
5. Completeness and sufficiency

5.1. Complete statistics.

Definition 5.1. A statistic T is called complete if Eg(T ) = 0 for all θ
and some function g implies that P (g(T ) = 0; θ) = 1 for all θ.

This use of the word complete is analogous to calling a set of vectors
v1, . . . , vn complete if they span the whole space, that is, any v can
be written as a linear combination v =

∑
ajvj of these vectors. This

is equivalent to the condition that if w is orthogonal to all vj’s, then
w = 0. To make the connection with Definition 5.1, let’s consider the
discrete case. Then completeness means that

∑
g(t)P (T = t; θ) = 0

implies that g(t) = 0. Since the sum may be viewed as the scalar prod-
uct of the vectors (g(t1), g(t2), . . .) and (p(t1), p(t2), . . .), with p(t) =
P (T = t), this is the analog of the orthogonality condition just dis-
cussed.

We also see that the terminology is somewhat misleading. It would
be more accurate to call the family of distributions p(·; θ) complete
(rather than the statistic T ). In any event, completeness means that
the collection of distributions for all possible values of θ provides a
sufficiently rich set of vectors. In the continuous case, a similar inter-
pretation works. Completeness now refers to the collection of densities
f(·; θ), and 〈f, g〉 =

∫
fg serves as the (abstract) scalar product in this

case.

Example 5.1. Let’s take one more look at the coin flip example. I claim
that T = X1 + . . .+Xn is a complete statistic. To check this, suppose
that

Eg(T ) =
∑

g(t)P (T = t) =
n∑
t=0

(
n

t

)
θt(1− θ)n−tg(t) = 0

for all 0 ≤ θ ≤ 1. Observe that this is a polynomial in θ, which can
only be identically equal to zero on an interval if all coefficients are
zero. Now Eg(T ) = g(0)(1−θ)n+a1θ+ . . .+anθ

n, so it already follows
that g(0) = 0 because otherwise we will get a non-zero constant term.
But then

n∑
t=1

(
n

t

)
θt(1− θ)n−tg(t) = 0,

and now we can divide through by θ and then repeat this argument
to conclude that g(1) = 0. Continuing in this way, we see that g(0) =
g(1) = . . . = g(n) = 0, so g(T ) = 0 identically, as desired.

Suppose now that we restrict θ to just the three values θ = 0, 1/2, 1.
Is T still complete then? The geometric interpretation discussed above
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shows that the answer to this is clearly no, for random samples of size
n ≥ 3. Indeed, we only have three vectors p(·; θ), corresponding to the
three possible values of θ, but these vectors lie in an (n+1) dimensional
space because t varies over 0, 1, . . . , n, so they cannot possibly span the
whole space.

The following theorem is probably the main reason why we care
about completeness.

Theorem 5.2 (Lehmann-Scheffé). Let Y be a complete sufficient statis-
tic. If there are unbiased estimators, then there exists a unique MVUE.
We can obtain the MVUE as T = E(U |Y ), for any unbiased U .

The MVUE can also be characterized as the unique unbiased function
T = ϕ(Y ) of the complete sufficient statistic Y .

This is a wonderful result that will explain quite a few things that we
noticed earlier, in our discussions of concrete examples. Also, and per-
haps quite surprisingly, it now turns out that at least in principle it is
actually quite easy to find the MVUE once a complete sufficient statis-
tic Y has been detected: just make Y unbiased by taking a suitable
function.

We also obtain for the first time uniqueness statements about best
estimators. (However, it is in fact true in general that MVUEs are
unique when they exist.)

Exercise 5.1. We proved in Theorem 4.5 that Var(E(X|Y )) ≤ Var(X).
Show that we have equality here precisely if X = E(X|Y ), which holds
precisely if X = f(Y ) is a function of Y . Suggestion: Extract this
extra information from the proof that we gave earlier.

Proof. If U1, U2 are any two unbiased estimators and we define Tj =
E(Uj|Y ), then E(T2 − T1) = 0. Since T2 − T1 is a function of Y ,
completeness shows that T1 = T2 with probability one. In other words,
we always obtain the same T = E(U |Y ), no matter which unbiased
estimator U we start out with. By Rao-Blackwell, T is an MVUE. If
S is another MVUE, which is not assumed to be a function of Y at
this point, then S and E(S|Y ) have the same variance, by the Rao-
Blackwell Theorem again. Now the exercise shows that S = E(S|Y ) =
T , so the MVUE is unique, as claimed.

Finally, if ϕ(Y ) is unbiased, then ϕ(Y ) = E(ϕ(Y )|Y ) = T is the
unique MVUE, so this is indeed the only unbiased function of Y . �

This proof has also clarified the precise technical meaning of the
uniqueness claims: we identify two statistics that are equal to one
another with probability one, for all θ.
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Example 5.2. We saw in Example 5.1 that Y = X1 + . . . + Xn is
complete and sufficient for the coin flip distribution. Lehmann-Scheffé
now clarifies everything. Since X = Y/n is an unbiased function of
Y , this is the unique MVUE; there is no other unbiased estimator
that achieves the same variance. In particular, X is the only efficient
estimator. Moreover, ϕ(Y ) is unbiased only for this specific function
ϕ(y) = y/n. We observed earlier in a few concrete examples that no
matter what unbiased U we start out with, we always seem to find that
E(U |Y ) = Y/n. This is now given a precise theoretical explanation.

Example 5.3. Consider the uniform distribution f(x) = 1/θ, 0 < x < θ.
We know that Y = maxXj is sufficient. Is this statistic also com-
plete? To answer this, recall that Y has density fY (y) = nyn−1/θn. So
Eg(Y ) = 0 means that ∫ θ

0

g(y)yn−1 dy = 0

for all θ > 0. By differentiating with respect to θ, we find from this
that g(y) = 0 for all y > 0. So Y is indeed complete.

With this in place, the Lehmann-Scheffé Theorem again answers all
our questions. We saw earlier that T = n+1

n
Y is unbiased, so this is

the unique MVUE and in fact the only unbiased function of Y . We
computed in Chapter 3 that Var(T ) = θ2/(n(n + 2)), and this now
turns out to be best possible. As we observed earlier, this aymptotic
behavior Var(T ) ∼ 1/n2 is quite different from what we get from the
CR bound when it applies.

Finally, we can now return to a somewhat cryptic remark I made in
Example 4.7. Recall that I computed in somewhat informal style that
E(2X|Y ) = T (using the current notation), and I promised that an
alternative, more rigorous argument would be forthcoming later. This
we can now do: Lehmann-Scheffé says that there is only one unbiased
function of Y , and we know that E(2X|Y ) is such an unbiased function
of Y , so it has to equal T = n+1

n
Y .

This technique works quite generally and can sometimes be used to
dramatically simplify the computation of conditional expectations. For
example:

Exercise 5.2. Let Y be a complete sufficient statistic, and let X be an
arbitrary statistic. Suppose that Eϕ(Y ) = EX for all θ for some (θ
independent) function ϕ. Show that then E(X|Y ) = ϕ(Y ).

Exercise 5.3. Use the method outlined in the previous exercise to find
E(X1X2|Y ) in the coin flip example, with Y = X1 + . . .+Xn. Sugges-
tion: Try a suitable combination of Y and Y 2.
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Example 5.4. Another typical situation where these ideas come in handy
deals with estimation of functions of previously estimated parameters.
Let’s make this more concrete. Consider again the coin flip example,
but this time I want to estimate the variance δ = θ(1−θ). The statistic
Y = X1 + . . .+Xn is still complete and sufficient for the coin flip dis-
tribution, now viewed as parametrized by δ. More precisely, we solve
for θ as a function of δ, and then write our distribution as

P (X1 = 1) =
1

2
+

√
1

4
− δ, P (X1 = 0) =

1

2
−
√

1

4
− δ.

Exercise 5.4. Can you explain in this more detail? What happened to
the second solution of the quadratic equation for θ? Is Y really still
complete?

So to find the MVUE, we only need to come up with an unbiased
function of Y . A natural first try and starting point seems to be the
statistic

T =
Y

n

(
1− Y

n

)
.

Exercise 5.5. Show that T is also the MLE for δ.

Recall that EY = nθ, EY 2 = nδ + n2θ2. This shows that

ET = θ − δ

n
− θ2 = δ − δ

n
=
n− 1

n
δ,

so T itself is not unbiased, but this is easy to fix:

(5.1) U =
n

n− 1
T =

Y

n− 1

(
1− Y

n

)
is the unbiased function of Y we are looking for, and thus U is the
MVUE for δ.

This could have been derived more systematically. We then need
an unbiased estimator for δ, which we will then condition on Y . The
sample variance comes to mind, and in fact we can simplify matters by
using only the first two data points:

(5.2) S2
2 =

(
X1 −

X1 +X2

2

)2

+

(
X2 −

X1 +X2

2

)2

=
1

2
(X1 −X2)

2

Exercise 5.6. Show that

P (X1 6= X2|Y = y) = 2
y(n− y)

n(n− 1)
.
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If we now make use of this exercise, then (5.2) shows that

E(S2
2 |Y ) =

Y (n− Y )

n(n− 1)
=

Y

n− 1

(
1− Y

n

)
;

we have recovered the MVUE U from (5.1).
In fact, somewhat surprisingly perhaps, U is the (full) sample vari-

ance. To see this, recall that Xj = 0 or 1, so X2
j = Xj. Thus

S2 =
1

n− 1

n∑
j=1

(
Xj −

Y

n

)2

=
1

n− 1

n∑
j=1

(
Xj −

2XjY

n
+
Y 2

n2

)
=

1

n− 1

(
Y − Y 2

n

)
=

Y

n− 1

(
1− Y

n

)
= U,

as claimed.

Example 5.5. We are now also in a position to finally clarify every-
thing in the discrete version of the previous example, the urn with
an unknown number N of balls in it, so P (X1 = x) = 1/N for
x = 1, 2, . . . , N . Recall that Y = maxXj is sufficient.

Exercise 5.7. Proceed as in the previous example to show that Y is
complete. You will need the distribution P (Y = y) of Y , so analyze
this first (or go back to Exercise 2.1).

By the exercise, there is a unique MVUE, which can be found as the
unique unbiased function of Y . As we discussed in Example 4.6, this
is given by

T = Y +
(Y − 1)n

Y n − (Y − 1)n
.

Example 5.6. Let’s revisit Exercise 3.18. We consider the exponential
distribution f(x) = θe−θx (x > 0). We know that Y = X1 + . . . + Xn

is sufficient (show it again with the help of Neyman’s theorem if you
forgot). We’re hoping that this statistic will be complete, too. Recall
from our discussion in Example 3.4 that Y has density

(5.3) f(y) =
θn

(n− 1)!
yn−1e−θy, y > 0.

(When you compare formulae, don’t forget that what we’re now calling
θ corresponds to 1/θ in Example 3.4.) So Eg(Y ) = 0 gives that∫ ∞

0

g(y)yn−1e−θy dy = 0,

and this condition for all θ > 0 indeed implies that g ≡ 0. The trans-
form (Lh)(x) =

∫∞
0
h(y)e−xy dy is called the Laplace transform of h,
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and completeness for the exponential distribution essentially follows
from the uniqueness of Laplace transforms, so if you want to know
more, this is what you should look up, but I’ll leave the matter at that.

We saw earlier, in Example 3.4, that E(1/Y ) = θ/(n − 1). This
identifies T = (n − 1)/Y as the unique unbiased function of Y , and
thus this statistic is the unique MVUE for θ.

Something very interesting is going on here; this was hinted at in
Exercise 3.18, but let me perhaps spell this out in full detail now (in
particular, I’m going to solve Exercise 3.18 here). First of all, what
is Var(T ) equal to? To answer this, I will need to extract the density
of Z = 1/Y from that of Y , as given in (5.3). We apply the usual
technique of going through the cumulative distribution: P (1/Y ≤ z) =
P (Y ≥ 1/z) =

∫∞
1/z

f(t) dt, and differentiation gives

fZ(z) =
1

z2
f(1/z) =

θn

(n− 1)!
z−n−1e−θ/z, z > 0.

It follows that

EZ2 =
θn

(n− 1)!

∫ ∞
0

z−n+1e−θ/z dz =
θ2

(n− 1)!

∫ ∞
0

tn−3e−t dt

=
θ2

(n− 1)(n− 2)
,

and since EZ = θ/(n−1), we obtain that Var(Z) = θ2/((n−1)2(n−2)).
Hence Var(T ) = θ2/(n− 2).

On the other hand, the exponential density satisfies ln f = −θx+ln θ,
so

− ∂2

∂θ2
ln f(X, θ) =

1

θ2
,

and thus the Fisher information is given by I(θ) = 1/θ2. So the esti-
mator T does not achieve the CR bound:

Var(T ) =
θ2

n− 2
=

n

n− 2

1

nI(θ)
>

1

nI(θ)

Since T is the (unique) MVUE, nothing does, and this variance that is
(slightly) larger than the CR bound is the best we can do here.

Example 5.7. Consider the Poisson distribution P (X1 = x) = e−θθx/x!.
We already know that X is the MVUE, but let’s take a look at this
from the point of view suggested by the material of this section. We
saw earlier, in Example 4.2, that Y = X1 + . . . + Xn is sufficient. I
claim that this statistic is also complete. We will need the distribution
of Y to confirm this claim. The main ingredient to this is provided by
the following fact.
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Proposition 5.3. Suppose Y1, Y2 are independent Poisson distributed
random variables, with parameters λ1 and λ2, respectively. Then S =
Y1 + Y2 is Poisson distributed with parameter λ1 + λ2.

Proof.

P (S = x) =
x∑

n=0

P (X1 = n,X2 = x− n) = e−λ1−λ2
x∑

n=0

λn1
n!

λx−n2

(x− n)!

=
e−λ1−λ2

x!

x∑
n=0

(
x

n

)
λn1λ

x−n
2 =

(λ1 + λ2)
x

x!
e−λ1−λ2

�

By repeatedly applying this, we see that Y = X1+. . .+Xn is Poisson
distributed with parameter nθ. Therefore

Eg(Y ) = e−nθ
∞∑
y=0

g(y)
(nθ)y

y!
.

The sum is a power series in θ, so if this is equal to zero identically,
then all coefficients are zero, which shows that g(y) = 0 for y = 0, 1, . . ..
In other words, Y is indeed complete.

Since X = Y/n is unbiased, as we saw earlier, this confirms one more
time that X is the (unique) MVUE.

Example 5.8. This is a somewhat artificial example, intended as a cau-
tionary tale. Consider again the Poisson distribution with parameter
λ > 0; we would like to estimate θ = e−2λ. We will (quite unex-
pectedly) work with a random sample of size n = 1. I claim that
Y = X1 is a complete sufficient statistic. This is really the special case
n = 1 of the previous example (neither sufficiency nor completeness
is affected by taking a function of the old parameter as the new pa-
rameter), but of course we can also check it directly. The sufficiency
can be confirmed by just unwrapping the definition: we need to check
that P (X1 = x|Y = y) is independent of θ, but since Y = X1, this
probability is either always zero (if x 6= y) or always one (if x = y).

Completeness can be verified exactly as in the previous example;
notice that taking a function of the parameter is indeed irrelevant be-
cause Eg(Y ) = 0 for all λ is of course the same as requiring this for all
θ = e−2λ.

Since Y is a complete sufficient statistic, an unbiased function of Y
(and there will be at most one such function) is the MVUE. I now claim
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that

T = (−1)Y =

{
1 Y = 0, 2, 4 . . .

−1 Y = 1, 3, 5, . . .

is unbiased. Indeed,

ET = e−λ
∞∑
n=0

(−1)n
λn

n!
= e−2λ = θ.

So, according to our self-imposed criteria of absence of bias and
minimum variance, T is the best estimator of θ here, even though
it definitely doesn’t feel “right” intuitively. We are estimating the
parameter θ which varies over 0 < θ < 1, and our estimate will be
either 1 or −1, so we are not even making an attempt to hit the correct
value, and, to add insult to injury, the guess −1 is guaranteed to be off
by at least 1 whenever it occurs.

With the benefit of hindsight, it is now clear how we got into this:
our insistence on unbiased estimators simply forces us to take this
function of Y because there is no other unbiased function. In fact,
since Y = X1 is the complete random sample here, there is no other
unbiased statistic.

If we drop this requirement, what would we typically have done then?
We know that Y is the MVUE for λ and, moreover, Y feels natural as
an estimator of λ, so perhaps U = e−2Y is the way to go if we want to
estimate θ. Let’s try to compare the mean square errors that we are
making with these estimators:

E(U − θ)2 = e−λ
∞∑
n=0

λn

n!

(
e−2n − e−2λ

)2
= e−λ

∞∑
n=0

(
(e−4λ)n

n!
− 2e−2λ

(e−2λ)n

n!
+ e−4λ

λn

n!

)
= e−(1−e

−4)λ − 2e−(3−e
−2)λ + e−4λ(5.4)

On the other hand,

E(T − θ)2 = e−λ
∞∑
n=0

λn

n!
((−1)n − θ)2 = 1− 2θ2 + θ2 = 1− θ2.

It is not very clear how to compare these as (5.4) is not a particularly
transparent expression, but for example if θ > 0 is small or, equiva-
lently, λ gets large, then (5.4) is dominated by the first term e−cλ = θc/2,
which is small while Var(T ) ' 1. So, as expected, at least for these
θ, U performs considerably better than the so-called optimal estimator
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T . For θ close to 1 or, equivalently, small λ > 0, both estimators have
a small mean square error. More precisely, a Taylor expansion shows
that

E(U − θ)2 =
(
1 + e−4 − 2e−2

)
λ+O(λ2) ' 0.75λ,

E(T − θ)2 = 4λ+O(λ2),

so again U is better.
Finally, let’s return to larger random samples. We still want to

estimate θ = e−2λ for the Poisson distribution with parameter λ > 0.
As we saw above, Y = X1 + . . .+Xn is complete and sufficient, so we
only need to find an unbiased function of Y . Since I’m out of good ideas
for the moment, let’s try to approach this systematically: we know that
(−1)X1 is unbiased, so we can obtain the unique unbiased function of
Y as T = E((−1)X1|Y ). To work out this conditional expectation,
we will need the conditional probabilites P (X1 = x|Y = y). Let S =
X2 + . . .+Xn. Then S is Poisson distributed with parameter (n− 1)λ,
by Proposition 5.3. Moreover, S and X1 are independent, so

P (X1 = x, Y = y) = P (X1 = x)P (S = y − x) = e−nλ
λx

x!

((n− 1)λ)y−x

(y − x)!
.

Since Y is Poisson distributed with parameter nλ, by Proposition 5.3
again, this shows that

P (X1 = x|Y = y) =
λx

x!

((n− 1)λ)y−x

(y − x)!

y!

(nλ)y
=

(
y

x

)
1

nx

(
1− 1

n

)y−x
.

Thus if Y = y, then

E((−1)X1|Y ) =

y∑
x=0

(−1)x
(
y

x

)
1

nx

(
1− 1

n

)y−x
=

(
− 1

n
+ 1− 1

n

)y
.

In other words, for a random sample of size n, the MVUE T for θ = e−2λ

is given by

(5.5) T = E((−1)X1 |Y ) =

(
1− 2

n

)Y
=

(
1− 2

n

)nX
.

Observe that this still contains the freakish estimator (−1)Y as the
special case n = 1.

Exercise 5.8. Show that if n = 2, then (5.5) needs to be interpreted as

(5.6) T =

{
1 X1 = X2 = 0

0 otherwise
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(the case Y = 0 needs special attention, otherwise this is just (5.5)).
Then confirm (5.6) one more time by just computing ET .

More importantly, for large n, we can approximate (1−2/n)n ' e−2,

so T ' e−2X , and this looks very sensible indeed as an estimator for
θ = e−2λ. So sanity has been restored and the books do not have to be
rewritten (not yet, at least).

Example 5.9. Consider the density f(x) = θxθ−1, 0 < x < 1, for θ > 0.

Exercise 5.9. (a) Show that the MLE is given by θ̂ = −n/
∑n

j=1 lnXj

(you did this earlier, in Exercise 3.8(a), but perhaps you forgot).
(b) Show that I(θ) = 1/θ2.
(c) Show with the help of Neyman’s theorem that Z = X1X2 · · ·Xn is
a sufficient statistic.

Since we can take functions of sufficient statistics, Y = − lnZ =
− lnX1− . . .− lnXn is sufficient, too. Moreover, I claim that Y is also
complete. To confirm this, we will need the distribution of Y . Let’s
first take a look at

P (− lnX1 ≤ x) = P (X1 ≥ e−x) = θ

∫ 1

e−x

tθ−1 dt.

By differentiating, we find that − lnX1 has density

fX1(x) = θe(1−θ)xe−x = θe−θx;

in other words, − lnX1 is exponentially distributed. We can now refer
to calculations we did earlier, for the first time in Example 3.4 (there’s
the usual small trap to avoid, what we are calling θ here corresponds
to 1/θ in Example 3.4). In particular, we found that Y has density

f(y) =
θn

(n− 1)!
yn−1e−θy;

compare also (5.3) above. Now completeness of Y follows as in Example
5.6. Moreover, we also saw in this example that

T =
n− 1

Y
= − n− 1∑n

j=1 lnXj

is the unique unbiased function of Y and thus the MVUE for θ. Still
quoting from above, we also have that Var(T ) = θ2/(n − 2), and by
comparing with Exercise 5.9(b), we see that T is not efficient and thus
the CR bound is not attained.

Exercise 5.10. Consider the uniform distribution f(x, θ) = 1/(2θ) on
−θ < x < θ. Show that Y = X1+ . . .+Xn is not complete. Suggestion:
Use symmetry, or ignore this suggestion if it confuses you.
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Exercise 5.11. Consider the density f(x, θ) = eθ−x, x > θ, for θ ∈ R.
(a) Show that Y = min(X1, X2, . . . , Xn) is a sufficient statistic.
(b) Find the distribution of Y .
(c) Show that Y is complete.
(d) Find the MVUE.

5.2. Exponential classes. In this section, we identify a general class
of distributions that come supplied with a complete sufficient statistic
(which is a highly desirable feature to have, as we saw in the previous
section).

Definition 5.4. A distribution of the form

L(x, θ) = ep(θ)K(x)+M(x)+q(θ), (x ∈ S)

is called a regular exponential class if S is independent of θ and the
functions p,K are not constant.

This covers both the discrete and the continuous case, with L being
the density in the continuous case and L(x) = P (X = x) in the discrete
case. Later on, we will also impose differentiability assumptions on the
functions p, q,K,M (which we won’t make explicit, however).

Let’s collect a few quick examples.

Example 5.10. The N(0, θ1/2) distribution f(x) = (2πθ)−1/2e−x
2/(2θ) is

a regular exponential class, with S = R, and we can put K(x) = x2,
p(θ) = −1/(2θ), M(x) = 0, q(θ) = −(1/2) ln 2πθ.

Example 5.11. For a discrete example, return to the coin flip, that is,
L(x, θ) = θx(1 − θ)1−x. This is of the required form with S = {0, 1}
since we can write

L = ex ln θ+(1−x) ln(1−θ),

so taking K(x) = x, p(θ) = ln θ− ln(1− θ), q(θ) = ln(1− θ), M(x) = 0
works.

Example 5.12. Now consider the uniform distribution f(x, θ) = 1/θ,
0 < x < θ. At first sight, this might appear to be of the required form
with q(θ) = − ln θ, K = M = p = 0, but this doesn’t help because the
support S = (0, θ) is not independent of θ. In fact, there is a second
problem with the requirement that p,K must not be constant. So this
is not a regular exponential class.

Now suppose we draw a random sample from a regular exponential
class. Then the likelihood function is given by

(5.7) L(x1, . . . , xn; θ) = ep(θ)
∑n

j=1K(xj)+nq(θ)e
∑n

j=1M(xj).

Thus, by Neyman’s criterion, Y = K(X1) + . . .+K(Xn) is a sufficient
statistic. It turns out we can say quite a bit more:
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Theorem 5.5. Let Y = K(X1) + . . .+K(Xn). Then:
(a) The distribution of Y has the form

LY (y, θ) = R(y)ep(θ)y+nq(θ).

(b) Y is a complete sufficient statistic.
(c) EY = −nq′(θ)/p′(θ) and

Var(Y ) =
n

p′(θ)3
(p′′(θ)q′(θ)− q′′(θ)p′(θ)) .

Sketch of proof. I’ll do this in the discrete setting. Part (a) follows from
(5.7) because

P (Y = y) =
∑

x:Y (x)=y

e
∑
M(xj)ep(θ)y+nq(θ),

which is of the desired form, with R(y) =
∑
e
∑
M(xj).

We already saw that Y is sufficient, and as for completeness, by (a)
we have that Eg(Y ) = 0 implies that

(5.8)
∑
y

g(y)R(y)ep(θ)y = 0.

Now if p(θ) takes values in at least an interval, we would indeed expect
that (5.8) for all θ implies that g(y) = 0 for all y; we can reason by
analogy to power series or Laplace transforms. Of course, the argument
is not very convincing in this form, but I’ll just leave the matter at that
anyway.

As for (c), take derivatives in∑
y

R(y)ep(θ)y+nq(θ) = 1.

This gives ∑
y

R(y)(p′(θ)y + nq′(θ))ep(θ)y+nq(θ) = 0,

or, put differently, p′(θ)EY + nq′(θ) = 0, as claimed. To compute the
variance, take one more derivative to obtain that∑

y

R(y)
[
(p′(θ)y + nq′(θ))2 + p′′(θ)y + nq′′(θ)

]
ep(θ)y+nq(θ) = 0.

In other words,

p′2EY 2 + n2q′2 + 2np′q′EY + p′′EY + nq′′ = 0,

and the asserted formula for Var(Y ) follows from this. �

Exercise 5.12. Do this calculation in more detail.
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This theorem doesn’t really tell us anything radically new, but it
does unify quite a few previous results. If we return to Examples 5.10,
5.11, then we learn from Theorem 5.5(b) that Y =

∑
X2
j is complete

and sufficient for the N(0, θ1/2) distribution. You showed earlier, in
Exercise 4.3, that Y is sufficient; the completeness is a new result. We
also learn from Theorem 5.5(b) that Y =

∑
Xj is a complete and

sufficient statistic for the coin flip. These statements are not new to
us, of course.

Exercise 5.13. Show that the Poisson distribution P (X = x; θ) =
e−θθx/x! forms a regular exponential class. Then use Theorem 5.5(b)
to conclude one more time that Y = X1 + . . . + Xn is complete and
sufficient.

Example 5.13. For a new example, consider the gamma distribution
with parameters α > 0 (assumed to be known here) and θ > 0 (un-
known, as usual):

f(x) =
1

Γ(α)θα
xα−1e−x/θ, (x > 0)

Exercise 5.14. Show that
∫
f = 1.

To identify this as a regular exponential class, we can put K(x) = x,
p(θ) = −1/θ, q(θ) = − ln Γ(α)θα, and M(x) = (α − 1) lnx. Now
Theorem 5.5(b) shows that Y = X1+. . .+Xn is complete and sufficient.
Moreover, EY can be conveniently obtained from part (c): notice that
q = − ln Γ(α)−α ln θ, so q′ = −α/θ and thus EY = nαθ. In particular,
the unique unbiased function of Y is given by

T =
X

α
=

Y

nα
;

this is also the unique MVUE for θ. To find its variance, we can again
refer to part (c) of the Theorem:

Var(T ) =
1

nα2
θ6
(

2α

θ4
− α

θ4

)
=

θ2

nα

Exercise 5.15. Compute the Fisher information for the gamma distri-
bution. Is T efficient?

5.3. Ancillary statistics.

Definition 5.6. A statistic T = T (X1, . . . , Xn) is called ancillary if
P (T ∈ A; θ) is independent of θ for all A ⊆ R.
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This condition is reminiscent of the one defining sufficient statistics,
but in fact ancillary and sufficient statistics are at opposite ends of
the spectrum: a sufficient statistic contains all the information worth
knowing about if we want to estimate θ while the information contained
in an ancillary statistic is completely irrelevant for this assignment, or
at least it’s safe to say that this interpretation is in line with the one we
gave earlier for sufficient statistics. Indeed, recall that if T is sufficient,
then P (X1 = x1, . . . , Xn = xn|T = t) is independent of θ, so once the
value of T is known, additional information on the random sample does
not support any inference whatsoever on θ. On the other hand, if T is
ancillary, then the value of T itself does not support any inference on
θ.

A constant random variable T = c is an ancillary statistic. A more
interesting example is given by the sample variance S2 for an N(θ, 1)
distribution. We know from Theorem 2.8(c) that (n−1)S2 ∼ χ2(n−1),
and this distribution is independent of θ, as required. In fact, we can
also show directly that S2 is ancillary, without knowing its distribution:
it suffices to observe that

S2 =
1

n− 1

n∑
j=1

(Xj −X)2

is invariant under simultaneous shifts Xj → Xj − a. Moreover, the
Xj are a random sample drawn from an N(θ, 1) distribution precisely
if the Xj − θ are iid and standard normal. So it will not affect the
distribution of S2 if we pretend that the Xj are N(0, 1)-distributed,
and thus the distribution of S2 is indeed independent of θ.

For a general class of examples, suppose that Y is a sufficient statis-
tic, and T is another statistic that is independent of Y for all θ. Then
(in the discrete case, say)

P (T = t) = P (T = t|Y = y)

for any y with P (Y = y) > 0, and this conditional probability is
independent of θ, by the sufficiency of Y . Note in this context that
the event T = t can be decomposed into events of the type X1 =
x1, . . . , Xn = xn because T is a statistic. So, to sum this up, if T is a
statistic that is independent of a sufficient statistic, then T is ancillary.

Interestingly, there is a partial converse to this observation:

Theorem 5.7 (Basu). If T is an ancillary statistic and Y is complete
and sufficient, then T and Y are independent for all θ.

Proof. I’ll assume that the distributions are discrete (but in fact the
following argument works in general). For t in the range of T , let
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f = χ{t}, so f(s) = 1 if s = t and f(s) = 0 otherwise, and consider
E(f(T )|Y ). Observe that E(E(f(T )|Y )) = Ef(T ) = P (T = t), or,
put differently,

(5.9) E[E(f(T )|Y )− P (T = t)] = 0,

for all θ. Now since T is ancillary, P (T = t) is just a constant.
Moreover, E(f(T )|Y ) = g(Y ) is also independent of θ, by the suffi-
ciency of Y . So the expression in [. . .] is a θ independent function
of Y , and thus completeness may be applied to (5.9). It follows that
E(f(T )|Y ) = P (T = t).

Exercise 5.16. Show that (for the f from above) if Y (ω) = y, then

(5.10) E(f(T )|Y )(ω) = P (T = t|Y = y).

Suggestion: Use the definition of conditional expectation, see (4.6).

From (5.10), we now obtain that P (T = t|Y = y) = P (T = t) for
all y with P (Y = y) > 0, and thus T, Y are indeed independent, as
claimed. �

Example 5.14. Consider the N(θ, σ) distribution with known σ. We
observed above that the sample variance S2 is ancillary. Moreover, the
sample mean X is sufficient. This we can confirm by identifying the
normal distribution as a regular exponential class: the density

f(x, θ) =
1√
2πσ

exp

(
−(x− θ)2

2σ2

)
=

1√
2πσ

exp

(
θ2 + 2θx− x2

2σ2

)
is of the required form withK(x) = x, p(θ) = θ/σ2, M(x) = −x2/(2σ2),
q(θ) = θ2/(2σ2)− ln

√
2πσ. Therefore Y = K(X1)+ . . .+K(Xn) = nX

is complete and sufficient by Theorem 5.5(b), as desired. Now Basu’s
Theorem shows that X and S2 are independent, a result we stated
earlier (but did not prove then) in Theorem 2.8(b).

Example 5.15. Consider the density f(x) = e−(x−θ), x > θ. As above
in the case of the N(θ, σ) distribution, the parameter θ only affects the
location of the density, not its shape. Thus statistics that are insensitive
to simultaneous shifts of the whole random sample are automatically
ancillary. To state this more formally: if T (X1 + c, . . . , Xn + c) =
T (X1, . . . , Xn), then T is ancillary. This follows because Xj − θ is a
random sample drawn from the distribution f(x) = e−x, x > 0, so

P (T = t; θ) = P (T (X1 − θ, . . . , Xn − θ) = t; θ)

= P (T (X1, . . . , Xn) = t; 0)

is independent of θ, as required.
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Examples of such shift invariant statistics are given by S2, by the
sample range R = maxXj − minXj, or by T = X − minXj. On the
other hand, I claim that Y = minXj is complete and sufficient. Given
this, Basu’s Theorem now shows that each of S2, R, T is independent of
Y . These statements are interesting even if we specialize to particular
values of θ, say θ = 0.

Exercise 5.17. Use Neyman’s criterion to show that Y is indeed suffi-
cient.

To confirm that Y is complete, observe that (for y > θ)

P (Y ≥ y) = P (X1 ≥ y, . . . , Xn ≥ y) = P (X1 ≥ y)n

= enθ
(∫ ∞

y

e−x dx

)n
,

so fY (y) = nen(θ−y), y > θ. Thus, if Eg(Y ) = 0, then∫ ∞
θ

g(y)e−ny dy = 0,

and if this holds for all θ, then we can differentiate with respect to θ,
and we obtain that g = 0, as required.

Example 5.16. Finally, consider again the density f(x) = e−x/θ/θ, x >
0.

Exercise 5.18. Suppose that the random variable X > 0 has density
g(x), and let c > 0. Show that Y = cX has density g(x/c)/c.

So by this exercise, varying the parameter θ has the same effect as
rescaling the random variable according to X → θX. In particular, in
complete analogy to the previous example, any statistic that is insen-
sitive to a rescaling of the random sample will be ancillary. Examples
include T1 = X/maxXj, T2 = X2/X1 etc. By Basu’s Theorem, any
such statistic is independent of the complete and sufficient statistic
Y = X1 + . . .+Xn.


