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Abstract—An effective data compressor is becoming increasingly critical to today’s scientific research, and many lossy compressors

are developed in the context of absolute error bounds. Based on physical/chemical definitions of simulation fields or multiresolution

demand, however, many scientific applications need to compress the data with a pointwise relative error bound (i.e., the smaller the

data value, the smaller the compression error to tolerate). To this end, we propose two optimized lossy compression strategies under a

state-of-the-art three-staged compression framework (prediction + quantization + entropy-encoding). The first strategy (called

block-based strategy) splits the data set into many small blocks and computes an absolute error bound for each block, so it is

particularly suitable for the data with relatively high consecutiveness in space. The second strategy (called multi-threshold-based

strategy) splits the whole value range into multiple groups with exponentially increasing thresholds and performs the compression in

each group separately, which is particularly suitable for the data with a relatively large value range and spiky value changes. We

implement the two strategies rigorously and evaluate them comprehensively by using two scientific applications which both require

lossy compression with point-wise relative error bound. Experiments show that the two strategies exhibit the best compression qualities

on different types of data sets respectively. The compression ratio of our lossy compressor is higher than that of other state-of-the-art

compressors by 17.2%–618% on the climate simulation data and 30%–210% on the N-body simulation data, with the same relative

error bound and without degradation of the overall visualization effect of the entire data.

Index Terms—Lossy compression, science data, high performance computing, relative error bound
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1 INTRODUCTION

An effective data compressor is becoming more and more
critical to today’s scientific research because of extremely
large volume of data produced by scientific simulations.
The large volume of data generally are stored in a parallel
file system, with a limited capacity of the storage space
and limited I/O bandwidth to access. Climate scientists,
for example, need to run large ensembles of high-fidelity
1km × 1km simulations, with each instance simulating 15
years of climate in 24h of computing time. Estimating even
one ensemble member per simulated day may generate 260
TB of data every 16s across the ensemble. In the Hard-
ware/Hybrid Accelerated Cosmology Code (HACC) [2] (a
well-known cosmology simulation code), the number of
particles to simulate could reach up to 3.5 trillion, which
may produce 60 petabytes of data to store. One straight-
forward data reduction method is decimating data in either
time dimension or space, however, this may lose important
information for user’s analysis.

Error-controlled lossy compression techniques have been
considered the best trade-off solution compared to lossless
compression, because not only can such techniques signif-
icantly reduce the data size but they can also keep the
data valid after the data decompression based on the error
controls. The existing compressors (such as [3], [4], [5]) are
basically designed in the context of absolute compression
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errors (such as the absolute error bound for each data point
or the root mean squared errors).

In addition to the absolute error bound, another type of
error bound (called pointwise relative error bound or relative
error bound for short) has received increasing attention be-
cause it is more reasonable for some applications based on
the users’ demand on multiresolution or physical definition
of simulation fields. As for the pointwise relative error
bound, the maximum compression error for each data point
is equal to a percentage ratio of the data point’s value,
such that the larger the value is, the larger the compression
error. Hence, such an error bound leads to multiple preci-
sions/resolutions on different data points. As one Argonne
Photon Source (APS) researcher pointed out, for instance, he
needs to use different levels of precisions to study various
regions of an APS generated X-ray image. Moreover, in
some N-body applications such as cosmology simulation,
thousands of millions of particles are moving in the space
with different speeds. According to the corresponding re-
searchers, the faster the particles move, the larger errors
their analysis can accept, which means that the compression
of the velocity field of particles needs to use point-wise
relative error bound.

In this paper, we focus on the optimization of compres-
sion quality based on pointwise relative error bound for
scientific data with various dimensions. Our exploration
is based on a generic compression model - SZ [3], [4],
which involves three critical steps: (1) value prediction for
each data point, (2) quantization of prediction errors, and
(3) entropy encoding of the quantization output. Several
challenging issues have to be faced. SZ constructs a set
of adjacent quantization bins to transform each original
floating-point data value to an integer based on its predic-
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tion error. Guaranteeing the absolute error bound in this
framework is relatively easy, in that the sizes of quantization
bins could be fixed because of the constant absolute error
bound. Problems arise, however, when the error bounds are
varying with different data points upon the request for a
relative error bound.

We propose two effective lossy compression strategies
which can adapt to different types of scientific data sets
with various data features. The first strategy is particularly
suitable for the datasets with relatively consecutive/smooth
value changes in space (e.g., 2D or 3D datasets). This strat-
egy (a.k.a., block-based strategy) is to split the whole data
set into multiple small blocks in the multidimensional space
and adopt a uniform error bound in each block. There are
several critical questions to answer: how to determine the
error bound in one block? how to minimize the overhead
of storing the metadata in each block? how to determine
the block size considering the tradeoff between the com-
pression gains with possibly more relaxed error bounds and
unavoidable metadata overhead? The other strategy (called
multi-threshold-based strategy) is designed particularly for
the dataset with spiky value changes on adjacent data
points (such as N-body simulation data). In this method,
the whole value range will be split into multiple groups
with exponentially increasing thresholds and then the data
will be compressed according to the groups separately with
a common absolute error bound in the same group. As for
this strategy, how to determine the absolute error bound for
each group and how to encode the group index for each
data point would be two serious questions to answer.

Our key contribution is twofold. On the one hand, we
answer the above-listed technical questions and propose
complete design/implementation methods for the above
two strategies based on the requirement of relative error
bound. We release the code as an open-source [1]. Further,
we validate the effectiveness of the new solution by using
real-world scientific data sets. Experiments show that our
block-based strategy exhibits 17.2–618% higher compression
ratios on climate simulation data than other state-of-the-
art existing compressors; our multi-threshold-based strategy
outperforms other compressors by 31–210% on cosmology
simulation with the user-required point-wise error bound
and comparable compression/decompression time.

The rest of the paper is organized as follows. In Section
2, we discuss related work. We formulate the scientific
data compression problem with the requirement of relative
error bound in Section 3. In Section 4, we describe the SZ
compression framework in details. In Section 5, we pro-
pose the block-based lossy compression strategy and multi-
threshold-based lossy compression strategy respectively. In
Section 6, we describe the experimental setting and present
the evaluation results. We conclude in Section 7 with a
vision of future work.

2 RELATED WORK

Many data compressors have been developed to signifi-
cantly reduce the data size. In general, the compressors
can be split into two categories, lossless compressor and
lossy compressor. Since scientific data are mainly gener-
ated/stored in the form of floating-point values each with

rather random ending mantissa bits, generic lossless binary-
stream compressors such as Gzip [6] and BlosC [7] cannot
work effectively. Although there are also some existing
lossless compressors [8], [9], [10], [11] designed for floating-
point data sets, they still suffer from very limited compres-
sion ratios [3], [4].

Lossy compressors have been developed for years and
they can be categorized as either error-controlled or not.
Many of the existing lossy compressors (such as [12], [13])
are not error controlled, such that the reconstructed data
may not be valid from the perspective of data researchers or
users. Error-controlled lossy compression techniques have
also been developed in the past decade. SZ [3], [4], [14],
for example, provides multiple types of error controls, yet
all of them are based on a constant/uniform bound (a.k.a.,
absolute error bound) for all the data points. Another out-
standing floating-point lossy compressor, ZFP [5], provides
three types of error controls: fixed absolute error bound,
fixed rate, and fixed precision (the number of uncompressed
bits per value). According to the developer of ZFP, its most
efficient mode is fixed absolute error bound, but it still
overpreserves the compression errors for a large majority
of the data points. Moreover, some specific compression
techniques are also customized for particular datasets based
on their features. R-index sorting [15], [16], for instance, is
adopted to improve the compression ratio for the position
fields of N-body simulation; Lee et al. [17] proposed to
leverage the statistical features to improve the compression
ratio for time-series datasets.

Relative-error-bound based compressors also have been
developed, however, they suffer from limited compression
quality. ISABELA [18], for example, allows compression
with point-wise relative error bounds; but its compression
ratio (the ratio of the original data size to the decompressed
data size) is usually around 4:1 [3], [4], [18], which is
far lower than the demanded level of the extreme-scale
application users. Moreover, its compression rate is about
5–10X lower than that of SZ [3], [4] and ZFP [5]. Sasaki et
al. proposed a wavelet transform based lossy compressor
[12], which splits data into a high-frequency part and low-
frequency part by the Wavelet transform and then uses
vector quantization and Gzip [6]. Similar to ISABELA, the
Wavelet transform based method suffers from lower com-
pression ratio than SZ and ZFP do [3]. Moreover, it cannot
deal with the data sets having an odd number of elements at
some dimension. FPZIP [19] allows users setting the number
of bits (called precision) to maintain for each data point
during the compression. For single-precision floating-point
data sets, for example, precision = 32 indicates a lossless
compression in FPZIP and other settings with lower preci-
sions corresponds to different lossy levels of compression in
the sense of point-wise relative error bound approximately.
FPZIP has two drawbacks: on the one hand, it is uneasy
for users to control the compression errors based on a
specific point-wise error bound. In practice, they have to try
compressing the data sets multiple times to estimate the pre-
cision required corresponding to the expected error bound.
On the other hand, its compression ratio is lower than
our proposed solution with the same relative error bound,
to be shown in Section 6 in details. All in all, compared
with the existing error-controlled lossy compressors, our
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proposed relative error bound based compression strategies
can improve the compression ratio by 17.2–618% on CESM-
ATM climate simulation data [20] and by 31–210% on HACC
particular simulation data [2].

3 PROBLEM FORMULATION

The research objective is to optimize the compression qual-
ity for the lossy compression of scientific data with the con-
straint of the pointwise relative error bound (a.k.a, relative
error bound for short). Specifically, given a data set S={d1,
d2, · · · , dN} with N data points (where di refers to the data
point i in the data set), the reconstructed data set S′={d′1,
d′2, · · · , d′N} must satisfy the following inequality:

max
di∈S,d′

i∈S′

(

∣∣∣∣
di − d′i

di

∣∣∣∣) ≤ ε (1)

where ε is a small constant value (i.e., relative error bound)
specified by the user.

We present an example to further illustrate the definition
of pointwise relative error bound. Suppose we are given a
set of data {1.23, 1.65, 2.34, 3.56, 10.0, 20.0} to compress with
a relative error bound of 0.01 (or 1%). Then the absolute
error bounds for the six data points will be 0.0123, 0.0165,
0.0234, 0.0356, 0.1, and 0.2, respectively. That is, as long as
the difference of the reconstructed value d′i and its original
value di is no greater than 1% of di, the lossy compression
will be thought of as satisfying the error bound.

A typical use-case that requires the relative error bound
based compression is the compression of velocity fields in
a cosmology simulation such as HACC [2]. In HACC, for
example, each particle has two parts of information, position
{x,y,z} and velocity {vx,vy,vz}, each being involved in three
dimensions. So, there are six 1D arrays - x, y, z, vx, vy, and
vz - used to store the position and velocity information for
all particles and the index of each array indicates the particle
ID. According to the cosmology researchers and HACC
developers, the larger velocity a particle has, the larger error
it can tolerate in general. In this case, the point-wise relative
error bound is required to compress the velocity data.

Our objective is to maximize the compression ratio, sub-
ject to the inequality (1), where compression ratio (denoted
by γ) is defined in Equation (2).

γ =
original data size

compressed data size
(2)

In addition to the point-wise relative error bound (i.e.,
Inequality (1)), another important evaluation metric is peak
signal-to-noise ratio (PSNR), as defined in Formula (3).

psnr = 20 · log10(
dmax − dmin

rmse
) (3)

where rmse =
√

1
N

∑N
i=1(di − d′i)

2, and dmax and dmin

refer to the max and min value respectively.
PSNR is commonly used to assess the overall distortion

between the original data and reconstructed data especially
in visualization. Logically, the higher the PSNR is, the lower
the overall compression error, indicating a better compres-
sion quality. In our experiments, we will evaluate both
maximum point-wise relative error and PSNR, in order to
assess the distortion of data comprehensively.

TABLE 1
Formulas of 1, 2, 3-layer prediction for two-dimensional data sets

Prediction Formula
1-Layer f(i0, j0) = V (i0, j0 − 1) + V (i0 − 1, j0)− V (i0 − 1, j0 − 1)

2-Layer
f(i0, j0) = 2V (i0 − 1, j0) + 2V (i0, j0 − 1)
−4V (i0 − 1, j0 − 1)− V (i0 − 2, j0) − V (i0, j0 − 2)
+2V (i0 − 2, j0 − 1) + 2V (i0 − 1, j0 − 2)− V (i0 − 2, j0 − 2)

3-Layer

f(i0, j0) = 3V (i0 − 1, j0) + 3V (i0, j0 − 1)
−9V (i0 − 1, j0 − 1)− 3V (i0 − 2, j0)− 3V (i0, j0 − 2)
+9V (i0 − 2, j0 − 1) + 9V (i0 − 1, j0 − 2)− 9V (i0 − 2, j0 − 2)
+V (i0 − 3, j0) + V (i0, j0 − 3)
−3V (i0 − 3, j0 − 1)− 3V (i0 − 1, j0 − 3)
+3V (i0 − 3, j0 − 2) + 3V (i0 − 2, j0 − 3)− V (i0 − 3, j0 − 3)

4 SZ COMPRESSION FRAMEWORK

We designed a novel, effective lossy compression model,
namely SZ compression framework [4], which includes
three fundamental steps as described in this section. We
describe the three steps in the following text.

4.1 Step I: data prediction with reconstructed values

In our design, we scan the whole data set with an in-
creasing order of dimensions, and the prediction values
are generated for each data point based on their preceding
processed neighbors. The prediction formulas are derived
by constructing a surface using the neighboring data points
on one or multiple layers, as presented in Table 1, where
(i0,j0) refers to the current data point to be predicted, V (x,y)
refers to the corresponding value of a data point (x,y),
and x=0,1,2,· · · , y=0,1,2,· · · . The detailed derivation of the
prediction formulas is described in our prior conference
publication [4]. In fact, more advanced prediction methods
can be customized based on the characteristics of specific
scientific data, which will be studied in our future work.

Now, the key question is how many layers we are
supposed to use for the data prediction. Before answering
the question, we must notice an important constraint: in the
compression phase, the data prediction must be conducted
based on the previously decompressed values instead of
the original data values, otherwise the data decompression
cannot respect the error bound strictly. In our prior work [4],
we presented that the one-layer prediction is the best choice,
considering the impact of the inevitable data distortion of
the reconstructed data points to the prediction accuracy of
the current data point. We omit the details here because of
the space limitation.

4.2 Step II: error-bounded linear-scaling quantization

The step II is a critical step for controlling the compression
errors. As illustrated in Figure 1, a set of consecutive bins
are constructed based on each predicted data value as the
center. The size of each bin is 2X error bound and the bins
will be tagged as following indices: · · · , -3, -2, -1, 0, 1, 2, 3,
· · · . As such, the original raw value of each data point can
be transformed to an integer value (i.e., the index of the bin
containing the corresponding true value).

In absolute terms, the quantization bin index can be
calculated by Formula (4), and the center of each bin will
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Fig. 1. Illustration of linear-scaling quantization step

serve as the reconstructed data value of the corresponding
data point during the decompression.

bin index =

⎧⎪⎨
⎪⎩

�
di−d′

i

2e + 1
2� di ≥ d′i

−�
d′

i−di

2e + 1
2� di < d′i

(4)

where �� refers to the floor function. Although step II may
introduce distortion of the data, the compression error (i.e.,
the distance between the center of the located bin and the
real value of the data point) must be within the required
error bound e, since the bin’s size is twice as large as the
error bound.

As discussed above, the error-bounded linear-scaling
quantization will transform all of the original floating-point
data values to another set of integer values, and a large
majority of such integer values are expected to be very close
to 0, in that most of the raw data values are consecutive
in space. Figure 2 shows an example of the distribution of
quantization codes produced by our quantization encoder,
which uses 255 quantization bins to represent predictable
data. From this figure, we can see that the distribution of
quantization codes exhibits a fairly sharp shape and that
the shape depends on the accuracy of the data prediction.
The higher prediction accuracy, the sharper the distribution
exhibits, and then the higher compression ratio we can get
by using a variable-length encoding, in which more frequent
symbols will be coded using fewer bits. In our implementa-
tion, all the bin-index codes are actually mapped to positive
integers by adding a constant offset, because we reserve
integer 0 to represent the unpredictable data that cannot be
identified by the prediction + quantization method because
of limited number of quantization bins for possible spiky
data changes. The unpredictable data will be labeled and
compressed by keeping only valuable bits in its IEEE 754
binary representation, respecting the specified error bound.

The last critical issue regarding the linear-scaling quanti-
zation step is how to set an appropriate number of quantiza-
tion bins provided a specific data set. To this end, we design
an efficient algorithm that can determine the appropriate
number of quantization bins. Specifically, we allow users
specifying a lower bound of the prediction hitting-rate,
based on which our algorithm can estimate the required
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Fig. 2. Distribution produced by error-controlled quantization encoder on
ATM data sets of (a) value-range-based relative error bound = 10−3 and
(b) value-range-based relative error bound = 10−4 with 255 quantization
intervals (m = 8).

number of quantization bins accurately. The design idea is
firstly sampling a very small portion (generally only 1%)
of the data points in the whole data set by a systematic
sampling, then performing data prediction and quantization
on each of them and finally determining the appropriate
number of quantization bins accordingly. We present an
example pseudo-code in Algorithm 1. Without loss of gener-
ality, we assume the data set to compress is a 3D array with
three dimension sizes being equal to M , N , K respectively
in this example.

Algorithm 1 CALCULATING AN APPROPRIATE NUMBER OF

QUANTIZATION BINS

Input: user-specified error bound e, lower bound of prediction hitting
rate (denoted by η); maximum number of quantization bins (denoted
by m); sampling distance s
Output: the appropriate number of quantization bins (denoted by P )
based on which the real prediction hitting rate will be greater than η

1: Allocate a buffer called intervals, with M elements; /*for keeping
the counts of different bin-index codes*/.

2: for (i = 1→M − 1) do
3: for (j = 1→N − 1) do
4: for (k = 1→K − 1) do
5: if ((i+j+k)% s == 0) then
6: Perform the one-layer prediction to get d′

i,j,k
.

7: bin index =

[
d′i,j,k−di,j,k

2e
+ 1

2

]
. /*Formula (4)*/

8: intervals[bin index]++.
9: end if

10: end for
11: end for
12: end for
13: target hit count = η(M−1)(N−1)(K−1).
14: hitting count = 0.
15: for (r = 0→m) do
16: hitting count += intervals[i].
17: if (hitting count ≥ target hit count) then
18: break.
19: end if
20: end for
21: p = 2×(r+1). /*r+1 is half of the expected # quantization bins.*/
22: P = 2h, where 2h−1 < p ≤ 2h, h=0,1,2,· · · . /*if p=28, then P=32*/

We describe Algorithm 1 as follows. In the beginning, we
first allocate a counting buffer (namely intervals) in order
to count the number of hits for different bin-index codes.
The data points will be selected by a systematic sampling
(line 2-5) with a sampling distance s, which means that only
1
s

data will be selected. Then, we compute the prediction
value for each sampled data point based on the one-layer
prediction (line 7). Note that each bin here involves both
cases in Formula (4) (i.e., di≥d′i and di<d′i). Thereafter, we
count the total number of hits with increasing number of
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bins based on the counting buffer against the target hitting
count calculated by the lower bound of prediction hitting
rate (line 13-20). In the end, the appropriate number of
quantization bins will be finalized in the form of power of
two (line 22), in order to guarantee enough quantization
bins on demand.

Table 2 presents the effectiveness of reaching demanded
hitting rate by Algorithm 1 based on two data sets (CESM-
ATM and HACC), with a sampling rate of 1% (i.e., sampling
distance = 100; select one sample point every 100 data
points) and two different error bounds (1E-4 and 1E-6 com-
pared to the value range). The column named ’sampled’ in
the table refers to the percentage of predictable data covered
by p quantization bins during the calculation of these bins
(i.e., Algorithm 1), and the column tagged ’real’ means the
percentage of the number of data points covered by the final
P quantization bins during the data compression. It is ob-
served that when the lower bound of prediction hitting rate
is set to 80%∼99%, the minimum numbers of bins required
(i.e., the value p calculated at line 21 in the algorithm) are
in the range of [2, 6515] and [24, 98294] for the two data
sets respectively. The appropriate numbers of quantization
bins output by our algorithm is always no smaller than the
minimum requirement more or less, because of the line 22
(that is, the final number of quantization bins is rounded to
2h, where 2h−1 < p ≤ 2h and p=2(r+1)). In practice, we
recommend to set the lower bound of prediction hitting rate
to 99%, which is also the default setting of SZ.

TABLE 2
Effectiveness of reaching demanded hitting rate under Algorithm 1

based on CESM-ATM and HACC data set with different error bounds

CESM-ATM data set (err=1E-4)
Demanded CLDLOW FLDSC
hitting rate p P sampled real p P sampled real

80% 14 32 82.77% 96.42% 2 32 85.7% 99.7%
90% 20 32 90.8% 96.42% 4 32 94.3% 99.7%
99% 68 128 99.04% 99.7% 16 32 99.04% 99.7%

HACC data set (err=1E-4)
Demanded position x velocity vx
hitting rate p P sampled real p P sampled real

80% 24 32 80.1% 86.96% 202 256 80.2% 84.8%
90% 40 64 90.7% 95.3% 350 512 90.1% 94.9%
99% 122 128 99.1% 99.3% 984 1,024 99% 99.1%

CESM-ATM data set (err=1E-6)
Demanded position x velocity vx
hitting rate p P sampled real p P sampled real

80% 1,178 2,048 80% 91.6% 70 128 80% 88.3%
90% 1,816 2,048 90% 91.6% 156 256 90% 93.4%
99% 6,518 8,192 99% 99% 1,462 2,048 99% 99.4%

HACC data set (err=1E-6)
Demanded position x velocity vx
hitting rate p P sampled real p P sampled real

80% 2,292 4,096 80% 90.5% 19,904 32,768 80% 89.1%
90% 3,708 4,096 90% 90.5% 34,706 65,536 90% 97%
99% 11,970 16,384 99% 99.15% 98,294 131,072 99% 99.6%

4.3 Step III: a customized variable-length encoding

We adopt Huffman encoding method in step III, because
Huffman encoding has been proved as an optimal variable-
length encoding approach in most of cases (especially when
the distribution of codes follows a normal distribution). In
order to optimize the compression quality, we improved
the Huffman encoding algorithm based on the characteristic
of the error-bounded linear scaling quantization bins. As
discussed previously, the appropriate number of quantiza-
tion bins calculated by Algorithm 1 could be very large.
Experiments based on HACC data sets (velocity field), for

instance, show that the number of quantization bins could
reach up to 200k if the required error bound is 10−5 while
the expected prediction hitting rate is set to 99%. However,
the traditional Huffman encoding algorithm implemented
in existing lossless compression packages such as Zlib [21]
treats the stream of data always in the unit of bytes, which
will definitely cause a sub-optimal compression effect.

The key difference between our improved Huffman en-
coding algorithm and the traditional algorithm is that our
algorithm treats the sequence of quantization codes (i.e.,
bin indices generated by Algorithm 1) based on its integer
values, which may lead to a large number of nodes in the
tree, such that how to store the tree as effectively as possible
needs to be handled carefully. We designed a recursive
algorithm to convert the Huffman tree to byte stream, as
shown in Algorithm 2. The initial node is the root of the
Huffman tree and its id is 0. Left node array L and right
node array R are used to record the left children and right
children respectively. The tag array is used to record whether
the corresponding node is an internal node or a leaf. The
algorithm adopts a pre-order traversal to scan all the nodes
and pad the information into four buffer arrays.

Algorithm 2 PADTREE

Input: left node array L, right node array R, tag array tag, and code
array C, node’s id i, node’s object (denoted by node)
Output: left node array L, right node array R, tag array, code array C

1: C[i] = node.c; /*record the code*/
2: tag[i] = node.tag; /*record whether the node is internal or leaf*/
3: if (node.left tree �= null) then
4: j ++; /*increment the global node ID j*/
5: L[i] = j; /*append nodej as nodei’s left child*/
6: PADTREE(L, R, tag, C, j, node.left tree); /*recursive call*/
7: end if
8: if (node.right tree �= null) then
9: j ++; /*increment the global node ID j*/

10: R[i] = j; /*append nodej as nodei’s right child*/
11: PADTREE(L, R, tag, C, j, node.right tree); /*recursive call*/
12: end if

The time complexity of the algorithm is O(N ), where
N is the number of nodes, which is twice the number of
quantization bins. The storage overhead of saving the Huff-
man tree is a constant with respect to the entire compression
size, because such an overhead is determined by the number
of quantization bins, which is supposed to be a very small
constant (such as 65536 quantization bins) compared to the
number of data points (such as 230 particles in one snapshot
of HACC simulation) without loss of generality.

5 OPTIMIZED LOSSY COMPRESSION BASED ON

POINT-WISE RELATIVE ERROR BOUND

In this section, we describe how we design and implement
the pointwise-relative-error-based lossy compression under
the SZ compression framework. In our solution, we explore
two strategies to address this issue, and they are called
block-based strategy and multi-threshold-based strategy, re-
spectively.

5.1 Block-based Strategy

The block-based strategy first splits the whole data set into
many small blocks and then computes an absolute error
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bound for each block based on the relative error bound. The
data points inside each block will share the same absolute
error bound during the compression, as shown in Figure
3. In this sense, we just need to store an absolute error
bound for each block. In fact, to minimize the overhead,
we keep the first two bytes of the IEEE 754 floating-point
representation of the absolute error bound because doing
so already provides a fairly accurate estimate of absolute
error bound for each block. On the other hand, as confirmed
by our previous work [3], [4], the data in local regions are
generally smooth, such that a common absolute error bound
in a small block could be used to approximate the real
absolute error bounds calculated based on the individual
values.
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Fig. 3. Illustration of block-based strategy

In our design, users have three options to generate the
absolute error bound for each block: calculating it based on
the minimum value, average value, or maximum value in
each block. If the user chooses the minimum value option,
the final compression error must be strictly following the rel-
ative error bound for each data point. However, this mode
may overreserve the accuracy, especially when the data
exhibit spiky changes in local areas, such that the absolute
compression errors may be largely smaller than the de facto
error bound, causing a poor compression factor. To address
this issue, the users can use the average value option to
approximate the absolute error bound for each block, which
may effectively avoid the issue of over-reserving accuracy.
By comparison, the maximum value of the absolute error
bound provides the most relaxed error controls with mul-
tiple resolutions yet with the highest possible compression
ratio.

5.2 Multi-threshold-based Strategy

Note that the block-based strategy may work effectively,
especially when the data exhibit relatively high coherence in
the space. However, this assumption may not always hold.
The elements of the velocity array in HACC, for example,
represent the velocity values of different particles, thus the
adjacent data in the array could be largely different, as
presented in Figure 4.
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Fig. 4. Illustration of vx data array in a snapshot of HACC simulation

To address this issue, we propose a multi-threshold-
based strategy. The basic idea is splitting the whole value
range into multiple groups with exponentially increasing
thresholds, as presented in Figure 5, and then performing
the SZ compression (including prediction and quantization)
in each group separately. This idea is largely different from
the existing multi-level thresholding based image compres-
sion method [22], [23], which splits the data set into multiple
non-overlapping 4×4 blocks and uses two values (called
mean-of-high-values and mean-of-low-values) to substitute
the pixel values in each block. The threshold determining
the high values and low values is calculated based on Shan-
non entropy. Unfortunately, this method is unable to respect
the point-wise relative error bound and also suffers from
low compression rate (as confirmed in [23]). Our strategy
also has nothing to do with the Wavelet-based thresholding
compression method [24] and recursive thresholding tech-
nology [25]. The former aims to reduce the noise of the
Wavelet-transformed coefficients in the detail subbands (or
high resolution subbands) based on a thresholding function
such that the mean squared error (MSE) could be mini-
mized. The latter optimized the image segmentation effect,
by recursively segmenting the objects in the image data from
the lowest intensity until there is only one object left.

In what follows, we will describe our multi-threshold-
based strategy. We mainly answer three critical questions:
(1) how to construct the multiple groups, (2) how to perform
the compression for the data points in each group, and (3)
how to encode the group IDs (a.k.a., group indices).
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Fig. 5. Illustration of multi-threshold-based strategy

Each data point in the whole data set belongs to only one
group, depending on its value. Specifically, the group ID of
a data point di can be calculated by the following equation:

GID(di)=

⎧⎨
⎩
Expo(2)(di), di ≥ 0 & Expo(2)(di)≥λ

0, di ≥ 0 & Expo(2)(di)<λ

−GID(−di), di < 0
(5)

where Expo(2)(di) refers to the base-2 exponent of the value
di, which can be quickly received by reading the exponent
part of the IEEE 754 representation. The λ is the lower bound
of the exponent threshold under which the corresponding
values will be compressed by an absolute error bound, in
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order to avoid too many groups to deal with and over-
reservation of the precision during the compression (to be
discussed in more details later). For example, if λ is set to
0, then we can get Expo(2)(0.123) = 0, Expo(2)(1.23) = 0,
Expo(2)(12.3) = 3 and Expo(2)(123) = 6. In our implementa-
tion, λ is set to 0 by default.

The pseudo-code of the multi-threshold-based compres-
sion is presented in Algorithm 3. The compression in the
multi-threshold-based strategy includes three steps: data
prediction, quantization of prediction errors and Entropy-
encoding, based on the SZ compression framework. Unlike
the original design of SZ compressor, we need to declare a
buffer for all groups, and each element of the buffer keeps
a preceding value in the corresponding group. Specifically,
there are two types of such buffers, called pos group buf and
neg group buf, to deal with positive values and negative
values respectively (see line 1-2). In the main loop, we
need to select the corresponding last-preceding-value buffer
g buf [|g|] first (line 5-10). In the prediction step, the value
of a data point is predicted by the preceding data value in
its group (line 15). In particular, the size of the quantization
bins used in the quantization step is determined based on
the group ID (line 17). For instance, if the user expects to
do the compression strictly using a relative error bound
on each data point, the bin size should be always set to
twice as large as the absolute error bound calculated in
terms of the bottom threshold line of the data point’s group.
Specifically, for the data point di (it is located in the group
[2k,2k+1]), the absolute error bound should be set to ε·2k,
where k=GID(di) according to Formula (5) and ε is the
relative error bound. For instance, if λ is set to 0 in Formula
(5), 0.123 and 1.23 will be compressed by the absolute error
bound of ε because 2GID(0.123)·ε=2GID(1.23)·ε=ε; 12.3 and
123 will be compressed based on the absolute error bounds
of 23ε and 26ε respectively. The setting of λ determines
the value range in which the data will be compressed by
an absolute error bound to avoid the over-reservation of
precision. Table 3 presents the calculated values of the real
absolute error bounds for different groups. We can clearly
see that such a design realizes a multi-resolution effect to
control the compression errors of the data points in various
ranges: i.e., the larger the values, the larger the absolute
error bounds.

TABLE 3
An example of absolute error bounds calculated by

exponential-increasing value ranges (λ=0)

ε · · · (-64,-32] (-32,-16] (-16,-8] (-8,-4) (-4,-2) (-2,-1] (-1,0)
0.1 · · · 3.2 1.6 0.8 0.4 0.2 0.1 0.1
0.01 · · · 0.32 0.16 0.08 0.04 0.02 0.01 0.01
0.001 · · · 0.032 0.016 0.008 0.004 0.002 0.001 0.001

ε [0,1) [1,2) [2,4) [4,8) [8,16) [16,32) [32,64) · · ·
0.1 0.1 0.1 0.2 0.4 0.8 1.6 3.2 · · ·
0.01 0.01 0.01 0.02 0.04 0.08 0.16 0.32 · · ·
0.001 0.001 0.001 0.002 0.004 0.008 0.016 0.032 · · ·

There are two significant advantages in the multi-
threshold-based design. On the one hand, the data predic-
tion step is not subject to the adjacent neighbor data points
in the data set but the preceding data points in the same
group, such that the prediction accuracy could be improved
significantly especially when the data are not smooth in
the array. As shown in Figure 5, for instance, the segment

Algorithm 3 MULTI-THRESHOLD-BASED DESIGN FOR THE

COMPRESSION WITH POINT-WISE RELATIVE ERROR BOUND

Input: relative error bound ε, lower-bound of threshold λ (=0 by
default), maximum group ID G (2G is maximum number of groups), n
data points
Output: Byte steam of compressed data

1: Construct buffers pos group buf for positive data points;
2: Construct buffers neg group buf for negative data points;
3: Allocate memory for the array dataGrpCode adn dataQuntCode;
4: for (i = 1→n− 1) do
5: if (di≥0) then
6: g buf = pos group buf ;
7: else
8: g buf = neg group buf ;
9: end if

10: Compute group number g = GID(di) based on Formula (5);
11: if (|g|>G or g buf [|g|] = φ) then
12: Treat di as unpredictable data point;/*binary analysis*/
13: g buf [|g|] = d′i; /*d′i here is the decompressed value of di*/
14: else
15: pred = g buf [|g|]; /*|g| is absolute value of g*/
16: perr = |pred−di|;
17: Compute real error bound (denoted ε) in the group g;
18: dataQuntCode[i] = 1

2
· perr

ε+1
;

19: dataGrpCode[i] = g;
20: g buf [|g|] = d′i; /*Put decompressed value in the buffer.*/
21: end if
22: end for
23: Compress dataQuntCode by our customized Huffman tree;
24: Compress dataGrpCode by our customized Huffman tree;

A includes three data points i, j, and k, whose values
are largely different from their previous neighbor values
yet are very close with each other in the same group. We
compare the distribution of prediction errors (PDF) for the
multi-threshold-based design and the traditional neighbor
prediction method in Figure 6 (a), by using the HACC data
set (vx field). We can clearly observe that the former leads
to a sharper distribution, which means a higher prediction
accuracy. On the other hand, the absolute error bound of
each data point is dependent on its value, so the size
of each quantization bin would get larger than the fixed
bin size used in the traditional compression model with
a global absolute error bound. The diverse bin sizes will
lead to a more intense clustering of the data points in the
quantization bins, i.e., more data points will be represented
by fewer integer bin indices after the quantization step. We
use Figure 6 (b) to illustrate the distribution of data points
located in different quantization bins (−500∼500) based on
the relative error bound of 0.001 and absolute error bound of
0.1 respectively. In the figure, the two distributions exhibit
very similar shapes. This means that in order to reach the
similar quantization effectiveness (or compression ratio),
the absolute error bound has to be increased up to two
orders of magnitude to the relative error bound, leading to a
significant loss of precision on the close-to-zero data points.

We adopt Huffman encoding to encode the difference of
adjacent group IDs. The reason is that the data may still
have a certain coherence, even for the particle’s velocity
arrays, as as we observed in Figure 4. That is, the difference
of adjacent group IDs is likely to be around 0 in most of
cases, as confirmed in Figure 7. This figure demonstrates
the distribution of the differences of adjacent group IDs
when the multi-threshold-based strategy is adopted on the
vx array of a snapshot in the HACC cosmology simulation.
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Fig. 6. Distribution analysis of multi-threshold-based design

In particular, there are 50% of data points belonging to
the group 0, and the three most intensive groups (ID=−1,
0, 1) occupy up to 80% of data points. In this situation,
Huffman encoding can significantly reduce the storage size
for keeping group IDs, in that most frequent group IDs
would be represented by very short codes.
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Fig. 7. Distribution of adjacent group ID codes (HACC: vx)

Remark:

• The multi-threshold-based strategy is particularly suit-
able for the scientific data that exhibit a rather low
spatial coherence (i.e., spiky changes in local areas). The
reason is that unlike the block-based strategy, multi-
threshold-based strategy does not closely rely on the
smoothness/coherence of the data.

• If the value range of the data set is very small, e.g.,
if it is in the range [−2,2], there would be only a few
groups based on the base-2 thresholds. In this case,
the user can amplify the value range by introducing
a multiplier θ on each data point such that all the
data will be mapped to another space which is θ times
as large as the original value range, and we call this
transform “θ-mapping”. Considering the minimization
of the transformation overhead, θ is supposed to be set
to 2c such that we just need to add c onto the exponent
part of the IEEE 754 representation of each original data
value in the θ-mapping. In the course of decompression,
the reconstructed data just need to go through a reverse
procedure of θ-mapping (i.e., divide every data point by
θ) to get the original data value.

• Based on the Equation (5), all the data points whose
values are in the range [−1,1] belong to the group ID
0, hence their absolute error bounds are a constant ε.
That is, the reconstructed values for these data points
may not follow a strict relative error bound, while such
a distortion is tolerable because the user can amplify
the value range to an expected space on demand, as
discussed above.

6 EVALUATION OF COMPRESSION QUALITY

In this section, we evaluate the compression quality of
our pointwise relative-error-based compression technique
on two real-world HPC simulation data sets, and compare
it with other state-of-the-art work.

6.1 Experimental Setting

The state-of-the-art compressors in our evaluation are ZFP
[5], FPZIP [19], and ISABELA [18], all of which support
pointwise relative-error-based compression to a certain ex-
tent. ZFP provides three compression modes: error-bound-
based compression, rate-fixed compression, and precision-
based compression. The precision-based mode allows users
to set the number of bits to keep for the coefficient values
in the orthogonal transformed space, so as to achieve an
approximate effect of pointwise relative-error based com-
pression. FPZIP also allows users to set a number of bits to
maintain for each data point, leading to the pointwise rela-
tive error controls. Unlike ZFP and FPZIP, ISABELA allows
users setting a pointwise relative-error bound explicitly.

In our experiments, the simulation data are from
two well-known scientific applications: CESM Atmosphere
model (CESM-ATM) and Hardware/Hybrid Accelerated
Cosmology Code (HACC). They represent typical meteo-
rological simulation and cosmology simulation respectively.
We also evaluate Hurrican simulation data [26], which ex-
hibits the similar compression features with that of CESM-
ATM. It is not shown in the paper because of the space
limitation.

• CESM is a well-known climate simulation code that
may produce large volumes of data every day [20],
[27]. The CESM-ATM data comprise 60+ snapshots,
each containing 100+ fields. We performed compression
on each of them and observed that many fields exhibit
similar compression results. Therefore, we illustrate the
compression results based on four representative fields
(CLDLOW, CLDHGH, FLDSC and PHIS).

• HACC is a large-scale cosmology simulation code de-
veloped at Argonne National Laboratory. There are also
dozens of snapshots, each of which has 230 particles
emulated. Each particle involves six fields (x, y, z, vx,
vy, vz) stored as single-precision floating point values,
so the total original data size of each snapshot is 24GB
in the evaluation.

For the evaluation metric regarding data distortion, we
adopt the average relative error, maximum relative error,
and peak signal-to-noise ratio (PSNR). PSNR represents the
overall distortion of data from the perspective of visual-
ization and is calculated as Formula (3). PSNR is non-
negligible even if one chooses the relative error bound to
do the compression, because large distortion of overall data
visualization is undesired. In addition to PSNR, we will also
demonstrate the impact of decompressed data on the visu-
alization of physics-related metrics such as kinetic energy
and moving direction of particles in HACC simulation.

We also assess the I/O performance gain when using our
lossy compressor against other related work by performing
a parallel experiment on a supercomputer [28] using 2,048
cores (i.e., 64 nodes, each with two Intel Xeon E5-2695
v4 processors and 128 GB of memory, and each processor
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with 16 cores). The storage system uses General Parallel
File Systems (GPFS). These file systems are located on a
raid array and served by multiple file servers. The I/O
and storage systems are typical high-end supercomputer
facilities. We use the file-per-process mode with POSIX I/O
[29] on each process for reading/writing data in parallel 1.

6.2 Evaluation based on CESM-ATM data

Table 4 presents the compression results generated by dif-
ferent compressors based on the CLDLOW field in the
CESM-ATM simulation. Our solution, SZ, has three optional
modes—MIN, AVG, and MAX—meaning that the absolute
error bound will be calculated based on the minimum,
average, and maximum value in each block, respectively. We
set the block size in our solution to 5x5 because of its opti-
mality (to be shown later). From the table, we can see that
only SZ(MIN mode) and FPZIP can control the pointwise
relative error perfectly. We present the percentage of the data
points that meet the relative error bound requirement in the
third column. Since ZFP has no explicit relative error bound
mode, we compute the bounded percentage for its three
compression cases (Pc=16,18,20) based on the relative error
bound of 1E-2. Since FPZIP supports only precision setting
to control the errors, we have to try different precisions to
tune the point-wise relative error bound to a target level.
Specifically, Pc=16 and Pc=23 correspond to point-wise rela-
tive error bounds of 1E-2 and 1E-4, respectively. In addition,
ε̄ and max ε denote the average relative error and maximum
relative error, respectively; and ε refers to the relative error
bound setting for SZ. For other compressors, we present the
compression results based on a similar maximum relative
error or PSNR. SZ(MIN mode) exhibits the best results, as
it not only leads to the highest compression ratio among
the compressors studied, but also strictly limits the relative
errors. In quantitative terms, when the relative error bound
is set to 0.01, SZ(MIN mode) achieves a compression ratio
up to 18.6, which is higher than FPZIP, ZFP, and ISABELA
by 17.2%, 360%, and 618%, respectively. SZ(MAX mode)
achieves higher compression ratios because of its more re-
laxed relative error bound settings. Because of space limits,
we cannot present the compression/decompression time
here. Basically, we note that SZ, ZFP, and FPZIP lead to
similar compression times, while ISABELA is much slower
due to its data-sorting step.

We explore the optimal setting of the block size for
the relative-error-bound-based compression under the SZ
model, as presented in Table 5. We perform the compression
evaluation using different block sizes (from 4x4 to 8x8) and
observe that the compression qualities are similar. For in-
stance, the compression ratios are in the range of [17.04,18.6]
and [4.89,5.02] when the relative error bounds are set to
0.01 and 0.0001, respectively. The reason is that the climate
simulation data exhibit relatively high smoothness in the
space, such that the absolute error bound approximated for
each block changes little with different block sizes as long
as the block size stays small. We can also observe that the

1POSIX I/O performance is close to other parallel I/O performance
such as MPI-IO [30] when thousands of files are written/read simulta-
neously on GPFS, as indicated by a recent study [31].

TABLE 4
Comparison of Compression Results among Different Compressors

(CLDLOW field in CESM-ATM simulation)

Compressor Setting bounded ε̄ max ε PSNR CR

SZ ε=1E-2 100% 0.00466 0.009997 52.64 18.6
(MIN mode) ε=1E-4 100% 4.65E-5 1E-4 92.56 4.99

SZ ε=1E-2 98.6268% 1.03E+7 1.66E+13 52.7 18.67
(AVG mode) ε=1E-4 98.646% 1.03E+5 1.34E+11 92.7 5.12

SZ ε=1E-2 95.171% 1.5E+8 6.2E+14 52.37 19.63
(MAX mode) ε=1E-4 95.199% 4.4E+5 1.03E+12 92.4 5.28

Pc=16 99.96% 4.2E+5 1.26E+12 85.94 4.04
ZFP [5] Pc=18 99.977% 1.7E+5 4.15E+11 97.86 3.61

Pc=20 99.984% 2E+5 3.47E+10 109.9 2.98

Pc=15 87.2515% 0.00566 0.0154 51.32 20.3
FPZIP [19] Pc=16 100% 0.00284 0.0078 57.32 15.87

Pc=22 97.2724% 4.4E-5 1.22E-4 93.44 4.49
Pc=23 100% 2.2E-5 6.1E-5 87.5 3.95

ISABELA [18] ε=1E-2 99.9997% 0.00226 1 58.8 2.59
ε=1E-4 99.9952% 5.15E-05 1 92.8 1.39

maximum relative errors are always close or exactly equal
to specified bounds (1E-2 or 1E-4).

TABLE 5
Compression results of SZ(MIN) with different block sizes

Compression Ratio
Setting 4x4 5x5 6x6 7x7 8x8

1E-2 17.04 18.6 17.13 18.21 17.48
1E-4 4.89 4.99 5.01 5.02 5.02

Maximum Relative Error (i.e., max ε)
Setting 4x4 5x5 6x6 7x7 8x8

1E-2 0.01 0.009997 0.00998 0.009998 0.009998
1E-4 1E-4 1E-4 1E-4 1E-4 1E-4

PSNR
Setting 4x4 5x5 6x6 7x7 8x8

1E-2 52.27 52.64 52.92 52.99 53.1
1E-4 92.33 92.56 92.86 92.68 92.83

We present in Figure 8 the overall compression ratios
based on four representative fields, with various relative
error bounds under the four different compressors. We set
precisions of FPZIP to 13, 16, 19 and 23, respectively, because
such settings can respect the point-wise relative error bound
of 1E-1, 1E-2, 1E-3, and 1E-4, respectively. ZFP adopts the
precisions of 14, 16, 18, and 20, respectively. We adopt the
block-based strategy on all fields except for PHIS which
adopts threshold-based strategy because pretty small values
are scattered throughout this dataset (leading to severely
over-preserved precisions unexpectedly in the block-based
strategy). Based on Figure 8, SZ leads to about 50% higher
compression ratios than the second best compressor FPZIP
based on the point-wise relative error bound.

0

5

10

15

20

25

30

35

1E-1 1E-2 1E-3 1E-4

C
o

m
p

re
s
s
io

n
R

a
ti
o

Relative error bounds

SZ
FPZIP
ZFP
ISABELA

Fig. 8. Compression Ratio on CESM-ATM data

Table 6 presents the compression rate and decompres-
sion rate of compressing CESM-ATM data by the four
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state-of-the-art compressors respectively. The relative error
bound is set to 1E-2 for SZ and ISABLEA; the precision bit-
count is set to 16 and 20 for FPZIP and ZFP respectively,
such that they will have approximate relative errors with
SZ and ISABELA according to our above analysis. The
four compressors are all executed on the Argonne Bebop
cluster server [28] and Table 6 demonstrates the single-core
processing rates. It is observed that FPZIP has the fastest
speed on compression while SZ is the fastest compressor
on decompression. Specifically, SZ is slower than FPZIP by
35-56% on compression while it is faster than FPZIP by
48-66% on decompression. ISABELA exhibits much lower
compression rate than others because of its costly sort-
ing operation during the compression. In addition, in our
evaluation, we also observe that SZ exhibits similar com-
pression/decompression rate when using the absolute error
bound setting and relative error bound setting respectively.
The relative error bound based compression is faster some-
times because of the denser distribution of quantization bins
leading to a more efficient Huffman encoding operation,
while the absolute error bound based compression could
be faster because of the cost in calculating statistical error
bound for each block in the block-based strategy.

TABLE 6
Compression/Decompression rate (MB/s): CESM-ATM data

Compressor CLDLOW CLDHGH FLDSC PHIS
SZ 53.7/130 54.9/137 65.1/190 49.3/99

FPZIP 95.1/88 85.2/82.4 145.4/117.7 79.7/75
ZFP 103/118 91.6/95 103/145 80/103

ISABELA 4.05/12.5 4.34/13.4 4.86/13.5 1.01/12.6

We present the visualization images about absolute-
error-bound-based compression and pointwise-relative-
error-based compression in Figure 9. The absolute error
bound and relative error bound are set to 1.1E-3 and 1E-
2, respectively, such that they have the same compression
ratio. We observe that the two figures both look the same
as the original image at the full resolution to the naked
eyes, indicating that the overall visualization effect under
the relative error bound is not degraded at all.

(a) Abs Err Cmpr (b) Rel Err Cmprs

Fig. 9. Visualization of Decompressed Data (CLDLOW) with Different
Error Bounds

Since the smaller the value the lower the error bound,
the relative-error-based compression is supposed to have
greater ability to retain the details than does the absolute-
error-bound-based compression, in the areas with a lot
of small data values. This is confirmed in Figure 10,

which evaluates PSNR with different precisions between
the two compression modes using four representative fields
in CESM-ATM. We set the relative error bound to 1E-5
and compare the two compression modes under the same
compression ratio, with different levels of visual granularity.
The visual granularity is a threshold to select the areas with
small values in the data set. For instance, if it is set to 0.01,
only the data values that are lower or equal to 0.01 will
be selected to check the PSNR. Through the figure, we can
clearly see that the PSNR could be retained at a high level
with finer visual granularity under the relative error based
compression, while it degrades significantly in the absolute-
error-based compression.
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Fig. 10. Evaluation of PSNR with Different Visual Granularity

In Figure 11, we compare the visualization image of
the decompressed data under the two compression modes
using the field CLDLOW with the value range [0,0.001].
Because of the space limitation, we do not show the original
image, which looks exactly the same as Figure 11 (b). The
MAX mode with ε=0.01 is adopted for the relative-error-
based compression. We can observe that the image under
relative-error-based compression is exactly the same as the
original one, which confirms the high effectiveness of our
relative-error-based compression technique to maintain de-
tails. By comparison, the absolute-error-based compression
distorts the visualization considerably in the areas with
small values. For instance, some areas that were originally
blue/purple exhibit other colors (such as yellow and cyan)
because of the changed values after the reconstruction.

6.3 Evaluation based on HACC data

In this subsection, we present the evaluation results by
using different lossy compressors on the HACC data set.
As discussed previously, each particle involves six fields,
which can be split into two categories - position and velocity.
According to the HACC developers, the users require to
use absolute error bound to compress position values while
they hope to compress the velocity values using point-
wise relative error bounds. The reason is that the different
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(a) Abs Err Compression (b) Rel Err Compression

Fig. 11. Visualization of Decompressed Data (CLDLOW:[0,1E-3])

positions of the particles in the simulation are equivalently
significant in space, yet the lower velocity of a particle, the
higher demand on the compression precision in general. Ac-
cordingly, we mainly focus on the evaluation of the velocity
data compression with point-wise relative error bound in
our experiment.

In what follows, we first compare the compression
quality among different lossy compressors (including SZ,
ZFP, FPZIP and ISABELA), in terms of compression ratio
and compression/decompression rate. Then, we analyze the
impact of decompressed data on particle’s kinetic energy
and moving direction, based on absolute error bound and
relative error bound respectively. We observe that the com-
pression with relative error bound can keep a very satisfac-
tory overall visualization effect on both kinetic energy and
moving direction, and also keep the details of low-velocity
particles more accurately than the compression with abso-
lute error bound under the same compression ratio.

Figure 12 presents the point-wise relative error bound
based compression ratio of the four compressors, using
the HACC velocity data (vx, vy and vz). As for FPZIP
and ZFP, we ran them using multiple precisions and select
the results with the maximum relative errors closest to
target error bound. We can observe that SZ leads to 31%-
210% higher compression ratio than other compressors do.
The key reason SZ works more effectively than others on
HACC dataset is that we adopt the multi-threshold-based
strategy which can effectively reduce the prediction errors
(as shown in Figure 6 (a)) and the group ID could also be
compressed effectively because of the sharp distribution of
their corresponding codes (as demonstrated in Figure 7).
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Fig. 12. Compression Ratio on HACC velocity data

Table 7 shows the single-core compres-
sion/decompression rates of the four compressors running

on Argonne Bebop cluster server [28], using HACC velocity
data with the relative error bound of 0.01. It is observed
that FPZIP and SZ are the fastest compressors with
respect to the compression and decompression respectively.
Specifically, FPZIP is faster than SZ by about 50% on the
compression while SZ is faster than FPZIP by 30% on the
decompression. By comparison, ISABELA suffers from very
low compression/decompression rate because of its costly
sorting operation.

TABLE 7
Compression/Decompression Rate (MB/s): HACC data

Compressor vx vy vz
SZ 48/88 46.8/77 50/90

FPZIP 71.5/68.7 74.5/69.2 74.2/68.3
ZFP 68.7/60.1 68.2/59.2 66.1/60.2

ISABELA 2.95/14.9 2.85/15.1 2.9/15.3

As for the impact of decompressed data in the analysis,
we first study particles’ kinetic energy in the simulation
space. A particle’s kinetic energy is defined as follows:

E(particlei) =
1

2
mi · |vi|

2 (6)

where mi is the mass of the particle and |vi| is the potential
of the velocity vector vi. Since HACC simulation assumes
that each particle has the same mass, we set mi to 1 in
our evaluation. In order to compare the compression quality
using absolute error bound versus relative error bound, we
compress the data with absolute error bound = 6.2 and
relative error bound = 0.1 respectively, because they lead
to the same compression ratio (about 6.2:1).

Figure 13 plots the slice images of the accumulated
kinetic energy in the space. Specifically, we split the space
into 1000 slices each having 1000×1000 blocks and then
aggregate the kinetic energy of the particles in the middle
10 slices, plotting the slice images based on three datasets
(original raw data and two decompressed datasets with dif-
ferent types of error bounds) respectively. We also zoom in
the bottom-left square by splitting it further into 1000×1000
small blocks to observe the possible difference. We compare
the three slice images at a full resolution, while they look
exactly the same with each other. This means that the point-
wise relative error bound = 0.1 can already lead to a satisfac-
tory effect from the perspective of the overall visualization.

We also analyze the impact of the decompressed data
on the aggregated moving directions of the particles in the
simulation. We just analyze the moving direction along the
Z-axis here, because the studies based on Y-axis and X-axis
lead to the similar results. The aggregated Z-axis moving
direction of the particles in a block is defined as as the sum
of the moving direction of the particles along Z-axis in the
same block, as shown blow:

Amd(Z-axis) =
∑

particle
i
∈BlockI

vzi√
vx2

i + vy2i + vz2i

(7)

where vxi, vyi and vzi are the velocity values along the three
dimensions respectively. Figure 14 presents the aggregated
moving direction of the 10 middle slices for the original
data and decompressed data respectively. The regions with
positive values and negative values indicate the overall
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(a) Raw data visualization
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(b) Decompressed data with ABS ERR=6.2
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(c) Decompressed data with REL ERR=0.1

Fig. 13. Visualization of accumulated kinetic energy (HACC)

particles in those regions are moving closer to or farther
away from the observer respectively. We can see that the
two types of decompressed data are both very satisfactory to
users from the perspective of the overall visualization effect.
Specifically, it is extremely hard to observe a tiny difference
among the three images even though we zoom in them to a
very high resolution.

However, the compression with point-wise relative error
bound can retain the details much more effectively than the
compression with absolute error bound, especially for the
low-velocity particles, as illustrated by Figure 15. This figure
presents the accumulated speed’s angles between original
particles and their corresponding decompressed particles,
based on the particles located in the middle 10 slices and
with velocity potential lower than 100. In this figure, the
brighter color a region exhibits, the larger the distortion (i.e.,
accumulated speed’s angles) between the original particles
and decompressed particles in that region. We can clearly
observe that the decompressed data with absolute error
bound leads to much larger discrepancies of the speed
angles from the original particles than the decompressed
data with relative error bound does. The reason is that the
former suffers from much larger compression errors for the
close-to-zero velocity values as confirmed in Figure 16.

Figure 16 presents the absolute errors and relative errors
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(c) Decompressed data with
REL ERR=0.1

Fig. 14. Particle moving direction along Z-axis (HACC)

(a) REL ERR=0.1
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(b) ABS ERR=6.2

Fig. 15. Accumulated speed angles between original particle and de-
compressed particle (HACC)

for the two types of compressions respectively. We select
the first 10000 particles to demonstrate the compression
errors and other particles exhibit the similar results. We also
sorted the compression errors for the purpose of the simpler
observation. Based on Figure 16 (a), it is observed that the
overall absolute errors under the two compression types are
both negligible compared to their data values for the high-
velocity particles with fast speeds. However, the zoomed-in
figure shows that compression with relative error bound has
little absolute errors while the compression with absolute
error bound suffers from too large errors to tolerate. In
other words, the decompressed velocities of the low-speed
particles are invalid under the compression with absolute
error bound. This can be explained clearly using Figure
16 (b), which shows the relative errors of the low-speed
particles under the two types of compressions. Specifically,
the maximum relative error could reach up to 45 times
as large as the data value under the absolute-error-bound
based compression, while it is only about 50% in the worse
case for our designed relative-error-based compression.

We finally perform a parallel experiment with up to 2,048
cores from a supercomputer [28] to assess the I/O perfor-
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Fig. 16. Analysis of compression errors based on HACC velocity)

mance gain under our proposed compressor, as shown in
Figure 17. Specifically, our experiment is weak-scaling: i.e.,
we lunched different numbers of ranks in parallel and let
each rank write/load simulation data in the same size such
that the total data size increases with the execution scales.
We adopt the point-wise relative error bound of 0.1 for SZ
and FPZIP, because such a setting already leads to a good
visual quality as we discussed above. For ZFP, we adopt
the precision of 20. As a comparison, the total I/O times of
writing the original data to the PFS is about 5600 seconds,
and the I/O time of reading data is about 5800 seconds,
when running the parallel experiment with 2,048 cores. As
shown in Figure 17 (a), when using 2,048 cores, the total
time of dumping simulation data (i.e., compression time +
writing compressed data) is only about 895 seconds when
equipped with our compressor, which means a throughput
improvement of 5.25X compared with the original data
writing time and an improvement of 24% than the second-
best solution using FPZIP. The data loading throughput can
be improved by 560+% compared with reading the original
dataset and by 21% than the solution employing the second
best compressor FPZIP, when using 2,048 cores.
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Fig. 17. Parallel performance evaluation using HACC (velocity fields))

7 CONCLUSION AND FUTURE WORK

Point-wise relative error bound is significant to respect the
multi-resolution demand duringlossy compression. In this
paper, we present two novel strategies that can significantly
improve the compression ratio based on the relative error
bound. The strategy A (called block-based strategy) splits
the whole data set into multiple small blocks and then
computes the real absolute error bound for each block,
which is particularly effective on the compression of rel-
atively smooth data with multiple dimensions. Strategy
B (called multi-threshold-based strategy) splits the entire
data value range into multiple groups with exponential

sizes. This method is particularly effective on the data that
exhibits spiky value ranges (e.g., the 1D data arrays in N-
body simulation). We evaluate our proposed compression
methods using two well-known datasets from the climate
simulation and N-body simulation community respectively.
The key insights are summarized as follows:

• Our relative error bound based compression strategies
exhibit the best compression ratios than other state-
of-the-art compressors on both of the two datasets.
Specifically, the compression ratio of SZ is higher than
the second-best compressor (FPZIP) by 17.2–618% on
CESM-ATM climate simulation data and by 31–210%
on HACC particular simulation data.

• Based on both CESM-ATM data and HACC simulation
data, we demonstrate that the relative error bound
based compression can effectively retain more details
than the absolute error bound based compression does,
without any degradation of overall data visualization.

• As for compression/decompression rate, FPZIP runs
the fastest on the compression based on relative error
bound, while SZ runs the fastest on the decompression
from among all the compressors.

• Parallel experiments with up to 2,048 cores show that
SZ improves the I/O performance by 520-560% than
writing/reading the original HACC data, and by 21-
24% than the second best compressor FPZIP.

In the future, we plan to customize more effective strate-
gies to further improve the compression ratio for the non-
smooth data sets such as N-body simulation data.
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