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Chapter 0

Introduction

Data compression

Data compression is the science (and art) of representing information in a
compact form. Having been the domain of a relatively small group of
engineers and scientists, it is now ubiquitous. It has been one of the critical
enabling technologies for the on-going digital multimedia revolution for
decades. Without compression techniques, none of the ever-growing Internet,
digital TV, mobile communication or increasing video communication would
have been practical developments.

Data compression is an active research area in computer science. By
‘compressing data’, we actually mean deriving techniques or, more
specifically, designing efficient algorithms to:

e represent data in a less redundant fashion
e remove the redundancy in data
e implement coding, including both encoding and decoding.

The key approaches of data compression can be summarised as modelling +
coding. Modelling is a process of constructing a knowledge system for
performing compression. Coding includes the design of the code and product
of the compact data form.

Aims and objectives of the subject

The subject aims to introduce you to the main issues in data compression and
common compression techniques for text, audio, image and video data and to
show you the significance of some compression technologies.

The objectives of the subject are to:

e outline important issues in data compression

e describe a variety of data compression techniques

e explain the techniques for compression of binary programmes, data,
sound and image

e describe elementary techniques for modelling data and the issues
relating to modelling.

Motivation for studying the subject

You will broaden knowledge of compression techniques as well as the
mathematical foundations of data compression, become aware of existing
compression standards and some compression utilities available. You will also
benefit from the development of transferable skills such as problem analysis
and problem solving. You can also improve your programming skills by doing
the laboratory work for this subject.

Textbooks

There are a limited number of books on Data compression available. No
single book is completely satisfactory to be used as the textbook for the
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subject. Therefore, instead of recommending one book for essential reading
and a few books for further reading, we recommend chapters of some books
for essential reading and chapters from some other books for further reading
at the beginning of each chapter of this subject guide. An additional list of
the books recommended for support and for historical background reading is
attached in the reading list (Appendix E).

Reading

Salomon, David A Guide to Data Compression Methods.  (London:
Springer, 2001) [ISBN 0-387-95260-8|.

Wayner, Peter Compression Algorithms for Real Programmers. (London:
Morgan Kaufmann, 2000) [ISBN 0-12-788774-1].

Chapman, Nigel and Chapman, Jenny Digital Multimedia. (Chichester:
John Wiley & Sons, 2000) [ISBN 0-471-98386-1].

Sayood, Khalid Introduction to Data Compression. 2nd edition (San Diego:
Morgan Kaufmann, 2000) [ISBN 1-55860-558-4].

‘Web addresses

www.datacompression.com

Prerequisites

The prerequisites for this subject include a knowledge of elementary
mathematics and basic algorithmics. You should review the main topics in
mathematics, such as sets, basic probability theory, basic computation on
matrices and simple trigonometric functions (e.g. sin(x) and cos(x)), and
topics in algorithms, such as data structures, storage and efficiency.
Familiarity with the elements of computer systems and networks is also
desirable.

Study methods

As experts have predicted that more and more people in future will apply
computing for multimedia, we recommend that you learn the important
principles and pay attention to understanding the issues in the field of data
compression. The experience could be very useful for your future career.

We suggest and recommend highly the following specifically:

1. Spend two hours on revision or exercise for every hour of study on new
material.

2. Use examples to increase your understanding of new concepts, issues
and problems.

3. Always ask the question: ‘Is there a better solution for the current
problem?’

4. Use the Content pages to view the scope of the subject; use the Learning
Outcomes at the end of each chapter and the Index pages for revision.
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LSee the sample
examination papers in
Appendix A,C and solutions
in Appendiz B,D

Exercises, programming laboratory and courseworks

It is useful to have access to a computer so that you can actually implement
the algorithms learnt for the subject. There is no restriction on the computer
platform nor requirement of a specific procedural computer language.
Examples of languages recommended include Java, C; C++ or even Pascal.

Courseworks (issued separately every year) and tutorial or exercise/lab sheets
(see Activities section and Sample examination questions at the end of each
chapter) are set for you to check your understanding or to practice your
programming skills using the theoretical knowledge gained from the course.

The approach to implementing an algorithm can be different when done by
different people, but it generally includes the following stages of work:

1. Analyse and understand the algorithm
2. Derive a general plan for implementation

Develop the program

> W

Test the correctness of the program

5. Comment on the limitations of the program.

At the end, a full document should be written which includes a section for
each of the above stages of work.

Examination

The content in this subject guide will be examined in a two-hour-15-minute
examination®. At the end of each chapter, there are sample examination
questions for you to work on.

You will normally be required to answer three out of five or four out of six
questions. Each question often contains several subsections. These
subsections may be classified as one of the following three types:

e Bookwork The answers to these questions can be found in the subject
guide or in the main textbook.

e Similar question The questions are similar to an example in the
subject guide or the main textbook.

e Unseen question You may have not seen these types of questions
before but you should be able to answer them using the knowledge and
experience gained from the subject.

More information on how to prepare for your examination can be found in
Chapter 13.

Subject guide

The subject guide covers the main topics in the syllabus. It can be used as a
reference which summarises, highlights and draws attention to some
important points of the subject. The topics in the subject guide are
equivalent to the material covered in a one term third-year module of BSc
course in Mathematics, Computer Science, Internet Computing, or Computer
Information Systems in London, which totals thirty-three hours of lectures,
ten hours of supervised laboratory work, and twenty hours of recommended
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individual revisions or implementation. The subject guide is for those
students who have completed all second year courses and have a successful
experience of programming.

This subject guide sets out a sequence to enable you to efficiently study the
topics covered in the subject. It provides guidance for further reading,
particularly in those areas which are not covered adequately in the course.

It is unnecessary to read every textbook recommended in the subject guide.
One or two books should be enough to enable individual topics to be studied
in depth. One effective way to study the compression algorithms in the
module is to trace the steps in each algorithm and attempt an example by
yourself. Exercises and courseworks are good opportunities to help
understanding. The sample examination paper at the end of the subject
guide may also provide useful information about the type of questions you
might expect in the examination.

One thing the reader should always bear in mind is the fact that Data
compression, like any other active research area in Computer Science, has
kept evolving and has been updated, sometimes at an annoyingly rapid pace.
Some of the descriptive information provided in any text will eventually
become outdated. Hence you should try not to be surprised if you find
different approaches, explanations or results among the books you read
including this subject guide. The learning process requires the input of your
own experiments and experience. Therefore, you are encouraged to, if
possible, pursue articles in research journals, browse the relative web sites,
read the latest versions of books, attend conferences or trade shows etc., and
in general pay attention to what is happening in the computing world.

The contents of this subject guide are arranged as follows: Chapter 1
discusses essentials of Data compression, including a very brief history.
Chapter 2 introduces an intuitive compression method: Run-length coding.
Chapter 3 discusses the preliminaries of data compression, reviews the main
idea of Huffman coding, and Shannon-Fano coding. Chapter 4 introduces the
concepts of prefix codes. Chapter 5 discusses Huffman coding again, applying
the information theory learnt, and derives an efficient implementation of
Huffman coding. Chapter 6 introduces adaptive Huffman coding. Chapter 7
studies issues of Arithmetic coding. Chapter 8 covers dictionary-based
compression techniques. Chapter 9 discusses image data and explains related
issues. Chapter 10 considers image compression techniques. Chapter 11
introduces video compression methods. Chapter 12 covers audio compression,
and finally, Chapter 13 provides information on revision and examination. At
the end of each chapter, there are Learning outcomes, Activities, laboratory
questions and selected Sample examination questions. At the end of the
subject guide, two sample examination papers and solutions from previous
examinations in London can be found in the Appendix A-D.
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Activities

1.

Review your knowledge of one high level programming language of your
choice, e.g. Java or C.

. Review the following topics from your earlier studies of elementary

mathematics and basic algorithmics:

sets

basic probability theory

basic computation on matrices

basic trigonometric functions

data structures, storage and efficiency.

the elements of computer systems and networks

Laboratory

1.

Design and implement a programme in Java (or in C, C++) which
displays a set of English letters occurred in a given string (upper case
only).

For example, if the user types in a string “AAABBEECEDE”, your
programme should display “(A,B,E,C,D)”.

The user interface should be something like this:

Please input a string:
> AAABBEECEDE

The letter set is:
(A,B,E,C,D)

. Write a method that takes a string (upper case only) as a parameter

and that returns a histogram of the letters in the string. The ith
element of the histogram should contain the number of ith character in
the string alphabet.

For example, if the user types in a string “AAABBEECEDEDEDDDE”, then
the string alphabet is “(A,B,E,C,D)”. The output could be something
like this:

Please input a string:
> AAABBEECEDEDEDDDE
The histogram is:

XXX

XX

XXXXXX

X

XXXXX

oQmMmwie

xi
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Chapter 1

Data compression

Essential reading

Wayner, Peter Compression Algorithms for Real Programmers. (Morgan
Kaufmann, 2000) [ISBN 0-12-788774-1]. Chapter 1.

Further reading

Salomon, David A Guide to Data Compression Methods. (Springer, 2001)
[ISBN 0-387-95260-8]. Introduction.

Importance of data compression

Data compression techniques is motivated mainly by the need to improve
efficiency of information processing. This includes improving the following
main aspects in the digital domain:

e storage efficiency
e efficient usage of transmission bandwidth
e reduction of transmission time.

Although the cost of storage and transmission bandwidth for digital data
have dropped dramatically, the demand for increasing their capacity in many
applications has been growing rapidly ever since. There are cases in which
extra storage or extra bandwidth is difficult to achieve, if not impossible.
Data compression as a means may make much more efficient use of existing
resources with less cost. Active research on data compression can lead to
innovative new products and help provide better services.

Brief history

Data compression can be viewed as the art of creating shorthand
representations for the data even today, but this process started as early as
1,000 BC. The short list below gives a brief survey of the historical milestones:

1000BC, Shorthand

1829, Braille code

1843, Morse code

1930 onwards, Analog compression
1950, Huffman codes

1975, Arithmetic coding

1977, Dictionary-based compression
1980s

— early 80s, FAX

— mid-80s, Video conferencing, still images (JPEG), improved FAX
standard (JBIG)

— late 80s, onward Motion video compression (MPEG)

e 1990s
— early 90s, Disk compression (stacker)

— mid-90s, Satellite TV
— late 90s, Digital TV (HDTV), DVD, MP3
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L This, when used as a
general term, actually
includes both compression
and decompression process.

e 2000s Digital TV (HDTV), DVD, MP3

Source data

In this subject guide, the word data includes any digital information that can
be processed in a computer, which includes text, voice, video, still images,
audio and movies. The data before any compression (i.e. encoding) process is
called the source data, or the source for short.

Three common types of source data in the computer are text and (digital)
image and sound.

e Text data is usually represented by ASCII code (or EBCDIC).

e Image data is represented often by a two-dimensional array of pizels in
which each pixel is associated with its color code.

e Sound data is represented by a wave (periodic) function.

In the application world, the source data to be compressed is likely to be
so-called multimedia and can be a mixture of text, image and sound.

Lossless and lossy data compression

Data compression is simply a means for efficient digital representation of a
source of data such as text, image and the sound. The goal of data
compression is to represent a source in digital form with as few bits as
possible while meeting the minimum requirement of reconstruction. This goal
is achieved by removing any redundancy presented in the source.

There are two major families of compression techniques in terms of the
possibility of reconstructing the original source. They are called Lossless and
lossy compression.

Lossless compression

A compression approach is lossless only if it is possible to exactly reconstruct
the original data from the compressed version. There is no loss of any
information during the compression! process.

Lossless compression techniques are mostly applied to symbolic data such as
character text, numeric data, computer source code and executable graphics
and icons.

Lossless compression techniques are also used when the original data of a
source are so important that we cannot afford to lose any details. For
example, medical images, text and images preserved for legal reasons; some
computer executable files, etc.

Lossy compression

A compression method is lossy compression only if it is not possible to
reconstruct the original exactly from the compressed version. There are some
insignificant details that may get lost during the process of compression.

Approximate reconstruction may be very good in terms of the
compression-ratio but usually it often requires a trade-off between the visual

quality and the computation complexity (i.e. speed).

Data such as multimedia images, video and audio are more easily compressed



Chapter 1: Data compression

by lossy compression techniques.

Main compression techniques

Data compression is often called coding due to the fact that its aim is to find
a specific short (or shorter) way of representing data. Encoding and decoding
are used to mean compression and decompression respectively. We outline
some major compression algorithms below:

Run-length coding
Quantisation

Statistical coding
Dictionary-based coding
Transform-based coding
Motion prediction.

Run-length coding

The idea of Run-length coding is to replace consecutively repeated symbols in
a source with a code pair which consists of either the repeating symbol and
the number of its occurrences, or sequence of non-repeating symbols.

Example 1.1 String ABBBBBBBCC can be represented by Ar;Br,C, where r7
and ro means 7 and 2 occurrences respectively.

All the symbols are represented by an 8-bit ASCII codeword.

Quantisation

The basic idea of quantisation is to apply a certain computation to a set of
data in order to achieve an approximation in a simpler form.

Example 1.2 Consider storing a set of integers (7, 223, 15, 28, 64, 37,
145). Let x be an integer in the set. We have 7 < x < 223. Since 0 < xz < 255
and 28 = 256, it needs 8 binary bits to represent each integer above.

However, if we use a multiple, say 16, as a common divider to apply to each
integer and round its value to the nearest integer, the above set becomes (0,
14, 1, 2, 4, 2, 9) after applying the computation x div 16. Now each integer
can be stored in 4 bits, since the maximum number 14 is less than 2* = 16.

Statistical coding

The idea of statistical coding is to use statistical information to replace a
fixed-size code of symbols by a, hopefully, shorter variable-sized code.

Example 1.3 We can code the more frequently occurring symbols with fewer
bits. The statistical information can be obtained by simply counting the
frequency of each character in a file. Alternatively, we can simply use the
probability of each character.

Dictionary-based coding

The dictionary approach consists of the following main steps:
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. or anything else

1. read the file
2. find the frequently occurring sequences of symbols (FOSSs)

build up a dictionary of these FOSSs

- W

associate each sequence with an index (usually a fixed length code)

5. replace the FOSS occurrences with the indices.

Transform-based coding

The transform-based approach models data by mathematical functions,
usually by periodic functions such as cos(z) and applies mathematical rules
to primarily diffuse data. The idea is to change a mathematical quantity such
as a sequence of numbers? to another form with useful features. It is used
mainly in lossy compression algorithms involving the following activities:

e analysing the signal (sound, picture etc.)
e decomposing it into frequency components
e making use of the limitations of human perception.

Motion prediction

Again, motion prediction techniques are lossy compression for sound and
moving images.

Here we replace objects (say, an 8 x 8 block of pixels) in frames with references
to the same object (at a slightly different position) in the previous frame.

Compression problems

In this course, we view data compression as algorithmic problems. We are
mainly interested in compression algorithms for various types of data.

There are two classes of compression problems of interest (Davisson and Gray
1976):

e Distortion-rate problem Given a constraint on transmitted data rate
or storage capacity, the problem is to compress the source at, or below,
this rate but at the highest fidelity possible.

Compression in areas of voice mail, digital cellular mobile radio and
video conferencing are examples of the distortion-rate problems.

e Rate-distortion problem Given the requirement to achieve a certain
pre-specified fidelity, the problem is to meet the requirements with as
few bits per second as possible.

Compression in areas of CD-quality audio and motion-picture-quality
video are examples of rate-distortion problems.

Algorithmic solutions

In areas of data compression studies, we essentially need to analyse the
characteristics of the data to be compressed and hope to deduce some
patterns in order to achieve a compact representation. This gives rise to a
variety of data modelling and representation techniques, which are at the
heart of compression techniques. Therefore, there is no ‘one size fits all’
solution for data compression problems.
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Compression and decompression

Due to the nature of data compression, any compression algorithm will not
work unless a decompression approach is also provided. We may use the term
compression algorithm to actually mean both compression algorithm and the
decompression algorithm. In this subject, we sometimes do not discuss the
decompression algorithm when the decompression process is obvious or can
be easily derived from the compression process. However, you should always
make sure that you know the decompression solutions.

In many cases, the efficiency of the decompression algorithm is of more
concern than that of the compression algorithm. For example, movies,
photos, and audio data are often compressed once by the artist and then
decompressed many times by millions of viewers. However, the efficiency of
compression is sometimes more important. For example, programs may
record audio or video files directly to computer storage.

Compression performance

The performance of a compression algorithm can be measured by various
criteria. It depends on what is our priority concern. In this subject guide, we
are mainly concerned with the effect that a compression makes (i.e. the
difference in size of the input file before the compression and the size of the
output after the compression).

It is difficult to measure the performance of a compression algorithm in
general because its compression behaviour depends much on whether the data
contains the right patterns that the algorithm looks for.

The easiest way to measure the effect of a compression is to use the
compression ratio.

The aim is to measure the effect of a compression by the shrinkage of the size
of the source in comparison with the size of the compressed version.

There are several ways of measuring the compression effect:

e Compression ratio. This is simply the ratio of size.after.compression
to size.before.compression or

size.after.compression

Compression ratio = — -
size.before.compression

e Compression factor. This is the reverse of compression ratio.

. size.before.compression
Compression factor =

size.after.compression
e Saving percentage. This shows the shrinkage as a percentage.

size.before.compression — size.after.compression

%

Saving percentage = - :
size.before.compression

Note: some books (e.g. Sayood(2000)) defines the compression ratio as our
compression factor.

Example 1.4 A source image file (pizels 256 x 256 ) with 65,536 bytes is
compressed into a file with 16,384 bytes. The compression ratio is 1/4 and the
compression factor is 4. The saving percentage is: 75%
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In addition, the following criteria are normally of concern to the programmers:

e Overhead. Overhead is some amount of extra data added into the
compressed version of the data. The overhead can be large sometimes
although it is often much smaller than the space saved by compression.

e Efficiency This can be adopted from well established algorithm
analysis techniques. For example, we use the big-O notation for the
time efficiency and the storage requirement. However, compression
algorithms’ behaviour can be very inconsistent but it is possible to use
past empirical results.

e Compression time We normally consider the time for encoding and
for decoding separately. In some applications, the decoding time is more
important than encoding. In other applications, they are equally

important.
3 We shall introduce the e Entropy?>. If the compression algorithm is based on statistical results,
concept of entropy later then entropy can be used to help make a useful judgement.

Limits on lossless compression
How far can we go with a lossless compression? What is the best compression
we can achieve in a general case? The following two statements may slightly
surprise you:

1. No algorithm can compress all (possible) files, even by one byte.

2. No algorithm can compress even 1% of all (possible) files even by one
byte.

An informal reasoning for the above statements can be found below:

1. Consider the compression of a big.file by a lossless compression
algorithm called cmpres. If statement 1 were not true, we could then
effectively repeat the compression process to the source file.

By ‘effectively’, we mean that the compression ratio is always < 1. This
means that the size of the compressed file is reduced every time when
running programme cmpres. So cmpres(cmpres(cmpres(- - -
cmpres(big.file)--- ))), the output file after compression many times,
would be of size 0.

Now it would be impossible to losslessly reconstruct the original.
2. Compressing a file can be viewed as mapping the file to a different
(hopefully shorter) file.

Compressing a file of n bytes (in size) by at least 1 byte means mapping
the file of n bytes to a file of n — 1 bytes or fewer bytes. There are
(28)" = 256™ files of n bytes and 256"~ ! of n — 1 bytes in total. This
means that the proportion of the successful 1-to-1 mappings is only
256" 1 /256™ = 1/256 which is less than 1%.

Learning outcomes
On completion of your studies in this chapter, you should be able to:

e outline the brief history of Data compression
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explain how to distinguish lossless data compression from lossy data
compression

e outline the main compression approaches
e measure the effect and efficiency of a data compression algorithm
e explain the limits of lossless compression.
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Activities

1.

Investigate what compression software is available on your computer
system.

Suppose that you have compressed a file myfile using a compression
utility available on your computer. What is the name of the compressed
file?

Use a compression facility on your computer system to compress a text
file called myfile containing the following text:

This is a test.

Suppose you get a compressed file called myfile.gz after compression.
How would you measure the size of myfile and of myfile.gz?

. Suppose the size of myfile.gz is 20 KB while the original file myfile is of

size 40 KB. Compute the compression ratio, compression factor and
saving percentage.

A compression process is often said to be ‘negative’ if its compression
ratio is greater than 1.

Explain why negative compression is an inevitable consequence of a
lossless compression.

Laboratory

1.

If you have access to a computer using Unix or Linux operating system,
can you use compress or gzip command to compress a file?

. If you have access to a PC with Windows, can you use WinZip to

compress a file?
How would you recover your original file from a compressed file?

Can you use uncompress or gunzip command to recover the original
file?

Implement a method compressionRatio in Java which takes two integer
arguments sizeBeforeCompression and sizeAfterCompression and
returns the compression ratio. See Activity 4 for example.

Similarly, implement a method savingPercentage in Java which takes
two integer arguments sizeBeforeCompression and
sizeAfterCompression and returns the saving percentage.

Sample examination questions

1.

2.

Explain briefly the meanings of lossless compression and lossy
compression. For each type of compression, give an example of an
application, explaining why it is appropriate.

Explain why the following statements are considered to be true in
describing the absolute limits on lossless compression.

e No algorithm can compress all files, even by one byte.

e No algorithm can compress even 1% of all files, even by one byte.
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Chapter 2

Run-length algorithms

Essential reading

Sayood, Khalid Introduction to Data Compression (Morgan Kaufmann,
1996) [ISBN 1-55860-346-8]. Chapter 6.8.1.

Run-length coding ideas

A run-length algorithm assigns codewords to consecutive recurrent symbols
(called runs) instead of coding individual symbols. The main idea is to
replace a number of consecutive repeating symbols by a short codeword unit
containing three parts: a single symbol, a run-length count and an
interpreting indicator.

Example 2.1 String KKKKKKKKK, containing 9 consecutive repeating Ks, can
be replaced by a short unit r9K consisting of the symbol r, 9 and X, where r
represents ‘repeating symbol’, 9 means ‘9 times of occurrence’ and K indicates
that this should be interpreted as ‘symbol K’ (repeating 9 times).

Run-length algorithms are very effective if the data source contains many
runs of consecutive symbol. The symbols can be characters in a text file, 0s
or Is in a binary file or black-and-white pixels in an image.

Although simple, run-length algorithms have been used well in practice. For
example, the so-called HDC (Hardware Data Compression) algorithm, used
by tape drives connected to IBM computer systems, and a similar algorithm
used in the IBM SNA (System Network Architecture) standard for data
communications are still in use today.

We briefly introduce the HDC algorithm below.

Hardware data compression (HDC)

In this form of run-length coding, the coder replaces sequences of consecutive
identical symbols with three elements:

1. a single symbol
2. a run-length count

3. an indicator that signifies how the symbol and count are to be
interpreted.

A simple HDC algorithm
This uses only ASCII codes for:

1. the single symbols, and
2. a total of 123 control characters with a run-length count, including:

e repeating control characters: ro, 73, -+ , 763, and
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e non-repeating control characters: ny,no,--- ,ngs.

Each r;, where i = 2---63, is followed by either another control character or a
symbol. If the following symbol is another control character, r; (alone)
signifies i repeating space characters (i.e. blanks). Otherwise, r; signifies that
the symbol immediately after it repeats i times.

Each n;, where i =1---63 is followed by a sequence of i non-repeating
symbols.

Applying the following ‘rules’; it is easy to understand the outline of the
encoding and decoding run-length algorithms below:

Encoding

Repeat the following until the end of input file:

Read the source (e.g. the input text) symbols sequentially and

1.

if a string® of i (i = 2---63) consecutive spaces is found, output a single
control character r;

if a string of ¢ (¢ = 3---63) consecutive symbols other than spaces is
found, output two characters: r; followed by the repeating symbol

otherwise, identify a longest string of ¢ = 1---63 non-repeating symbols,
where there is no consecutive sequence of 2 spaces or of 3 other
characters, and output the non-repeating control character n; followed
by the string.

Example 2.2 GGG, BCDEFG, 55GHIK LM7777777T77777

can be compressed to r3GrgngBCDEFGrong55LILMr57

Solution

> W

ot

The first 3 Gs are read and encoded by r3G.

The next 6 spaces are found and encoded by 7.

The non-repeating symbols BCDEFG are found and encoded by ngBCDEFG.
The next 2 spaces are found and encoded by rs.

The next 9 non-repeating symbols are found and encoded by
n9g55GHIKULM.

The next 12 ‘7’s are found and encoded by r127.

Therefore the encoded output is: r3GrgngBCDEFGrang55LILMr 7.

Decoding

The decoding process is similar to the encoding and can be outlined as follows:

Repeat the following until the end of input coded file:

Read the codeword sequence sequentially and
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1. if a r; is found, then check the next codeword.

(a) if the codeword is a control character, output ¢ spaces.
(b) otherwise output ¢ (ASCII codes of) repeating symbols.

2. otherwise, output the next ¢ non-repeating symbols.

Observation

1. It is not difficult to observe from a few examples that the performance
of the HDC algorithm (as far as the compression ratio concerns) is:

21t can be even better than o excellent? when the data contains many runs of consecutive
entropy coding such as symbols
Huffman coding. e poor when there are many segments of non-repeating symbols.

Therefore, run-length algorithms are often used as a subroutine in other
more sophisticated coding.

3HDC is one of the 2. The decoding process of HDC is simpler than the encoding one3
so-called ‘asymmetric’
coding methods. Please see 3. The HDC is non-adaptive because the model remains unchanged during
page 24 for definition. the coding process.

Learning outcomes

On completion of your studies in this chapter, you should be able to:

e state what a Run-length algorithm is

e explain how a Run-length algorithm works

e explain under what conditions a Run-length algorithm may work
effectively

e explain, with an example, how the HDC algorithm works.

11
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Activities
1. Apply the HDC (Hardware Data Compression) algorithm to the

following sequence of symbols:
kkkkuuuuuuuu\_’uuuguuhhSSQ27776663bbbbcmmj Ll\_l##

Show the compressed output and explain the meaning of each control
symbol.

. Explain how the compressed output from the above question can be

reconstructed using the decompressing algorithm.

. Provide an example of a source file on which the HDC algorithm would

perform very badly.

Laboratory

1. Based on the outline of the simple HDC algorithm, derive your version

of the HDC algorithm in pseudocode which allows an easy
implementation in Java (or C, C++).

. Implement your version of HDC algorithm in Java. Use "MyHDC” as

the name of your main class/program.

. Provide two source files ”good.source” and ”bad.source”, on which HDC

would perform very well and very badly respectively. Indicate your
definition of ”good” and "bad” performance.

[Hint] Define the input and the output of your (compression and
decompression) algorithms first.

Sample examination questions

1. Describe with an example how a Run-Length Coder works.

2. Apply the HDC (Hardware Data Compression) algorithm to the

sequence:
uuuuuuuBCLLLAL1144330000,, EFGHHHH

Demonstrate the compressed output and explain the meaning of each
control symbol.
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Chapter 3

Preliminaries

Essential reading

Wayner, Peter Compression Algorithms for Real Programmers. (Morgan
Kaufmann, 2000) [ISBN 0-12-788774-1]. Chapter 2.

Further reading

Salomon, David A Guide to Data Compression Methods. (Springer, 2001)
[ISBN 0-387-95260-8]. Chapter 1.

Huffman coding

Huffman coding is a successful compression method used originally for text
compression. It assumes that each character is stored as a 8-bit ASCII code.

You may have already come across Huffman coding in a programming course.
If so, review the following two questions:

1. What property of the text does Huffman coding algorithm require in
order to fulfil the compression?

2. What is the main idea of Huffman coding?

Huffman coding works well on a text file for the following reasons:

! Note: it is useful to e Characters are represented normally by fixed-length codewords! in
distinguish the term computers. The codewords are often 8-bit long. Examples are ASCII
‘codeword’ from the term code and EBCDIC code.
‘cord’ although the two
terms can be exchangeable Example 3.1 In ASCII code, codeword p1000001 represents character
sometimes. In this subject ‘A’; p1000010 ‘B’; p1000101 ‘E’, etc., where p is the parity bit.

guide, a code consists of a
number of codewords (see e In any text, some characters occur far more frequently than others. For
Ezample 3.1.) example, in English text, letters E,A,O,T are normally used much more
frequently than J,Q,X.
e [t is possible to construct a uniquely decodable code with variable
codeword lengths.

Our aim is to reduce the total number of bits in a sequence of 1s and 0s that
represent the characters in a text. In other words, we want to reduce the
average number of bits required for each symbol in the text.

Huffman’s idea

Instead of using a fixed-length code for each symbol, Huffman’s idea is to
represent a frequently occurring character in a source with a shorter code and
to represent a less frequently occurring one with a longer code. So for a text
source of symbols with different frequencies, the total number of bits in this
way of representation is, hopefully, significantly reduced. That is to say, the
number of bits required for each symbol on average is reduced.

13
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Example 3.2 Frequency of occurrence:

Suppose we find a code that follows Huffman’s approach. For example, the
most frequently occurring symbol E and A are assigned the shortest 2-bit
codeword, and the lest frequently occurring symbol X is given a longer 4-bit
codeword, and so on, as below:

E A 0 T J Q X
10 11 000 010 011 0010 0011

Then the total number of bits required to encode string ‘EEETTJX’ is only
242+4+243+34+3+4=19 (bits). This is significantly fewer than
8 X 7 =56 bits when using the normal 8-bit ASCII code.

Huffman encoding algorithm

A frequency based coding scheme (algorithm) that follows Huffman’s idea is
called Huffman coding. Huffman coding is a simple algorithm that generates a
set of variable-size codewords of the minimum average length. The algorithm
for Huffman encoding involves the following steps:

1. Constructing a frequency table sorted in descending order.

2. Building a binary tree
Carrying out iterations until completion of a complete binary tree:

(a) Merge the last two items (which have the minimum frequencies) of
the frequency table to form a new combined item with a sum
frequency of the two.

(b) Insert the combined item and update the frequency table.

3. Deriving Huffman tree

Starting at the root, trace down to every leaf, mark ‘0’ for a left branch
and ‘1’ for a right branch.

4. Generating Huffman code:

Collecting the 0s and Is for each path from the root to a leaf and
assigning a 0-1 codeword for each symbol.

We use the following example to show how the algorithm works:

Example 3.3 Compress ‘BILL BEATS BEN.’ (15 characters in total) using
the Huffman approach.

1. Constructing the frequency table

B I L E A T S N SP(space) . character
312 2 1 1 1 1 2 1 frequency

14
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Sort the table in descending order:
B L ESPI A T S N .
3 2 2 2 1 1 1 1 1 1
2. Building the binary tree

There are two stages in each step:

(a) combine the last two items on the table

(b) adjust the position of the combined item on the table so the table
remains sorted.

For our example, we do the following:

(a) Combine

B L ESPI A T S (N.
3 2 2 2 11 1 1 2
2Note: (N.) has the same Update?

frequency as L and E, but
we have chosen to place it

B (N.) L E SPI A T S
at the highest possible 2 11 11

3 2 2

location - immediately after (b) B (TS) (N.) L E SPI A
B (frequency 3). 3 9 5 9 9 9 1 1
(¢)B (IA) (TS) (N.) L E SP
3 2 2 2 2 2 2
(d) (E SP) B (IA) (TS) (N.) L
4 3 2 2 2 2
(e) ((N.) L) (E SP) B (IAa) (TS)
4 4 3 2 2
(f) ((I8)(TS)) ((N.) L) (E SP) B
4 4 4 3
(g) ((E SP) B) ((IA)(TS)) ((N.) L)
7 4 4
(h) (((IA)(TS)) ((N.) L)) ((E SP) B)
8 7
(i) (C((IA)(TS)) ((N.) L)) ((E SP) B))
15

The complete binary tree is:

(C((IB) (TS)) ((N.) L)) ((E SP) B))

/ \
(((IA)(TS)) ((N.) L)) ((E SP) B)
/ \ / \
((1I8) (TS)) (N.) L) (E SP) B
/ 0\ / \ /N
(18)  (TS) (N.) L E SP
/N /N /\

IA TS N .
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3. Deriving Huffman tree

(I (TS)) ((N.) L)) ((E SP) B))

0/ \1
(((TA)(TS)) ((N.) L)) ((E SP) B)
0/ \1 o/ \1

((TA) (TS)) .y D (ESP) B

0o/ \1 o/ \1 0/ \1
(IA)  (TS) (nN.) L E SP
0/ \1 0/ \1 0/ \1

IA TS N .

4. Generating Huffman code

I A T S N . L E ©SP B
0000 0001 0010 0011 0100 0101 011 100 101 11

5. Saving percentage

Comparison of the use of Huffman coding and the use of 8-bit ASCII or
EBCDIC Coding:
Huffman ASCII/EBCDIC Saving bits Percentage
48 120 72 60%
120—-48 =72 72/120 = 60%

Decoding algorithm

The decoding process is based on the same Huffman tree. This involves the
following types of operations:

e We read the coded message bit by bit. Starting from the root, we follow
the bit value to traverse one edge down the the tree.

e If the current bit is 0 we move to the left child, otherwise, to the right
child.

o We repeat this process until we reach a leaf. If we reach a leaf, we will
decode one character and re-start the traversal from the root.

e Repeat this read-move procedure until the end of the message.

Example 3.4 Given a Huffman-coded message,
111000100101111000001001000111011100000110110101,
what is the decoded message?

(C(TAY(TS)) ((N.) L)) ((E SP) B))

0/ \1
(((IA)(TS)) (.) L)) ((E sP) B)
0/ \1 0/ \1

((1T8) (TS)) () L (ESP) B

0o/ \1 0o/ \1 0/ \1
(IA)  (Ts) N. L E SP
0/ \1 0/ \1 0/ \1

IA TS N

16
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i.e. the size is smaller or
equal to 32.

After reading the first two 1s of the coded message, we reach the leaf B. Then
the next 3 bits 100 lead us to the leaf E, and so on.

Finally, we get the decoded message: ‘BEN BEATS BILL.’

Observation on Huffman coding

1. Huffman codes are not unique, for two reasons:

(a) There are two ways to assign a 0 or 1 to an edge of the tree. In
Example 3.3, we have chosen to assign 0 to the left edge and 1 for
the right. However, it is possible to assign 0 to the right and 1 to
the left. This would not make any difference to the compression
ratio.

(b) There are a number of different ways to insert a combined item
into the frequency table. This leads to different binary trees. We
have chosen in the same example to:

i. make the item at the higher position the left child
ii. insert the combined item on the frequency table at the highest
possible position.

2. The Huffman tree built using our approach in the example tends to be
more balanced than those built using other approaches. The code
derived with our method in the example is called canonical
minimum-variance Huffman code.

The differences among the lengths of codewords in a canonical
minimum-variance code turn out to be the minimum possible.

3. The frequency table can be replaced by a probability table. In fact, it
can be replaced by any approximate statistical data at the cost of losing
some compression ratio. For example, we can apply a probability table
derived from a typical text file in English to any source data.

4. When the alphabet is small, a fixed length (less than 8 bits) code can
also be used to save bits.

Example 3.5 If the size of the alphabet set is not bigger than 32%, we
can use five bits to code each character. This would give a saving

percentage of
8x32—5x32

8% 32 = 37.5%.
Shannon-Fano coding

This is another approach very similar to Huffman coding. In fact, it is the
first well-known coding method. It was proposed by C. Shannon (Bell Labs)
and R. M. Fano (MIT) in 1940.

The Shannon-Fano coding algorithm also uses the probability of each
symbol’s occurrence to construct a code in which each codeword can be of

different length. Codes for symbols with low probabilities are assigned more
bits, and the codewords of various lengths can be uniquely decoded.

Shannon-Fano algorithm

Given a list of symbols, the algorithm involves the following steps:

1. Develop a frequency (or probability) table

17
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2. Sort the table according to frequency (the most frequent one at the top)

Divide the table into 2 halves with similar frequency counts

LS

Assign the upper half of the list a 0 and the lower half a 1

5. Recursively apply the step of division (2.) and assignment (3.) to the
two halves, subdividing groups and adding bits to the codewords until
each symbol has become a corresponding leaf on the tree.

Example 3.6 Suppose the sorted frequency table below is drawn from a
source. Derive the Shannon-Fano code.

Symbol Frequency
A 15
B 7
C 6
D 6
E 5

Solution

1. First division:

(a) Divide the table into two halves so the sum of the frequencies of
each half are as close as possible.

Symbol Frequency
A 15 22
B 7
11111111111111111111111111 First division
C 6 17
D 6
E 5
(b) Assign one bit of the symbol (e.g. upper group 0s and the lower
1s).
Symbol Frequency Code
A 15 0
B 7 0
11111111111111111111111111 First division
C 6 1
D 6 1
E 5 1

18
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2. Second division:
Repeat the above recursively to each group.

Symbol Frequency Code

A 15 00
22222222222222222222222222222 Second division
B 7 01
11111111111111111111111111 First division

C 6 10
22222222222222222222222222222 Second division
D 6 11

E 5 11

3. Third division:

Symbol Frequency Code

A 15 00
22222222222222222222222222222 Second division
B 7 01
11111111111111111111111111 First division

C 6 10
22222222222222222222222222222 Second division
D 6 110
33333333333333333333333333333333 Third division
E 5 111

4. So we have the following code (consisting of 5 codewords) when the
recursive process ends:

A B C D E
00 01 10 110 111

Observation on Shannon-Fano coding

1. It is not always easy to find the best division (see Step 3., the encoding
algorithm).

2. The encoding process starts by assigning the most significant bits to
each code and then works down the tree recursively until finished. It is
as to construct a binary tree from the top. The following tree is for the
example above:

ABCDE
o/ \1
AB CDE
0/ \1 0/ \1
A B C DE
0/ M
D E

3. The decoding process is similar to Huffman decoding but the encoding
process is not as simple and elegant as Huffman encoding.

19
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Learning outcomes

On completion of your studies in this chapter, you should be able to:

e describe Huffman coding and Shannon-Fano coding

e explain why it is not always easy to implement Shannon-Fano algorithm

e demonstrate the encoding and decoding process of Huffman and
Shannon-Fano coding with examples.

20
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Activities

1.
2.
3.

Derive a Huffman code for string AAABEDBBTGGG.
Derive a Shannon-Fano code for the same string.

Provide an example to show step by step how Huffman decoding
algorithm works.

Provide a similar example for the Shannon-Fano decoding algorithm.

Laboratory

1.
2.
3.

Derive a simple version of Huffman algorithm in pseudocode.
Implement your version of Huffman algorithm in Java (or C, C++).

Similar to Lab2, provide two source files: the good and the bad.
Explain what you mean by good or bad.

Implement the Shannon-Fano algorithm.

. Comment on the difference the Shannon-Fano and the Huffman

algorithm.

Sample examination questions

1.

2.

3.

Derive step by step a canonical minimum-variance Huffman code for
alphabet {A, B, C, D, E, F}, given that the probabilities that each
character occurs in all messages are as follows:

Symbol Probability

Compute the average length of the Huffman code derived from the
above question.

Given § ={A,B,C,D,E,F,G, H} and the symbols’ occurring
probabilities 0.25, 0.2, 0.2, 0.18, 0.09, 0.05, 0.02, 0.01, construct a
canonical minimum-variance Huffman code for this input.

21
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Chapter 4

Coding symbolic data

Essential reading

Wayner, Peter Compression Algorithms for Real Programmers. (Morgan
Kaufmann, 2000) [ISBN 0-12-788774-1]. Chapter 2.3-2.5.

Further reading

Sayood, Khalid Introduction to Data Compression (Morgan Kaufmann,
1996) [ISBN 1-55860-346-8]. Chapter 2.

In this chapter, we shall look more closely at the structure of compression
algorithms in general. Starting with symbolic data compression, we apply the
information theory to gain a better understanding of compression algorithms.
Some conclusions we draw from this chapter may also be useful for
multimedia data compression in later chapters.

Compression algorithms

You will recall that in the Introduction, we said that data compression
essentially consists of two types of work: modelling and coding. It is often
useful to consciously consider the two entities of compression algorithms
separately.

e The general model is the embodiment of what the compression
algorithm knows about the source domain. Every compression
algorithm has to make use of some knowledge about its platform.

Example 4.1 Consider the Huffman encoding algorithm. The model is
based on the probability distribution of characters of a source text.

e The device that is used to fulfil the task of coding is usually called coder
meaning encoder. Based on the model and some calculations, the coder
is used to

— derive a code
— encode (compress) the input.

Example 4.2 Consider the Huffman encoding algorithm again. The
coder assigns shorter codes to the more frequent symbols and longer
codes to infrequent ones.

A similar structure applies to decoding algorithms. There is again a model
and a decoder for any decoding algorithm.

Conceptually, we can distinguish two types of compression algorithms,
namely, static, or adaptive compression, based on whether the model structure

may be updated during the process of compression or decompression.

The model-coder structures can be seen clearly in diagrams Figure 4.1 and
Figure 4.2:

e Static (non-adaptive) system (Figure 4.1): This model remains
unchanged during the compression or decompression process.
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Figure 4.1: A static or non-adaptive compression system

e Adaptive system (Figure 4.2): The model may be changed during the
compression or decompression process according to the change of input
(or feedback from the output).

Some adaptive algorithms actually build the model based on the input
starting from an empty model.

ABC
etc.

Figure 4.2: Adaptive compression system

In practice, the software or hardware for implementing the model is often a
mixture of static and adaptive algorithms, for various reasons such as
efficiency.

Symmetric and asymmetric compression

In some compression systems, the model for compression (Model-C in the
figures) and that for decompression (Model-D) are identical. If they are
identical, the compression system is called symmetric, otherwise, it is said to
be non-symmetric. The compression using a symmetric system is called
symmetric compression, and the compression using an asymmetric system is
called asymmetric compression.
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L For ease of read, the
symbol itself is used here
instead of its ASCII
codeword.

Coding methods

In terms of the length of codewords used before or after compression,
compression algorithms can be classified into the following categories:

1. Fixed-to-fixed: each symbol before compression is represented by a
fixed number of bits (e.g. 8 bits in ASCII format) and is encoded as a
sequence of bits of a fixed length after compression.

Example 4.3 A:00, B:01, C:10, D:11'
2. Fixed-to-variable: each symbol before compression is represented by a

fixed number of bits and is encoded as a sequence of bits of different
length.

Example 4.4 A:0; B:10; C:101; D:0101.

3. Variable-to-fixed: a sequence of symbols represented in different
number of bits before compression is encoded as a fixed-length sequence
of bits.

Example 4.5 ABCD:00; ABCDE:01; BC:11.

4. Variable-to-variable: a sequence of symbols represented in different
number of bits before compression is encoded as a variable-length
sequence of bits.

Example 4.6 ABCD:0; ABCDE:01; BC:1; BBB:0001.

Question 4.1 Which class does Huffman coding belong to?

Solution It belongs to the fized-to-variable class. Why? Each symbol before
compression is represented by a fixed length code, e.g. 8 bits in ASCII, and
the codeword for each symbol after compression consists of different number
of bits.

Question of unique decodability

The issue of unique decodability arises during the decompression process
when a variable length code is used. Ideally, there is only one way to decode a
sequence of bits consisting of codewords. However, when symbols are encoded
by a variable-length code, there may be more than one way to identifying the
codewords from the sequence of bits.

Given a variable length code and a sequence of bits to decompress, the code is
regarded as uniquely decodable if there is only one possible way to decode the
bit sequence in terms of the codewords.

Example 4.7 Given symbols A, B, C and D, we wish to encode them as
follows: A:0; B:10; C:101; D:0101. Is this code uniquely decodable?

The answer is ‘No’. Because an input such as ‘0101101010’ can be decoded in
more than one way, for example, as ACCAB or as DCAB.
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However, for the example above, there is a solution if we introduce a new
symbol to separate each codeword. For example, if we use a ‘stop’ symbol “/”.
We could then encode DDCAB as ‘0101/0101/101/0/10°. At the decoding
end, the sequence ‘0101/0101/101/0/10’ will be easily decoded uniquely.

Unfortunately, the method above is too costly because of the extra symbol
“/” introduced. Is there any alternative approach which allows us to uniquely
decode a compressed message using a code with various length codewords?
After all, how would we know whether a code with various length codewords
is uniquely decodable?

Well, one simple solution is to find another code which is a so-called prefix
code such as (0,11,101,1001) for (A,B,C,D).

Prefix and dangling suffix

Let us look at some concepts first:

e Prefix: Consider two binary codewords w; and wy with lengths k& and n
bits respectively, where k < n. If the first k bits of ws are identical to
w1, then wy is called a prefiz of ws.

e Dangling Suffix: The remain of last n — k bits of wq is called the
dangling suffiz.

Example 4.8 Suppose w; = 010, we = 01011. Then the prefix of wo is 010
and the suffix is 11.

Prefix codes

A prefix code is a code in which no codeword is a prefix to another codeword
(Note: meaning ‘prefix-free codes’).

This occurs when no codeword for one symbol is a prefix of the codeword for
another symbol.

Example 4.9 The code (1, 01, 001, 0000) is a prefix code since no codeword
s a prefiz of another codeword.

The code (0, 10, 110, 1011) is not a prefix code since 10 is a prefix of 1011.

Prefix codes are important in terms of uniquely decodability for the following
two main reasons (See Sayood(2000), section 2.4.3 for the proof).

1. Prefix codes are uniquely decodable.

This can be seen from the following informal reasoning:

Example 4.10 Draw a 0-1 tree for each code above, and you will see
the difference. For a prefix code, the codewords are only associated with

the leaves.
root root
0/ \1 0/ \1
0/ \1 A A 0/ \1
0/ \1 B (B) 0o/
o/ ¢ \1 C
D \1
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2. For any non-prefix code whose codeword lengths satisfy certain
condition (see section ‘Kraft-McMillan inequality’ below), we can
always find a prefix code with the same codeword length distribution.

Example 4.11 Consider code (0, 10, 110, 1011).

Kraft-McMillan inequality

Theorem 4.1 Let C be a code with N codewords with lengths l1,ls,--- ,In. If
C is uniquely decodable, then

N
K(C)=> 2" <1
=1

This inequality is known as the Kraft-McMillan inequality. (See
Sayood(2000), section 2.4.3 for the proof).

In Ziil 27t <1, N is the number of codewords in a code, [; is the length of
the ith codeword.

Example 4.12 Given an alphabet of 4 symbols (A, B, C, D), would it be
possible to find a uniquely decodable code in which a codeword of length 2 is
assigned to A, length 1 to B and C, and length 3 to D?

Solution Here we have [y =2, [, =13 =1, and [, = 3.

ZQ*li—i+1+£+i>1
; S22 2 2 23

Therefore, we cannot hope to find a uniquely decodable code in which the
codewords are of these lengths.

Example 4.13 If a code is a prefiz code, what can we conclude about the
lengths of the codewords?

Solution Since prefix codes are uniquely decodable, they must satisfy the
Kraft-McMillan Inequality.

Some information theory

The information theory is based on mathematical concepts of probability
theory. The term information carries a sense of unpredictability in
transmitted messages. The information source can be represented by a set of
event symbols (random variables) from which the information of each event
can be measured by the surprise that the event may cause, and by the
probability rules that govern the emission of these symbols.

The symbol set is frequently called the source alphabet, or alphabet for short.
The number of elements in the set is called cardinality (|.A]).

Self-information

This is defined by the following mathematical formula:

I(4) = —log, P(A),
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where A is an event, P(A) is the probability that event A occurs.

The logarithm base (i.e. b in the formula) may be in:

e unit bits: base 2 (used in the subject guide)
e unit nats: base e
e unit hartleys: base 10.

The self-information of an event measures the amount of one’s surprise
evoked by the event. The negative logarithm — log, P(A) can be written as

1
logb w .

Note that log(1) = 0, and that | — log(P(A))| increases as P(A) decreases
from 1 to 0. This supports our intuition from daily experience. For example,
a low-probability event tends to cause more surprise.

Entropy

The precise mathematical definition of this measure was given by Shannon. It
is called entropy of the source which is associated with the experiments on the
(random) event set.

H = ZP(Ai)I(Ai) == ZP(Ai) log, P(A;),
where source |A| = (A1,..., An).

The information content of a source is an important attribute. Entropy
describes the average amount of information converged per source symbol.
This can also be thought to measure the expected amount of surprise caused
by the event.

If the experiment is to take out the symbols A; from a source A, then

e the entropy is a measure of the minimum average number of binary
symbols (bits) needed to encode the output of the source.

e Shannon showed that the best that a lossless symbolic compression
scheme can do is to encode the output of a source with an average
number of bits equal to the entropy of the source.

Example 4.14 Consider the three questions below:

1. Given four symbols A, B, C and D, the symbols occur with an equal
probability. What is the entropy of the distribution?

2. Suppose they occur with probabilities 0.5, 0.25, 0.125 and 0.125
respectively. What is the entropy associated with the event (experiment)?

3. Suppose the probabilities are 1,0,0,0. What is the entropy?

Solution

1. The entropy is 1/4(—log,(1/4)) x 4 = 2 bits
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2This can only happen if
all probabilities are negative
powers of 2 in Huffman
codes, for l; has to be an
integer (in bits).

2. The entropy is 0.5 %14 0.25 %2 4+ 0.125 %« 3 + 0.125 * 3 = 1.75 bits
3. The entropy is 0 bit.

Optimum codes

In information theory, the ratio of the entropy of a source to the average
number of binary bits used to represent the source data is a measurement of
the information efficiency of the source. In data compression, the ratio of the
entropy of a source to the average length of the codewords of a code can be
used to measure how successful the code is for compression.

Here a source is usually described as an alphabet o = {s1,--- ,s,} and the
next symbol chosen randomly from « is s; with probability Pr(s;] = p;,

Z?:l pi = 1.

Information Theory says that the best that a lossless symbolic compression
scheme can do is to encode the output of a source with an average number of
bits equal to the entropy of the source.

We write done the entropy of the source:

n
1 1 1 1
Zpi10g2* = prlogy — +palogy — + -+ +pnlog, —
P bi b1 P2 p

n

Using a variable length code to the symbols, I; bits for s; , the average
number of bits is

1= lipi=lpi+lps+ -+ lnpn
i=1

The code is optimum if the average length equals to the entropy. Let

n n 1
Z Lipi = Zpi logy —
i=1 i=1 Pi
and rewrite it as

n n 1
> pili =Y pilog, —
i=1 i=1 pi

This means that it is optimal to encode each s; with I; = —log, p; bits, where
1< <n.

It can be proved that:

1. the average length of any uniquely decodable code, e.g. prefix codes
must be > the entropy

2. the average length of a uniquely decodable code is equal to the entropy
only when, for all i, [; = —logap;, where [; is the length and p; is the
probability of codeword;2.

3. the average codeword length of the Huffman code for a source is greater
and equal to the entropy of the source and less than the entropy plus 1.
[Sayood(2000), section 3.2.3]
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Scenario

What do the concepts such as variable length codes, average length of
codewords and entropy mean in practice?

Let us see the following scenario: Ann and Bob are extremely good friends
but they live far away to each other. They are both very poor students
financially. Ann wants to send a shortest message to Bob in order to save her
money. In fact, she decides to send to Bob a single symbol from their own
secret alphabet. Suppose that:

e the next symbol that Ann wants to send is randomly chosen with a
known probability

e Bob knows the alphabet and the probabilities associated with the
symbols.

Ann knows that you have studied the Data compression so she asks you the
important questions in the following example:

Example 4.15 Consider the three questions as below:

1. To minimise the average number of bits Ann uses to communicate her
symbol to Bob, should she assign a fized length code or a variable length
code to the symbols?

2. What is the average number of bits needed for Ann to communicate her
symbol to Bob?

3. What is meant by a 0 entropy? For example, what is meant if the
probabilities associated with the alphabet are {0,0,1, ---, 0} 7

You give Ann the following:

Solution

1. She should use variable length codes because she is likely to use some
symbols more frequently than others. Using variable length codes can
save bits hopefully.

2. Ann needs at least the average number of bits that equal to the entropy
of the source. That is -y ., p; log, p; bits.

3. A ‘0 entropy’ means that the minimum average number of bits that
Ann needs to send to Bob is zero.

Probability distribution {0,0,1, - -+, 0} means that Ann will definitely
send the third symbol in the alphabet as the next symbol to Bob and
Bob knows this.

If Bob knows what Ann is going to say then she does not need to say
anything, does she?!
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Learning outcomes

On completion of your studies in this chapter, you should be able to:

explain why modelling and coding are usually considered separately for
compression algorithm design

identify the model and the coder in a compression algorithm
distinguish a static compression system by an adaptive one

identify prefix codes

demonstrate the relationship between prefix codes, Kraft-McMillan
inequality and the uniquely decodability

explain how entropy can be used to measure the code optimum.
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Activities
1. Given an alphabet {a, b} with Pr[a)=1/5 and Pr[b]= 4/5. Derive a
canonical minimum variance Huffman code and compute:
(a) the expected average length of the Huffman code
(b) the entropy distribution of the Huffman code.

2. What is a prefix code? What can we conclude about the lengths of a
prefix code? Provide an example to support your argument.

3. If a code is not a prefix code, can we conclude that it will not be
uniquely decodable? Give reasons.

4. Determine whether the following codes are uniquely decodable:
(a) {0,01,11,111}
(b) {0,01,110,111}

(¢) {0,10,110,111}

(d) {1,10,110,111}.

Laboratory

1. Design and implement a method entropy in Java which takes a set of
probability distribution as the argument and returns the entropy of the
source.

2. Design and implement a method averageLength in Java which takes
two arguments: (1) a set of length of a code; (2) the set of the
probability distribution of the codewords. It then returns the average
length of the code.

Sample examination questions

1. Describe briefly how each of the two classes of lossless compression
algorithms, namely the adaptive and the non-adaptive, works in its
model. Illustrate each with an appropriate example.

2. Determine whether the following codes for {A, B, C, D} are uniquely
decodable. Give your reasons for each case.

{0, 10, 101, 0101}

{000, 001, 010, 011}

{00, 010, 011, 1}

{0, 001, 10, 010}

(a
(b
(c
(d

NN N NG

3. Lossless coding models may further be classified into three types,
namely fixed-to-variable, variable-to-fixed, variable-to-variable.

Describe briefly the way that each encoding algorithm works in its
model. Identify one example of a well known algorithm for each model.

4. Derive step by step a canonical minimum-variance Huffman code for
alphabet {A, B, C, D, E, F}, given that the probabilities that each
character occurs in all messages are as follows:
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Symbol Probability

Compare the average length of the Huffman code to the optimal length
derived from the entropy distribution. Specify the unit of the codeword
lengths used.

Hint: log,,2 ~ 0.3; log;, 0.3 = —0.52; log;,0.2 = —0.7; log;( 0.1 = —1;

. Determine whether the code {0, 10, 011, 110, 1111} is a prefix code and
explain why.

. If a code is a prefix code, what can we conclude about the lengths of the
codewords?

. Consider the alphabet {A, B}. Suppose the probability of A and B,
Pr[A] and Pr[B] are 0.2 and 0.8 respectively. It has been claimed that
even the best canonical minimum-variance Huffman coding is about
37% worse than its optimal binary code. Do you agree with this claim?
If Yes, demonstrate how this result can be derived step by step. If No,
show your result with good reasons.

Hint: log,,2 ~ 0.3; log;,0.8 =~ —0.1; log,( 0.2 = —0.7.
. Following the above question,

(a) derive the alphabet that is expanded by grouping 2 symbols at a
time;
(b) derive the canonical Huffman code for this expanded alphabet.

(c) compute the expected average length of the Huffman code.
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