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Abstract

The use of compression algorithms in machine learning tasks such as clustering and classification
has appeared in a variety of fields, sometimes with the promise of reducing problems of explicit
feature selection. The theoretical justification for such methods has been founded on an upper
bound on Kolmogorov complexity and an idealized information space. An alternate view shows
compression algorithms implicitly map strings into implicit feature space vectors, and compression-
based similarity measures compute similarity within these feature spaces. Thus, compression-based
methods are not a “parameter free” magic bullet for feature selection and data representation, but
are instead concrete similarity measures within defined feature spaces, and are therefore akin to
explicit feature vector models used in standard machine learning algorithms. To underscore this
point, we find theoretical and empirical connections between traditional machine learning vector
models and compression, encouraging cross-fertilization in future work.

1. Introduction: Re-Inventing the Razor

The fundamental idea that data compression can be used to perform machine learning tasks has
surfaced in a several areas of research, including data compression (Witten et al., 1999a; Frank
et al., 2000), machine learning and data mining (Cilibrasi and Vitanyi, 2005; Keogh et al., 2004;
Chen et al., 2004), information theory, (Li et al., 2004), bioinformatics (Chen et al., 1999; Hagenauer
et al., 2004), spam filtering (Bratko and Filipic, 2005), and even physics (Benedetto et al., 2002).
The principle at work is that if strings x and y compress more effectively together than they do
apart, then they must share similar information.

This powerful insight has potential application in any field that applies machine learning tech-
niques to strings, but is not especially new. Primacy may lie with Ian Witten in the mid-1980’s
(Frank et al., 2000), but can perhaps be traced back more deeply, all the way to William of Ock-
ham and his now famous razor of the 14th century. Yet although the basic idea is established,
specific approaches are still evolving. This paper seeks to contribute a deeper understanding of the
implicit feature spaces used by compression-based machine learning methods. The heady dream of
“parameter-free data mining” (Keogh et al., 2004) encouraged by an idealized information space
under Kolmogorov complexity is not realized by compression-based methods. Instead, each com-
pression algorithm operates within a concrete feature space, and compression-based measures cal-
culate similarity between vectors in that space. We find direct connections between compression
and established feature space models, such as TF*IDF and n-gram vector methods, illustrated by
experiment. Our hope is to invite increased dialog between the compression and learning commu-
nities.

We focus this paper on the various compression-based similarity measures that have been pro-
posed and applied (Chen et al., 2004; Li et al., 2004; Keogh et al., 2004), while noting that other
work in this area has included an entropy-based measure (Benedetto et al., 2002), and discriminant
functions analogous to the Fisher linear discriminant (Frank et al., 2000; Bratko and Filipic, 2005).
Analyzing similarity measures allows us to isolate the effects of specific feature models from those
of similarity functions and learning algorithms, allowing a true apples-to-apples comparison.



The remainder of this paper is organized as follows. In Section 2, we review the various
compression-based methods that have appeared in the literature, summarize the Kolmogorov com-
plexity arguments, and introduce the need for a feature space model of compression. Section 3
details the mapping from string to feature space vectors, examines similarity measures in vector
space, and then shows how explicit feature vector models may be linked back to compression. We
report a supporting experiment on Unix user classification in Section 4. Concluding in Section 5,
we discuss of the limitations and insights gained from compression-based similarity measures.

2. Compression-Based Similarity Measures

Much previous work has focused on the formulation and application of compression-based similarity
metrics and measures.1 In this section, we review four compression-based similarity measures which
will serve as the foundation for our later discussion.

It will be helpful to define some notation and conventions. We will use |x| to denote the
number of symbols in string x. C(x) gives the length of string x after it has been compressed
by compression algorithm C(·) measured as a number of bits (most often rounded up to whole
bytes). The concatenation of strings x and y is written as xy; thus, C(xy) gives the number of bits
needed to compress x and y together. The term C(x|y) shows the length of x when conditionally
compressed with a model built on string y. While some researchers have implemented specialized
conditional compression algorithms (Chen et al., 1999), the approximation C(x|y) = C(yx)−C(y)
accommodates the use of off-the-shelf compressors (Li et al., 2004).2

NCD: the Normalized Compression Distance. Li et al. (2004) define the Normalized
Compression Distance (NCD) as follows:

NCD(x, y) =
C(xy) − min{C(x), C(y)}

max{C(x), C(y)}
This metric has the advantage of “minorizing in an appropriate sense every effective metric” (Li
et al., 2004), which means that when NCD says that two strings are strongly related, they very
likely are. Cilibrasi and Vitanyi (2005) show that NCD is a formal distance metric within cer-
tain tolerances by defining bounds on what they called a normal compressor, which include the
requirement that C(x) = C(xx) within logarithmic bounds. When these bounds are met, NCD

operates in the range [0, 1+ǫ], where 0 shows x and y are identical, and 1 shows they are completely
dissimilar. Here, ǫ is a small error term on the order of .1 (Li et al., 2004). Although some stan-
dard compression algorithms such as LZ77, LZ78, and even PPM , are not guaranteed to satisfy
these bounds, NCD has been successfully applied to a host of clustering applications (Cilibrasi and
Vitanyi, 2005; Cilibrasi et al., 2004; Li et al., 2004).

CLM: the Chen-Li Metric. Another metric has been defined and used by Chen, Li, and their
collaborators (Chen et al., 1999; Li et al., 2001; Chen et al., 2004).3 Their formulation reads:

CLM(x, y) = 1 − C(x) − C(x|y)

C(xy)

1. Recall that there is a technical distinction between the terms metric and a measure: metrics satisfy formal
requirements on identity, symmetry, and triangle inequality. We refer to the class as compression-based similarity
measures, which includes some measures that satisfy the metric definition within certain bounds.

2. Li et al. (2004) proposed this approximation in light of Kolmogorov complexity; we provide additional support with
the following probabilistic argument. An effective compressor will approach the bound from information theory,
C(x) = − log P (x), and within small bounds C(x|y) = − log P (x|y). Basic probability defines P (x|y) = P (x∩y)

P (y)
.

Thus, C(x|y) = − log P (y∩x)
P (y)

= − log P (y ∩ x) − log P (y) = C(yx) − C(y).

3. These authors did not give their metric an explicit name in the literature. We thus take the liberty of referring
to it here as CLM , the Chen-Li Metric.



The term C(x)−C(x|y) gives an upper bound on mutual algorithmic information between strings
(Li et al., 2001), a measure of shared information defined in terms of Kolmogorov complexity. Like
NCD, this metric is normalized to the range [0, 1], with 0 showing complete similarity and 1 showing
complete dissimilarity. CLM has achieved empirical success in several important applications,
including genomic sequence comparison and plagiarism detection (Chen et al., 1999; Li et al., 2001;
Chen et al., 2004).

CDM: the Compression-based Dissimilarity Measure. Keogh et al. (2004) set forth
their Compression-based Dissimilarity Measure (CDM) in response to NCD, calling it a “simpler
measure,” but avoiding theoretical analysis.

CDM(x, y) =
C(xy)

C(x) + C(y)

These authors are aware that CDM is non-metric, failing the identity property. CDM gives values
in the range of [12 , 1], where 1

2 shows pure identity and 1 shows pure disparity. But although CDM

was proposed without theoretical analysis, it was used to produce successful results in clustering
and anomaly detection (Keogh et al., 2004).

CosS: Compression-based Cosine. Meanwhile, we have designed a compression-based mea-
sure, CosS, based on the familiar cosine-vector dissimilarity measure:

CosS(x, y) = 1 − C(x) + C(y) − C(xy)
√

C(x)C(y)

This measure is normalized to the range [0, 1], with 0 showing total identity between the strings,
and 1 total dissimilarity.

Although the formulae of each of these four measures appears to be quite distinct from the oth-
ers, we will show in Section 3.2 that the only actual differences among them are in the normalizing
terms.

Beyond Kolmogorov Complexity Two of the above metrics, NCD and CLM , were first
developed in terms of Kolmogorov complexity4 measuring distance in idealized information space.
However, because Kolmogorov complexity is uncomputable (Li and Vitanyi, 1997), compression
algorithms are employed to approximate an upper bound on K(x). This bound may be very loose.
Trivial examples include compressing numbers generated by a pseudo-random number generator,
or compressing the non-terminating non-repeating digits of π. In both cases, C(x) ≫ K(x) (Li
and Vitanyi, 1997; Grünwald, 2005). And in general, we cannot know how close the compression
bound C(x) is to K(x). Thus, it makes sense to analyze compression-based similarity metrics not
within the context of an idealized information space, which is unattainable, but within the concrete
feature spaces employed by actual compression algorithms.

3. Compression and Feature Space

In this section, we will examine the compression-based mapping from strings to vectors in feature
space, explore the similarity functions computed in that space, and finish by turning the tables to
show the connection from existing explicit feature vector models back to compression.

4. Kolmogorov complexity, K(x), is a theoretical measure of the amount of information in string x, and is defined as
the length of the shortest computer program generating x. See the comprehensive text by Li and Vitanyi (1997).



3.1 Compression and Feature Vectors

Here, we show that compression-based similarity measures operate within specific feature spaces of
high dimension. We define two requirements for this to be true. First, for each compressor C(·)
we define an associated vector space ℵ, such that C(·) maps an input string x into a vector ~x ∈ ℵ.
Second, we must show that the value C(x), the length of the compressed string x, corresponds to
a vector norm ||~x||. An exhaustive examination of the feature spaces underlying all compression
algorithms is precluded by space; instead, we choose to examine three representative lossless com-
pression methods, LZW , LZ77, and PPM .5 At the end of this section, we discuss the connection
between string concatenation and vector addition, as the addition operator will be useful when we
take apart the formulae of the similarity measures to examine their effect in the implied feature
spaces.

LZ77 Feature Space. The LZ77 algorithm, prototypical of one branch of the Lempel-Ziv family
of compressors, encodes substrings as a series of output codes that reference previously occurring
substrings in a sliding dictionary window. Although parameter values vary by implementation, we
may assume that the repeated substrings found by LZ77 are of maximum length m, and that the
dictionary window is of length p ≥ m. Furthermore, we will for simplicity assume an implementation
of LZ77 in which the output codes are of constant length c.

The feature space ℵ, then, is a high dimensional space in which each coordinate corresponds
to one of the possible substrings of up to length m. The compressor implicitly maps string x to
~x ∈ ℵ as follows. Initially, each element ~xi = 0. As LZ77 passes over the string and produces
output codes, each new output code referring to substring i causes the update ~xi := ~xi + c. At the
end of the process, the implicit ~x is a vector modeling x. Furthermore, as all ~xi are non-negative,
C(x) yields the 1-norm of ~x, written ||~x||1 =

∑

i |~xi|, which is sometimes referred to as the city
block distance.6 Note that although the LZ77 feature space ℵ is very large, with O(2m) dimensions,
mapping from x to ~x ∈ ℵ is fast, taking only O(|x|) operations.

LZW Feature Space. The other branch of the Lempel-Ziv family is represented by the LZW

algorithm, which is closely related to LZ78 and a host of variants. Unlike LZ77, which refers to
strings in a sliding dictionary window, LZW builds and stores an explicit substring dictionary on
the fly, selecting new substrings to add to the dictionary using a greedy selection heuristic. Output
codes refer to substrings already in the dictionary; we will again assume fixed-length output codes
of size c for simplicity, and assume that the dictionary can hold O(2c) entries. With the standard
LZW substring selection heuristic, the maximum length of a substring in the LZW dictionary
is also O(2c). The vector space ℵ implied by LZW is thus actually larger than that of LZ77
(assuming reasonable parameter values for each), and has one dimension for each possible substring
with maximum length O(2c), that is, O(2(2c)) dimensions. LZW implicitly maps x to ~x ∈ ℵ as
follows; each ~xi is initialized at zero, and is incremented by c when an output code corresponding
to dimension i is produced. Despite the high dimensionality of ℵ, the mapping is completed in time
O(|x|), and at the end of the process, C(x) = ||~x||1.

PPM Feature Space. Extremely effective lossless compression is achieved with arithmetic
encoding under a model of prediction by partial matching (Witten et al., 1999b). Arithmetic
coding is a compression technique that attempts to make C(x) as close as possible to the ideal
− log P (x) by allowing symbols within a message to be encoded with fractional quantities of bits.
An order-n predictive model is generated by building statistics for symbol frequencies, based on
a Markovian assumption that the probability distribution of symbols at a given point relies only

5. Readers who wish to review the details of particular compression algorithms are referred to texts by Sayood
(2000), Witten et al. (1999b), or Hankerson et al. (2003).

6. For a complete review of vector norms, see the text by Trefethen and Bau (1997).



on the previous n symbols in the stream. At each step, PPM encodes a symbol s following the
n-symbol context t, using c ≈ − log P (s|t) bits. Because of arithmetic coding, c is positive, but
is not necessarily a whole number. Note that the probability estimate P (s|t) is the algorithm’s
estimate at that step, and these estimates change during compression as the algorithm adapts to
the data. However, the details of the probability estimation scheme, which differ by implementation
and algorithm variant, do not alter the implicit feature space.

The implicit PPM feature space ℵ has one coordinate for each possible combination of symbol
s and context t, which may be thought of together as a single string ts. Thus, an order-n PPM

feature space has one dimension for each possible string of length n + 1. PPM maps x to ~x ∈ ℵ by
beginning with each ~xi = 0. For each new symbol-context pair ts encountered during compression,
where s is encoded with c bits and ts corresponds to dimension i in ℵ, ~xi := ~xi + c. At the end of
compression, then, C(x) = ||~x||1.

String Concatenation and Vector Addition. We have just shown that each of these proto-
typical compression algorithms has an associated feature space, ℵ, that each compressor maps a
string x into a vector ~x ∈ ℵ, and that for each compressor, C(x) = ||~x||1. This is the foundation
of the analysis of compression-based similarity measures in vector space. But before we can take
apart the similarity measures, themselves, we need to examine the effect of string concatenation.

We define concatenation as string addition: strings x + y = xy. Compressing xy maps each
string into a vector and adds the vectors together. Thus, C(xy) = ||~x + ~y||1, which satisfies the
triangle inequality requirement of vector norms: ||~x+~y|| ≤ ||~x||+||~y||, because C(xy) ≤ C(x)+C(y)
(in the absence of pathological cases; see below.) Note that the salient quality of the compressors
here is that they are adaptive. In the absence of adaptive compression, C(x) + C(y) = C(xy) for
all strings, and machine learning is impossible. With adaptive compression, max{C(x), C(y)} ≤
C(xy) ≤ C(x) + C(y), just as max{||~x||1, ||~y1||} ≤ ||~x + ~y||1 ≤ ||~x||1 + ||~y||1 if all elements of ~x and
~y are non-negative. Adaptive compression of concatenated strings performs vector addition within
the implicitly defined feature space.

Yet a few caveats are in order. First, the commutative property of addition is not strictly met
with all compressors. Because of string alignment issues and other details such as model flushing,7

many adaptive compression algorithms are not purely symmetric – that is, C(xy) is not exactly
equal to C(yx). Second, in some cases, even the triangle inequality requirement may fail to hold. If
the initial string x uses up the entire dictionary space in Lempel-Ziv methods, C(xy) > C(x)+C(y).
And under PPM , if x is very different from y, it is possible that C(xy) > C(x) + C(y), depending
on the nature of the adaptive modeling scheme. In this case, the presence of model flushing is a
benefit, keeping C(xy) close to C(x) + C(y) when x and y are highly dissimilar.

3.2 Measures in Vector Space

Measuring distance between our implicit vectors would be simple given a subtraction operator
defined for the implicit vectors formed by compression mapping. If subtraction were available, we
could use a quantity like ||~x−~y|| as a distance metric. However, the only available vector operators
in this implicit space are addition and magnitude. It turns out that all four of the compression-based
similarity measures address this issue in the same way, and use the quantity ||~x||1+||~y||1−||~x+~y||1 as
a vector similarity measure. Simple transformations show that this term occurs in each compression-
based measure. When x and y are very similar, the term approaches max{||~x||1, ||~y||1}. When the
two share little similarity, the term approaches 0. However, when left un-normalized, the term may
show more absolute similarity between longer strings than shorter strings. To allow meaningful
comparisons in similarity between strings of different lengths, the measures are normalized. As

7. Some compression algorithms perform model flushing when the current model does not provide sufficient com-
pression rates. The model is flushed, or thrown away, and the algorithm begins adapting from a null assumption.



Table 1: Reducing similarity measures to canonical form.

CosS = 1 − C(x)+C(y)−C(xy)√
C(x)C(y)

= 1 − ||~x||1+||~y||1−||~x+~y||1√
||~x||1||~y||1

CLM = 1 − C(x)−C(x|y)
C(xy) = 1 − C(x)+C(y)−C(xy)

C(xy) = 1 − ||~x||1+||~y||1−||~x+~y||1
||~x+~y||1

CDM = C(xy)
C(x)+C(y) = 1 −

(

1 − C(xy)
C(x)+C(y)

)

= 1 −
(

C(x)+C(y)
C(x)+C(y) −

C(xy)
C(x)+C(y)

)

= 1 − C(x)+C(y)−C(xy)
C(x)+C(y)) = 1 − ||~x||1+||~y||1−||~x+~y||1

||~x||1+||~y||1

NCD = C(xy)−min{C(x),C(y)}
max{C(x),C(y)} = 1 −

(

1 − C(xy)−min{C(x),C(y)}
max{C(x),C(y)}

)

= 1 −
(

max{C(x),C(y)}
max{C(x),C(y)} − C(xy)−min{C(x),C(y)}

max{C(x),C(y)}

)

= 1 − C(x)+C(y)−C(xy)
max{C(x),C(y)} = 1 − ||~x||1+||~y||1−||~x+~y||1

max{||~x||1,||~y||1}

shown in Table 1, all of the measures can be reduced to a canonical form 1 − ||~x||1+||~y||1−||~x+~y||1
f(~x,~y) ,

where f(~x, ~y) is a particular normalizing term. (Subtracting the normalized similarity term from 1
makes these measures dissimilarity measures.)

Thus, the only differences among the measures is in the choice of normalizing term: CosS

normalizes by the geometric mean of the two vector magnitudes, CDM by twice the arithmetic
mean, NCD by the max of the two, CLM by the magnitude of the vector sum. Indeed, in the
experimental section, we see that the four measures give strikingly similar results.

3.3 From Feature Vectors to Compression

We have shown that compression maps strings into feature vectors, and have looked briefly at the
similarity measures applied in the feature spaces. Now we show that standard explicit feature
vectors have strong links back to compression. These connections show the potential for improved
explicit models based on insights from adaptive compression methods.

TF*IDF. One conventional approach to text representation is the TF*IDF vector model (Salton
and Buckley, 1988), in which coordinates of the vector space correspond to individual words, and
are given a score based on the term frequency times its inverse document frequency. The value of
each ~xi corresponding to a word wi occurring ni times in string x containing |x| total words, and
which occurs with probability P (wi) in some reference corpus, is given by ~xi = ni log

1
P (wi)

. The
connection to compression is clear: a word based compression algorithm, given a fixed probability
distribution P (w) for all possible words, will compress x to a length C(x) such that:

∑

i

ni log
1

P (wi)
= ||~x||1 = C(x)

Thus, the only difference between a word-based compression method and TF*IDF is that the latter
represents its feature space explicitly – which is an advantage for certain learning algorithms such
as SVM or decision trees. Yet the insight begs the question: if compression algorithms are able
to better model the data by adapting their estimation of the probability distribution P (w) during
compression, may TF*IDF achieve better results using an adaptive scoring method inspired by
compression techniques? We plan to pursue this interesting line of inquiry in future work.

Binary Bag of Words. The binary bag of words method gives the elements of a word vector
a binary {0, 1} score indicating presence or non-presence of a word, but ignores the number of



repetitions. This may be viewed as equivalent to a form of lossy compression of a given text, in
which all words are given equal probability, but the frequencies of words in the text are discarded
in compression.

n-Grams and k-Mers. In the n-gram feature model, the vector space has one coordinate for
each possible substring of n symbols, called an n-gram (or, alternately, a k-mer or p-spectrum)
(Shawe-Taylor and Cristianini, 2004). The score for an element xi of an n-gram vector representing
string x is the count of ni times that the (possibly overlapping) n-gram gi appears in x. The link
to compression is made with a uniform probability distribution P (g):

∑

i

ni log
1

P (gi)
= ||~x||1 = C(x)

With compression techniques at hand, we can see the potential for an n-gram method with adaptive
probability distributions inspired by the PPM algorithm as another area for future work.

4. An Empirical Test

As an initial confirmation of the tight connection between compression-based similarity methods
and explicit feature vector models, we conducted a classification experiment on the Unix User Data
Set archived at the UCI machine learning repository (Blake and Merz, 1998). We selected this
publicly available data set, as it is free from some of the ambiguities and noise that occur in other
benchmark data sets, such as 20-Newsgroups or Reuters-21578 (Khmelev and Teahan, 2003). This
makes classification by the Nearest Neighbor technique a fair test, allowing direct comparison of
similarity measures drawn from various data models. To the best of our knowledge, this is the
first apples-to-apples test of compression-based measures against explicit feature vector models
appearing in the literature.8

The UNIX user data set contains labeled transcripts of nine Unix system users, developed
for testing intrusion detection systems (Lane and Brodley, 2003). We apply this data to a user
classification problem: given a test string x of Unix commands and a training set of labeled user
sessions, identify the user who generated x. We employed the Nearest Neighbor classification
method, first using the four compression-based similarity measures NCD, CDM , CLM , and CosS

in combination with each of the compression algorithms discussed in Section 4. We then repeated
the tests with three standard explicit feature vector models, the binary bag of words, TF*IDF
vectors, and n-gram models, using the established cosine-vector similarity measure to compute
similarity scores. Tests were run for 1000 randomly selected test sessions, with a minimum length
of 10 Unix commands in the session string.9 We report accuracy as the measure of success for each
method, based on number of correct Nearest Neighbor classifications.

The results, detailed in Table 2, show that the compression-based methods compete with, and
even exceed, the performance of common explicit vector space methods. It is interesting to note
that the PPM methods out-perform the associated n-gram methods, despite the two sharing the
same feature space. This suggests that the weights implicitly assigned to the coordinates in the
vector space by PPM were indeed informative.

8. Frank et al. (2000) tested a compression-based discriminant against other learning methods such as SVM; thus,
the learning method factored in results. Here the learning algorithm is kept constant across all models.

9. The split training and test data sets are publicly available at http://www.eecs.tufts.edu/˜dsculley/unixSplits,
posted with permission.



Table 2: Unix User ID Results. Accuracy is reported over 1000 trials.

Compressor NCD CosS CDM CLM

PPM 3 .801 .834 .836 .839

PPM 4 .808 .828 .830 .830

lz77 .735 .710 .725 .720

lzw .669 .691 .691 .714

Vector Model Binary Bag TF*IDF 4-gram 5-gram

.838 .791 .777 .759

5. Discussion and Conclusions

Perhaps the most difficult problem in machine learning and data mining is choosing an appropriate
representation for the data. At first blush, compression-based methods seem to side-step this
problem, but more thorough examination shows that a choice of compression algorithm implies a
specific, definable representation of the data within a feature space. This view removes compression-
based similarity from idealized information space, and allows such measures to be justified on the
same terms as explicit feature vector models such as TF*IDF and n-gram models.

Empirical results in a range of papers have shown that compression-based similarity can achieve
success on many important problems, and we have shown here that they may be competitive with
explicit feature models. However, there are a number of limitations on the use of standard compres-
sion algorithms for machine learning. First, the familiar counting argument from compression liter-
ature (Hankerson et al., 2003) coincides with the No Free Lunch Theorem (Wolpert and Macready,
1995). Simply put, there can be no algorithm that losslessly compresses all possible strings, just as
there is no machine learning method that automatically learns from all data. The choice of com-
pression algorithm implies a particular set of features, and these must align well with the chosen
data. Second, computing similarity with off-the-shelf compression algorithms may require more
computational overhead than using explicit feature vector methods. While both forms of similarity
may be computed in time O(|x|+ |y|), in practice the constant for compression algorithms is much
greater. Third, and perhaps most importantly as demonstrated by Frank et al. (2000), explicit
feature models are more easily used by the full range of machine learning algorithms.

Yet while the lack of explicit features for machine learning algorithms with compression methods
discouraged Frank et al. (2000) in this line of inquiry, we feel that there may well be productive
future work combining the best elements of both compression and explicit feature models. It
seems promising to start with the idea of adaptive term and n-gram weighting schemes inspired by
adaptive compression. Another possibility is to store the substrings found by Lempel-Ziv schemes as
explicit features. Ample opportunities for cross-fertilization between data compression and machine
learning promise interesting, productive future work.
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