‘‘Evaluating Associativity in CPU Caches,’’ IEEE Transactions on
Computers, vol. 38, no. 12, December 1989, pp. 1612-1630.

[JOUP90] N. P. JOUPPI, ‘‘Improving Direct-Mapped Cache Performance by the Addition of a Small Fully-
Associative Cache and Prefetch Buffers,’’ Proceedings of the 17th Annual International Symposium
on Computer Architecture, 1990, pp. 364-373.

[KESS91] R. E. KESSLER, ‘‘Analysis of Multi-Megabyte Secondary CPU Cache Memories,’’ Ph.D. Thesis,
Computer Sciences Technical Report #1032, University of Wisconsin, Madison, WI, July 1991.

[KROF81] D. KROFT, ‘‘Lockup-Free Instruction Fetch/Prefetch Cache Organization,’’ Proceedings of the 8th
Annual International Symposium on Computer Architecture, 1981, pp. 81-87.

[LAPI88] S. LAHA, J. H. PATEL and R. K. IYER, ‘‘Accurate Low-Cost Methods for Performance Evaluation of
Cache Memory Systems,’’ IEEE Transactions on Computers, vol. 37, no. 11, November 1988, pp.
1325-1336.

[LAHA88] S. LAHA, ‘‘Accurate Low-Cost Methods for Performance Evaluation of Cache Memory Systems,’’
Ph. D. Thesis, University of Illinois, Urbana-Champaign, Illinois, 1988.

[MIFJ90] I. MILLER, J. E. FREUND and R. JOHNSON, Probability and Statistics for Engineers, Prentice Hall,
Inc., Englewood Cliffs, NJ 07632, Fourth Edition 1990.

[NIEL86] M. J. K. NIELSEN, ‘‘Titan System Manual,’’ Research Report 86/1, Western Research Laboratory,
Digital Equipment Corporation, Palo Alto, CA, September 1986.

[PRZY88] S. A. PRZYBYLSKI, ‘‘Performance-Directed Memory Hierarchy Design,’’ Ph.D. Thesis, Technical
Report CSL-TR-88-366, Stanford University, Stanford, CA, September 1988.

[PRHH89] S. PRZYBYLSKI, M. HOROWITZ and J. HENNESSY, ‘‘Characteristics of Performance-Optimal Multi-
Level Cache Hierarchies,’’ Proceedings of the 16th Annual International Symposium on Computer
Architecture, 1989, pp. 114-121.

[PUZA85] T. R. PUZAK, ‘‘Analysis of Cache Replacement Algorithms,’’ Ph.D. Thesis, University of
Massachusetts, Amherst, MA, February 1985.

- 25 -

-- --

[SAMP89] A. D. SAMPLES, ‘‘Mache: No-Loss Trace Compaction,’’ Proceedings of the International Conference
on Measurement and Modeling of Computer Systems, 1989, pp. 89-97.

[SMIT77] A. J. SMITH, ‘‘Two Methods for the Efficient Analysis of Memory Address Trace Data,’’ IEEE
Transactions on Software Engineering, vol. 3, no. 1, January 1977, pp. 94-101.

[SMIT82] A. J. SMITH, ‘‘Cache Memories,’’ Computing Surveys, vol. 14, no. 3, September 1982, pp. 473-530.

[STON90] H. S. STONE, High-Performance Computer Architecture, Addison-Wesley, Reading, MA, Second
Edition 1990.

[WANB90] W. WANG and J. BAER, ‘‘Efficient Trace-Driven Simulation Methods for Cache Performance
Analysis,’’ Proceedings of the Conference on Measurement and Modeling of Computer Systems,
1990, pp. 27-36.

[WOOD90] D. A. WOOD, ‘‘The Design and Evaluation of In-Cache Address Translation,’’ Ph.D. Thesis,
Computer Science Division Technical Report UCB/CSD 90/565, University of California, Berkeley,
CA, March 1990.

[WOHK91] D. A. WOOD, M. D. HILL and R. E. KESSLER, ‘‘A Model for Estimating Trace-Sample Miss Ratios,’’
Proceedings of the ACM SIGMETRICS Conference on Measurement and Modeling of Computer
Systems, 1991, pp. 79-89.

8. Appendix A: Systematic Samples

This appendix introduces systematic samples with a discussion derived from Cochran’s Chapter 8

[COCH77]. We use the notation introduced in Section 3 for consistency.

The variance of the mean of a random sample of size n from a population of size s is (Cochran, equation

2.8):

s −1
1�������

i =1
Σ
s

(mpii − MPItrue)2 ×
n
1��� ×

s
(s −n)� ��������� , (A1)

where mpii is the i-th member of the population and MPItrue is the population mean.

With systematic sampling, a population of size s is systematically divided into k samples of size n. By

definition, the variance of the mean of a systematic sample, an unbiased estimate of MPItrue , is (Cochran, p. 208):

k
1���

j =1
Σ
k

(MPIˆ
S(j) − MPItrue)2, (A2)

where MPIˆ
S(j) is the mean of the j-th systematic sample.

Since the sample mean for both random and systematic samples are unbiased estimates of the population

mean, a sampling method yields a more accurate estimate of the population mean if and only if the variance of its

estimate is less than the variance of the alternative.

Thus, systematic samples obtained by the constant bits method yield more accurate estimates of MPItrue

than random samples whenever Equation A1 divided by Equation A2 is greater than one. Empirical results

- 26 -

-- --

displayed in Table 3 of Section 3.1.2 show that the ratio is usually greater than one, implying that constant bits

samples are generally better than random samples.

We can get more intuition into why systematic samples might be better than random samples by examining

the derivation on Cochran’s page 208. Using classical analysis of variance, he shows systematic sampling is more

precise if and only if:

k (n −1)
1� �������������

j =1
Σ
k

i =1
Σ
n

(mpiji − MPIˆ
S(j))

2 >
s −1

1�������

i =1
Σ
s

(mpii − MPItrue)2,

where mpiji is the ith member of the j-th systematic sample. In other words, systematic sampling more precisely

estimates the mean of a population if the variance between observations within a systematic sample is greater than

the population variance. Thus, we found that systematic samples obtained using constant bits were better than

random samples, because systematically sampling sets captured more variation than was present in the population

of all sets.

9. Appendix B: Computing Confidence Intervals

In this appendix we describe how we calculate the 90% confidence interval for a sample S containing n MPI

observations, mpi 1, ... mpin . Since computing confidence intervals for systematic samples is complex (Cochran,

Section 8.11), we compute our confidence intervals by treating our systematic samples as random samples.

Because our systematic samples estimate MPItrue with less variance than do random samples (Table 3) the

confidence intervals we calculate will tend be larger than they necessary. Thus, if sample means are

approximately normal, as they are for five of our eight traces (Section 3.1.2), MPItrue should lie within the 90%

confidence intervals of more than 90% of the samples.

We first compute the MPI of sample S, MPIˆ
S with:

MPIˆ
S =

n
1���

i =1
Σ
n

mpii ,

and estimate MPIS’s standard deviation with:

STDˆ S = √n −1
1� �������

i =1
Σ
n

(mpii − MPIˆ
S)2 ×

√� �n
1� ����� × √ s

s − n� ������� . (B1)

STDˆ S is the product of three factors: (1) the sample standard deviation of the mpii’s, given that their true mean is

unknown, (2) a
√� �n
1� ����� adjustment because MPIˆ

S is the mean of the n mpii’s, and (3) a finite population correction

- 27 -

-- --

factor (Cochran, equation 2.12), which is important only when n, the sample size, is a substantial fraction of s, the

population size. The 90% confidence interval for MPIˆ
S is MPIˆ

S ± STDˆ S
. tn −1

90% , where tn −1
90% is the value of the

student-t statistic that has a tail of 5% (on each end) for n −1 degrees of freedom. We approximate the t-statistic

with a normal for most our results, because n is large (Cochran, p. 27).

10. Appendix C: Additional Data

In this appendix we provide additional data to support the claims made in the body of the text. These tables

and figures are more fully described in the body, where they are referenced.

- 28 -

-- --

���
���

1/16 of Sets 1/64 of SetsTrace Size MPItrue × 1000 ≤ ±10% CV ≤ ±10% CV���
1M 1.19 16/16 2.2% N/A N/A
4M 0.55 16/16 1.7% 64/64 3.0%Mult1

16M 0.26 16/16 1.6% 64/64 2.3%���
1M 1.18 16/16 1.6% N/A N/A
4M 0.56 16/16 1.2% 64/64 2.2%Mult1.2

16M 0.28 16/16 1.3% 64/64 2.1%���
1M 1.01 16/16 1.9% N/A N/A
4M 0.52 16/16 1.2% 64/64 2.0%Mult2

16M 0.24 16/16 1.9% 64/64 3.3%���
1M 0.98 16/16 1.8% N/A N/A
4M 0.51 16/16 1.5% 64/64 1.9%Mult2.2

16M 0.22 16/16 2.1% 64/64 3.5%���
1M 2.31 16/16 0.6% N/A N/A
4M 1.76 16/16 0.3% 64/64 1.6%Tv

16M 0.98 16/16 0.7% 64/64 1.9%���
1M 14.66 16/16 0.3% N/A N/A
4M 7.76 16/16 0.2% 64/64 0.5%Sor

16M 1.92 16/16 0.0% 64/64 0.1%���
1M 1.81 16/16 3.7% N/A N/A
4M 0.49 16/16 1.5% 64/64 3.8%Tree

16M 0.26 16/16 0.4% 64/64 1.1%���
1M 1.10 16/16 2.6% N/A N/A
4M 0.06 16/16 6.0% 44/64 9.8% †Lin

16M 0.02 16/16 0.3% 64/64 0.5%���
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 10. Set Sampling Precision for 2-Way.

This table shows the MPI of the full trace for two-way set-associative caches, the fraction of set samples
with less than or equal to ±10% relative error and the coefficient of variation of the set-sampling MPI esti-
mates, similar to Table 4. Except where marked with a dagger (†), at least 90% of the samples have rela-
tive errors of less than or equal to ±10%.

���

- 29 -

-- --

���
� ���

CacheTrace Size MPIS × 1000 COLD HALF PRIME STITCH INITMR
� ���

1M 0.94 +21% -5% -6% +36% -11%
4M 0.44 +106% +29% -51% +80% -4%Mult1

16M 0.22 +313% +157% -99% +167% -8%� ���
1M 1.20 +15% -5% -9% +6% -7%
4M 0.60 +81% +21% -40% +43% +1%Mult1.2

16M 0.32 +232% +118% -57% +104% -3%� ���
1M 0.92 +14% -5% -18% +33% -16%
4M 0.49 +84% +34% -64% +68% +2%Mult2

16M 0.22 +316% +202% -78% +170% -9%� ���
1M 0.96 +16% +10% -14% +38% -10%
4M 0.52 +84% +54% -52% +73% -1%Mult2.2

16M 0.25 +285% +221% +15% -161% -14% �
1M 2.14 +4% -2% -22% +32% -2%
4M 1.53 +14% +6% +12% +39% -8%Tv

16M 0.82 +99% +75% +195% +87% +32%¡ ¡�¡
1M 15.46 +0% -0% +0% -11% -0%
4M 8.57 +9% -1% -12% -8% -2%Sor

16M 2.17 +158% +34% -81% -4% +60%¢ ¢�¢
1M 1.60 +11% -3% -9% +35% -6%
4M 0.41 +124% -5% -32% +70% +18%Tree

16M 0.25 +263% +38% +83% +77% -17%£ £�£
1M 0.69 +26% +6% +9% +6% +21%
4M 0.02 +2763% +1322% +81% +778% +1797%Lin

16M 0.01 +4648% +2248% ---% +873% +1037%¤ ¤�¤
¥¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥

¥¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥

¥¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥

¥¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥

Table 11. Bias of Cold-Start Techniques With Four-Way Set-Associativity.

This table displays BIASS for five cold-start techniques, eight traces, interval length of 10 million instruc-
tions, three four-way set-associative cache sizes (1, 4, and 16 megabytes).

¦�¦

- 30 -

-- --

§�§

10.001 0.01 0.1 1
Fraction of Full Trace Data

0.
1

10
1

R
at

io
 o

f
Sa

m
pl

e
E

st
im

at
e

to
 F

ul
l T

ra
ce

 M
PI

INITMR Estimates for Mult1

100

1

10

10.001 0.01 0.1 1
Fraction of Full Trace Data

INITMR Estimates for Mult2

100

10

1

10.001 0.01 0.1 1
Fraction of Full Trace Data

0.
1

10
1

R
at

io
 o

f
Sa

m
pl

e
E

st
im

at
e

to
 F

ul
l T

ra
ce

 M
PI

INITMR Estimates for Mult2.2

100

10

1

10.001 0.01 0.1 1
Fraction of Full Trace Data

INITMR Estimates for Tree

100
10

1

Figure 5a. Cones for Time Sampling with Mult1, Mult2, Mult2.2, and Tree.

Similar to Figure 4a, these figures display cones for MPIˆ
S with the Mult1, Mult2, Mult2.2, and Tree traces.

¨�¨

- 31 -

-- --

©�©

10.001 0.01 0.1 1
Fraction of Full Trace Data

0.
01

10
0.

1
1

10
R

at
io

 o
f

Sa
m

pl
e

E
st

im
at

e
to

 F
ul

l T
ra

ce
 M

PI
INITMR Estimates for Tv

100
10

1

10.001 0.01 0.1 1
Fraction of Full Trace Data

INITMR Estimates for Sor

100

10
1

10.001 0.01 0.1 1
Fraction of Full Trace Data

0.
1

10
0

1
10

R
at

io
 o

f
Sa

m
pl

e
E

st
im

at
e

to
 F

ul
l T

ra
ce

 M
PI

INITMR Estimates for Lin

100

101

Figure 5b. Cones for Time Sampling with Tv, Sor, and Lin.

Similar to Figure 4a, these figures display cones for MPIˆ
S with the Tv, Sor, and Lin traces. Note that Lin

uses a different y-axis scale.
ª�ª

- 32 -

-- --

