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I. Introduction 

1. This document describes common types of sampling approaches and includes 
recommended outline for a sampling plan, recommended practices for unbiased estimates of 
sampled parameters and recommended evaluation criteria for DOE validation besides several best 
practice examples covering large and small-scale project activities. It also provides examples for 
checking reliability of data collected through sample surveys. 

2. Furthermore, it covers the following items: 

(a) Methods, if any, to deal with missed reliability targets without compromising 
conservative estimates for emission reduction; 

(b) Best practice examples for DOE validation/verification for sampling and surveys. 
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II. Common types of sampling approaches 

3. This section provides a summary1 of some of the most common types of sampling 
approaches and typical situations where each is recommended. Formulas for calculating standard 
errors of estimates from each sampling technique, confidence intervals and associated sample sizes 
are provided in the reference texts cited at the end of this report. The provided sampling 
information primarily relates to determining point estimates of average (mean) values of a 
parameter. 

A.  Simple random sampling 

4. A simple random sample is a subset of a population (e.g. villages, individuals, buildings, 
pieces of equipment) chosen randomly, such that each element (or unit) of the population has the 
same probability of being selected. The sample-based estimate (mean or proportion) is an unbiased 
estimate of the population parameter. 

5. Simple random sampling is conceptually straightforward and easy to implement – provided 
that a sampling frame of all elements of the population exists. Its simplicity makes it relatively easy 
to analyze the collected data. It is also appropriate when only minimum information of the 
population is known in advance of the data collection. 

6. Simple random sampling is suited to populations that are homogeneous. In many instances 
a large population size and dispersed nature of population may cause a lack of homogeneity, while 
in some cases those factors may have relatively low impact on homogeneity (e.g. a large number of 
biogas digesters located in varying altitudes and temperature zones may be less conducive for 
simple random sampling to determine the average amount of biogas production per digester, while 
the usage hours of light bulbs across wide geographic areas and among large populations with 
similar socioeconomic circumstances connected to a single or similar grid/s may be sufficiently 
homogeneous for simple random sampling). The costs of data collection under simple random 
sampling could be higher than other sampling approaches when the population is large and 
geographically dispersed. 

B.  Stratified random sampling 

7. When the population under study is not homogeneous but instead consists of several sub-
populations which are known (or thought) to vary, then it is better to take a simple random sample 
from each of these sub-populations separately. This is called stratified random sampling. The sub-
populations are called the strata. When considering stratified random sampling it is important to 
note that when identifying the strata no population element can be excluded and every element 
must be assigned to only one stratum. For example, the population of participants in a commercial 
lighting programme might be grouped according to building type (e.g. restaurants, food stores, and 
offices). 

8. Stratified random sampling is most applicable to situations where there are obvious 
groupings of population elements whose characteristics are more similar within groups than across 
groups (e.g. restaurants are likely to be more similar to one another in terms of lighting use than 
they are to offices or food stores). It requires that the grouping variable be known for all elements 

                                                      
1 See Table 1 for advantages and disadvantages of each sampling approach. 
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in the sampling frame. For example, the sampling frame would require information on the building 
type for each case in the population to allow stratification by that characteristic. 

9. Stratification helps to ensure that estimates of a population characteristic are accurate, 
especially if there are differences amongst the strata. For example, if lighting use within office 
buildings tends to be lower (on average) than in food stores then this can be taken into account 
when estimating the overall average number of hours of operation. Equally, if the cases within each 
stratum are more homogeneous than across strata, then the estimated number of hours of operation 
will be more precise than if a simple random sample of the same size had been taken.  

C.  Systematic sampling 

10. Systematic sampling is a statistical method involving the selection of elements from an 
ordered sampling frame. The most common form of systematic sampling is an equal-probability 
method, in which every kth element in the frame is selected, where k, the sampling interval 
(sometimes known as the “skip”), is calculated as: 

k = population size (N) / sample size (n) 

11. Using this procedure, each element in the population has a known and equal probability of 
selection. The project participant shall ensure that the chosen sampling interval does not hide a 
pattern. Any pattern would threaten randomness. A random starting point must also be selected. 
Systematic sampling is to be applied only if the given population is logically homogeneous, 
because systematic sample units are uniformly distributed over the population. 

12. Systematic sampling is applicable in a number of situations. If there is a natural ordering or 
flow of subjects in the population, such as output of bricks in a manufacturing process, then it is 
typically easier to sample every kth unit to test for quality as they are produced. In all cases, it is 
important that the list of subjects or the process is naturally random, in the sense that there is no 
pattern to its order. 

D.  Cluster sampling 

13. Clustered sampling refers to a technique where the population is divided into sub-groups 
(clusters), and the sub-groups are randomly selected (sampled), rather than the individual elements 
which are to be studied. The data are then collected on all the individual elements in the selected 
sub-groups.  

14. Cluster sampling is used when “hierarchical” groupings are evident in a population, such as 
villages and households within villages, or buildings and appliances within buildings. For example, 
suppose a project installs high-efficiency motors in new apartment buildings, with several motors 
typically in each building. In order to estimate the operating hours of the motors, one might take a 
sample of the buildings instead of the motors, and then meter all of the motors in the selected 
buildings.  

15. In contrast to stratified sampling, where the equipment of interest is grouped into a 
relatively small number of homogeneous segments, there are many clusters of motors (i.e. 
apartment buildings), and there is no expectation that the motors in each building are more 
homogeneous than the overall population of efficient motors. 
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16. Cluster sampling is useful when there is no sampling frame at the lowest level of the 
hierarchy but there is one at the cluster level, as in the case above where a ready list of all motors 
would not be available, but a list of all new apartment buildings would be. 

17. In many applications to monitor efficient equipment, the units occur naturally in clusters, 
with a different number of elements per cluster. For example, a building or plant location might 
constitute a natural cluster, with varying numbers of pieces of equipment per location. 

18. A cluster sampling approach can offer cost advantages. For instance, if a significant 
component of the cost of data collection is travel time between buildings, but there is minimal cost 
to collect data on units within a building, then it is more cost-effective to collect data on all units 
within a sample of buildings than to take a simple random sample across all units in the study. It 
will, however, usually be necessary to meter more pieces of equipment (sample more clusters) to 
achieve the same level of precision as the simple random sampling, but the reduction in cost and 
other benefits may more than offset this apparent increase in effort.  

E.  Multi-stage sampling 

19. Multi-stage sampling is a more complex form of cluster sampling. Measuring all the 
elements in the selected clusters may be prohibitively expensive, or not even necessary. In multi-
stage sampling, the cluster units are often referred to as primary sampling units and the elements 
within the clusters secondary sampling units. In contrast to cluster sampling where all of the 
secondary units are measured, in multi-stage sampling data are collected for only a sample of the 
secondary units. 

20. For example, in a study of efficient lighting, if the operation hours of motors within any 
one building are thought likely to be similar across all motors then – especially if the cost of 
measuring them is relatively high – there is not much to be gained by metering all of them. It might 
be better to draw a sample of buildings, and then only measure a sample of motors from within 
each selected building. On the other hand, if the measurements are inexpensive once a technician is 
on-site, then it may make sense to monitor all of the fixtures. 

21. Multi-stage sampling can be extended further to three or more stages. For example, one 
might group the population into building complexes, then buildings, and finally fixtures. 

22. So far, most of the methods above have been based on simple random sampling. Another 
option is to sample with probability proportional to size, and this is sometimes used in cluster 
sampling where clusters are of different sizes, or in multi-stage sampling.  

23. There are therefore many variations in methods in applying multi-stage sampling. If the 
number of secondary units in each primary unit is not known in the sampling frame, then one 
approach is to draw a sample of primary units at random, count the number of secondary units in 
each selected primary unit, and then take detailed measurements for a sample of secondary units. 
Another option is to sample the primary units with probability proportional to size, and to draw a 
random sample of the secondary units in the selected primary units. The relative performance of 
these alternatives depends on the population characteristics, the costs of data collection, and the 
availability of information on the primary and secondary units in the sample frame. 

24. Table 1 below indicates advantages and disadvantages of various sampling schemes in a 
summary form. 
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Table 1: Advantages and disadvantages of different sampling schemes 

Sampling Scheme Advantages Disadvantages 

Simple Random Sampling: 

Taking a random sample 
from the whole population. 

Easiest method to understand and 
therefore use. 

Suitable if there is little 
heterogeneity amongst the units 
being sampled 

Requires knowledge of 
entire population before a 
sample can be selected. 

If the population covers a 
large geographical area, 
then it can often lead to 
sampling units that are 
spread out over the area. 
Such a situation can often 
be costly. 

Only suitable if the 
population being studied is 
relatively homogeneous 
with respect to the 
parameter being studied 

Systematic Sampling: 

Taking a sample every n 
units 

Easy to apply.  

Commonly used as it ensures there 
is always sufficient distance between 
samples 

Leads to units being spread 
out over a large geographic 
area. Such a geographic 
distribution can often be 
costly 

Stratified Random 
Sampling: 

Randomly sampling a 
different number of units 
from each strata according to 
the weight of each strata in 
the population 

Improves the precision of the 
estimate (compared to simple 
random sampling) if there are 
differences between the strata 

Complicated to calculate.  

What the stratification 
factors should be is not 
always obvious 

Cluster Sampling: 

Sampling every unit in a 
sample of n clusters from the 
population 

The most economical form of 
sampling as units are all grouped 
according to one criterion (often 
geographical).  

Sometimes the only approach, since 
a list of all households may not be 
available, only a list of villages. 
Once the villages have been 
selected, the households can be 
sampled. It saves time at a 
management level 

Results are not normally so 
‘good’ (i.e. standard errors 
of estimates tend to be high 
due to homogeneity of 
characteristics in the 
subgroup sampled). But a 
larger sample can help to 
compensate for this 
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Sampling Scheme Advantages Disadvantages 

Multi-stage Sampling: 

Randomly sampling a 
number of units within a 
number of randomly selected 
clusters 

Enables sampling approach at two 
levels.  

Can compare different scenarios – 
number of clusters and number of 
units within the clusters – in order to 
find most cost-efficient and reliable 
scenario 

Analysis and the sample 
size calculation are more 
difficult 
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III. Recommended outline for a sampling plan 

25. The sampling plan should contain information relating to: (A) sampling design; (B) data to 
be collected; and (C) implementation plan. 

A. Sampling design 

26. Objectives and reliability requirements describes the objective of the sampling effort, the 
timeframe, and the estimated parameter value(s). Identify the sampling requirements (applicable 
CDM methodology or sampling standards) and the confidence/precision criteria to be met. For 
example, the objective is determining the mean monthly value of parameter “X” during the 
crediting period, and with a 90/10 confidence/precision. 

27. Target population defines the target population, and describes any particular features 
associated with it. 

28. Sampling method selects and describes the sampling method, e.g. simple random sampling, 
stratified sampling, cluster sampling. Strata or clusters shall be clearly identified if sampling other 
than simple random sampling is to be used. 

29. Sample size addresses and justifies the estimated target number of “units” – pieces of 
equipment, solar cookers, buildings, motors, log-books, etc. – which are to be studied (i.e. the 
sample size). The justification shall include the parameter of interest, the value it is expected to 
take and an estimate of the variance associated with the data, as well as the level of confidence and 
precision (note that if the parameter of interest is a proportion, or a percentage, then there is no 
need to specify a variance estimate). 

30. Sampling frame identifies or describes the sampling frame to be used. This shall agree with 
the information about the Target Population and Sampling Design above. For instance, if cluster 
sampling is to be used in a study of equipment in buildings, then the frame should be a listing of 
the buildings from which the sample will be selected. 

B. Data to be collected 

31. Field measurements identifies all the variables to be measured and determine appropriate 
timing and frequency of the measurements. When the measurements are conducted only during 
limited time periods and are to be scaled up to the whole year, demonstrate that the parameter of 
interest is not subject to seasonal fluctuations or the time period selected is conservative or the 
necessary corrections are applied. Methods of measurement shall be described as appropriate; 

32. Quality assurance/Quality control describes how to achieve good quality data, for example 
describe the procedures for conducting the data collection and/or field measurements including 
training of field personnel, provisions for maximizing response rates, documenting out-of-
population cases, refusals and other sources of non-response, and related issues. An overall quality 
control and assurance strategy shall be documented in the plan. This shall include a procedure for 
defining outliers and under what circumstances outlier data/measurements may be excluded and/or 
replaced. 

33. Analysis describes how the data will be used. 
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C. Implementation 

34. Implementation plan defines the schedule for implementing the sampling effort and 
identify the skills and resources2 required for data collection and the analyses. 

                                                      
2 A general description of qualifications and experience of personnel who will be engaged should be 

provided, not necessarily listing specific names, qualification and experience. 
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IV. Recommended practices for unbiased estimates of sampled parameters 

35. Practitioners are expected to observe sound practices in designing samples and 
administering surveys and field measurements.3 Those practices include: 

(a) Defining precisely the sampling objectives and target population and the 
measurements to be taken and/or data collected. The sampling objectives will, 
for the most part, be concerned with estimation, i.e. estimating a characteristic (e.g. 
mean or percentage) of a population. Occasionally, the objective will be one of 
comparison, for example to compare the uptake in rural areas with that of urban 
areas: 

(i) The target population is the “greater entity” to which the results from the 
survey sample are to be generalized, for example all new light fittings that 
are installed in new buildings in country X; 

(ii) The information that will be collected will depend on the objectives, for 
example if a project needs to estimate the average number of hours of 
operation of a new efficient motor, then the data to be collected on each 
sampling unit is its number of hours of operation. Other measurements to 
be taken may relate to the characteristics of the strata, or clusters, or any 
other variable that may be relevant to the project objectives. 

(b) Deciding on the sampling design and the size of the sample. This decision is 
based on the information provided above; 

(c) Developing the sampling frame. A sampling frame is a complete listing of all 
individual units (elements, members) that can be considered as a representation of 
the whole population, and which can be used as a basis for selecting a sample, such 
as a list of all households in an area that have had solar cookers installed.4 In the 
case of cluster sampling or multi-stage sampling, the sampling frame is a complete 
listing of sub-groups of the study area/population5 which constitutes all the clusters 
or primary sampling units. 

Without such a frame, or its equivalent, methods of sampling with assured 
properties such as unbiasedness are not available. The implementer of the survey 
effort shall compile a clear description of the target population, including those 
characteristics of the population which define membership. From the description 
and characteristic the implementer can then select a sampling frame; 

(d) Randomizing cases and drawing sample. The implementer should ensure that 
the sample is drawn at random from the sampling frame. This can be done using 
random number tables or using the random number generator of appropriate 

                                                      
3 For a very comprehensive treatment of issues surrounding sample/survey design, see Household Sample 

Surveys in Developing and Transition Countries, United Nations, 2005, ISBN 92-1-161481-3. 
4 Such a listing shall be available for check during validation/verification but not necessarily included in the 

PDD documents. 
5 A suitable map with the sampling units marked on it and properly delineated may also be regarded as a 

sampling frame and used in drawing samples. 
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software. If a systematic sampling is chosen, then the ordering of subjects on the 
sample should be random and free of any trend or cyclical pattern; 

(e) Selecting the most effective information-gathering method. The implementer 
should decide on what would be the most reliable and cost-effective method for 
collecting the data, depending on the variables of interest. Alternative methods 
include visual inspections, physical measurements, respondent self-reports, and 
operational logs. For example, equipment retention rates may be determined by 
inspections or self-reports. Estimates of electric consumption could be based on 
different metering technologies depending on the characteristics of the equipment. 
Vehicle travel miles or equipment operating schedules could be drawn from 
odometers or operation logs; 

(f) Conducting surveys/measurements. The project implementer is expected to 
establish and implement procedures to ensure that the field data collection is 
performed properly and that any potential intentional errors or unintentional errors 
are minimized and documented. Such procedures include: developing field 
measurement protocols; training personnel; establishing contact procedures; 
documenting coverage problems, missing cases, and non-response; minimizing 
non-sampling measurement errors; and quality control for data coding errors; 

(g) Minimizing non-response and adjusting for its effects. The project implementer 
is expected to make all reasonable efforts to minimize non-response, to analyze 
potential bias arising from non-response, and to correct for any detected biases or 
losses in precision due to non-response. Field data collection protocols should 
specify procedures for multiple contacts to minimize non-response, require 
documentation of reasons for non-response, and prescribe corrective measures to 
compensate for its occurrence. Corrective measures may include over-sampling, 
replacing non-respondents with similar subjects, applying “correction factors” and 
imputing responses. 
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V. Recommended evaluation criteria for DOE validation 

36. The following questions and evaluation criteria serve as examples and should be utilized 
by DOEs to validate the proposed sampling plans: 

(a) Does the sampling plan present a reasonable approach for obtaining unbiased, 
reliable estimates of the variables? 

(i) In terms of assessing reliability, are the elements of Objectives and 
Reliability Requirements complete? Do the requirements specified agree 
with those stated in the appropriate standards? If not, is there a reason why 
they are not met? 

(ii) From all the different elements of the Design, is there any reason to 
suspect that the results from the activity will be biased? For instance, is the 
population under consideration only urban households? What about rural 
households? Might this cause a bias when the data are extrapolated to 
emission reductions? 

(b) Is the population clearly defined, and how well does the proposed approach to 
developing the sampling frame represent that population?  

(i) The population should be clear from the Target Population description. 
Whether or not the sampling frame is possible or appropriate will depend 
on the detail and the particular situation, for example if a map is going to 
be used, a question would be whether a map already exists, and how 
reliable it is. If a map does not exist, then who is going to create it?  

(c) Is the proposed sampling approach clear? 

(i) Is it clear which sampling method is being proposed? For example, is it 
simple random sampling, or some other method of sampling?  

(ii) Does the method agree with the description of the population? Are there 
clusters or strata, and if so does it state what they are? For example, are 
they buildings, villages, etc.? 

(d) Is the proposed sample size adequate to achieve the minimum confidence/precision 
requirements? Is the ex ante estimate of the population variance needed for the 
calculation of the sample size adequately justified? 

(i) All of the information set out in the sampling plans should help answer 
this question. If not all information is provided then the question cannot be 
answered; 

(ii) Is the target value for the population parameter reasonably anticipated? 

(iii) Does the estimate of variability seem reasonable? 

(e) Is the sample representative? 

(i) Is it clear how the sample is to be selected? For example, is it to be 
selected randomly? 

(ii) Does the Plan indicate that the sampling frame will be kept (e.g. in hard 
copy or a computer file of screen shot copy), and that random numbers 
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will be generated and these random numbers will then be used to select the 
sample? 

(f) Is the data collection/measurement method likely to provide reliable data given the 
nature of the parameters of interest and project, or is it subject to measurement 
errors? 

(i) Are the methods of data collection clear and unambiguous? Are there 
questions which could be subject to respondent error due to sensitivity 
(e.g. “How much money do you spend on heating?”), lack of recall (e.g. 
“How many times did you buy fuel last year?”), and the like?  

(ii) Are there questions that could be subject to measurement error? For 
example, is a particular measurement method known to under-record key 
data, such as the weight of bricks?  

(g) Are the procedures for the data measurements well defined and do they adequately 
provide for minimizing non-sampling errors?  

(i) Is the quality control and assurance strategy adequate?  

(ii) Are there mechanisms6 for avoiding bias in the answer? 

(h) Does the frame contain the information necessary to implement the sampling 
approach? 

(i) Are the proposed skill sets, qualifications and experience of the personnel 
to be engaged to conduct sampling adequate? 

                                                      
6 Mechanisms for avoiding non-sampling errors (bias) include good questionnaire design, well-tested 

questionnaires, possibly pilot testing the data collection. 
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Appendix A 

Best practice examples for sample size calculations 

1.  Introductory notes on sample size calculations 

37. There are different equations to calculate a required sample size for different situations. 
Most of the examples in this document are for finite populations such as cook stoves or compact 
fluorescent lamps (CFLs), but there is also one example for a wastewater treatment plant where the 
measurements are done for the continuous flow of wastewater.  

38. Which equation to use depends on the following:  

(a) Parameter of interest, for example: 

(i) A percentage, such as the proportion of annually operating cook stoves; 

(ii) A numeric value, such as the mean value of operating hours of CFLs, the 
mean value of dry compressive strength (to check whether the 
manufactured bricks are of a certain quality). 

39. There are other parameters, that is ratios, but this guide only covers proportions and means: 

(a) Sampling scheme. This document contains the equations and examples using the 
following five sampling schemes: 

(iii) Simple random sampling; 

(iv) Systematic sampling; 

(v) Stratified random sampling; 

(vi) Cluster sampling; 

(vii) Multi-stage sampling. 

40. There are a number of factors that affect the sample size required, and these are described 
below: 

(a) The value that the parameter is expected to take, for example: 

(i) Sampling to see whether 80% of installed cook stoves are still in operation 
will give a different sample size required than 65%. The same is true for 
mean values; 

(b) The amount of variation affects the sample size required. The larger the variation 
associated with the parameter of interest the larger the sample size required for the 
same level of confidence and precision; 

(c) The level of precision (e.g. ±10% of relative value of the parameter’s true value) 
and confidence (e.g. 90% or 95%) in that precision which is desired for 
determining the parameter also determines the sample size. The higher the required 
confidence and the narrower the precision the more samples are required. 

41. Estimates of the parameter of interest (proportion, mean and standard deviation) are 
required for sample size calculations. There are different ways to obtain these: 
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(a) We may refer to the result of previous studies and use these results;  

(b) In a situation where we do not have any information from previous studies, we 
could take a preliminary sample as a pilot and use that sample to provide our 
estimates; 

(c) We could use “best guesses” based on the researcher’s own experiences. 

42. Note that if the standard deviation is unknown but the range (maximum – minimum) is 
known then a rough “rule of thumb” is that the standard deviation can be estimated as the range 
divided by 4.  

43. Also, for different sampling schemes additional information is required, such as strata 
estimates rather than just the population information. 

44. There are three additional points to make in relation to these sample size calculations: 

(a) If sample size calculations are being performed manually, it is important to retain 
as many decimal places as relevant, until the final calculated figure is reached. 
Only then should rounding be carried out. In this document, however, for clarity of 
presentation the detailed calculations are shown with only a small number of 
decimal places, although the actual calculations themselves used more than is 
shown;  

(b) Researchers are encouraged to carry out more than one sample size calculation. It 
is highly unlikely that accurate estimates of the parameters will be available, and 
so the calculation should be performed for a range of possible estimates (e.g. 
proportion, or mean and standard deviation), and the largest sample size chosen. 
This should help to ensure that the sample selected will meet the required 
reliability criteria;  

(c) The pilot studies that are included in the examples here are deliberately small so 
that calculations can be illustrated fairly easily. In real-life situations they should 
be larger than those used here.  

2.  Sample size calculations - Small-scale examples 

45. For all of the small-scale examples below, we require 90% confidence that the margin of 
error in our estimate is not more than ±10% in relative terms.  

Proportional parameter of interest (Cook stove project) 

46. This section covers sample size calculations based on a proportion (or percentage) of 
interest being the objective of the project, under four different sampling schemes. Regardless of the 
sampling scheme used, the following have to be pre-determined in order to estimate the sample 
size: 

(a) The value that the proportion is expected to take; 

(b) The level of precision, and confidence in that precision (90/10 for all small-scale 
examples). 

47. For all of the cook stove examples below, the proportion of interest is the number of 
project cook stoves that are still in operation at the end of the third year after the stoves were 
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distributed; it is thought that this proportion is 0.5 (50%). The cook stoves were distributed to 
640,000 households, and it has been assumed that 1 household = 1 cook stove. 

Example 1 – Simple random sampling 

48. Suppose that the population is homogenous with respect to the continued use of the cook 
stoves. Then simple random sampling would be an appropriate method to estimate the proportion 
of cook stoves still in operation. 

The equation to give us the required sample size is: 

)1(645.11.0)1(
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Where: 

n Sample size  

N Total number of households (640,000) 

p Our expected proportion (0.50) 

1.645 Represents the 90% confidence required 
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222

2





n

 
(2) 

49. Therefore the required sample size is at least 271 households. This assumes that 50% of the 
cook stoves would be operating. If we changed our prior belief of the underlying true percentage of 
working stoves p, this sample size would need recalculating. 

50. Note that the figure of 271 households means 271 households with data for analysis. If we 
expected the response rate from the sampled households to be only 80% then we would need to 
scale up this number accordingly. Thus we would decide to sample 271/0.8 = 339 households.  

51. If we did not scale up our sample size and experienced a response rate of 80% then we 
would only have 216 (2710.8 = 216) households/cookers with data, and consequently the level of 
precision would be detrimentally affected. We can calculate the actual level of precision by 
substituting n = 216 into the equation: 

216
5.05.0645.15.0)1000,640(

5.05.0000,640645.1
222

2





precision

 (3) 

52. This gives a relative precision of 0.1119, or 11.2% – not the 10% required. So by not 
adjusting our estimated sample size to take into account the expected response rate we have an 
increased margin of error. 
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53. One solution to this could be to take an additional sample of households. This additional 
sample would need to recruit 69 households which would then, again assuming a response rate of 
80%, provide data on 55 households (80% of the 69). Adding these to the existing 216 gives us 
data for 271 households, the number required to achieve 90/10 reliability. 

Approximate equation 

54. The equation used above is the exact equation derived from simple random sampling 
theory. When population sizes are large (or infinite), then an approximate equation can be used, 
which ignores the actual size of the population (N). The approximate equation for the 90/10 
confidence/precision guideline is: 

        Approximate Equation                   Sample size for the above example 

Proportion data        
p

p
n





2

2

1.0

)1(645.1
             271    












5.01.0

)5.01(645.1
2

2

  

Notes on approximate equations   

55. As the sample size in this example is large, there is no difference between the sample sizes 
derived from the exact and approximate equations. However, for smaller populations (N<5000) and 
small p’s (less than 0.5) there will be a difference. 

56. Since the exact equation can be easily calculated, it is recommended that the exact equation 
be used in preference to the approximate one. It avoids having to decide whether the population 
size is large enough for it to be possible to use the approximate equation. 

57. The scaling-up of the sample size due to non-response will also apply to the approximate 
equation. 

Example 2 – Stratified random sampling 

58. This time we know that stoves were distributed in four different districts and that the cook 
stoves are more likely to be still in operation in certain districts compared to others.7 In this 
situation we want to take our knowledge about the district differences into account when we do the 
sampling, and sample separately from each district. Estimates of the proportion of cook stoves still 
in operation in each district, as well as the population size of each district are required. 

District Number of households with 
cook stove in district* 

(g) 

Proportion of cook stoves still in 
operation in district 

(p) 
A 76,021 0.20 
B 286,541 0.46 
C 103,668 0.57 
D 173,770 0.33 

                                                      
7 If the proportions were expected to be the same in each district then simple random sampling should be 

used. 
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* Note that the districts cover all of the population (sum of district populations = total population) 

59. The equation for the total sample size is: 

VN

NV
n

22

2

645.11.0)1(

645.1


  (4) 

Where:  
2

2 2

overall variance

 
 

SD
V

p p
 and p  is the overall proportion.  

60. To then decide on the number of households in the sample that come from each district we 
could use proportional allocation, where the proportions of units from the different districts in the 

sample are the same as the proportions in the population. This gives    where i=1,…,k i
i

g
n n

N  
and k is the number of districts in the area (in this case 4). 

Where: 

gi Size of the ith group (district) where i=1,…,k  

N Population total 

61. We use the figures from the table above to calculate the overall variance,8 and proportion 
of cook stoves still in operation. 

N

ppgppgppgppg
SD kkkcccbbbaaa ))1((...))1(())1(())1((2 

  (5) 

( ) ( ) ( ) ... ( )       
 a a b b c c k kg p g p g p g p

p
N  (6) 

Where gi and N are as above and pi is the proportion for the ith group (district); i=1,…,k 

Substituting the values from the table into the above equations for SD2 and p  gives: 

2 (76021 0.20 0.8) ... (173770 0.33 0.66)
0.23

640000

     
 SD

 (7) 

(76021 0.20) (286541 0.46) (103668 0.57) (173770 0.33)
0.41

640000

      
 p

 (8) 

Therefore: 

2

2 2

0.23
1.37

0.41
  

SD
V

p  (9) 

                                                      
8 The variance of a proportion is calculated as: p(1-p). 
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Substituting in V into our sample size equation gives: 

0.367
37.1645.11.0)1640000(

37.1640000645.1
22

2





n  (10) 

62. The total sample size required is 367 households. This then needs to be divided up 
according to the size of each district to get the number of households that should be sampled in 
each district.  

General equation: 
n

N

g
n i

i 
 (11) 

District A: 
7.43367

640000

76021
an

    District B: 
8.164367

640000

286541
bn

 

District C: 6.59367
640000

103668
cn     District D: 9.99367

640000

173770
dn  

63. Rounding up the district samples sizes gives the number of households to be sampled in 
each district, 44 in A, 165 in B, 60 in C, and 100 in D (the sum of these is slightly greater than the 
total required sample size due to the rounding up of households within each district). 

64. Note that these sample sizes do not take into account non-response. If the expected level of 
response is 75% across all districts then divide each district sample size by 0.75; this will result in 
larger sample sizes allowing for the non-responders.  

Example 3 – Cluster sampling 

65. Now consider a different scenario. The households are not located in different districts. 
Instead they are ‘clustered’ or grouped into lots of villages. Instead of going to numerous individual 
households, we want to go to a number of villages and sample every household within each village. 

66. For this example the population comprises 120 villages, all of approximately similar size. 
In order to have some understanding of the proportion of cook stoves still operating and the 
variation in this proportion between villages, a small preliminary sample has been taken: 

Village 
Estimated proportion of 

cook stoves operating in each 
village 

1 0.37 
2 0.48 
3 0.50 
4 0.27 
5 0.68 

Average ( )p  0.46 

Variance 2
BSD  0.024 
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67. The average ( )p is just 0.37 0.48 0.50 0.27 0.68 2.3
0.46

5 5

   
 

 
and the variance 

between the clusters is: 

2 2 25
2 2

B
1

1 (0.37 0.46) (0.48 0.46) ... (0.68 0.46) 0.0946
SD = ( ) 0.0237

1 4 4

n

i
i

p p
n





     
   

 
 (12) 

The equation for the number of villages that need to be sampled is: 

VM

MV
c 22

2

645.11.0)1(

645.1


  (13) 

Where: 

 variance between clusters (villages)

average proportion 

2

2
 BSD

V
p  

C Number of clusters to be sampled (villages) 

M Total number of clusters (villages) – this must encompass the entire population 

1.645 Represents the 90% confidence required 

0.1 Represents the 10% relative precision required 

68. Substituting our values into the above equation gives the number of villages that are 
required to be sampled as: 

2

2 2

0.0237
0.11

0.46
BSD

V
p

  
 

(14) 

2

2 2

1 645 120 0 11
24 3

120 1 0 1 1 645 0 11

. .
c .

( ) . . .

 
 

     

(15) 

69. Therefore we would have to sample every household within 25 randomly selected villages. 
This approach to sampling assumes that the villages are homogenous. In this example this means 
that the proportion of cook stoves still operating in a village is independent of any other factors 
such as district (see example 2 – stratified sampling), economic status, etc. If the proportions are 
not independent of another factor then cluster sampling within each strata of the factor can be used. 

70. Since cluster sampling is dealing with data from whole clusters (villages in this example), 
non-response at the within-village level (household in this case) is less likely to be an issue, unless 
there is a high percentage of non-responses within a village. If there are only one or two missing 
values in a village it is still possible to obtain a usable proportion for that village based on all the 
other households that did provide data.  
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Example 4 – Multi-stage sampling 

71. Multi-stage sampling can be thought of as sampling from a number of groups, and then 
going on to sample units within each group. Continuing with the cook stove example, we want to 
sample a number of villages and then a number of households within each sampled village.  

72. We know that there are 120 villages and there are on average 50 households within each 
village, of which we plan to sample 10. From a small pilot study we already know the following: 

Village 
Proportion of cook 
stoves in operation 

A 0.37 
B 0.48 
C 0.50 
D 0.27 
E 0.68 

73. The equation for the number of villages to be sampled is: 

2

2

2

2

2

2

2

2

1

1

645.1

1.0

)1(

)(1

1

p

SD

M

N

uN

p

SD

uM

M

p

SD

c
B

wB














 

(16)

 

Where: 

C Number of groups that should be sampled 

M Total number of groups in the population (120 villages) 

u  Number of units to be sampled within each group (pre-specified as 10 households) 

N  Average units per group (50 households per village) 

2
BSD  Unit variance (variance between villages) 

2
WSD  Average of the group variances (average within village variation) 

p Overall proportion 

1.645 Represents the 90% confidence required 

0.1 Represents the 10% relative precision 

74. Using our table of pilot information we can calculate the unknown quantities for the 
equation above. 
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Where: 

p  is the average proportion of cook stoves, i.e. 0.37 ... 0.68
0.46

5

 
  

2
WSD  is the average variance within the villages, i.e. 2 0.2331 ... 0.2176

0.2295
5

 
 WSD  

2
BSD  is the variance between the village proportions, i.e. the variance between 0.37, 0.48 etc. This 

can be calculated in the usual way for calculating a variance i.e. using the equation 

2

2 1

( )

1

n

i
i

B

p p
SD

n








 
which gives 2 0.0237BSD   

75. Substituting our values into the group sample size equation gives: 

 

 

2 2

2

2 2

0 0237 120 1 0 2295 50 10
0 46 120 1 10 0 46 50 1

43 4
0 1 1 0 0237

1 645 120 1 0 46

. . ( )
. . ( )

c .
. .

. .


   

 
 

 
     (17) 

76. Therefore if we were to sample 10 households from each village we should sample 44 
villages for the required confidence/precision. 

77. It is usually useful to have this calculation automated so that a series of different u values 
(the number of units to be sampled in each group) can be used and the effect that this has on the 
number of groups to be sampled can be observed. 

Village 
Proportion of cook 

stoves in operation (pi) 
Variance within village 

(pi(1-pi)) 

A 0.37 0.2331 
B 0.48 0.2496 
C 0.50 0.2500 
D 0.27 0.1971 
E 0.68 0.2176 

Average 0.46p  2 0.2295WSD  

Variance 2 0.0237BSD    
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Number of households 
sampled in each village 

u 

Required number of  
villages 

c  
5 68 
10 44 
15 36 
20 32 
30 28 
50 25 

78. In this example, by doubling the number of households within each village to be sampled 
from 10 to 20, we reduce the number of villages that need to be visited from 44 to 32.  

79. Note that when u = the average number of households in a village (50), the required sample 
size is the same as that from cluster sampling as everyone within each village would be sampled. 
When u is smaller than the average number of households, the number of villages that need to be 
sampled under multi-stage sampling is greater than that from cluster sampling as not everyone 
within each village is being sampled. 

Mean value parameter of interest (CFL project) 

80. This section covers sample size calculations where the objective of the project relates to a 
mean value of interest, under four different sampling schemes. For the sample size calculations, 
regardless of the sampling scheme, we need to know: 

(a) The expected mean (the desired reliability is expressed in relative terms to the mean); 

(b) The standard deviation; 

(c) The level of precision, and confidence in that precision (90/10 for all small-scale 
examples). 

81. The examples below are based on the parameter of interest being average daily CFL usage, 
which is thought to be 3.5 hours, with a standard deviation of 2.5 hours. The population consists of 
420,000 households to which CFLs were distributed; we are assuming that 1 household = 1 CFL. 

Example 5 – Simple random sampling 

82. For simple random sampling to be appropriate we are assuming that CFL usage is 
homogenous amongst the households. 

83. The following equation can be used to calculate the sample size: 

2

2 2

1.645

( 1) 0.1 1.645

NV
n

N V


    
(18) 

Where: 

2









mean

SD
V  
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n Sample size  

N  Total number of households 

Mean Our expected mean (3.5 hours) 

SD Our expected standard deviation (2.5 hours) 

1.645 Represents the 90% confidence required 

0.1 Represents the 10% relative precision  

51.0
5.3

5.2
2







V  (19) 

0.138
51.0645.11.0)1000,420(

51.0000,420645.1
22

2





n

 
(20) 

84. Therefore the required sample size is at least 138 households. 

85. Note that if we expected the response rate from the sampled households to be only 70% 
then we would need to scale up the number obtained above accordingly. Thus we would decide to 
sample 138/0.7 = 198 households.  

Approximate equation 

86. The equation used above is the exact equation. When population sizes are large (or 
infinite), then approximate equations can be used, which ignore the actual size of the population 
(N).  

87. The approximate equation follows the 90/10 confidence/precision guideline: 

   Approximate Equation         Sample size for the above example 

Mean value data     
2

2

1.0

645.1 V
n    Where: 

2









mean

SD
V               138 







 


2

2

1.0

51.0645.1
 

88. Please see the ‘Approximate equation’ section under i) Cook Stove Project - 
Proportional parameter of interest, Example 1: Simple random sampling for notes relating to 
approximate equations. 

Example 6 – Stratified random sampling 

89. The key to this example is that, unlike under simple random sampling, it is not assumed 
that the population is homogeneous – different parts of the population are expected to have 
different CFL usage averages. 

90. Suppose that the CFLs were distributed in different districts in which each has a different 
CFL usage pattern (due to district economic backgrounds). We are now interested in sampling 
users of CFLs from all the districts to ensure all areas are well represented.  



UNFCCC/CCNUCC  
 
CDM – Executive Board  
 EB 69 

Report 
Annex 5 
Page 25 

 
 
91. Each district has the following number of households, and mean and standard deviation 
CFL usage: 

District Number of households 
in district given a CFL 

Mean 
(hours) 

Standard deviation 
(hours) 

A 146,050 3.2 1.9 
B 104,474 2.4 0.8 
C 38,239 4.5 1.6 
D 74,248 1.6 1.7 
E 56,989 2.3 0.7 

92. The total sample size of households across all five districts is: 

2

2 2

1.645

( 1) 0.1 1.645

NV
n

N V




    
(21)

 

Where: 

2
   
 

SD
V

mean   

SD  Is the overall standard deviation, and  

Mean Is the overall mean.  

93. Using the data in the table above we can estimate the overall mean and standard deviation. 
Both equations are weighted according to the total number of households in each district. 

94. Overall Standard Deviation: 

N

SDgSDgSDgSDg
SD kkccbbaa )(...)()()( 2222 


 

(22) 

Where: 

SD Weighted overall standard deviation 
SDi Standard deviation of the ith group where i=1,…,k, (note that these are all 
squared – so the group size is actually being multiplied by the group variance) 

gi Size of the ith group where i=1,…,k 

N Population total 

mean = 
( ) ( ) ( ) ... ( )       a a b b c c k kg m g m g m g m

N  
(23) 

Where: 

Mean Weighted overall mean 

mi Mean of the ith group where i=1,…,k 
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95. Substituting the values from our example into the above expressions gives: 

2 2 2(146050 1.9 ) (104474 0.8 ) ... (56989 0.7 )
1.49

420000

     
 SD

 
(24) 

(146050 3.2) ... (56989 2.3)
2.71

420000
mean

   
 

 
(25) 

96. Substituting these values into the equation for V gives: 

3.0
71.2

49.1
22
















mean

SD
V

  
(26)

 

And hence, for the sample size: 

7.81
3.0645.11.0)1000,420(

3.0000,420645.1
22

2





n

 (27) 

97. This example assumes proportional allocation, which means that the number of households 
we want to sample from each district is proportional to the size of the district within the population. 

The equation for each district sample size is: n
N

g
n i

i 
 

(28)
 

District A: 2982
420000

146050
an

  
District B: 2182

420000

104474
bn  

District C: 882
420000

38239
cn

  
District D: 1582

420000

74248
dn

 

District E: 1282
420000

56989
en  

98. The summation of these district sample sizes (29+21+8+15+12=85) is slightly greater than 
that calculated from the total sample size equation (82) above due to rounding. 

99. As with previous examples, the sample sizes above need to be scaled up to take into 
account any non-response expected. 

Example 7 – Cluster sampling 

100. Suppose CFLs were distributed to households in 50 villages. Instead of sampling from the 
whole population of households with CFLs, we sample a number of villages (villages=clusters), 
and then collect data from all households within the villages. 
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101. The equation used to give us the required number of clusters, c, to sample is: 

VM

MV
c

22

2

645.11.0)1(

645.1




 
(29) 

Where: 
2

 
   
 

SD
V

Cluster mean   

M Total number of clusters (50 villages) 

1.645 Represents the 90% confidence required 

0.1 Required precision 

102. To perform the calculations we need information about CFL usage at the village level, 
rather than at the household level. If such information does not already exist, we could possibly 
collect it in a pilot study. The example here assumes that data are available from a pilot study on 
five villages.  

Village 
Total usage 

across all households in 
the village9 

A 30458 
B 27667 
C 31500 
D 28350 
E 19125 

103. Calculating the mean and standard deviation of these figures gives: 

Cluster mean 
1

1 30458 27667 ... 19125
( ) 27420

5

  
  

n

i
i

y y
n  

(30)
 

2

1

1
 = ( )

1 


 

n

i
i

SD y y
n

 

where the yi are the total usages for the villages.  

2 23902660 and so 4889B BSD SD   

104. These statistics (i.e. mean and SD of data) are easily produced using statistical software. 

                                                      
9 In the pilot study these totals may be derived from collecting data on all households in the village, or else 

by taking a sample of households in the village and scaling up from the sample to all households.  
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105. Substituting these values into the equation gives the required number of clusters, i.e. 
villages as: 

2
4889

0 03
27420

V    
 

.
 (31) 

 
2

2 2

1 645 50 0 03
7 5

50 1 0 1 1 645 0 03

. .
c .

. . .

 
 

   
 

(32)

 

106. So we need to sample eight villages to satisfy the 90/10 confidence/precision criterion. 
Once a village is selected, all households in the selected village should be sampled. 

107. The above equation assumes that CFL usage in a village is independent of any other 
factors, such as economic status. If CFL usage was expected to vary according to another factor 
then cluster sampling can be used within each level of the factor. 

Example 8 – Multi-stage sampling 

108. Multi-stage sampling combines the cluster and simple random sampling approaches in a 
two-stage sampling scheme which enables us to randomly select some groups (villages) and then 
randomly sample some units (households) within those groups (villages). As with simple random 
sampling and cluster sampling, we are assuming homogeneity across villages in the usage of CFLs. 
We know that the 420,000 households are in 50 villages. 

109. Let us start by assuming that we want to sample 10 households in each village. In general 
terms we will call this number u (for units). 

110. In order to perform a sample size calculation we need information on: 

(a) The variation between households within the villages; 

(b) The variation between villages; 

(c) The average household usage;  

(d) The average usage at the village level. 

111. A previous study had provided data for households in five villages, and the results are 
summarized below. Note that not all villages in this example are exactly the same size.  
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CFL average daily usage (hours) 

Village 
Number of 
households 

Mean usage10  
per household in 

a village 

Total usage 
across all 

households 

Standard 
deviation11 

(between households 
within villages) 

A 8500 3.58 30458 2.60 
B 8300 3.33 27667 2.70 
C 8400 3.75 31500 0.66 
D 8100 3.50 28350 0.75 
E 8500 2.25 19125 1.50 

Total number 
of households 

41800    

Overall mean usage per 
household 

3.28   

Mean usage per village 27420  
SDB = Standard deviation between villages 
(SD of the total usage column) 

4889  

SDW = Average within village standard deviation 1.86 

112. In the table above, the overall mean CFL usage is the average usage for a household, i.e. 
30458 27667 ... 19125

 3.28
41800

Overall mean
  

 
 

113. The cluster or village mean CFL usage is the average usage for village, i.e. 
30458 27667 ... 19125

 27420
5

Cluster mean
  

 
 

114. 
2

WSD is the average of the variances between households within the villages. Its square 

root (SDW) is the average within village standard deviation. The equation for 2
WSD is:  

2 2
2 8500 2.60 ... 8500 1.50

3.48
41800WSD

   
   and so 1.86WSD 

 

2
BSD is the variance between the village total usages and its square root is the standard deviation 

between villages. It can be calculated using the usual equation for a variance, i.e. 

2

2 1

( )

1








n

i
i

B

y y
SD

n  
where the yi are the total usages for the villages.  

2 23902660 and so 4889B BSD SD 
 

                                                      
10 This can be a mean from all households or a mean from a sample of households. 
11 And this can be a standard deviation based on all households or a sample of households. 
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115. We have pre-specified that we want to sample 10 households within each village, so we 
need to calculate how many villages need to be sampled given a 90/10 confidence/precision 
criterion is required: 

22

22

1
1 1

0 1 1
1 645 1

WB

B

SDSD M N u
Clustermean M u Overallmean N

c
SD.

. M Clustermean

                          
         

 (33) 

Where: 

M Total number of groups (50 villages) 

 Average number of units per group (approximately 8,400 households per village) 

U Number of units that have been pre-specified to be sampled per group (pre-
specified number of households to be sampled in each village = 10) 

1.645 Represents the 90% confidence required 

0.1 Required precision 

2 2

2 2

4889 50 1 1 86 8400 10
27420 50 1 10 3 28 8400 1

14 9
0 1 1 4889

1 645 50 1 27420

.

.
c .

.
.

                               
           

(34) 

116. Therefore if we were to sample 10 households from each village we should sample 
15 villages for the required confidence/precision. 

117. It is usually useful to have this calculation automated so that a series of different u values 
(the number of units to be sampled in each group) can be used and the effect that this has on the 
number of groups to be sampled can be observed. 

Number of households 
sampled in each village 

u 

Required number of  
villages 

c  
5 23 
10 15 
15 13 
20 12 
25 11 

118. Compared to the cluster sampling example, more villages are required for the multi-stage 
sampling scheme because fewer households are being sampled within each village. 

119. Note that in the above example the villages are of slightly different sizes. In practice this is 
likely to be the case, although the actual sizes may not always be known. This is not critical to the 
sample size calculation. What is important is that sensible estimates of the mean and standard 
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deviation at both the cluster level (village level) and unit level (household level) are used in the 
calculation. 

Mean value parameter of interest (Brick project) 

120. This section covers an example sample size calculation based on systematic sampling 
where the objective of the project relates to a mean value of interest. 

As for all mean value parameters of interest examples we need to know: 

(a) The expected mean (the desired reliability is expressed in relative terms to the 
mean); 

(b) The standard deviation; 

(c) The level of precision, and confidence in that precision (90/10 for all small-scale 
examples). 

121. The following example is based on assessing whether bricks are of a minimum quality after 
manufacture; dry compressive strength has been identified as a suitable measurement of quality. 
Prior information gives us a mean dry compressive strength of 158kg/cm2 with a standard deviation 
of 65kg/cm2. 

Example 9 – Systematic sampling 

122. This example is based on a manufacturing process; we want to systematically sample every 
nth brick from the production line of 500,000 bricks per year. We wish to know how many bricks 
should be sampled to ensure an average dry compressive strength of 158kg/cm2, with 90/10 
confidence/precision. 

123. The sample size equation for a required 90/10 confidence/precision is: 

2

2

1.0

645.1 V
n 

 
(35)

 

Where: 

2









mean

SD
V

 

124. Substituting in mean and standard deviation from above gives: 

17.0
158

65
2







V

 
(36) 

8.45
1.0

17.0645.1
2

2




n
 

(37) 

125. Therefore, we should take 46 samples to gain the required levels of confidence and 
precision. Given that 500,000 bricks are manufactured each year and we want to take 46 samples, 
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we should sample 1 brick for every N/n bricks produced – that is 1 brick for every 10,917 
(= 500,000 / 46) bricks. 

126. To make sure our sample is random, we randomly choose a starting point (starting brick) 
between 1 and 10,917 and use this brick as our first sample – for example brick 6505. We continue 
sampling by taking every 10,917th brick, so our second sample would be brick 6505 + 10,917 
= 17,422, the third brick sampled would be 17,422 + 10,917 = 28,339, etc. For the sake of 
practicality it might be easier to sample every 10,000th brick; instead of every 10,917th, this would 
give a slightly larger sample size. 

Measurements in biogas projects 

Example 10 

127. A survey will be carried out to estimate the mean chemical oxygen demand (COD) at a 
wastewater plant. The wastewater is a continuous flow of water that leaves the plant. A 500 ml 
sample of water will be extracted (from plant inlet) from the continuous flow of wastewater on a 
regular basis throughout the year and a single measurement of COD (mg/L) made on each sample.  

128. This form of sampling, i.e. on a regular basis, possibly with a random start date, is 
systematic sampling.  

129. The wastewater system has been in place for some time, and is considered to be stable in 
terms of the way it is functioning. The COD for the inlet is thought to be at a constant level 
throughout the year (apart from random variation)12.  

130. Previous work where measurements were taken on a regular basis suggested that the mean 
COD for untreated water is likely to be about 31,750 mg/L and the standard deviation (SD) in the 
order of 6,200 mg/L.  

131. Since the wastewater is flowing continuously, the study population can be thought of as all 
possible 500 ml water samples in a whole year – so large as to be almost infinite. The sample size 
calculation no longer needs inclusion of the finite population size (i.e. N). 

132. If the sampling times are sufficiently far apart the data can be regarded as a set of 
independent observations and treated as a simple random sample. The number of COD 
measurements that are required to meet the 90/10 reliability is: 

1

2

0.1
     

nt SD
n

mean  

(38)

 

133. Where t n-1 is the value of the t-distribution for 90% confidence when the sample size is n.13 
However, the sample size is not yet known, and so a first step is to use the value for 90% 
confidence when the sample is large, i.e. 1.645, and then refine the calculation.  

                                                      
12 In reality, temporal fluctuations (daily, weekly, seasonally, etc.) both in the wastewater flow and COD 

concentration should be taken into account when taking samples. 
13 This is indicated by the subscript (n-1) which is called the degrees of freedom for the t-value. 
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2
1.645

0.1

    
SD

n
mean  

(39) 

134. This gives 
2

1.645 6200
10.3

0.1 31750
n

    
 which rounds up to 11.  

135. The calculation now needs to be repeated using the t-value for 90% confidence and n=11.  

136. The exact figure for this t-value can be acquired from any set of general statistical tables or 
using standard statistical software. For a sample size of 11 the value is 1.812. 

137. The calculation now gives 
2

1.812 6200
12.5

0.1 31750
n

    
 which rounds up to 13.  

138. The process should be iterated until there is no change to the value of n. Here the repeat 
calculation would have a t-value of 1.782 and the calculation would yield n = 12.11, which would 
be rounded up to 13. The sample size calculation suggests that sampling every four weeks should 
be sufficient for 90/10 reliability.  

Other calculated sample sizes 

139. The above is a relatively simple example, and not all situations will yield values as neat as 
“once a month” or “once every four weeks”. For instance:  

(a) Had the calculation indicated that 48 measurements should be taken, one would 
most likely decide to sample weekly for the whole year; 

(b) If the calculation had indicated 16 samples were required, then one might decide to 
sample every three weeks. Alternatively, since this may not be an easy schedule to 
comply with, one might choose to sample every two weeks. This now gives us a 
total of 26 samples which should ensure that the data, when collected and 
analysed, have more than adequate precision (assuming, of course, that the figures 
for the mean and the standard deviation that were used in the sample size 
calculation were good reflections of the true situation). 

140. Instead of trying to follow “unworkable” schedules, it may be more sensible to use the 
following simplifications: 

No. of measurements determined from 
sample size calculation 

Proposed schedule 

Less than or equal to 12 Monthly 
13–17 Every three weeks 
18–26 Every two weeks 
26–51 Every week 
More than 52  Twice a week 
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Understanding variation 

141. The above example illustrates the sample size calculation using an absolute figure for the 
standard deviation. However, sometimes researchers have difficulty providing a figure for the 
standard deviation, but they can express it in relative terms. For instance, when asked about the 
variation in COD in this wastewater example, the researcher may describe it as 20%.  

142. The coefficient of variation (CV) is a summary measure which describes variability in 

terms of the mean. The actual equation is 
SD

CV
mean

 . It is sometimes multiplied by 100, in 

which case it is describing the standard deviation as a percentage of the mean. The sample size 

equation on the previous page can now be written as 1

2

0.1
nt CV

n     
 

 where t n-1 is the value of 

the t-distribution for 90% confidence for a sample of n measurements. Again the value of 1.645 
would be used instead of a t-value for the first step in the calculation; and so in this example the 

first step would be 
2

1.645 0.2
10.8

0.1
n

   
 

. 

3.  Sample size calculations - Large-scale examples 

143. For the large-scale examples we require 95% confidence that the margin of error in our 
estimate is not more than ±10% in relative terms.  

Proportional parameter of interest (Transport project) 

144. This section covers sample size calculations based on a proportion (or percentage) of 
interest being the objective of the project, under four different sampling schemes. Regardless of the 
sampling scheme used, the following have to be pre-determined in order to estimate the sample size 
based on a proportion: 

(a) The value that the proportion is expected to take; 

(b) The level of precision, and confidence in that precision (95/10 for all large-scale 
examples). 

145. The examples relate to passengers travelling on the transport project in Bogota. It is known 
that 1,498,630 passengers use the project for transportation every day; the parameter of interest is 
the proportion of these passengers that would previously have travelled by bus, thought to be 45%.  

Example 11 – Simple random sampling 

146. Assuming that the proportion of interest is homogenous. The equation for the sample size 
required under simple random sampling is: 

VN

NV
n

22

2

96.11.0)1(

96.1




 
(40) 
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Where: 

2

)1(

p

pp
V




 

n Sample size with finite population correction 

N Total number of passengers per day 

p Our estimated proportion (45%) 

1.96 Represents the 95% confidence required 

0.1 Required precision  

147. Substituting our values into the above equation we get: 

22.1
45.0

)45.01(45.0
2




V
 

(41) 

4.469
22.196.11.0)1630,498,1(

22.1630,498,196.1
22

2





n

 
(42) 

 

148. The required sample size is at least 470 passengers to get an estimated proportion of 
passengers that would have previously travelled by bus with 95/10 confidence/precision. Note that 
the sample size will change depending on the estimated proportion value. 

149. The above sample size does not take into account any non-responders, that is passengers 
who do not respond to the question. If we expect that 90% of passengers will respond (and 10% 
will not) then we should increase the sample size by dividing the sample size calculated above by 
the expected level of response: 470/0.9 = 523. To account for a non-response of 10% we should 
sample 523 passengers. 

150. Please see the ‘Approximate equation’ section under i) Cook Stove Project - 
Proportional parameter of interest, Example 1: Simple random sampling for notes relating to 
approximate equations. Note that 1.96 should be used in place of 1.645 to account for the increased 
confidence required for the large-scale projects. 

Example 12 – Stratified random sampling 

151. Suppose that we believe the proportion of transport project passengers that would have 
previously used the bus would vary between the eight different zones in which the project operates. 
We would like to make sure that when we do our sampling, our sample includes a representative 
proportion of passengers from each zone. To calculate the sample size, estimates of the number of 
passengers and proportion that would have previously travelled by bus within each zone are 
required. 
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Zone Number of passengers 
within each zone 

(g) 

Estimated proportion of 
passengers that would 

have used a bus 
(p) 

A 19865 0.43 
B 21358 0.57 
C 301245 0.4 
D 65324 0.71 
E 654832 0.32 
F 50213 0.46 
G 12489 0.26 
H 373304 0.68 

152. The equation for the total sample size is: 

VN

NV
n

22

2

96.11.0)1(

96.1




 
(43) 

Where: 
 2

 overall variance

overall proportion
 

SD
V

p

2

2
 

153. To then decide on the number of passengers in the sample that come from each zone we 
could use proportional allocation, where the proportions of units from the different zones in the 
sample is the same as the proportions in the population. This gives: 

   where i 1, ,k   i
i

g
n n

N  
where k is the number of zones (in this case 8). 

Where: 

gi Size of the ith group (district) where i=1,…,k  

N Population total 

154. Using the figures from the table we can calculate the overall variance,14 and overall 
proportion:  

N

ppgppgppgppg
SD kkkcccbbbaaa ))1((...))1(())1(())1((2 


 (44) 

N

pgpgpgpg
p kkccbbaa )(...)()()( 


 (45) 

Where gi and N are as above and pi is the proportion of the ith group (district) where i=1,…,k. 

                                                      
14 The variance of a proportion is calculated as: p(1-p). 
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22.0
630,498,1

)72.028.0373304(...)43.057.021358()57.043.019865(2 


SD
 
(46) 

45.0
630,498,1

)28.0373304(...)57.021358()43.019865(



p

 
(47)

 

155. Therefore: 

09.1
45.0

22.0
22

2


p

SD
V

 

(48) 

156. Substituting in our V gives: 

6.419
09.196.11.0)1630,498,1(

09.1630,498,196.1
22

2





n

 
(49) 

157. The total sample size required is 420 passengers. The next step is to divide this total 
sample size up according to the size of each zone to get the number of passengers to be sampled 
within each zone.  

General Equation: 
n

N

g
n i

i 
 (50) 

Zone A: 
6.5420

630,498,1

19865
an

  
Zone B: 

0.6420
630,498,1

21358
bn

 

Zone C: 
4.84420

630,498,1

301245
cn

  
Zone D: 

3.18420
630,498,1

65324
dn

 

Zone E: 
5.183420

630,498,1

654832
en

 
  

Zone F: 
1.14420

630,498,1

50213
fn

 

Zone G: 
5.3420

630,498,1

12489
gn

   
Zone H: 

6.104420
630,498,1

373304
hn

 
158. Rounding up the zone sample sizes gives the number of passengers to be sampled in each 
zone (the sum of these is slightly greater than the required sample size due to the rounding up of 
passengers within each zone). The sample sizes required vary so much between the zones because 
the number of passengers in each zone is so different. 

159. Note that these sample sizes do not take into account non-response. If the expected level of 
response is 85% across all zones then divide each zone sample size by 0.85. This will result in 
larger sample sizes allowing for the non-responders.  
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Example 13 – Cluster sampling 

160. Instead of sampling individual passengers, it has been decided that buses (clusters) are 
going to be sampled and then every passenger on each of the selected buses will be asked if they 
travelled by bus prior to the project. To calculate the sample size we require the number of clusters 
that make up the population, that is the number of buses that carry the transport project passengers; 
for this example we will assume 12,000 buses. We also need estimated proportions of passengers 
that would have travelled by bus prior to the project from a number of buses; for this example we 
have previously sampled four buses and the proportions were:  

Bus Estimated Proportion  
1 0.37 
2 0.46 
3 0.28 
4 0.52 

Average ( )p  0.4075 

Variance 2( )BSD  0.011 

161. The equation for the number of buses that need to be sampled is:  

VM

MV
c

22

2

96.11.0)1(

96.1




 
(51) 

Where: 

2

2

Variance between clusters(buses)

Average proportion over clusters
 BSD

V
p  

162. The average proportion is just 
0.37 0.46 0.28 0.52 1.63

0.41
4 4

  
 

 
and the variance 

between the clusters is: 

2 2 25
2 2

1

1 (0.37 0.4065) (0.46 0.4065) ... (0.52 0.4065)
( ) 0.0110

1 3





     
  

 
n

B i
i

SD = p p
n  (52) 

Where 

c Number of clusters to be sampled (buses) 

M Total number of clusters (buses) - this must encompass the entire population 

1.96 Represents the 95% confidence required 

0.1 Represents the 10% relative precision  
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163. Substituting our values into the above equation gives: 

2

2 2

0 0110
0 07

0 41
BSD

V
p

  
.

.
.

 (53) 

2

2 2

1 96 12000 0 0664
25 5

12000 1 01 1 96 0 0664
c

 
 

   
. .

.
( ) . . .  (54) 

164. Therefore we would have to sample every passenger on 26 randomly selected buses. 

165. This approach to sampling assumes that the population is homogenous. In this example this 
means that the proportion of passengers that would have previously travelled by bus is independent 
of any other factors such as zones (see example 12 – stratified sampling), economic status, etc. If 
the proportion of passengers that would have previously travelled by bus is expected to be different 
for different zones, then cluster sampling should be used within each zone.  

166. Non-response is unlikely to be a problem when using cluster sampling, unless the number 
of individuals within a cluster could be 0 (a bus with no passengers). If it is thought that it could be 
a problem then the sample size should be scaled up accordingly. 

Example 14 – Multi-stage sampling 

167. Instead of sampling every passenger on a number of selected buses, suppose we only want 
to sample a number of passengers on each bus. This can be thought of as multi-stage sampling as 
we are sampling a number of buses (groups), and then going on to sample units (passengers) within 
each group.  

168. We know that there are 12,000 buses and there are on average 30 passengers on each bus, 
of which we plan to sample 15. From a small pilot study we already know the following: 

Bus Proportion of passengers that 
would have travelled by bus 

1 0.37 
2 0.46 
3 0.28 
4 0.52 

169. The equation for the number of buses to be sampled is: 

2

2

2

2

2

2

2

2

1

1

96.1

1.0

)1(

)(1

1

p

SD

M

N

uN

p

SD

uM

M

p

SD

c
B

wB












  (55) 
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Where: 

c Number of groups that should be sampled 

M Total number of groups in the population (12,000 buses) 

u  Number of units to be sampled within each group (pre-specified as 15 passengers) 

N  Average units per group (30 passengers on each bus) 

2
BSD   Unit variance (variance between buses) 

2
WSD  Average of the group variances (average within bus variation) 

p  Overall proportion 

1.96 Represents the 95% confidence required 

0.1 Represents the 10% absolute precision 

170. Using our table of pilot information we can calculate the unknown quantities for the 
equation above: 

Bus Proportion of passengers that 
would have used a bus 

pi  

Variance within bus 
pi(1-pi) 

1 0.37 0.2331 
2 0.46 0.2484 
3 0.28 0.2016 
4 0.52 0.2496 

Variance 2 0.0110BSD   
Average 0.41p   2 0.2332WSD  

Where: 

p is the average proportion of passengers who travel by bus, i.e. 0.37 ... 0.52
0.41

4
p

 
   

2
WSD is the average variance between passengers on n a bus, i.e. 

2 0.2331 ... 0.2496
0.2332

4

 
 WSD  

2
BSD is the variance between the bus proportions, i.e. the variance between 0.37, 0.48, etc. This 

can be calculated in the usual way for calculating a variance, i.e. using the equation 

2

2 1

( )

1








n

i
i

B

y y
SD

n  
which gives 2 0.0110BSD  
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171. Substituting our values into the group sample size equation gives: 

 

 

2 2

2

2 2

0 0110 12000 1 0 2332 30 15
0 41 12000 1 15 0 4075 30 1

44 0
01 1 0 0110

1 96 12000 1 0 41

c


   

 
 

 
   

. . ( )
. . ( )

.
. .
. .

 (56) 

172. Therefore if we were to sample 15 passengers from each bus we should sample 44 buses 
for the required confidence/precision. The table below gives the number of buses required (c) 
when choosing to sample different numbers of passengers from each bus (u). 

Number of passengers 
sampled on each bus 

u 

Required number of  
buses 

c  
5 119 

10 63 
15 44 
20 35 
30 26 

173. The required sample size from the cluster sampling scheme example was 26; this is the 
same as the sample size required under the multi-stage sampling scheme when u=30 (the number 
of passengers sampled from each bus). This is because we assumed an average of 30 passengers 
on each bus in the calculations, so when we take u=assumed average passengers the two sampling 
schemes are the same.  

Mean value parameter of interest (Transport project) 

174. This section covers sample size calculations where the objective of the project relates to a 
mean value of interest, under four different sampling schemes. For the sample size calculations, we 
need to know: 

(a) The expected mean (the desired reliability is expressed in relative terms to the 
mean); 

(b) The standard deviation; 

(c) The level of precision, and confidence in that precision (95/10 for all large-scale 
examples). 

175. The parameter of interest in the examples below is average journey length (km) of people 
who travel by car, whether this is a domestic car or a taxi, and for people who travel by bus.  

Example 15 – Simple random sampling 

176. Suppose we are interested in the average distance (km) of car journeys in Bogota in a day 
(including both domestic cars and taxis), and we assume that the journeys are homogenous. We 
know that 2,000,000 journeys are made each day and believe that the mean is 8 km with a standard 
deviation of 3.5 km. Using simple random sampling the sample size equation is:  
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VN

NV
n

22

2

96.11.0)1(

96.1




 
(57)

 

Where: 

2









mean

SD
V  

n Sample size  

N  Total number of journeys (2,000,000) 

mean Expected mean journey length (8 km) 

SD Expected standard deviation for the journey length (3.5 km) 

1.96 Represents the 95% confidence required 

0.1 Represents the 10% precision  

19.0
8

5.3
2







V

 
(58) 

5.73
19.096.11.0)1000,000,2(

19.0000,000,296.1
22

2





n

 
(59) 

177. Therefore the required sample size is at least 74 journeys to find the average journey length 
with 95% confidence and a 10% relative margin of error. 

178. The calculation above does not take into account non-response. If a level of non-response 
is expected within the sample then the sample size should be scaled up accordingly. For example if 
we expected 95% of the people on journeys sampled to respond then we should take this into 
account and plan to sample 74/0.95 = 78 journeys instead of 74.  

179. There is an approximate equation for this sample size calculation. Please see the 
‘Approximate equation’ section under ii) CFL Project – Mean value parameter of interest, 
Example 5: Simple random sampling for notes relating to approximate equations. Note that 1.96 
should be used in place of 1.645 to account for the increased confidence required in the large-scale 
projects. 

Example 16 – Stratified random sampling 

180. The fundamental aspect of this sampling scheme is that the average journey length differs 
between domestic cars and taxis (it is not homogenous as assumed in the previous example). 
Because we know that the type of vehicle affects the journey distance, we want to make sure that 
we sample a representative number of domestic cars and taxis. A summary of each stratification 
group is given below:  
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Stratification group Number of journeys 
per day  

Mean 
(km) 

Standard Deviation 
(km) 

Domestic Car 1,595,169 9 3.7 
Taxi 982,224 7 2.5 

181. Using the data in the table above we can estimate the overall mean and standard deviation:  

Overall mean: 

( ) ( ) ( ) ... ( )a a b b c c k kg m g m g m g m
mean

N

       


 
(60) 

Where: 

mean Weighted overall mean 

gi Size of the ith group where i=1,…,k 

mi Mean of the ith group where i=1,…,k 

N Population total 

Substituting the values from our example into the above expression gives: 

(1595169 9) (982224 7)

(1595169 982224)

8.2

mean

mean

  



  

(61) 

Overall Standard Deviation: 

N

SDgSDgSDgSDg
SD kkccbbaa )(...)()()( 2222 


 

(62) 

Where: 

SD Weighted overall standard deviation 

SDi Standard deviation of the ith group where i=1,…,k, (note that these are all squared 
– so the group size is actually being multiplied by the group variance) 

182. Using the values from our example gives: 

3.3

)9822241595169(

)5.2982224()7.31595169( 22








SD

SD

 

(63) 

183. The sample size equation uses the overall mean and standard deviation calculated above: 

2

2 2

1.96

( 1) 0.1 1.96

NV
n

N V




    (64) 
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184. Substituting in the values from our examples gives: 

16.0
2.8

3.3
22
















mean

SD
V

 
(65) 

4.61
16.096.11.0)12577393(

16.0257739396.1
22

2





n

 
(66) 

185. This gives us the total number of journeys that should be sampled across both vehicle 
types. The section below assumes proportional allocation – which means that the number of 
journeys we want to sample from each vehicle type is proportional to the number of journeys made 
by each vehicle type within the population.  

General equation: 
n

N

g
n i

i 
 (67) 

Domestic cars: 4.3862
2577393

1592169
Carn

 
Taxis: 6.2362

2577393

982224
Taxin  

186. Rounding these figures results in a sample consisting of 39 domestic car journeys, and 24 
taxi journeys. The summation of these group sample sizes (39 + 24 = 63) is slightly greater than 
that calculated from the equation above due to rounding. 

187. The sample size calculated above assumes 100% response, and therefore needs to be scaled 
up where non-response is likely to occur. 

188. This sample size is smaller than that from simple random sampling in this example. This is 
due to the standard deviations within strata being smaller than the standard deviation across the 
whole population (which is usually the case). 

Example 17 – Cluster sampling 

189. Now consider a different scenario. The parameter of interest is the average journey length 
of people who take local buses. Instead of sampling numerous individual passengers we would like 
to sample everyone from a few buses (clusters). Knowing that there are 12,000 local buses in 
Bogota each day, how many buses would we have to sample to find the average journey length 
with 95/10 confidence/precision? 

190. The equation used to give us the required number of clusters, c, to sample is: 

VM

MV
c

22

2

96.11.0)1(

96.1


  (68) 
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Where: 

2

 
   
 

SD
V

Cluster mean  

c Number of clusters (buses) to be sampled 

M  Total number of clusters (buses) 

1.96 Represents the 95% confidence required 

0.1 Required precision (the equation takes into account that this is relative) 

191. To perform the calculations we need information about journey length at the bus level, i.e. 
total journey length aggregated across all passengers on a bus. If such information does not already 
exist, we might collect it in a pilot study. The example here assumes that data are available from 
four buses.  

Bus Total journey 
length (on average)15

A 195 
B  96 
C 63 
D 159 

192. Calculating the mean and standard deviation for this total journey length for a bus gives us: 

1

1 195 96 63 159
  (i.e. ) 128.25

4

  
  

n

i
i

Cluster mean y y
n  

(69) 

2 2
2

1

1 (196 128.25) ... (159 128.25)
 = ( ) 59.7180

1 3

   
  

 
n

i
i

SD y y
n  

(70)
 

193. These statistics (i.e. mean and SD of data) are easily produced using standard statistical 
software. Substituting these values into the equation gives the required number of clusters, i.e. 
buses as: 

2
59 7180

0 22
128 25

V    
 

.
.

.  
(71)

 

2

2 2

1 96 12000 0 22
82 7

12000 1 0 1 1 96 0 22

. .
c .

( ) . . .

 
 

     
(72)

 

194. The total number of buses that should be sampled is 83. Asking the journey lengths from 
everyone on each of the 83 buses sampled will satisfy the 95/10 confidence/precision criterion.  

                                                      
15 These totals may be derived from collecting data on all individual passengers on a bus, or otherwise by 

taking a sample of them and scaling up from the sample to all the passengers on the bus.  
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Example 18 – Multi-stage sampling 

195. Continuing the previous example, suppose that we want to sample a number of local buses, 
but we only want to sample a number of individuals on each bus (unlike cluster sampling where 
everyone on each selected bus is sampled). This is an example of multi-stage sampling, as we are 
sampling a number of groups (buses), and we are then going on to sample a number of units 
(passengers) from each selected group (bus). 

196. We start by assuming that we want to sample five passengers on each selected bus. In 
general terms we will call this number u (for units). 

197. In order to be able to perform a sample size calculation we need information on: 

(a) The variation between individual passengers on the bus; 

(b) The variation between buses; 

(c) The average journey length for a passenger;  

(d) The average journey length at the bus level (when aggregated across all 
passengers). 

198. A previous study had provided data for passengers on three different buses, and the results 
are summarized below.  

199. Note that not all buses will have exactly the same number of passengers.  

Journey length (km)

Bus 
Number of 
passengers 

Mean journey 
length16 

Total journey 
length aggregated 

over all 
passengers on the 

bus

Standard 
deviation17 

(between passengers 
on the same bus) 

A 26 6.9 179 3.30 
B 21 7.5 157 6.21 
C 30 6.7 200 3.78 

Total number 
of passengers  

77    

Overall mean journey length 
per passenger 

7.0   

Mean total journey length (per bus) 179  
SDB = Standard deviation between buses 
(SD of the total journey length column)

4889  

SDW = Average between passenger (within bus) standard deviation 4.44 

200. In the table above, the overall mean journey length is the average length per passenger, i.e. 

                                                      
16 This can be a mean from all passengers on the bus or a mean from a sample of passengers. 
17 And this can be a standard deviation based on all passengers or from a sample of passengers. 
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179 157 200
 7.0

77
Overall mean

 
 

 (73) 

201. The cluster mean journey length is the mean length per bus, i.e. 

179 157 200
 179

3
Cluster mean

 
 

 (74) 

202. 2
WSD is the average variance between passengers within buses. Its square root (SDW) is the 

average within bus standard deviation. The equation for 2
WSD is: 

2 2
2 26 3.30 21 6.21 30 3.78

19.75
77WSD

    
 

 and so 
4.44WSD 

 (75) 

203. 2
BSD is the variance between the mean journey lengths per bus. Its square root is the 

standard deviation between buses. It can be calculated using the general equation for a variance: 

2

2 1

( )

1








n

i
i

B

y y
SD

n  
where the yi are the journey lengths for the different buses.  

2 467 and so 22B BSD SD 
 (76) 

204. As well as the information from the table above we also require the number of buses, and 
the average number of passengers on each bus for the whole population. For this example we are 
using 12,000 buses with an average of 30 passengers on each bus. 

22

22

1

1

96.1

1.0

1

1

1



































































nClustermea

SD

M

N

uN

nOverallmea

SD

uM

M

nClustermea

SD

c
B

wB

 

(77) 

Where: 

M Total number of groups (12,000 buses) 

N  Average number of units per group (30 passengers per bus) 

u Number of units that have been pre-specified to be sampled per group (pre-
specified number of passengers to be sampled on each bus = 5) 

1.96 Represents the 95% confidence required 

0.1 Required precision 
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2 2

2 2

22 12000 1 4.44 30 5
179 12000 1 5 7.0 30 1

32.6
0.1 1 22

1.96 12000 1 179

c

                               
           

(78) 

205. Therefore if we were to sample five passengers from each bus we should sample 33 buses 
for the required confidence/precision. 

206. Producing a table such as the one below, with different values of u, can help decide the 
practicalities of allocating limited resources, while still satisfying the 95/10 confidence/precision 
criterion. 

Number of passengers 
sampled on each bus 

u 

Required number of  
buses 

c  
5 33 

10 17 
15 12 
20 9 
25 7 

207. In this example, by doubling the number of passengers on each bus to be sampled from 5 to 
10, we substantially reduce the number of buses that need to be sampled from 33 to 17. 

208. Note that in the above example the numbers of passengers on a bus were different for the 
different buses. In practice this is likely to be the case, although the actual numbers may not always 
be known. This is not critical to the sample size calculation. What is important is that sensible 
estimates of the mean and standard deviation at both the cluster level (bus level) and unit level 
(passenger level) are used in the calculation. 

Mean value parameter of interest (Transport project) 

209. This section covers an example sample size calculation based on systematic sampling 
where the objective of the project relates to a mean value of interest. 

210. As for all absolute parameter of interest examples we need to know: 

(a) The expected mean (the desired reliability is expressed in relative terms to the 
mean); 

(b) The standard deviation; 

(c) The level of precision, and confidence in that precision (95/10 for all large-scale 
examples). 

211. The parameter of interest for the example below is the average journey time of buses on a 
specific route. We know that over a month 960 journeys are made on the route of interest, and the 
average journey time is 18 minutes with a standard deviation of 6 minutes.  
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Example 19 – Systematic sampling 

212. Using systematic sampling we want to sample every nth journey on that route. 
The sample size equation for a required 95/10 confidence/precision is: 

2

2

1.0

96.1 V
n 

 
(79) 

Where: 

2









mean

SD
V

 

213. Substituting in mean and standard deviation from above gives: 

11.0
18

6
2







V

 
(80) 

7.42
1.0

11.096.1
2

2




n
 

(81) 

214. In total we should sample 43 journey times. We want to take these samples evenly spread 
over the 960 journeys made each month, therefore we should sample one journey for every N/n – 
that is one journey every 22 ( = 960 / 43). 

215. We can make sure that we sample at random by selecting a random starting point between 
1 and 22, say journey 18, and then sample every 22nd journey from this point on: 18, 40, 62, 84, 
106, etc. up to 960. This would give us a sample evenly spread over the month that is large enough 
to estimate the average journey time with 95/10 confidence/precision. 

216. It may be more practical to sample every 20th journey rather than every 22nd. This would 
result in more samples being taken than the 43 calculated above – the only effect this would have 
would be to increase the precision and so would be perfectly acceptable. 
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Appendix B 
 

Best practice examples for reliability calculations 

1.  Introductory notes on reliability calculations 

217. The two examples presented here illustrate how to estimate a numeric parameter and a 
proportion and how to check their reliability. The sampling method used in both cases is simple 
random sampling. Both examples are assumed to be small-scale project activities where the 
required reliability criteria is 90/10, i.e. 90% confidence and 10% precision.  

218. If calculations are being performed manually, it is important to retain as many decimal 
places as relevant, until the final calculated figure is reached. Rounding can then be carried out. To 
emphasize this, the calculations presented here use figures to several decimal places.  

2.  Example 1: CFL Project – Numeric parameter 

219. The parameter of interest in this example is the mean average daily usage of a CFL (in 
hours) for a whole population of CFLs that were distributed in a particular region of a country.  

220. The population is the 420,000 households to which CFLs were distributed, one per 
household. A simple random sample of 140 households was taken, and the average daily usage (in 
hours) of each CFL was recorded. These are presented in the table below.  

Average CFL usage (in hours) 

cfl usage cfl usage cfl usage cfl usage cfl usage cfl usage cfl usa ge

1 3.78 21 3.63 41 2.81 61 4.17 81 3.62 101 2.24 121 0.58
2 3.12 22 3.17 42 4.57 62 4.68 82 2.46 102 4.79 122 6.09
3 4.42 23 3.26 43 3.56 63 2.99 83 6.14 103 4.59 123 0.39
4 4.09 24 6.97 44 4.41 64 3.34 84 0.67 104 3.27 124 3.69
5 1.15 25 0.48 45 3.26 65 5.37 85 4.73 105 1.86 125 2.04
6 2.87 26 2.50 46 0.30 66 2.17 86 1.03 106 0.00 126 4.51
7 4.79 27 2.92 47 5.48 67 2.36 87 2.34 107 6.70 127 4.39
8 4.20 28 6.82 48 1.75 68 3.12 88 4.66 108 3.36 128 3.58
9 1.13 29 0.92 49 3.38 69 4.69 89 2.40 109 5.39 129 4.23

10 3.68 30 2.35 50 1.24 70 5.40 90 5.28 110 2.04 130 5.28
11 2.91 31 0.19 51 3.62 71 4.22 91 5.90 111 3.58 131 3.71
12 2.47 32 4.19 52 7.41 72 1.27 92 0.60 112 6.27 132 2.41
13 3.46 33 3.15 53 1.74 73 2.93 93 5.85 113 0.41 133 1.58
14 2.19 34 3.19 54 3.60 74 2.17 94 1.22 114 4.55 134 3.96
15 2.25 35 7.15 55 2.18 75 4.24 95 7.76 115 2.61 135 5.86
16 2.37 36 1.70 56 4.12 76 6.07 96 4.50 116 6.37 136 5.46
17 2.38 37 2.98 57 4.88 77 5.26 97 5.68 117 4.30 137 2.90
18 3.23 38 5.00 58 2.92 78 2.46 98 2.81 118 3.08 138 3.17
19 1.78 39 0.99 59 0.82 79 1.33 99 4.03 119 3.17 139 4.17
20 3.57 40 6.54 60 3.16 80 2.55 100 0.24 120 6.24 140 6.93  
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221. The parameter of interest – the mean average daily usage of a CFL (in hours) for this 
whole population of CFLs – is estimated from the sample mean. This is often written as y  (and is 

equal to  1 2

1
   ny y y

n
, or the shorthand form 

1

1




n

i
i

y
n

). n is the sample size, i.e. 140. 

222. The mean average usage for the sample of 140 CFLs is 3.4686 hours. As a simple 
summary this is rounded to 1 or 2 decimal places, i.e. the mean average usage of the CFLs is 
estimated to be 3.47 hours. 

Confidence, precision and reliability 

223. Instead of presenting just a single estimate, it is better to summarize the results of sampling 
using a confidence interval. In this example the 90% confidence interval is 3.22 to 3.71 hours. We 
are 90% sure that the true population mean value for average usage of a CFL is between 3.22 hours 
and 3.71 hours. Whilst the sample mean is the estimate that will be used in calculations, it is always 
advisable when presenting it in a report to do so along with its confidence interval. 

224. The 90% confidence interval for the population mean is given by the equation: sample 
mean ± t-value  standard error of the mean.  

225. The estimate of 3.47 hours is regarded as reliable if the precision of the study – as defined 
by the t-value  standard error of the mean – is within the pre-specified reliability precision. For 
small-scale mechanisms this is 10% of the mean.  

226. Detailed calculations are presented below. In this example the precision is 7.1% of the 
mean and so the sample estimate of 3.47 hours is within the required specification.  

Checking reliability 

(i) Standard error of the mean 

227. The equation for the standard error of the mean when data have been collected using 

simple random sampling is 
 

2

1
s

f
n


.  

f is the sampling fraction – the proportion of the population that is sampled.  

Here it is 
140

 0 00003
420000

. . 

s2 is the sample variance (s is the sample standard deviation).  

For this sample of 140 CFLs, s2 = 3.0826 and s = 1.7557. 

n is the sample size, i.e. 140. 
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228. Putting all these pieces of information together gives: 

 
2 140 3 0826 3 0826

1     1     0 99967     0 0220    0.1484
420000 140 140

s . .
f . .

n
         
   (82) 

and so the standard error of the mean is 0.1484. 

(ii) t-value 

229. This value depends on (i) the level of confidence and (ii) the size of the sample. The exact 
figure can be acquired from statistical tables for the t-distribution, or using standard statistical 
software. The value can also be derived in Microsoft Excel using the TINV18 function.  

For a sample size of 140 the t-value is 1.6559. 

(iii) Precision 

230. The precision associated with an estimate is: t-value  standard error of the mean.  

The precision of the mean average CFL usage (in hours), assuming 90% confidence, in this 
example is therefore: ± (1.6559  0.1484) i.e. ± 0.2457. 

The ratio of this relative to the mean CFL usage is 
0 2457

0 0708
3 4686

.
.

.


 
and so the relative precision 

is 7.1%. The data are therefore within the required specification.  

Another way of checking reliability 

231. The limits of the confidence interval are sample mean ± t-value  standard error of the 
mean, which can be written more generally as sample mean ± precision, where the lower limit is 
mean minus precision and the upper limit is mean + precision.  

232. Reliability can therefore be checked using the following calculation: 

½width of confidence interval

mean
100%

 
(83)

 

233. For example, here the mean CFL usage is 3.4686, and the 90% confidence interval is 
3.2230 to 3.7143 hours. Reliability is therefore: 

½(3.7143-3.2230) ½ × 0.4913
×100% = ×100% = 7.1%

3.4686 3.4686  
(84) 

234. The above approach is likely to be most useful when the data have been analysed using 
statistical software which produced the relevant confidence interval as well as the sample mean. 

                                                      
18 TINV(0.10,(sample size minus 1)) will give the t-value associated with 90% confidence. For example here 

TINV(0.10,139) gives the t-value for a sample size of 140 and 90% confidence. 
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3.  Example 2 : Cook stove project – Proportional parameter  

235. The parameter of interest in this example is the proportion (or percentage) of cook stoves 
in a particular region of a country that were still operational at the end of the third year after the 
stoves were distributed.  

236. The population of interest is the 640,000 households, and there was one cook stove per 
household. A simple random sample of 274 of these households was taken, and for each of them it 
was recorded whether or not the cook stove was still operational.  

237. The parameter of interest – the proportion (or percentage) of cook stoves that were still 
operational in the whole population – is estimated from the sample proportion.  

238. This is often written as p and is calculated as 
r

p
n

  where r is the number of “successes”, 

in this case the number of cook stoves that are still in operation, and n is the total number of cook 
stoves that are observed in the sample.  

239. In this example there were 159 cook stoves out of the 274 that were still in operation. The 

sample proportion is therefore 
159

0.5803
274

p   . Rounding this to two decimal places gives us a 

proportion of 0.58. In other words, 58% of the cook stoves were still operational after the third 
year. 

Confidence, precision and reliability 

240. Instead of presenting just a single estimate, it is better to summarize the results of sampling 
using a confidence interval. In this example the 90% confidence interval for the proportion is 
0.5313 to 0.6293. We are therefore 90% sure that the percentage of cook stoves in the population 
that are still operational is between 53% and 63%.  

241. The 90% confidence interval for the population proportion is given by the equation: sample 
proportion ± 1.6449  standard error of the proportion.19 

242. The estimate of 58% is regarded as reliable if the precision of the study – as defined by 
1.6449  standard error of the proportion – is within the pre-specified reliability precision. For 
small-scale mechanisms this is 10% of the proportion. In this case ±0.058 in absolute terms or 
± 5.8%. 

243. Detailed calculations are presented below. In this example the precision is 8.5% of the 
sample proportion and so the sample estimate of 58% operational cook stoves is within the required 
specification. 

                                                      
19 A confidence interval for a proportion is: sample proportion ± z-value  standard error of the proportion. 

The z-value depends on the level of confidence. For 90% confidence it is 1.6449. 
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Checking reliability 

(i)  Standard error of the proportion 

244. The equation for the standard error of the proportion when data have been collected using 

simple random sampling is  1
pq

f
n

  

f is the sampling fraction – the proportion of the population that is sampled.  

Here it is  
274

0 00043
640000

.  

p is the sample proportion, i.e. 0.5803. q = (1-p). It represents the proportion of cook stoves that 
are not operational after three years, and is 0.4197. n is the sample size, i.e. 274. 

245. Putting all these pieces of information together gives: 

    0 5803 0 4197
1 1 0 00043 0 00089 0 0298

274

pq . .
f . . .

n


    

 (85) 

246. Note that this standard error could also be calculated using the actual numbers of 
population size, sample size, number of operational cook stoves etc., i.e.: 

 
159 115

640000 274 274 2741 0 00089 0 0298
640000 274

pq
f . .

n

  
          

   

(86)

 

247. The standard error of the proportion is 0.0298. In terms of the standard error of the 
percentage it is 2.98%. 

(ii) Precision 

248. The precision associated with a proportion is: z-value  standard error of the proportion. 
The precision of the proportion of operational cook stoves in this example, assuming 90% 
confidence, is: ± (1.6449  0.0298)  i.e. ± 0.0490. 

249. The ratio of this relative to the proportion of cook stoves that are still operational is 
0 0490

0 0845
05803


.

.
.

and so the relative precision is 8.5%. The data are within the required specification.  

Another way of checking reliability 

250. The limits of the confidence interval are sample proportion ± z-value  standard error of 
the proportion, which can be written more generally as sample proportion ± precision, where the 
lower limit is the proportion minus precision and the upper limit is the proportion plus precision.  
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251. Reliability can therefore be checked using the following calculation: 

½width of confidence interval
×100%

proportion  
(87)

 

For example, here the proportion of cook stoves that are still operational is 0.5803, with a 90% 
confidence interval of 0.5313 to 0.6293.  

Reliability is therefore: 

½(0.6293 - 0.5313) ½  0.0980
100%  100  8.5%

0.5803 0.5803


   

 
(88) 

252. The above approach is likely to be most useful when the data have been analysed using 
statistical software which produced the relevant confidence interval and sample proportion. 

Comments 

253. The equation above assumes that the distribution of the proportion is approximately 
Normal. That is usually an acceptable assumption provided the proportion of interest is not too 
small and not too large, and the sample size is not too small; 

254. If the sampling fraction f is small then the multiplier (1 – f) in the above calculation will be 
very close to 1. In some instances, therefore, the equation that is used for the standard error of the 

proportion is the conservative equation pq

n
 ;20 

255. If statistical software is used to undertake the calculation, the software may use the exact 
equation for calculating the confidence interval (which assumes a Binomial distribution as opposed 
to the Normal approximation). In this case the reliability would be checked using the equation 
which is based on the width of the confidence interval. 

A.  How to deal with failure to achieve reliability  

1.  Introductory notes on how to deal with failure to achieve reliability 

256. This section proposes some steps to follow when the required reliability is not met by 
sample data. It uses as its scenario a small-scale CDM project activity where the reliability criteria 
is 90:10 (i.e. 90% confidence and 10% relative precision), and where the parameter of interest is a 
numeric one.  

2.  Scenario : CFL project – Numeric parameter  

257. The parameter of interest in this example is the mean average daily usage of a CFL (in 
hours) for a whole population of CFLs that were distributed in a particular region of a country. The 

                                                      

20 It is conservative because 

pq

n  will be greater than 
 1

pq
f

n . 
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population is the 420,000 households to which CFLs were distributed, one per household. A simple 
random sample was to be taken.  

258. The sample size calculation used a value of 3.5 hours for the expected population mean 
CFL usage and a value of 2.5 hours for the expected population standard deviation (SD). This gave 
a required sample size of 138 households.  

Example 1 

259. A simple random sample of 140 households was taken, and the average daily usage (in 
hours) of each CFL was recorded. The summaries of the data and of the reliability calculations are 
presented below.  

Summary statistics Sample data 

Population size 420,000 

Sample size (n) 140 

Mean  3.7230 

Standard deviation 3.7838 

Standard error of the mean 0.3197 

Absolute precision ± 0.5294 

Relative precision  ± 0.1422 i.e. 14.22% 

260. Here the required reliability is not met by the sample data and so we conclude that the 
mean of 3.72 hours is not sufficiently reliable. It also means that the confidence interval associated 
with the parameter is wider than required.  

261. The 90% confidence interval is 3.19 to 4.25 hours, which is telling us that the population 
mean CFL usage is likely (90% likely) to be somewhere in the range of 3 hours 11minutes to 
4 hours 15 minutes. Since the wide confidence interval is a reflection of lack of precision, it is 
therefore not advisable to use either the upper limit or the lower limit of the confidence interval as 
an estimate of the population mean hours of CFL usage. Nor any other “corrective approaches” 
unless they are supported by documentation detailing their validity.  

Possible steps to take when addressing the problem of lack of reliability in sample data include the 
following, although the first one (scrutinising data) should always be carried out before doing any 
calculations, in order to ensure that the data are of the highest quality and that the planned analyses 
are appropriate.  

262. The list below offers some order to the approaches. First of all – if it has not been done 
already – comes scrutinising the data; then there are some possible statistical analysis approaches 
which could be used on the existing data. Failing that an additional sample could be taken. There is 
no obvious ordering to the analysis approaches.  
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1. Scrutinise the raw data; 

2. Possible analysis approaches; 

(a) Scrutinise the summary statistics; 

(b) Post-stratification; 

3. Take an additional sample. 

263. If none of these are successful then the reliability has not been met.21  

Analysis approach 1: Scrutinise the raw data 

264. It is vitally important to scrutinise the raw data carefully prior to estimating the mean and 
checking its reliability, and this can be done using graphical summaries such as histograms, 
boxplots, normal probability plots. These plots would show up outliers in the data or any skewness 
in the distribution of the data.   

265. An outlier can be the result of a mistake (wrongly recorded, or wrongly entered onto the 
computer in which case it can be corrected); or it could be real value - in which case it must be left 
as it is and included in the analysis. If data are highly skewed, then it may be that they should be 
transformed prior to the analysis. The reliability would then be determined using the analysis of the 
transformed data. Example transformations include the logarithm, or the square root.  

266. Below shows examples of a histogram for: (i) normal data (ii) data with one outlier and 
(iii) skewed data. 

Normal data 
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Normal data with two outliers 
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21  A generalized method of discounting to account for deficiencies in reliability is not included in this 

document, however where the project proponents can demonstrate that discounting of emission reduction 
estimates or taking the lower bound or upper bound of estimates of the parameter are the only recourse 
available to the project proponents, procedures for request for deviation shall be followed.    
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Skewed data 
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Analysis approach 2(a): Scrutinise the summary statistics 

267. The two key elements to the sample size calculation (other than the reliability and 
confidence) are the expected population mean value and the expected population standard 
deviation. If the sample data fails to meet the required reliability then this could be due to the 
sample estimates being quite different from the expected values. For instance: 

(i) If the sample mean is lower than the expected population mean, but the standard 
deviation is the same as expected for the population then the reliability will be 
greater than 10%;  

(ii) If the sample mean is the same as the expected population mean but the standard 
deviation is larger than expected then the reliability will be greater than 10%.  

268. This is demonstrated in the table below, where the sample size calculation used is the same 
as described in the Scenario on page 1 (mean CFL usage of 3.5 hours, SD of 2.5 hours giving a 
required sample size of 138 households). 

 
Population 

size (N) 
Sample 
size (n) 

Sample 
mean 

Sample 
SD 

Absolute 
precision 

Relative 
precision  

(i) 420000 140 3.0 hours 2.5 0.35 11.68% 

(ii) 420000 140 3.5 hours 3.0 0.42 11.99% 

269. In (i) the absolute precision is as planned but, because the sample mean is lower than 
expected, the relative precision is larger than the required 10%. In (ii) because the SD is larger than 
expected both the absolute and relative precision are larger than required by the sample size 
specification.  
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270. It seems not unreasonable to try to accept data that come from scenarios of type (i). The 
following rule is therefore proposed. 

 Provided the sample standard deviation is not more than 10% greater than the standard 
deviation that was used in the sample size calculation, and the sample size is at least 
100 units, the sample data could be accepted.  

271. In Example 1, the sample size is over 100 but the standard deviation is considerably larger 
than was used in the sample size calculation (3.78 as opposed to 2.5; the sample standard deviation 
is more than 50% more than the one used in the sample size calculation). The sample data cannot 
be accepted.  

272. Rationale behind the conclusions in the above paragraphs is explained below: 

The distribution of the sample variance s2 is as follows: 

2

2

2
(n 1)

(n 1)s





�
 

273. From probability tables for the Chi-squared distribution we can see that, for samples of size 
100, one would expect 95% of sample variances (s2) to be less than 1.24  the population variance 
(i.e. less than 1.24 σ2 ). One could then argue that, provided it was not more than 24% more than 
the expected population variance, the sample variance can be regarded as an acceptable estimate of 
the population variance.  

274. In other words, provided that the sample standard deviation was not more than 12% more 
than the population standard deviation then the sample standard deviation can be regarded as an 
acceptable estimate of the population standard deviation. 

275. The table below extends this argument to other sample sizes. As the sample size becomes 
smaller the multiplier becomes larger, which is to be expected. The smaller the sample size the 
more variability in the estimates of the population variance and consequently the wider the 
distribution. 

Sample size and Ratio of sample SD to population SD 

Sample size 95% of ratios less than this value 

30 1.21 

40 1.18 

50 1.16 

60 1.15 

70 1.14 

80 1.13 
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Sample size and Ratio of sample SD to population SD 

Sample size 95% of ratios less than this value 

90 1.12 

100 1.12 

125 1.10 

150 1.09 

175 1.09 

200 1.08 

250 1.07 

300 1.07 

276. Balancing the requirement for a reasonable amount of information with a realisation that 
the sample standard deviation is unlikely to ever be exactly the same as the population one, then it 
seems not unreasonable to have a rule of thumb which states that:  

(a) Provided the sample is large enough; and  
(b) Provided the sample standard deviation is only a fraction larger than the population 

one; 

then the sample data could be accepted. It is therefore proposed that a minimum sample size be 100 
units and maximum “overage” be 10%. 

Analysis approach 2(b): Post-stratification 

277. If there appears to be some characteristic of the population that is responsible for the 
apparent increase in the variability of the data – e.g. households in the urban areas are all using 
their CFLs for longer than the households in rural areas - then this characteristic can be regarded as 
a stratification variable, and the mean CFL usage recalculated using post-stratification techniques. 
In this example geographical area (rural or urban) is the stratification variable. Other examples 
might include the different times of the year when the data are collected, if usage varies according 
to time of year.  

Taking the stratification variable into account should improve the precision of the estimate of the 
mean usage for the whole population, and hence its reliability. It might also give a more accurate 
estimate of the population mean usage. An example of post-stratification is explained below. 
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278. This uses the same example as Example 1 where the following data were collected. 

Summary statistics 

Population size 420,000 

Sample size (n) 140 

Mean  3.7230 

Standard deviation 3.7838 

279. The total population of 420,000 in this part of the country are distributed across the rural 
and urban areas in a ratio of 60% to 40% respectively; and it is thought that CFL usage is lower in 
the rural areas than in the urban. Of the 140 households in the sample, it transpires that 104 of them 
were from rural areas and 36 from urban areas. The proportions in the sample from the rural and 
urban areas at 74% and 26% respectively do not match those of the population, and so the estimate 
of average usage over all 140 CFLs may be slightly lower than it should be for the whole 
population.  

280. Summary statistics for the two sub-groups are as follows: 

Summary statistics Rural Urban 

Population size 252,000 168,000 

Sample size (n) 104 36 

Mean  1.96 8.816 

Standard deviation 0.55 3.875 

281. We can use post-stratification to estimate the mean average CFL usage to reflect the 
rural:urban proportions in the population by using a weighted average of the stratum means as 
follows: 

282. Post-stratification mean 
L

post _ st h h
h 1

1
y N y

N 
   where N is the total population size; Nh 

is the population size in each stratum; y-h bar is the mean for each stratum; L is the number of 
strata.   

i.e. 
(252000 1.96 168000 8.816)

4.7024
420000

  
  
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283. The standard error of this estimate which can then be used to determine the precision is: 

2 2

1

     
   


L

h h h h

h h h

N N n s
se

N N n
where N, Nh are as above; and sh is the stratum standard 

deviation.  

i.e. 
2 22 2252000 252000 104 0.55 168000 168000 36 3.875

      
420000 252000 104 420000 168000 36

                   
       

 

and equals 0.2616. 

284. Consequently the absolute precision (assuming a 90% confidence interval) is 1.6450.2616 
= 0.4304 and so the relative precision is 0.4304 divided by the mean of 4.7024 i.e. 9.15%. The 
reliability has been met.  

Analysis approach 3: Take an additional sample 

285. Another option to improve the precision of the study data is to take an additional sample. 
The formula for the size of this additional sample would be the same as for the actual study. 
However, the value(s) that should be used for the standard deviation (SD) and the mean should be 
different. It is also advisable to try different combinations of the values (sample and population 
ones) in order to identify a total sample size which will be large enough to address the reliability 
concern. The additional sample size will then be the difference between this figure and the 
originally planned sample size.  

286. For example in Example 1 the mean and standard deviation used in the original sample size 
calculation were 3.5 and 2.5 hours respectively. The sample of 140 CFLs gives a mean of 
3.72 hours and a standard deviation of 3.78. These figures could therefore be more realistic 
estimates of either the mean daily hours of CFL usage or the standard deviation, and so can be used 
in new sample size calculations. The table below presents a few different combinations of mean 
and standard deviation and their resulting sample sizes. The first line in the table (in italics) is the 
original calculation. 

Sample size for 90:10 reliability 

(90% confidence and 10% precision) 

sd mean sample size 

2.5 3.5 138 

2.5 3.72 123 

3.78 3.5 316 

3.78 3.72 280 
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287. If the PP believes that the population mean really is about 3.5 hours, but the standard 
deviation was underestimated originally and is likely to be closer to 3.78 then the required total 
sample size for the study should have been 316. An additional sample of 316-140 = 176 is 
therefore required. However, if they think that the mean was also too low originally and it is likely 
to be about 3.72 hours then the additional sample size would be 280-140 = 140.  

288. Note that the above illustration only uses two figures for the mean and two for the standard 
deviation. In practice a range of different possibly relevant means and standard deviations should 
be used. This is no different to the practice recommended when the sample size calculation is being 
performed in the first place! 
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Appendix C 
 

Best practice examples – acceptance sampling 

1.  Introductory notes on acceptance sampling 

289. The aim of this section is to demonstrate the process of selecting a validation/verification 
sample and using it to decide whether or not the PP’s data are valid. The methodology is based on a 
procedure commonly known as Acceptance Sampling. It is illustrated using a survey example 
where the aim is to estimate a numeric parameter.  

2.  Example: CFL project – Numeric parameter  

290. The parameter of interest is the mean average daily usage of a CFL (in hours) for the whole 
population of CFLs that were distributed in a particular region of a country. The population is the 
420,000 households to which CFLs were distributed, one per household. A simple random sample 
of 140 households was taken by the PP, and the average daily usage (in hours) of each CFL was 
recorded. From these data the PP determines a mean average daily usage.  

291. To validate/verify the PP’s sample the DOE needs to take, and observe, a simple random 
sample of households from the PPs sample. The decision about whether or not the PPs data are 
valid will depend on the number of discrepancies there are between the DOE’s data and the PP’s 
data.22 The DOE therefore needs to set up, using their own professional judgement, criteria for 
deciding what constitutes a discrepancy. The DOE also needs to decide – again using their own 
professional judgement - the following:  

(a) The proportion of discrepancies between the PP’s data and DOE’s data that can be 
considered acceptable in their sample. This is referred to as the AQL (Acceptable 
Quality Level); 

(b) The proportion of discrepancies between the PP’s data and DOE’s data that would 
be considered unacceptable in their sample. This is the UQL (Unacceptable 
Quality Level). 

292. In this example we will assume that the AQL is 1% and the UQL is 10%, though these 
could be different for different types of study.  

293. The process of determining the size of the DOE’s sample also requires what are referred to 
as the producer’s risk and the consumer’s risk,23 both of which are set at 5% according to the 
current sampling standard.24 

                                                      
22 If the data for a household in the DOE’s sample is different from the data for that same household in the 

PP’s sample that constitutes a discrepancy. 
23  Producer’s risk is the chance that the DOE will wrongly reject the PP’s dataset (i.e. reject a dataset of 

acceptable quality). Consumer’s risk is the chance that the DOE will wrongly accept the PP’s dataset i.e. 
accept a dataset which is unacceptable as defined above in (b). 

24 The calculations require a value of acceptable quality associated with the producer’s risk and a value of 
unacceptable quality associated with the consumer’s risk. The values between the AQL and UQL need to 
be seen in this context. 
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294. All this information then determines: 

(i) The size of the DOEs sample; and  

(ii) The acceptance number.  

295. The acceptance number is the number of acceptable discrepancies. The DOE needs to 
observe no more than this number of discrepant records for the PP’s data to be valid. 

296. The calculation can be carried out using reliable statistical software, published tables of 
acceptance sampling standards, or hand calculations. Table 1 below may not be complete for every 
study that requires validation/verification, but it provides the required sample size and acceptance 
number for several different scenarios. 

Table 1: Sample size and acceptance number25 

AQL UQL 
Sample 

Size 
Acceptance 

number 

1% 10% 61 2 

1% 15% 30 1 

1% 20% 22 1 

0.5% 10% 46 1 

0.5% 15% 30 1 

0.5% 20% 22 1 

297. In this case the size of the DOE’s sample is 61 households, and the acceptance number is 2. 
Hence, if it transpires that there are more than 2 records in the DOE’s sample that do not agree with 
the PP’s then the PP’s data are not accepted. If there are none, 1 or 2 discrepant records then the 
PPs data are valid.  

Worked example 

298. The calculation can be seen in terms of the operating curve – i.e. the probability of 
accepting the PPs data for different proportions of discrepancies between their data and the DOEs – 
where we want: 

(i) A high chance of accepting the PPs data when it is of acceptable quality, i.e. 
Probability (Proportion of discrepancies with DOEs data is less than the AQL) 1- 
α;  

(ii) A low chance of accepting the PPs data when it is of unacceptable quality, i.e. 
Probability (Proportion of discrepancies with the DOEs is more than the UQL)  β. 

299. Note that the producer’s risk is the opposite of (i); i.e. it is the chance of not accepting the 
PPs data when it is of acceptable quality, and is equal to α. The consumer’s risk is (ii), i.e. β. 

                                                      
25 The table is based on both the Producer’s risk and the Consumer’s risk being 5%.  
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300. In this example the AQL is 1% (or 0.01 in proportion terms) with a producer’s risk 
α = 0.05; and the UQL is 10% (or 0.1 in proportion terms) with a consumer’s risk β = 0.05. 

 
   

 

 

 

 

   

  0 

 

301. We need to find a sample size and acceptance number that satisfy (or nearly satisfy) these 
probability statements. Owing to the discreteness of the data it may not be possible to satisfy them 
exactly. 

302. The approach is based on the Chi-square distribution with 2(c+1) degrees of freedom. It 
determines the acceptance number first of all and then the sample size.  

Step 1: Acceptance number 

303. Let 

x
x

cr
2

2

1)(


  (89) 

where x
2


is the100α percentile and x

2

1  the 100(1- β) percentile of the x
2

distribution with 

2(c+1) degrees of freedom. 

304. Then c is the smallest value satisfying:  

)()1( cr
AQL

UQL
cr   (90) 

305. Here the ratio of UQL/AQL is 10 and so we need to find a value of c that satisfies the 
above. 

306. Since acceptance numbers are going to be small we can construct a table of Chi-square 
values and the corresponding ratios for different values of c from c = 0, 1, 2, 3, etc. as in Table 2 
below. 

Probability 
of accepting 
the data 

AQL  UQL 0 Proportion of discrepancies 

    1 
 

1‐ α 

 β 
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Table 2 

 

307. Our UQL/AQL ratio of 10 falls between 7.70 and 13.35. So c = 2 is the smallest value 
which satisfies the above.  

Step 2: Sample size 

308. The required sample size, n, is such that:  

AQL
n

UQL
xx







22

22

1   (91) 

where 
2
  and 

2
1 are defined as before, but now c = 2, and the 

2 distribution has 

2(c+1) = 6 degrees of freedom. 

With c = 2 this is:  

01.02

635383.1

1.02

59159.12





n   (92) 

i.e. 62.96 ≤ n ≤ 81.77. 

309. So we have a sample size of 63 and an acceptance number of 2.  

Step 3: Refining the calculation 

310. The above steps used a Chi-square approximation, but the data actually have a Binomial 
distribution. The calculations can now be refined to see if the value of n could be modified. Table 3 
shows the exact values of α and β, for an acceptance number of 2, and different sample sizes 
around 63. Whilst the above calculation showed that we needed a sample size of 63, the table 
shows that sample sizes of 62 and 61 would both also have α and β below 0.05.  
The required sample size is therefore 61 with an acceptance number of 2. 

c α 1-β ratio

0 0.1026 5.9915 58.40

1 0.7107 9.4877 13.35

2 1.6354 12.5916 7.70

3 2.7326 15.5073 5.67

4 3.9403 18.3070 4.65

5 5.2260 21.0261 4.02

Tabulated values of a Chi-square 
distribution with 2(c+1) degrees of 
freedom where α=0.05 and β=0.05
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Table 3 

alpha beta

2 60 0.022 0.053

2 61 0.023 0.049

2 62 0.024 0.045

2 63 0.025 0.042

2 64 0.027 0.039

Exact probabilities based on 
Binomial distributionAcceptance 

number (c)
Sample size 

(n)

 

Excel functions 

311. The Excel function used in Table 2 is CHIINV(PROB, DF). It returns the value X, for a 
Chi-square distribution with DF degrees of freedom, where the probability of being greater than X 
is PROB.  

312. The Excel function used in Table 3 is BINOMDIST(acceptance number, sample size, 
PROB, TRUE) where PROB is either the AQL or the UQL.  

- - - - - 

History of the document 

Version  Date Nature of revision(s) 

02.0 13 September 2012 EB 69, Annex 5 
Revisions are: 
 To include examples to illustrate acceptance sampling as one means 

of verifying the sampling records of the project proponent; 
 To include examples for possible methods to deal with failure to 

achieve reliability including scrutiny of the data, post stratification, 
adding more sample units; 

 To delete examples of how to deal with very small or very large 
proportions in the context of simple random sampling due to the new 
proposed requirement on the minimum sample size; 

 To change the title of this draft from “Best practice examples focusing 
on sample size and reliability calculations and sampling for 
validation/verification” to “Guidelines for sampling and surveys for CDM 
project activities and programme of activities”. 

01.1 16 May 2012 Editorially revised to remove “draft” from paragraph 3 and amended title for 
readability. 

01.0 11 May 2012 EB 67, Annex 6. Initial adoption. 
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