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4.5 Confidence Intervals for a Proportion

Let Z be N(0, 1) and p be a number between 0 and 1; critical z-value zp is

P (Z > zp) = 1− Φ(zp) = p.

Let 0 < α < 1 and x be number of successes in n observed trials of a Bernoulli
experiment with unknown probability of success p. For p̂ = x

n
, the 100(1 − α)%

confidence interval for proportion p is

p̂± zα
2

√
p̂(1− p̂)

n
=

[
p̂− zα

2

√
p̂(1− p̂)

n
, p̂+ zα

2

√
p̂(1− p̂)

n

]
,

where

E = zα
2

√
p̂(1− p̂)

n
, and

√
p̂(1− p̂)

n
are the margin of error and standard deviation of the proportion respectively and
α is the level of significance. We assume a large random sample is chosen, both
np ≥ 5 and np(1 − p) ≥ 5 and the conditions of a binomial distribution is satisfied.
Also, one-sided confidence interval estimates for p include lower and upper bound
respectively: [

p̂− zα

√
p̂(1− p̂)

n
, 1

]
,

[
0, p̂+ zα

√
p̂(1− p̂)

n

]
.

Exercise 4.5 (Confidence Intervals for a Proportion)

1. Confidence interval (CI) for proportion, p, of purchase slips made with Visa.
It is found 54 of 180 (or p̂ = 54

180
= 0.3) randomly selected from all credit card

purchase slips are made with Visa where conditions of binomial distribution are
satisfied. Calculate a 95% confidence interval (CI) of proportion p of purchase
slips made with Visa.

(a) Point estimate.
Point estimate of population (actual, true) proportion of all credit card
purchase slips made with Visa, p, is
p̂ = (i) 0.3 (ii) 54 (iii) 180.
Statistic p̂ = 0.3 probably does not exactly equal unknown parameter p.

(b) Check assumptions.
Since random sample chosen,
conditions of binomial distribution are satisfied,
and np(1− p) ≈ np̂(1− p̂) = 180(0.3)(0.7) = 37.8 ≥ 5,
and np ≈ np̂ = 180(0.3) = 54 ≥ 5,
assumptions (i) have (ii) have not been satisfied

and so it is appropriate p̂± zα
2

√
p̂(1−p̂)
n

estimate parameter p.
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(c) 95% Confidence Interval (CI) using R.
The 95% CI for proportion of all credit cards made with Visa, p, is
(i) (0.251, 0.349) (ii) (0.273, 0.367) (iii) (0.233, 0.367).
prop1.interval <- function(x,n,conf.level) # function of 1-proportion CI for p

{

p <- x/n

z.crit <- -1*qnorm((1-conf.level)/2)

margin.error <- z.crit*sqrt(p*(1-p)/n)

ci.lower <- p - margin.error

ci.upper <- p + margin.error

dat <- c(p, z.crit, margin.error, ci.lower, ci.upper)

names(dat) <- c("Mean", "Critical Value", "Margin of Error", "CI lower", "CI upper")

return(dat)

}

prop1.interval(54,180,0.95) # 1-proportion 95% CI for p

Mean Critical Value Margin of Error CI lower CI upper

0.30000000 1.95996398 0.06694551 0.23305449 0.36694551

where this interval includes not only smallest possible proportion of 0.233
and largest possible proportion of 0.367, but also other proportions in
between these two extremes such as point estimate, p̂ = 0.3.
Length of this CI is L ≈ 0.367− 0.233 = 0.134.
So, 95% confident population parameter p in (0.233, 0.367).

(d) 90% CI using R.
The 90% CI for proportion of all credit cards made with Visa, p, is
(i) (0.251, 0.349) (ii) (0.244, 0.356) (iii) (0.233, 0.367).
Length of this CI is L ≈ 0.356− 0.244 = 0.112.
prop1.interval(54,180,0.90) # 1-proportion 90% CI for p

Mean Critical Value Margin of Error CI lower CI upper

0.30000000 1.64485363 0.05618245 0.24381755 0.35618245

(e) 85% CI using R.
The 85% CI for proportion of all credit cards made with Visa, p, is
(i) (0.251, 0.349) (ii) (0.273, 0.367) (iii) (0.233, 0.367).
Length of this CI is L ≈ 0.349− 0.251 = 0.098.
prop1.interval(54,180,0.85) # 1-proportion 85% CI for p

Mean Critical Value Margin of Error CI lower CI upper

0.30000000 1.43953147 0.04916936 0.25083064 0.34916936

(f) Comparing CI lengths.
Length of 95% CI for p, L = 0.134, is
(i) longer than (ii) same length as (iii) shorter than
length of 90% CI for p, L = 0.112, which is
(i) longer than (ii) same length as (iii) shorter than
length of 85% CI for p, L = 0.098.
Increasing confidence increases CI length.

(g) Margin of error.
Half of length, L, is margin of error, E = L

2
.

Consequently, for 95% CI for p,
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E = L
2

= 0.134
2

= (i) 0.067 (ii) 0.056 (iii) 0.049,
and for 90% CI for p,
E = L

2
= 0.112

2
= (i) 0.067 (ii) 0.056 (iii) 0.049,

and for 85% CI for p,
E = L

2
= 0.098

2
= (i) 0.067 (ii) 0.056 (iii) 0.049,

(h) Other ways of writing confidence intervals.
Different possible ways of writing 95% CI include (choose one or more!)

i. (0.233, 0.367)

ii. (0.3 − 0.067, 0.3 + 0.067)

iii. 0.3 ± 0.067

where p̂ = 0.3 is point estimate and E = 0.067 is margin of error.
In a similar way,
90% CI of parameter p is
(i) 0.3 ± 0.067 (ii) 0.3 ± 0.056 (iii) 0.3 ± 0.049
and 85% CI of parameter p is
(i) 0.3 ± 0.067 (ii) 0.3 ± 0.056 (iii) 0.3 ± 0.049

(i) CI using formula, a first look.
Since p̂ = 0.3 and n = 180, the 95% CI for p is

p̂± zα
2

√
p̂(1− p̂)

n
=

the incomplete answer

i. 180 ± zα
2

√
0.3(1−0.3)

180
,

ii. 0.3 ± zα
2

√
0.3(1−0.3)

180
,

iii. 0.7 ± zα
2

√
0.7(1−0.3)

180
.

In a similar way,
90% CI is

(i) 0.3±zα
2

√
0.3(1−0.3)

180
(ii) 0.7±zα

2

√
0.3(1−0.3)

180
(iii) 180±zα

2

√
0.3(1−0.3)

180

and 85% CI is

(i) 0.3±zα
2

√
0.3(1−0.3)

180
(ii) 0.7±zα

2

√
0.3(1−0.3)

180
(iii) 180±zα

2

√
0.3(1−0.3)

180

All three CIs same except three critical values, zα
2
, are different.

(j) CI using formula: calculating critical value, zα
2
.

Critical value for 95% = (1− α) · 100% = (1− 0.05) · 100% CI is
zα

2
= z 0.05

2
= z0.025 = (i) 1.96 (ii) 1.645 (iii) 1.44.

qnorm(0.975) # critical value z_0.05/2

> qnorm(0.975) # critical value z_0.05/2

[1] 1.959964
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Figure 4.5: Critical values

Critical value for 90% = (1− α) · 100% = (1− 0.10) · 100% CI is
zα

2
= z 0.10

2
= z0.05 = (i) 1.96 (ii) 1.645 (iii) 1.44.

qnorm(0.95) # critical value z_0.1/2

> qnorm(0.95) # critical value z_0.1/2

[1] 1.644854

Critical value for 85% = (1− α) · 100% = (1− 0.15) · 100% CI is
zα

2
= z 0.15

2
= z0.075 = (i) 1.96 (ii) 1.645 (iii) 1.44.

qnorm(0.925) # critical value z_0.15/2

> qnorm(0.925) # critical value z_0.15/2

[1] 1.439531

(k) CI using formula.
A 95% CI for proportion of Visa credit card purchase slips, p,

is p̂± zα
2

√
p̂(1−p̂)
n

=

i. 0.3 ± 1.96 ×
√

0.3(1−0.3)

180

ii. 0.3 ± 1.645 ×
√

0.3(1−0.3)

180

iii. 0.3 ± 1.44 ×
√

0.3(1−0.3)

180

and a 90% CI for proportion of Visa credit card purchase slips, p, is

i. 0.3 ± 1.96 ×
√

0.3(1−0.3)

180

ii. 0.3 ± 1.645 ×
√

0.3(1−0.3)

180

iii. 0.3 ± 1.44 ×
√

0.3(1−0.3)

180

and an 85% CI for proportion of Visa credit card purchase slips, p, is

i. 0.3 ± 1.96 ×
√

0.3(1−0.3)

180

ii. 0.3 ± 1.645 ×
√

0.3(1−0.3)

180
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iii. 0.3 ± 1.44 ×
√

0.3(1−0.3)

180

(l) Population, Sample, Statistic and Parameter. Match columns.

terms credit card example

(a) population (a) Visa or not, all purchase slips
(b) sample (b) proportion of all slips made with Visa, p
(c) statistic (c) Visa or not, 180 purchase slips
(d) parameter (d) proportion of 180 slips made with Visa, p̂

terms (a) (b) (c) (d)
credit card example

2. 95% CI, proportion of student heights over 6 feet tall.
37 of 102 students, chosen at random from PNW, over 6 feet tall.

(a) Point estimate
Point estimate of proportion, p, of student heights over 6 feet tall is
p̂ = 37

102
≈ (i) 0.363 (ii) 0.378 (iii) 0.391.

(b) Check assumptions.
Since np ≈ np̂ = 102

(
37
102

)
= 37 ≥ 5,

and np(1− p) ≈ np̂(1− p̂) = 102
(

37
102

) (
1− 37

102

)
≈ 23.6 > 5,

assumptions (i) have (ii) have not been satisfied

and so it is appropriate p̂± zα
2

√
p̂(1−p̂)
n

estimate parameter p.

(c) Using R. The 95% CI for p is
(i) (0.269, 0.456) (ii) (0.273, 0.367) (iii) (0.233, 0.367).
prop1.interval(37,102,0.95) # 1-proportion 95% CI for p

Mean Critical Value Margin of Error CI lower CI upper

0.3627451 1.9599640 0.0933051 0.2694400 0.4560502

(d) Using formula: critical value using R.
Critical value for 95% = (1− α) · 100% = (1− 0.05) · 100% CI for p is
zα

2
= z 0.05

2
= z0.025 = (i) 1.28 (ii) 1.96 (iii) 2.58.

qnorm(0.975) # critical value z_0.05/2 for 95% CI

> qnorm(0.975) # critical value z_0.05/2

[1] 1.959964

(e) Using formula: critical value using Table C.1.
Critical value for 95% = (1− α) · 100% = (1− 0.05) · 100% CI for p is
zα

2
= z 0.05

2
= z0.025 = (i) 1.28 (ii) 1.96 (iii) 2.58.

(f) Using formula.
Since p̂ = 37

102
and n = 102, the 95% CI for p is

p̂± zα
2

√
p̂(1−p̂)
n

=
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(i) 0.36 ± 1.28 ×
√

0.36(1−0.36)

102

(ii) 0.36 ± 1.96 ×
√

0.36(1−0.36)

102

(iii) 0.36 ± 2.58 ×
√

0.36(1−0.36)

102

≈ (0.269, 0.456)

(g) Length, L, of 95% CI is
L = 0.456− 0.269 = (i) 0.176 (ii) 0.187 (iii) 0.354.
Half of length, margin of error,
E = L

2
= (i) 0.088 (ii) 0.0935 (iii) 0.177.

Notice, margin of error also equals

E = zα
2

√
p̂(1− p̂)

n
= 1.96×

√
37
102

(1− 37
102

)

102
≈ 0.0935.

(h) Confidence Level and Sample Size.
The larger the confidence level (critical value, zα

2
)

the (i) larger (ii) smaller the margin of error.
The larger the sample size, n, the
(i) larger (ii) smaller the margin of error.

(i) One-sided confidence level with upper bound using R.
The 95% CI for p with upper bound is(

0, p̂+ zα

√
p̂(1− p̂)

n

)
=

(i) (0.269, 0.456) (ii) (0.273, 1) (iii) (0, 0.441).
prop1.interval <- function(x,n,conf.level) # function of 1-proportion CI with upper bound for p

{

p <- x/n

z.crit <- -1*qnorm(1-conf.level)

margin.error <- z.crit*sqrt(p*(1-p)/n)

ci.lower <- 0

ci.upper <- p + margin.error

dat <- c(p, z.crit, margin.error, ci.lower, ci.upper)

names(dat) <- c("Mean", "Critical Value", "Margin of Error", "CI lower", "CI upper")

return(dat)

}

prop1.interval(37,102,0.95) # 1-proportion 95% CI with upper bound for p

Mean Critical Value Margin of Error CI lower CI upper

0.36274510 1.64485363 0.07830411 0.00000000 0.44104920

4.6 Confidence Intervals for a Mean

Let x̄ be the mean with sample of size n taken from a population with know variance
σ2 and unknown mean µ and 0 < α < 1. The (1 − α) · 100% confidence interval for
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µ is called a z-interval:

x̄± zα
2

(
σ√
n

)
.

The (1− α) · 100% confidence interval for µ with unknown σ is called a t-interval:

x̄± tα
2

(
s√
n

)
,

where T = X̄−µ
S√
n

has a Student-t distribution and where

E = tα
2

(
s√
n

)
and

(
s√
n

)
are the margin of error and standard error of the mean respectively and α is the
level of significance. We assume a large random sample, where either the underlying
distribution is normal with no outliers or if the sample size large (n > 30). Also, one-
sided confidence interval estimates for µ include lower and upper bound respectively:(

x̄− tα
(

s√
n

)
,∞
)
,

(
−∞, x̄+ tα

(
s√
n

))
.

Exercise 4.6 (Confidence Intervals for a Mean)

1. Estimates for population average weight of PNW students.
Average weight of simple random sample of 11 PNW students is x̄ = 167 pounds
with sample SD s = 20.1 pounds. Weights normally distributed, no outliers.

(a) Point estimate.
Point estimate of population weight of all students, µ, is
x̄ = (i) 11 (ii) 20.1 (iii) 167.
Also notice σ is unknown and estimated by s = 20.1.

(b) 95% CI

i. Using R. The 95% CI for µ is
(i) (143.5, 182.5) (ii) (151.5, 180.5) (iii) (153.5, 180.5).
mean1.t.interval <- function(m,s,n,conf.level)

{

t.crit <- -1*qt((1-conf.level)/2,n-1)

margin.error <- t.crit*s/sqrt(n)

ci.lower <- m - margin.error

ci.upper <- m + margin.error

dat <- c(mean, t.crit, margin.error, ci.lower, ci.upper)

names(dat) <- c("Mean", "Critical Value", "Margin of Error", "CI lower", "CI upper")

return(dat)

}

mean1.t.interval(167,20.1,11,0.95) # m: mean, s: SD, n: sample size, 95% t-interval
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Mean Critical Value Margin of Error CI lower CI upper

167.000000 2.228139 13.503364 153.496636 180.503364

So, 95% confident population parameter µ in (153.5, 180.5).

ii. Using formula: degrees of freedom (df).
df = n− 1 = 11− 1 = (i) 10 (ii) 11.

iii. Using formula: critical value using R.
Critical value 95% = (1− α) · 100% = (1− 0.05) · 100% CI, 10 df
tα

2
= t 0.05

2
= t0.025 ≈ (i) 1.28 (ii) 2.23 (iii) 2.58.

qt(0.975,10) # critical value t, 10 df, for 95% CI

> qt(0.975,10) # critical value t for 95% CI

[1] 2.228139

iv. Using formula: critical value using Table C.3.
Critical value 95% = (1− α) · 100% = (1− 0.05) · 100% CI, 10 df
tα

2
= t 0.05

2
= t0.025 ≈ (i) 1.28 (ii) 2.23 (iii) 2.58.

v. Using formula.
The 95% CI for µ is
x̄± tα

2

s√
n

=

(i) 20.1± 167× 2.23√
11

(ii) 2.23± 167× 20.1√
11

(iii) 167± 2.23× 20.1√
11

which equals
(i) 20.1±12.51 (ii) 2.23±13.51 (iii) 167±13.51 ≈ (153.5, 180.5).

(c) 99% CI

i. Using R. The 99% CI for µ is
(i) (147.8, 186.2) (ii) (151.5, 180.5) (iii) (153.5, 180.5).
mean1.t.interval(167,20.1,11,0.99) # m: mean, s: SD, n: sample size, 99% t-interval

Mean Critical Value Margin of Error CI lower CI upper

167.000000 3.169273 19.206990 147.793010 186.206990

So, 99% confident population parameter µ in (147.8, 186.2).

ii. Using formula: degrees of freedom.
df = n− 1 = 11− 1 = (i) 10 (ii) 11.

iii. Using formula: critical value.
Critical value 99% = (1− α) · 100% = (1− 0.01) · 100% CI, 10 df
tα

2
= t 0.01

2
= t0.005 ≈ (i) 1.28 (ii) 2.23 (iii) 3.17.

qt(0.995,10) # critical value t, 10 df, for 99% CI

[1] 3.169273

iv. Using formula.
The 99% CI for µ is
x̄± tα

2

s√
n

=

(i) 20.1±20.1× 3.17√
11

(ii) 3.17±167× 20.1√
11

(iii) 167±3.17× 20.1√
11

.

which equals
(i) 20.1±19.21 (ii) 3.17±19.21 (iii) 167±19.21 ≈ (147.8, 186.2)
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v. Margin of error if σ approximated by s ≈ 20.1.

E = tα
2
· s√

n
≈ 3.17× 20.1√

11
≈

(i) 11 (ii) 15.6 (iii) 19.2.

vi. Margin of error if σ = 20.1 known.

E = zα
2
· σ√

n
≈ 2.58× 20.1√

11
≈

(i) 11 (ii) 15.6 (iii) 19.2.
qnorm(0.995) # critical value z for 99% CI

[1] 2.575829

vii. (i) True (ii) False There is a 99% chance population average weight,
µ, falls in sample interval (147.8, 186.2).

2. Confidence interval for average length of corn cobs, raw data.
Corn cob lengths for n = 15 < 30 cobs, chosen at random, are noted.

18, 23, 24, 20, 21, 19, 27, 24, 19, 20, 25, 20, 18, 26, 20

(a) Point estimate.
Point estimate of population length of all cobs, µ, is
x̄ = (i) 2.97 (ii) 21.6 (iii) 15.
Also notice population SD in cob length, σ, is unknown and estimated by
s ≈ (i) 2.97 (ii) 21.6 (iii) 15.
corn <- c(18,23,24,20,21,19,27,24,19,20,25,20,18,26,20)

m <- mean(corn); m; s <- sqrt(var(corn)); s; n <- length(corn); n

[1] 21.6

[1] 2.971291

[1] 15

(b) 95% CI

i. Using R. The 95% CI for µ is
(i) (17.96, 21.24) (ii) (19.96, 22.24) (iii) (19.96, 23.25).
mean1.t.interval(m,s,n,0.95) # m: mean, s: SD, n: sample size, 95% t-interval

Mean Critical Value Margin of Error CI lower CI upper

21.600000 2.144787 1.645446 19.954554 23.245446

ii. Using formula: degrees of freedom (df).
df = n− 1 = (i) 15 (ii) 14.

iii. Using formula: critical value.
Critical value 95% = (1− α) · 100% = (1− 0.05) · 100% CI, 14 df
tα

2
= t 0.05

2
= t0.025 ≈ (i) 1.76 (ii) 2.15.

qt(0.975,14) # critical value t, 14 df, for 99% CI

[1] 2.144787
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iv. Using formula.
The 95% CI for µ is
x̄± tα

2

s√
n

=

(i) 21.6±2.15× 2.97√
15

(ii) 21.6±2.15× 3.97√
15

(iii) 21.6±3.15× 2.97√
15

.

(c) 99% CI

i. Using R. The 99% CI for µ is
(i) (19.23, 23.45) (ii) (19.96, 23.24) (iii) (19.32, 23.88).
mean1.t.interval(m,s,n,0.99) # m: mean, s: SD, n: sample size, 99% t-interval

Mean Critical Value Margin of Error CI lower CI upper

21.600000 2.976843 2.283786 19.316214 23.883786

ii. Using formula: degrees of freedom (df).
The df, here, for 99% CI is (i) same as (ii) different from degrees
of freedom calculated for 95% CI above because same sample size is
used in both cases.

iii. Using formula: critical value.
Critical value 99% = (1− α) · 100% = (1− 0.01) · 100% CI, 14 df
tα

2
= t 0.01

2
= t0.005 ≈ (i) 1.76 (ii) 2.98.

qt(0.995,14) # critical value t, 14 df, for 99% CI

[1] 2.976843

iv. Using formula.
Thus, the 99% CI for µ is
x̄± tα

2

s√
n

=

(i) 21.6±2.15× 2.97√
15

(ii) 21.6±2.15× 3.97√
15

(iii) 21.6±2.98× 2.97√
15

.

which equals
(i) 21.6 ± 1.29 (ii) 21.6 ± 2.29 (iii) 21.6 ± 3.29 ≈ (19.32, 23.88).

(d) Some comments

i. (i) True (ii) False. Long 99% CI better than shorter 95% CI in
the sense we are more confident 99% contains or “captures” unknown
parameter µ. However, 95% CI better than longer 99% CI in the sense,
if unknown parameter µ is 95% interval estimate, we are more certain
of location of this unknown parameter.

ii. Since sample size is small, we can (ii) cannot use central limit theo-
rem.

iii. Match columns.
terms corn example

(a) population (a) average length of 15 plants, X̄
(b) sample (b) average length of all plants, µ
(c) statistic (c) lengths of all plants
(d) parameter (d) observed lengths of 15 plants

terms (a) (b) (c) (d)
corn example
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3. Population, sample, statistic and parameter: CI for average corn cob length.
Simple random sample of 15 corn cobs is taken. Assume sample SD in length
is s = 2.97 and, although we typically don’t know it, population (not sample)
length is µ = 22 inches. Assume normality.

(a) Population µ = 22 length
Population µ = 22 is a (i) statistic (ii) parameter.
Population µ (i) changes (ii) remains same for every random sample.
Population µ (usually) (i) known (ii) unknown to us,
(although we are pretending for this question we do know it.)

(b) Sample x̄ length
Sample x̄ is a (i) statistic (ii) parameter.
Sample x̄ (i) changes (ii) remains same for every random sample.
Sample x̄ (usually)(i) known (ii) unknown to us:
it may be x̄ = 21.6 for one sample, but x̄ = 29.8 for another sample.

(c) A 95% CI for µ, if x̄ = 21.6, is
x̄± tα

2

s√
n

= 21.6± 1.96 2.97√
15

=

(i) (19.95, 23.24) (ii) (23.45, 27.80) (iii) (28.16, 31.44).
mean1.t.interval(21.6,2.97,14,0.95) # m: mean, s: SD, n: sample size, 95% t-interval

Mean Critical Value Margin of Error CI lower CI upper

21.600000 2.160369 1.714827 19.885173 23.314827

This 95% CI (i) contains (ii) does not contain µ = 22.

(d) A 95% CI for µ, if x̄ = 29.8, is
x̄± tα

2

s√
n

= 29.8± 1.96 2.97√
15

=

(i) (19.60, 23.60) (ii) (23.45, 27.80) (iii) (28.16, 31.44).
mean1.t.interval(29.8,2.97,14,0.95) # m: mean, s: SD, n: sample size, 95% t-interval

Mean Critical Value Margin of Error CI lower CI upper

29.800000 2.160369 1.714827 28.085173 31.514827

This 95% CI (i) contains (ii) does not contain µ = 22.

(e) If sample average length, x̄, changes, corresponding 95% CI,
x̄± tα

2

s√
n
, (i) changes (ii) remains the same. More than this,

i. all possible 95% CIs contain µ = 22.

ii. none of all possible 95% CIs contain µ = 22.

iii. ninety–nine percent of all possible 95% CIs contain µ = 22, and so
one percent of all possible 95% CIs do not contain µ = 22.

iv. ninety–five percent of all possible 95% CIs contain µ = 22, and so five
percent of all possible 95% CIs do not contain µ = 22.

This is demonstrated in figure below.

(f) Choose true or false.
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     22    24       20

miss

miss

true unknow average length

95% confidence interval:

out of many many CIs,

exactly 95% capture

the true unknown average

and 5% miss

“and so on”

Figure 4.6: Interpreting confidence intervals

(i) True (ii) False. 95% chance (19.95, 23.24) contains µ.

(i) True (ii) False. 95% chance (19.95, 23.24) contains x̄ = 21.6.

(i) True (ii) False. 95% confident (19.95, 23.24) contains µ.

(i) True (ii) False. 95% confident (19.95, 23.24) contains x̄ = 21.6.

4.7 Confidence Intervals for a Variance

Let s2 be the variance of a random sample of size n taken from a normally distributed
population with unknown variance σ2 and 0 < α < 1. The (1− α) · 100% confidence
interval (CI) for σ2 is (

(n− 1)s2

χ2
α/2

,
(n− 1)s2

χ2
1−α/2

)
Also, one-sided confidence interval estimates for σ2 include lower and upper bound
respectively: (

(n− 1)s2

χ2
α

,∞
)
,

(
0,

(n− 1)s2

χ2
1−α

)
.

Exercise 4.7 (Confidence Intervals for a Variance)

1. Estimation for variance: car door and jamb.
In a simple random sample of 28 cars, variance in gap between door and jamb
is s2 = 0.7 mm2. Calculate 95% CI. Assume normality with no outliers.
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(a) Using R. The 95% CI for σ2 is
(i) (0.39, 1.22) (ii) (0.41, 1.25) (iii) (0.44, 1.30).
var1.chi2.interval = function(v,n,conf.level) {

df = n - 1

chilower = qchisq((1 - conf.level)/2, df)

chiupper = qchisq((1 - conf.level)/2, df, lower.tail = FALSE)

ci.lower <- df * v/chiupper

ci.upper <- df * v/chilower

margin.error <- (ci.upper - ci.lower)/2

dat <- c(v, chilower, chiupper, margin.error, ci.lower, ci.upper)

names(dat) <- c("Variance", "Lower Crit Val", "Upper Crit Val", "Margin of Error", "CI lower", "CI upper")

return(dat)

}

var1.chi2.interval(0.7,28,0.95) # 95% CI for variance, n = 28

Variance Lower Crit Val Upper Crit Val Margin of Error CI lower CI upper

0.7000000 14.5733827 43.1945110 0.4296647 0.4375556 1.2968849

(b) Upper critical value for 95% = (1− α) · 100% = (1− 0.05) · 100% CI is
χ2
α
2

= χ2
0.05
2

= χ2
0.025 = (i) 8.7 (ii) 40.1 (iii) 43.2

qchisq(0.975, 27) # 95% upper critical chi-square value

[1] 43.19451

(c) Lower critical value for 95% = (1− α) · 100% = (1− 0.05) · 100% CI is
χ2

1−α
2

= χ2
1− 0.05

2

= χ2
0.975 = (i) 14.6 (ii) 40.1 (iii) 43.2

qchisq(0.025, 27) # 95% lower critical chi-square value

[1] 14.57338

(d) Using Table C.4, lower critical value for 95% CI is
χ2

1−α
2

= χ2
1− 0.05

2

= χ2
0.975 =

(i) between 13.12 and 16.79 (ii) 40.1 (iii) 43.2

(e) So, 95% CI for variance σ2 is(
(n− 1)s2

χ2
α/2

,
(n− 1)s2

χ2
1−α/2

)
=

(
(28− 1)0.7

43.2
,
(28− 1)0.7

14.6

)
=

(i) (0.61, 1.65) (ii) (0.59, 1.29) (iii) (0.43, 1.29).

(f) Since 95% CI (0.43, 1.29) does not include 0.40, this indicates variance in
distance between door and jamb (i) is (ii) is not 0.4 mm2.

(g) Population, parameter, sample and statistic. Match columns.

terms jamb example

(a) population (a) variance in jamb–door distance, of 28 cars, s2

(b) sample (b) variance in jamb–door distance, of all cars, σ2

(c) statistic (c) jamb–door distances, of all cars
(d) parameter (d) jamb–door distances, of 28 cars

terms (a) (b) (c) (d)
jamb example
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2. Estimation for variance: machine parts.
In a simple random sample of 18 machine parts, variance in lengths is s2 = 122.
Calculate 90% CI. Assume normality with no outliers.

(a) Using R. The 90% CI for σ2 is
(i) (88.1, 281.3) (ii) (88.7, 282.3) (iii) (88.2, 282.3).
var1.chi2.interval(12^2,18,0.90) # 90% CI for variance, n = 18

Variance Lower Crit Val Upper Crit Val Margin of Error CI lower CI upper

144.00000 8.67176 27.58711 96.77927 88.73709 282.29563

(b) Upper critical value for 90% = (1− α) · 100% = (1− 0.10) · 100% CI is
χ2
α
2

= χ2
0.10
2

= χ2
0.05 = (i) 8.7 (ii) 27.6 (iii) 43.2

qchisq(0.95, 17) # 90% upper critical chi-square value

[1] 27.58711

(c) Lower critical value for 90% = (1− α) · 100% = (1− 0.10) · 100% CI is
χ2

1−α
2

= χ2
1− 0.10

2

= χ2
0.95 = (i) 8.7 (ii) 40.1 (iii) 43.2

qchisq(0.05, 17) # 90% lower critical chi-square value

[1] 8.67176

(d) So, 90% CI for variance σ2 is (there may round-off error)(
(n−1)s2

χ2
U

, (n−1)s2

χ2
L

)
=
(

(18−1)122

27.6
, (18−1)122

8.7

)
=

(i) (80.5, 101.4) (ii) (100.5, 104.2) (iii) (88.7, 281.4).

(e) Since 90% CI (88.7, 281.4) includes test statistic 132 = 169, this indicates
variance in lengths (i) is (ii) is not σ2 = 132 mm2.

(f) Also, 90% CI for standard deviation σ is(√
(n−1)s2

χ2
U

,
√

(n−1)s2

χ2
L

)
=

(√
(18−1)122

27.6
,
√

(18−1)122

8.7

)
=

(i) (9.4, 16.8) (ii) (10.5, 14.2) (iii) (88.7, 281.4).

4.8 Confidence Intervals for Differences

Let x1 and x2 be number of successes in two independent samples of size n1 and n2

(with p̂1 = x1
n1

and p̂2 = x2
n2

) taken two populations with proportions p1 and p2. The
(1− α) · 100% 2-proportion z-interval for p1 − p2 is

p̂1 − p̂2 ± zα
2

√
p̂1(1− p̂1)

n1

+
p̂2(1− p̂2)

n2

,

where we assume the samples random and there are at least 5 successes and 5 failures
in each sample.
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Let x̄1 and x̄2 be the means of two independent samples of size n1 and n2 from
two populations and means µ1 and µ2. The (1 − α) · 100% 2-sample z-interval for
µ1 − µ2, with known variances σ2

1 and σ2
2, is

(x̄1 − x̄2)± zα
2

√
σ2

1

n1

+
σ2

2

n2

,

or, with unknown variances but where it is assumed σ2
1 = σ2

2,

(x̄1 − x̄2)± sp · tα
2

√
1

n1

+
1

n2

,

where the pooled standard deviation estimate is

sp =

√
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2
,

and tα
2

has n1 + n2 − 2 degrees of freedom or, with unknown variances but where it
is assumed σ2

1 6= σ2
2,

(x̄1 − x̄2)± tα
2

√
s2

1

n1

+
s2

2

n2

,

and tα
2

has the following r degrees of freedom (round down),

r =

(
s21
n1

+
s22
n2

)2

1
n1−1

(
s21
n1

)2

+ 1
n2−1

(
s22
n2

)2

where either the underlying distribution of both samples are normal with no outliers
or if both random sample sizes large (n1 ≥ 30, n2 ≥ 30). Also, if the two samples are
dependent or paired, the confidence interval for the difference in two means µd is

d̄± tα
2

(
sd√
n

)
,

where either the underlying distribution of differences is normal with no outliers or
the random sample size is large (n ≥ 30).

Exercise 4.8 (Confidence Intervals for a Differences)

1. Inference p1 − p2, large independent samples: doctors.
Calculate 95% 2-proportion z-interval of difference in proportions of male doc-
tors in military and civilian hospitals.
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military (1) civilian (2)
male doctors 358 6786
total doctors 407 7363

From above, p̂1 = 358
407

, p̂2 = 6786
7363

; also
critical value for 95% = (1− α) · 100% = (1− 0.05) · 100% CI,
of zα

2
= z 0.05

2
= z0.025 ≈ (i) 1.65 (ii) 1.96 (iii) 2.09,

qnorm(0.975) # critical value z, for 95% CI

[1] 1.959964

and so 95% CI for p1 − p2 is

p̂1 − p̂2 ± zα
2

√
p̂1(1− p̂1)

n1

+
p̂2(1− p̂2)

n2

=

(
358

407
− 6786

7363

)

± 1.96 ·

√
358
407

(
1− 358

407

)
407

+
6786
7363

(
1− 6786

7363

)
7363

≈

(i) (−0.054,−0.008) (ii) (−0.064,−0.009) (iii) (−0.074,−0.010)

prop2.interval <- function(x, n, conf.level) {

x1 <- x[1]; x2 <- x[2]; n1 <- n[1]; n2 <- n[2]

p.hat1 <- x1/n1; p.hat2 <- x2/n2

z.crit <- -1*qnorm((1-conf.level)/2)

margin.error <- z.crit*sqrt(p.hat1*(1-p.hat1)/n1+p.hat2*(1-p.hat2)/n2)

ci.lower <- p.hat1-p.hat2 - margin.error

ci.upper <- p.hat1-p.hat2 + margin.error

dat <- c(p.hat1, p.hat2, z.crit, margin.error, ci.lower, ci.upper)

names(dat) <- c("p.hat1", "p.hat2", "z crit", "Margin of Error", "CI lower", "CI upper")

return(dat)

}

prop2.interval(c(358,6786), c(407,7363), 0.95) # approx 2-proportion z-test for p, two-sided

p.hat1 p.hat2 z crit Margin of Error CI lower CI upper

0.879606880 0.921635203 1.959963985 0.032205624 -0.074233948 -0.009822699

Since confidence interval does not include (is, in fact, smaller than) zero,
this indicates population proportion of male military doctors
(i) is less than (ii) equals (iii) is greater than (iv) is different from
the population proportion of male civilian doctors.

2. CI for µ1 − µ2, independent samples, unknown σ2
1 = σ2

2: progesterone.
A study is conducted to determine cellular response to progesterone in females.
Blood cells from four females are injected with progesterone; blood cells from
four different females are, for comparison purposes, left untreated. Calculate
95% CI. Assume normality with no outliers.



166 Chapter 4. Statistics (LECTURE NOTES 8)

female progesterone (1) female control (2)
1 5.85 5 5.23
2 2.28 6 1.21
3 1.51 7 1.40
4 2.12 8 1.38

progesterone <- c(5.85, 2.28, 1.51, 2.12)

control <- c(5.23, 1.21, 1.40, 1.38)

From R, x̄1 ≈ 2.94, s1 ≈ 1.97, x̄2 ≈ 2.305, s2 ≈ 1.95,

m1 <- mean(progesterone); m1; s1 <- sqrt(var(progesterone)); s1

m2 <- mean(control); m2; s2 <- sqrt(var(control)); s2

> mean(progesterone); sqrt(var(progesterone))

[1] 2.94

[1] 1.968163

> mean(control); sqrt(var(control))

[1] 2.305

[1] 1.95186

so pooled standard deviation is

sp =

√
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2
≈
√

(4− 1)1.972 + (4− 1)1.952

2 + 4− 2
≈

(i) 1.95 (ii) 1.96 (iii) 1.97 (which not surprising since s1 ≈ 1.97, s2 ≈ 1.95)

n1 <- length(progesterone); n2 <- length(control)

s12 <- var(progesterone); s22 <- var(control)

sp <- sqrt(((n1-1)*s12 + (n2-1)*s22)/(n1+n2-2)); sp

[1] 1.96003

and critical value for 95% = (1− α) · 100% = (1− 0.05) · 100% CI,
with degrees of freedom = n1 + n2 − 2 = 4 + 4− 2 = (i) 4 (ii) 6 (ii) 8,
so tα

2
= t 0.05

2
= t0.025 ≈ (i) 2.31 (ii) 2.45 (iii) 3.09,

qt(0.975,6) # critical t value, 95% CI, using r df

[1] 2.446912

and so 95% CI for µ1 − µ2 is

(x̄1 − x̄2)± sp · tα
2

√
1

n1

+
1

n2

= (2.94− 2.305)± 1.96 · 2.45 ·
√

1

4
+

1

4
=

(i) (−2.52, 6.49) (ii) (−2.62, 6.39) (iii) (−2.76, 4.03)
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mean2.t.interval <- function(m1,m2,s1,s2,n1,n2,conf.level,type) {

if(type=="same.var") {

df <- n1+n2-2

t.crit <- -1*qt((1-conf.level)/2,df)

sp <- sqrt(((n1-1)*s1^2 + (n2-1)*s2^2)/(df))

margin.error <- sp*t.crit*sqrt(1/n1 + 1/n2)

ci.lower <- (m1-m2) - margin.error

ci.upper <- (m1-m2) + margin.error

dat <- c(m1-m2, df, t.crit, margin.error, ci.lower, ci.upper)

}

if(type=="diff.var") {

df <- ((s1^2/n1 + s2^2/n2)^2)/((1/(n1-1))*(s1^2/n1)^2 + (1/(n2-1))*(s2^2/n2)^2)

t.crit <- -1*qt((1-conf.level)/2,df)

margin.error <- t.crit*sqrt(s1^2/n1 + s2^2/n2)

ci.lower <- (m1-m2) - margin.error

ci.upper <- (m1-m2) + margin.error

dat <- c(m1-m2, df, t.crit, margin.error, ci.lower, ci.upper)

}

names(dat) <- c("Mean Difference", "df", "Critical Value", "Margin of Error", "CI lower", "CI upper")

return(dat)

}

# approximate 2-mean 95% CI for mu_1 - mu_2, same variance

mean2.t.interval(m1,m2,s1,s2,n1,n2, 0.95,"same.var")

Mean Difference df Critical Value Margin of Error CI lower CI upper

0.635000 6.000000 2.446912 3.391298 -2.756298 4.026298

So, since confidence interval does include zero, this indicates
progesterone population mean cellular response
(i) is less than (ii) equals (ii) is greater than (ii) is different from
control population mean cellular response.

3. Inference for µ1 − µ2, independent samples, unknown σ2
1 6= σ2

2: progesterone.
Same question as before but assume unknown σ2

1 6= σ2
2. Calculate 95% CI.

female progesterone (1) female control (2)
1 5.85 5 5.23
2 2.28 6 1.21
3 1.51 7 1.40
4 2.12 8 1.38

progesterone <- c(5.85, 2.28, 1.51, 2.12)

control <- c(5.23, 1.21, 1.40, 1.38)

From R, x̄1 ≈ 2.94, s1 ≈ 1.97, x̄2 ≈ 2.305, s2 ≈ 1.95 (notice s1 ≈ s2)

m1 <- mean(progesterone); m1; s1 <- sqrt(var(progesterone)); s1

m2 <- mean(control); m2; s2 <- sqrt(var(control)); s2

> mean(progesterone); sqrt(var(progesterone))

[1] 2.94

[1] 1.968163

> mean(control); sqrt(var(control))

[1] 2.305

[1] 1.95186
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and critical value for 95% = (1− α) · 100% = (1− 0.05) · 100% CI,
with degrees of freedom =

r =

(
s21
n1

+
s22
n2

)2

1
n1−1

(
s21
n1

)2

+ 1
n2−1

(
s22
n2

)2 =

(
1.972

4
+ 1.952

4

)2

1
4−1

(
1.972

4

)2
+ 1

4−1

(
1.952

4

)2 ≈

(i) 4 (ii) 6 (ii) 8 (same as when σ2
1 = σ2

2)

df = 5.9996

so tα
2

= t 0.05
2

= t0.025 ≈ (i) 2.31 (ii) 2.45 (iii) 3.09,

qt(0.975,6) # critical t value, 95% CI, n1 + n2 - 2 = 6 df

[1] 2.446912

and so 95% CI for µ1 − µ2 is

(x̄1 − x̄2)± tα
2

√
s2

1

n1

+
s2

2

n2

= (2.94− 2.305)± 2.45 ·
√

1.972

4
+

1.952

4
=

(i) (−2.52, 6.49) (ii) (−2.62, 6.39) (iii) (−2.76, 4.03)

mean2.t.interval(m1,m2,s1,s2,n1,n2, 0.95,"diff.var")

Mean Difference df Critical Value Margin of Error CI lower CI upper

0.635000 5.999585 2.446953 3.391355 -2.756355 4.026355

Since confidence interval does include zero, this indicates
progesterone population mean cellular response
(i) is less than (ii) equals (ii) is greater than (ii) is different from
control population mean cellular response.

4. Inference for difference in dependent means, µd: milk yield.
A study is conducted to determine effect of “gentech” animal feed on milk yield
of 9 cows. Cow 1 is fed a control feed for three months and then gentech feed
for next three months for comparison purposes. Other cows are treated in same
way. Calculate 95% CI of mean paired differences in milk yield. Fill in blanks.

cow gentech (1) control (2) differences, di
1 62 54
2 45 43
3 53 55
4 35 39
5 71 65
6 64 62
7 63 56
8 57 50
9 43 52
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gentech <- c(62, 45, 53, 35, 71, 64, 63, 57, 43)

control <- c(54, 43, 55, 39, 65, 62, 56, 50, 52)

diff <- gentech - control; diff

[1] 8 2 -2 -4 6 2 7 7 -9

d̄ ≈ (i) 1.41 (ii) 1.89 (iii) 2.52,
sd ≈ (i) 5.47 (ii) 5.86 (iii) 6.52,

mean(diff); sqrt(var(diff))

[1] 1.888889

[1] 5.861835

with n− 1 = 9− 1 = (i) 6 (ii) 7 (ii) 8 degrees of freedom,
and critical value 95% = (1− α) · 100% = (1− 0.05) · 100% CI,
so tα

2
= t 0.05

2
= t0.025 ≈ (i) 2.31 (ii) 2.53 (iii) 3.09,

qt(0.975,8) # critical t value, 95% CI, nd - 1 = 9 - 1 = 8 df

[1] 2.306004

and so 95% CI for µd is

d̄± tα
2

sd√
n

= 1.89± 2.31× 5.86√
8

=

(i) (−2.52, 6.49) (ii) (−2.62, 6.39) (iii) (−2.72, 6.29)

mean1.t.interval <- function(m,s,n,conf.level)

{

t.crit <- -1*qt((1-conf.level)/2,n-1)

margin.error <- t.crit*s/sqrt(n)

ci.lower <- m - margin.error

ci.upper <- m + margin.error

dat <- c(mean, t.crit, margin.error, ci.lower, ci.upper)

names(dat) <- c("Mean", "Critical Value", "Margin of Error", "CI lower", "CI upper")

return(dat)

}

mean1.t.interval(1.889,5.8618,9,0.95) # m: mean, s: SD, n: sample size, 95% t-interval

Mean Critical Value Margin of Error CI lower CI upper

1.889000 2.306004 4.505778 -2.616778 6.394778

Since confidence interval does include zero, this indicates
gentech population mean milk yield
(i) is less than (ii) equals (iii) is greater than (iv) is different from
control population mean milk yield.
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4.9 Sample Size

The length of a confidence interval (equivalently, margin of error) can be controlled
by sample size, in particular, the larger the sample size, the smaller, more accurate,
the confidence interval.

The sample size necessary to achieve a required margin of error, E, with a given
level of confidence in a confidence interval of proportion p is determined using formula,
if prior p̂ available,

n = p̂(1− p̂)
(zα

2

E

)2

,

and if prior p̂ unavailable,

n =
1

4

(zα
2

E

)2

.

The sample size necessary to achieve a required margin of error, E, with a given level
of confidence in a confidence interval of mean µ is determined using formula

n =
(zα

2
σ

E

)2

.

where, if σ2 is unknown, using approximation

σ ≈ max−min

4

Exercise 4.9 (Sample Size)

1. Sample size for proportion p: credit card purchase slips.

(a) With prior p̂: purchase slips.
In an initial simple random sample, twenty–five (25) of 100 purchase slips
chosen are Visa. What is sample size, n, required to estimate proportion
Visa purchase slips, p, to within margin of error of E = 0.01 with 85%
confidence? Here

n = p̂(1− p̂)
(zα

2

E

)2

=

(
25

100

)(
75

100

)(
1.44

0.01

)2

≈

(i) 3886 (ii) 5184 (ii) 5470.
n.prop <- function(p.hat,margin.error,conf.level)

{

z.crit <- -1*qnorm((1-conf.level)/2)

p.hat*(1-p.hat)*z.crit^2/margin.error^2

}

n.prop(0.25,0.01,0.85) # n for prior p-hat = 0.25, E = 0.01, 85% confidence

[1] 3885.47
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(b) Sample size for proportion p without prior p̂: purchase slips.
What is sample size, n, required to estimate proportion Visa purchase
slips, p, to within margin of error of E = 0.01 with 85% confidence? Here

n =
1

4

(zα
2

E

)2

=
1

4

(
1.44

0.01

)2

≈

(i) 4409 (ii) 5181 (iii) 5470.
n.prop(0.5,0.01,0.85) # n required no prior (max = 0.5), E = 0.01, 85% confidence

[1] 5180.627

Without prior p̂ = 0.25, sample size
(i) decreases (ii) remains same (iii) increases
from n ≈ 3886 to n ≈ 5181.

2. Sample size for mean µ: corn cob lengths.

(a) What sample size, n, required to estimate average corn cob length , µ, to
within margin of error E = 0.08 with 95% confidence? Assume σ = 0.25.

n =
(zα

2
s

E

)2

=
(z0.025σ

E

)2

=

(
1.96 · 0.25

0.08

)2

≈

(i) 37 (ii) 38 (iii) 39.
n.mean <- function(s,margin.error,conf.level)

{

z.crit <- -1*qnorm((1-conf.level)/2)

s^2*z.crit^2/margin.error^2

}

n.mean(0.25,0.08,0.95)

[1] 37.51425

(b) Increase margin of error, E.
What sample size, n, required to estimate average corn cob length , µ, to
within margin of error E = 0.16 with 95% confidence? Assume σ = 0.25.

n =
(zα

2
s

E

)2

=
(z0.025σ

E

)2

=

(
1.96 · 0.25

0.16

)2

≈

(i) 9 (ii) 10 (iii) 11.
n.mean(0.25,0.16,0.95) # n for sigma = 0.25, E = 0.16, 95% confidence

[1] 9.378562

When margin of error doubled, from E = 0.08 to E = 0.16, sample size
(i) quartered (ii) halved (iii) doubled from n = 38 to n = 10.
Less data gives less accurate, wider, CI.



172 Chapter 4. Statistics (LECTURE NOTES 8)

4.10 Assessing Normality

Exercise 4.10 (Assessing Normality)
Check assumptions for average length of corn cobs, raw data.
Corn cob lengths for n = 15 < 30 cobs, chosen at random, are noted.

18, 23, 24, 20, 21, 19, 27, 24, 19, 20, 25, 20, 18, 26, 20

x <- c(18, 23, 24, 20, 21, 19, 27, 24, 19, 20, 25, 20, 18, 26, 20)

Figure 4.7: Normal probability plot for cob lengths

Normal probability plot indicates cob lengths (i) normal (ii) not normal because
scatter plot (more or less) linear.

x <- c(18, 23, 24, 20, 21, 19, 27, 24, 19, 20, 25, 20, 18, 26, 20)

qqnorm(x,datax=TRUE) # QQ plot

qqline(x,datax=TRUE) # QQ line

Since classifying normality of data using a normal probability plot is somewhat in-
exact, we will later look at a measure of linearity called correlation, ρ, a number
between -1 (perfectly negatively linear) and +1 (perfectly positively linear), which
will provide further information to help us decide if the normal probability plot is
linear or not.
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