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Abstract
Plato claimed that the regular solids are the building blocks of all matter. His views, 
commonly referred to as the geometric atomistic model, had enormous impact on 
human thought despite the fact that four of the five Platonic solids can not fill space 
without gaps. In this paper we quantify these gaps, showing that the errors in Plato’s 
estimates were quite small. We also develop a mean field approximation to convex 
honeycombs using a generalized version of Plato’s idea. This approximation not 
only admits to view convex mosaics in d = 3 dimensions as a continuum but we also 
find that it is quite accurate, showing that Plato’s geometric intuition may have been 
remarkable.

Keywords Convex mosaic · Uniform mosaic · Platonic solid

Mathematics Subject Classification 52C22 · 52B11 · 52A38

1 Introduction

1.1  Plato’s Idea

One of the greatest triumphs of Greek mathematics is undoubtedly the identification 
of the five regular solids. The time of discovery of the individual solids is very hard 
to trace, cubic dice were carved in Mesopotamia many thousand years ago and sev‑
eral dodecahedra of Etruscan and Celtic origin have been identified (Heath 1921). In 
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fact, there is evidence (Atiyah and Sutcliffe 2003) that all five solids may have been 
known to the Neolithic people of Scotland around 2000BC, as demonstrated by the 
stone models which date from this period and are kept in the Ashmolean Museum in 
Oxford (1927.2727‑31). Nevertheless, the unification of these concepts and the rec‑
ognition of the significance of regular solids is mostly attributed to the Pythagoreans 
and to Theaetetus of Athens (Heath 1921), a pupil of Plato. The last (XIIIth) book 
of Euclid’s Elements is dedicated to the study of the regular solids and it culminates 
by delivering an (albeit incomplete) proof that there exist exactly five such objects. 
Apparently, Plato recognized the great significance of the regular solids (Senechal 
1981) (which now carry his name) and coupled this seminal geometric discovery 
with another fundamental idea of Greek (and in fact, Oriental) philosophy (Ball 
2004): the four elements: earth, air, fire and water. The numbers (five solids ver‑
sus four elements) were almost matched and he resolved this by assigning the fifth 
solid (the dodecahedron) as the building block of the cosmos. While Aristotle did 
not share Plato’s views (on which we will elaborate later), it is remarkable that he 
also complemented the list of four elements with a fifth one (aether) (Lloyd 1968).

While it is beyond the scope of the current paper to present any novelty on the 
philosophical interpretation of Plato’s Timaeus (Plato 2015), given the broad range 
of existing interpretations of this text (Wilberding and Horn 2012) it might be appro‑
priate to indicate which is closest to our current approach. In this respect the work 
of Whitehead (1938) is certainly relevant as we regard Plato’s interpretation of the 
Elements as static ideal forms. We mention that dynamic interpretations, in the con‑
text of the perpetually incomplete Universe, also exist (Zeyl and Sattler 2019). Plato 
regards (Plato 2015) the Universe as the purposeful work of the divine Craftsman 
(Demiurge) (Perl 1998) and the Elements (and their realization as the regular sol‑
ids) can be viewed as part of the activity of the Demiurge who created these regular 
geometric shapes. It is a highly interesting subject how the regular solids reflect the 
perceived qualities (Albertazzi 2013) of the Elements and how the latter are related 
to our contemporary thinking about our environment (Macauley 2010) however, we 
will not explore these avenues in this paper.

Plato’s theory, representing a distinct direction of classical Greek philosophy, is 
commonly referred to as the geometric atomistic model (Wilberding and Horn 2012) 
and it had enormous impact on human thought.

Despite its philosophical significance, Plato’s atomistic theory is, from the point 
of view of theoretical physics, at first sight, merely a ‘beautiful mistake’ (Wilczek 
2011). Nevertheless, at closer inspection, one discovers the seeds of modern atomic 
theory: reducing the physical world to a few indivisible substances existing in great 
numbers of identical copies coincides with our current understanding. Also, Nobel 
laureate Wilczek (2011) hails Plato’s insight that symmetry defines structure as 
particularly deep. So, from the physical point of view, Plato’s theory appears to be 
technically flawed, nevertheless, it contains deep ideas, inspiring even for modern 
science.

Since Plato’s ideas appear to be deeply rooted in geometric intuition, it might be 
appropriate to take a close look at his model by using the tools of modern convex 
geometry. Our goal is to show that, analogously to the physics approach, we find 
technical flaws, however, there are deep ideas and in this paper we make an attempt 
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to carry these ideas somewhat further. While Plato did not claim (Plato 2015) 
explicitly that regular solids fill space without gaps, his critics, foremost Aristotle 
(Senechal 1981) pointed out that this would be a logical consequence of his the‑
ory. Apparently, Plato’s claim, or at least its logical consequence, appears to contain 
some kind of geometric error, except in the case of the cube. In order to quantify this 
error we will use the concept of solid angles, certainly not available to the Greeks. 
Despite this fact, as we will show, the quantitative errors (which we may call the 
technical flaws of Plato’s geometric theory) appear to be rather small. Since Plato’s 
main interest was philosophy rather than geometry, we will attempt to give another 
interpretation to his model which ignores small mismatches and can be generalized 
to an approximation which we call a mean field theory. The natural framework to 
study the geometry of space‑filling by polyhedra is the geometric theory of convex 
mosaics the basic concepts of which we outline below and then we apply these tools 
to interpret and generalize Plato’s ideas.

1.2  Definition and Brief History of Mosaics

A d‑dimensional mosaic M is a countable system of compact domains in ℝd , with 
nonempty interiors, that cover the whole space and have pairwise no common inte‑
rior points (Schneider and Weil 2008). We call a mosaic convex if these domains 
are convex and in this case all domains are convex polytopes (Schneider and Weil 
2008, Lemma 10.1.1). In this paper we deal only with convex mosaics. We call these 
polytopes the cells of the mosaic, and the faces, edges and vertices of the cells the 
faces, edges and nodes of the mosaic, respectively. A cell having v vertices is called 
a cell of degree v, and a node which is the vertex of n cells is called a node of degree 
n. Our prime focus is to determine how average values of these quantities, denoted 
by n̄ and v̄ , respectively, depend on each other. We remark that for planar regular 
mosaics, the pair {v̄, n̄} is called the Schläfli symbol of the mosaic so, by general‑
izing this concept, we will refer to the [n̄, v̄] plane as the symbolic plane of con‑
vex mosaics. These, and closely related global averages have been studied before 
and proved to be powerful tools in the geometric study of mosaics: in Chung et al. 
(2012) the planar isoperimetric problem restricted to convex polygons with v < 6 
vertices is resolved using these quantities.

Our main focus will be face-to-face mosaics, in which each face of the mosaic 
(that is, each face of any cell of the mosaic) is the face of exactly two cells. Unless 
stated otherwise, any mosaic discussed in our paper will be a convex face‑to‑
face mosaic. Furthermore, we assume that the mosaic is normal, that is, for some 
0 < r < R each cell contains a ball of radius r, and is contained in a ball of radius 
R (see, e.g. Schulte 1993). This implies, in particular, that the volumes of the cells 
are bounded from above, and that the mosaic is locally finite; that is, each point of 
space belongs to finitely many cells. We note that a precise definition of v̄ and n̄ can 
be obtained in the usual way, that is, by taking the limit of the average degrees of 
cells/nodes contained in a large ball whose radius tends to infinity. Here, we always 
tacitly assume that these limits exist.
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Geometric intuition suggests that v̄ and n̄ should have an inverse‑type rela‑
tionship: more polytopes meeting at a node implies smaller internal angles in 
the polytopes, which, in turn, suggests a smaller number of vertices for each 
polytope. One can (Domokos and Lángi 2019) in fact, express the nodal degree 
n̄ also by the average internal angle Ω̄ as

where Sd−1 denotes the surface area of the (d − 1)‑dimensional ball, i.e. the total 
angle in d‑dimensions. In one dimension ( d = 1 ) we have v = n = 2 for each cell and 
vertex. In two dimensions one can have cells and nodes of various degrees, none‑
theless, it is known (Schneider and Weil 2008, Theorem 10.1.6) that for all convex 
mosaics

thus convex mosaics in d = 2 dimensions are represented by a 1‑dimensional con‑
tinuum on the [n̄, v̄] symbolic plane.

The situation in d = 3 dimensions appears, at least at first sight, to be radically 
different. (Schneider and Weil 2008) provide the general equations governing 
3D random mosaics showing that, beyond the trivial inequalities v̄, n̄ ≥ 4 these 
formulae do not yield additional constraints on n̄, v̄ suggesting that in the [n̄, v̄] 
symbolic plane, except for the unphysical domains characterized by n̄, v̄ < 4 , we 
might expect to see mosaics anywhere. However, this is not the case if we look 
at the best known mosaics: uniform honeycombs. The latter are a special class of 
convex mosaics where cells are congruent, uniform polyhedra and all nodes are 
identical under translation. The list of all possible convex uniform honeycombs 
was completed only recently by Johnson (1991) who described 28 such mosaics 
(for more details on the 28 uniform honeycombs see Grünbaum 1994; Deza and 
Shtogrin 2000 and more details on the history see Senechal 1981). To provide 
the complete list of these 28 honeycombs has been a major result in discrete 
geometry. On the [n̄, v̄] symbolic plane the points corresponding to these mosaics 
appear to accumulate on a narrow stripe (cf. Fig. 1, Table 2) which may suggest 
that, in some way analogous to the 2D case, there exists a continuum represent‑
ing 3D mosaics on the symbolic plane. However, by studying the data in Table 2 
we can see that there can not even exist any exact formula of the type

analogous to (2), since, for example, the dual of the cantellated cubic honeycomb 
(4′ ) is characterized by (n̄, f̄ , v̄) = (12, 5, 6) and the dual of the runcic cubic honey‑
comb (9′ ) is characterized by (n̄, f̄ , v̄) = (10, 5, 6) . Our goal is to offer some partial 
understanding of this phenomenon by introducing, based on Plato’s ideas, a mean 
field approximation of type (3). To explain this approach we first analyze Plato’s 
original claims.

(1)n̄ =
Sd−1

Ω̄

(2)n̄ = 2v̄∕(v̄ − 2),

(3)n̄ = F(f̄ , v̄)
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1.3  Interpretation of Plato’s Error

Plato’s idea was resurrected in the study of non‑Euclidean mosaics (Coxeter 1956) 
where, by choosing suitable sign for the curvature, all Platonic solids fill space without 
gaps so, in this broader setting, there is no error at all. Our main target is nevertheless 
Euclidean space which imposes strict constraints on the geometry of mosaics and our 
goal is to explain how, under these constraints, some part of the Platonic idea may be 
salvaged and also serve the understanding of Euclidean mosaics.

Using the framework of convex mosaics and the concept of the symbolic plane, Pla‑
to’s error can be interpreted in several ways. Apparently, except for the cube, it is not 
possible to obtain the total solid angle S2 = 4� at one node by assembling an integer 
number of any of the other four Platonic solids. In other words, we may say that Eq. (1) 
can not be fulfilled if n̄ is an integer. However, since our (hypothetical) mosaic contains 
only one type of cell, n̄ has to be an integer. As a consequence, we have to admit some 
error term either in the solid angle Ω̄ or in the nodal degree n̄ ; essentially it is the same 
error expressed in two different ways. If we substitute the exact value of Ω(f , v) asso‑
ciated with the Platonic solid with f faces and v vertices into Eq. (1) then we obtain a 
virtual nodal degree n̂ as

(4)n̂(f , v) =
4𝜋

Ω(f , v)

Fig. 1  The 28 uniform honeycombs, their duals, the hyperplane mosaics, the Poisson‑Voronoi and 
Poisson‑Delaunay mosaics shown as black dots on the symbolic plane [n̄, v̄] (left) and on the plane [f̄ , v̄] 
(right). Mosaics (virtual or real) associated with the five Platonic solids shown as circles in both dia‑
grams (for numerical data associated with the 5 Platonic solids see Table 1). Continuous straight lines on 
the right panel correspond to simple and simplicial polyhedra. Dotted line on the left panel corresponds 
to prismatic mosaics. Continuous curves on the left panel show the Platonic approximation associated 
with the latter. For detailed numerical data see Table 2
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associated with the Platonic solid with f faces and v vertices. The error may be 
expressed as

where [] denotes rounding to the nearest integer. This is illustrated in Fig. 2, numeri‑
cal data is summarized in Table 1. We may observe that the errors are remarkably 
small ( < 10% ) for all Platonic solids.

Observe that (4) is reminiscent of the elusive formula (3), albeit, it is inter‑
preted only for pairs (f, v) associated with the 5 Platonic solids. Our goal is to 
carry this idea further and expand it into a mean field model encompassing all 
convex mosaics.

(5)E0 =
|
|
|
|

1 −
n̂

[n̂]

|
|
|
|

,

Table 1  Regular polyhedra, 
their solid angles and Plato’s 
error E

0
 [shown in Eq. (5)] 

expressing the solid angle 
mismatch at the nodes

ID. Name f v Ω n̂ = 4𝜋∕Ω [n̂] e
1
 (%)

1 Tetrahedron 4 4 0.551 22.79 23 0.9
2 Cube 6 8 1.571 8.00 8 0.0
3 Octahedron 8 6 1.359 9.24 9 2.7
4 Dodecahedron 12 20 2.635 4.77 5 4.6
5 Icosahedron 20 12 2.962 4.24 4 6.1

Fig. 2  The five regular solids interpreted as cells of a convex honeycomb. Horizontal axis shows the best 
(integer) approximation for the nodal degree n̄ , vertical axis shows the relative error E

0
=
|
|
|
1 −

n̄

[n̄]

|
|
|
 , indi‑

cating the mismatch in the solid angle (absolute value of angular excess or deficit) at such an imaginary 
node. We can observe that only the cube can be used as a cell of a honeycomb, nonetheless, the relative 
errors are rather small also in case of the other 4 regular solids
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Table 2  Uniform convex honeycombs, their duals, Poisson‑Voronoi, Poisson‑Delaunay and Hyperplane 
random mosaics, and the approximation error E [given in Eq. (7)] by Platonic mosaics

ID. Name of mosaic n̄ v̄ f̄ n̂ E(%)

1 Cubic 8 8 6 8.00 0.0
2 Rectified cubic 6 9 11 6.13 2.2
3 Truncated cubic 5 15 11 4.75 4.9
4 Cantellated cubic 5 12 11.6 5.16 3.3
5 Cantitruncated cubic 4 191

5
113

5

4.33 8.2

6 Runcitruncated cubic 5 15 11 4.75 4.9
7 Alternated cubic 14 42

3
51

3

14.66 4.7

8 Cantic cubic 5 15 11 4.75 4.9
9 Runcic cubic 5 10 10 5.87 17.3
10 Runcicantic cubic 4 24 14 3.91 2.2
11 Bitruncated cubic 4 24 14 3.91 2.2
12 Omnitruncated cubic 4 24 14 3.91 2.2
13 Quarter cubic 8 8 6 8.00 0.0
14 Truncated/bitruncated square prismatic 6 12 8 5.70 5.1
15 Snub square prismatic 10 62

3
51

3

9.77 2.3

16 Triangular prismatic 12 6 5 11.17 6.9
17 Hexagonal prismatic 6 12 8 5.70 5.1
18 Trihexagonal prismatic 8 8 6 8.00 0.0
19 Truncated hexagonal prismatic 6 12 8 5.70 5.1
20 Rhombi‑hexagonal prismatic 8 8 6 8.00 0.0
21 Snub‑hexagonal prismatic 10 62

3
51

3

9.77 2.3

22 Truncated trihexagonal prismatic 6 12 8 5.70 5.1
23 Elongated triangular prismatic 10 62

3
51

3

9.77 2.3

24 Gyrated alternated cubic 14 42

3
51

3

14.66 4.7

25 Gyroelongated alternated cubic 13 51

5
51

5

12.81 1.5

26 Elongated alternated cubic 13 51

5
51

5

12.81 1.5

27 Gyrated triangular prismatic 12 6 5 11.17 6.9
28 Gyroelongated triangular prismatic 10 62

3
51

3

9.77 2.3

29 Poisson‑Voronoi 4 27.07 15.51 3.73 6.7
30 Hyperplane 8 8 6 8.00 0.0
1′ Dual of cubic 8 8 6 8.00 0.0
2′ Dual of rectified cubic 9 6 8 9.24 2.7
3′ Dual of truncated cubic 15 5 5 13.76 8.3
4′ Dual of cantellated cubic 12 5 6 12.62 5.2
5′ Dual of cantitruncated cubic 191

5

4 4 22.79 18.7

6′ Dual of runcitruncated cubic 15 5 5 13.76 8.3
7′ Dual of alternated cubic 42

3

14 12 4.79 2.6

8′ Dual of cantic cubic 15 5 5 13.76 8.3
9′ Dual of runcic cubic 10 5 6 12.62 26.2
10′ Dual of runcicantic cubic 24 4 4 22.79 5.0
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1.4  Platonic Approximation of Mosaics

Our goal is to extend the domain of formula (4) to arbitrary values (f̄ , v̄) and this 
construction we will call a (real or virtual) Platonic mosaic associated to geomet‑
ric mosaics with averages (f̄ , v̄).

A cell in a d‑dimensional mosaic M is characterized by d integers mi 
( i = 0, 1, 2… d − 1 ) defining the numbers of i‑dimensional faces. We will refer to 
these scalars as the cell descriptors.

Remark 1 Our choice of cell descriptors is, of course, arbitrary. For example, we did 
not include overall descriptors such as elongation, isoperimetric ratio or the average 
of angles. Our choice was motivated by the mean field model we intend to construct.

In a random mosaic the cell descriptors associated with a typical cell (Sch‑
neider and Weil 2008) are d random variables corresponding the aforementioned 
scalars. Motivated by this we introduce

Average error is 6.6%, maximal error is 26.2 %

Table 2  (continued)

ID. Name of mosaic n̄ v̄ f̄ n̂ E(%)

11′ Dual of bitruncated cubic 24 4 4 22.79 5.0
12′ Dual of omnitruncated cubic 24 4 4 22.79 5.0
13′ Dual of quarter cubic 8 8 6 8.00 0.0
14′ Dual of truncated/bitruncated square prismatic 12 6 5 11.17 6.9
15′ Dual of snub square prismatic 62

3

10 7 6.54 1.9

16′ Dual of triangular prismatic 6 12 8 5.70 5.1
17′ Dual of hexagonal prismatic 12 6 5 11.17 6.9
18′ Dual of trihexagonal prismatic 8 8 6 8.00 0.0
19′ Dual of truncated hexagonal prismatic 12 6 5 11.17 6.9
20′ Dual of rhombi‑hexagonal prismatic 8 8 6 8.00 0.0
21′ Dual of snub‑hexagonal prismatic 62

3

10 7 6.54 1.9

22′ Dual of truncated trihexagonal prismatic 12 6 5 11.17 6.9
23′ Dual of elongated triangular prismatic 62

3

10 7 6.54 1.9

24′ Dual of gyrated alternated cubic 42

3

14 12 4.79 2.6

25′ Dual of gyroelongated alternated cubic 51

5

13 10 5.15 0.9

26′ Dual of elongated alternated cubic 51

5

13 10 5.15 0.9

27′ Dual of gyrated triangular prismatic 6 12 8 5.70 5.1
28′ Dual of gyroelongated triangular prismatic 62

3

10 7 6.54 1.9

29′ Dual of Poisson‑Voronoi: Poisson‑Delaunay 27.07 4 4 22.79 15.8
30′ Dual of Hyperplane: Hyperplane 8 8 6 8.00 0.0
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Definition 1 The average cell of a d‑dimensional mosaic M is a geometric model 
using the d average values m̄i, i = 0, 1,… d − 1 of cell descriptors associated with M 
as cell descriptors and the assumption that all angles between i‑dimensional faces 
are equal. If the descriptors m̄i are identical to the descriptors of a d‑dimensional 
regular polytope then we call the average cell real, otherwise we call it a virtual 
cell. We will refer to the (real or virtual) mosaic composed of the average cell as a 
Platonic mosaic associated with M and we denote it by P(M) . We call a Platonic 
mosaic real if the average cell is real and it fills space without gaps.

We may regard the associated Platonic mosaic P(M) as a mean field approxima‑
tion of M.

Remark 2 Let M be a mosaic in 2D and let P(M) be its Platonic approximation. 
The average cell of M will be real if and only if v̄(M) is an integer and P(M) will 
be real if and only if v̄(M) ∈ {3, 4, 6} . This follows from the fact that the only regu‑
lar polygons filling the Euclidean plane are the regular triangle, the square and the 
regular hexagon.

Remark 3 Let M be a mosaic in 3D and P(M) be its Platonic approximation. The 
average cell of M will be real if and only if

and P(M) will be real if and only if (v̄(M), f̄ (M)) = (8, 6) and in this case P(M) 
will be the cubic grid. This follows from the fact that the only space‑filling Platonic 
solid is the cube.

Our key observation is the following

Remark 4 While virtual cells do not admit the global construction of a polytope, 
they might still admit the computation of vertex angles and nodal angles. We will 
denote all quantities computed based on the average cell by (̂) . Using this concept we 
can determine the solid angle Ω̂ at a vertex and instead of (4) we may write

with the error term:

so we see that the concept of Platonic mosaics is a natural, straightforward extension 
of Plato’s original idea.

Using this concept we immediately have a heuristic argument supporting formula 
(2) result for planar mosaics. To construct the average cell in d = 2 dimensions we 

(v̄(M), f̄ (M)) ∈ {(4, 4), (6, 8), (8, 6), (12, 20), (20, 12)}

(6)n̂(f̄ , v̄) =
4𝜋

Ω̂(f̄ , v̄)
,

(7)E =
|
|
|
|

1 −
n̂

n̄

|
|
|
|

,
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just need the average number v̄ of vertices; for the angles we use the fact that they 
are constant in the average cell. Now we can construct the average cell as a poly‑
gon with v̄ vertices. If v̄ is an integer then the average cell is real because it can be 
realized as a regular polygon with internal angles 𝛼 = 𝜋(v̄ − 2)∕v̄ . However, if v̄ is 
not an integer this formula still yields an angle. Next we construct a virtual node 
to compute the approximation n̂ for the nodal degree n̄ as n̂ = 2𝜋∕𝛼 = 2v̄∕(v̄ − 2) . 
While this is certainly a heuristic argument, it happens to provide the exact formula 
for all convex mosaics in the plane.

We certainly do not expect this construction to be exact for all mosaics, never‑
theless, the above examples suggest that it may serve as a useful approximation. In 
d = 3 dimensions we have 2 independent integer‑type cell descriptors: the number 
v of vertices and the number f of faces with averages v̄, f̄  and the main result of our 
paper concerns this case:

Theorem 1 In d = 3 dimensions, the average cell yields the following approxima-
tion n̂ for the nodal degree based on the cell descriptors v̄, f̄ :

Based on which we can formulate.

Theorem 2 In case of the 28 uniform honeycombs, their duals, hyperplane mosa-
ics, Poisson-Voronoi mosaics and Poisson-Delaunay mosaics we have an average 
error Eaverage ≤ 7% and a maximal error Emax ≤ 27%.

Beyond the relatively small quantitative errors, the formula in Theorem  1 has 
other remarkable features. This formula may be formally interpreted over all pairs 
(f̄ , v̄) ∈ ℝ

2 . However, we should keep in mind that these numbers represent aver‑
ages for the numbers of faces and vertices of convex polyhedra. Steinitz proved 
(Steinitz 1906, 1922) that for any convex polyhedron the inequalities v ≥ 4 , 
1

2
v + 2 ≤ f ≤ 2v − 4 hold. The extreme cases corresponding to

are called simplicial and simple polyhedra, respectively, and the only polyhedron in 
both categories is the tetrahedron with f = v = 4 . Since these are extreme cases, we 
can see that they also provide the extremes for the averages f̄ , v̄ . The left panel of 
Fig. 2 shows these straight lines which indeed provide a hull for all convex mosaics. 
If we regard the values provided by (9) as averages f̄ , v̄ , and substitute these aver‑
ages into the formula of Theorem 1, the latter yields two curves on the symbolic 
plane [n̄, v̄] . While these curves (shown with solid lines on the left panel) do not 
provide a hull for the illustrated 60 mosaics, the range between the curves appears 
to be a reasonable approximation of the actual observed range. This illustrates that 
Platonic approximations may capture some essential characteristics of 3D mosaics.

(8)
n̂(v̄, f̄ ) =

2𝜋v̄

2(v̄ + f̄ − 2) arcsin

(

cos

(
v̄𝜋

2(v̄+f̄−2)

)

cos

(
(v̄−2)𝜋

2(v̄+f̄−2)

)

)

− (f̄ − 2)𝜋

.

(9)f = 2v − 4, v = 2f − 4
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In the next section we prove Theorems 1 and 2, and in Sect. 3 we summarize our 
findings.

2  Proof of the Theorems

2.1  Proof of Theorem 1: The Construction of the Average Cell

In the proof we use the next lemma.

Lemma 1 Let S be the tetrahedron with vertices a =
(

cos
�

2
,− sin

�

2
, 0

)

 , 

b =
(

cos
�

2
, sin

�

2
, 0

)

 , o = (0, 0, 0) and m = (0, 0,�) . For x ∈ {a, b, o,m} , let Ωx 
denote the solid angle of S at x. Then

and

Proof Note that the solid angle of S at a vertex x is equal to the area of the radial 
projection of S onto the unit sphere x + �

2 centered at x. This projection is a spheri‑
cal triangle, the angles of which are equal to the dihedral angles of S between pairs 
of faces meeting at x. It is well known that the area of a spherical triangle, with 
angles �, �, � , is equal to the excess angle � + � + � − � . Thus, to prove Lemma 1, it 
is sufficient to compute the dihedral angles of S. In the following, if x, y are distinct 
vertices of S, we denote the dihedral angle of S at the edge xy by ∠S(xy).

Clearly, ∠S(om) = � , ∠S(oa) = ∠S(ob) =
�

2
 , implying Ωo = � , and by symmetry, 

∠S(ma) = ∠S(mb) . The cross‑section of S with the [x, z] coordinate plane is a trian‑
gle T whose vertices are o, m and the midpoint u =

(

cos
�

2
, 0, 0

)

 of ab. This triangle 
has a right angle at o, and its legs are of length � and cos �

2
 . Observe that ∠S(ab) is 

the angle of T at u, and thus, it is equal to

The exterior unit normal vector of the face abm of S is

(10)Ωm = � + 2 arccos
� sin

�

2
√

�2 + cos2
�

2

− �, Ωo = �,

(11)Ωa = Ωb = arccos
� sin

�

2
√

�2 + cos2
�

2

+ arccos
cos

�

2
√

�2 + cos2
�

2

−
�

2
.

∠S(ab) = arccos
cos

�

2
√

�2 + cos2
�

2

.
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The interior unit normal vector of the face oam is v2 =
(

sin
�

2
, cos

�

2
, 0

)

 . Since v1 is 
the rotated copy of v2 around the line of am with angle ∠S(am) , ∠S(am) is the angle 
between v1 and v2 . The inner product of v1 and v2 is equal to ⟨v1, v2⟩ = cos∠S(am) , 
and thus, we have:

Now the rest of the solid angles can be computed from the dihedral angles as

  ◻

Now we prove Theorem 1.

Proof of  Theorem  1 An average cell in the mosaic has f̄  faces, v̄ vertices and 
ē = v̄ + f̄ − 2 edges. In our model, we denote the number of cells meeting at a node 
by n̂ = n̂(v̄, f̄ ) . A face of an average cell has ēf =

2ē

f̄
 edges, and, within the cell, the 

degree of a vertex is v̄c =
2ē

v̄
.

Based on Definition 1, we imagine an average cell as a polyhedron with ‘regular’ 
ēf ‑gons as faces such that the projection of the center of the polyhedron onto the 
plane of a face coincides with the center of the face. Let us decompose such a cell 
into tetrahedra whose vertices are two vertices of an edge of the cell, the center of 
one of the two faces containing this edge, and the center of the cell. Note that in this 
way we decompose the cell into 2ē congruent tetrahedra. Let S be such a tetrahe‑
dron, and let ab denote the edge, o the center of the face and m the center of the cell 
in S. Let Ωm denote the solid angle of S at m, and Ωa the solid angle of S at a. Note 
that since these tetrahedra are congruent, Ωm =

4𝜋

2ē
=

2𝜋

ē
 , and the solid angle of the 

cell at a is 2v̄cΩa . This angle is equal to 4𝜋
n̂

 , implying that Ωa =
2𝜋

v̄cn̂
=

𝜋v̄

ēn̂
 , from which

Using Lemma 1, we compute Ωa as a function of ē, v̄ and f̄  . In our computations, 
for simplicity, we use the notations of Lemma 1. Then we have 𝛼

2
=

2𝜋

2ēf
=

f𝜋

2ē
 . Fur‑

thermore, we have

v1 =

⎛

⎜

⎜

⎜
⎝

�
�

�2 + cos2
�

2

, 0,
cos

�

2
�

�2 + cos2
�

2

⎞

⎟

⎟

⎟
⎠

.

∠S(am) = ∠S(bm) = arccos
� sin

�

2
√

�2 + cos2
�

2

.

Ωm = ∠S(am) + ∠S(bm) + ∠S(om) − �, Ωa = Ωb = ∠S(am) + ∠S(ab) + ∠S(ao) − �.

(12)n̂ =
𝜋v̄

ēΩa

.
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From this, it follows that

Note that sin f̄𝜋

2ē
= cos

(
𝜋

2
−

f̄𝜋

2ē

)

= cos
(v̄−2)𝜋

2ē
 , and thus,

which implies, in particular, that the expression behind the square root is positive. 
Now, algebraic transformations yield

Thus,

Combining this with (12) yields

Now, the formula in Theorem 1 is an immediate consequence of (13) and the iden‑
tity ē = v̄ + f̄ − 2 .   ◻

cos
v̄𝜋

2ē
= cos

Ωm + 𝜋 − 𝛼

2
=

𝜇 sin
𝛼

2
√

𝜇2 + cos2
𝛼

2

.

𝜇 =
cos

v̄𝜋

2ē
cos

f̄𝜋

2ē
√

sin
2 f̄𝜋

2ē
− cos2

v̄𝜋

2ē

.

𝜇 =
cos

v̄𝜋

2ē
cos

f̄𝜋

2ē
√

cos2
(v̄−2)𝜋

2ē
− cos2

v̄𝜋

2ē

,

√

𝜇2 + cos2
𝜋 f̄

2ē
=

cos
v̄𝜋

2ē
cos

(v̄−2)𝜋

2ē
√

cos2
(v̄−2)𝜋

2ē
− cos2

v̄𝜋

2ē

.

Ωa =
v̄𝜋

2ē
+ arccos

√

cos2
(v̄−2)𝜋

2ē
− cos2

v̄𝜋

2ē

cos
(v̄−2)𝜋

2ē

−
𝜋

2
=

v̄𝜋

2ē
+ arcsin

cos
v̄𝜋

2ē

cos
(v̄−2)𝜋

2ē

−
𝜋

2
.

(13)
n̂ =

2𝜋v̄

2ē arcsin
cos

v̄𝜋

2ē

cos
(v̄−2)𝜋

2ē

− (ē − v̄)𝜋

.
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Before stating a supplement of Theorem 1, recall that by a result of Steinitz 
(1906, 1922), there is a convex polyhedron with v vertices and f faces if and only 
if v ≥ 4 , and 1

2
v + 2 ≤ f ≤ 2v − 4 , or equivalently, 4 + 1

2
(v − 4) ≤ f ≤ 4 + 2(v − 4).

Proposition 1 Define the function

  as in Theorem 1, where v̄ > 4, and f̄ = 4 + t(v̄ − 4) for some 1
2
≤ t ≤ 2. Then n̂(t, v̄) 

is a strictly decreasing function of t for all values v̄ > 4.

Proof Let ē = v̄ + 4 + t(v̄ − 4) − 2 = (t + 1)v̄ + 2 − 4v̄ , and observe that the condi‑
tions in Proposition 1 for v̄ and t are equivalent to 3

2
v̄ ≤ ē ≤ 3v̄ − 6.

An elementary computation yields that

where

and

Note that under our conditions, the above partial derivative of n̂ is negative if F is 
negative on the domain v̄ > 4,

3

2
v̄ ≤ ē ≤ 3v̄ − 6.

Using algebraic transformations, we obtain that

where x = v̄𝜋

2ē
 and y = (v̄−2)𝜋

2ē
 . Here, the inequalities v̄ > 4 and 3

2
v̄ ≤ ē ≤ 3v̄ − 6 are 

equivalent to the inequalities �
6
≤ x ≤

�

3
 and 𝜋

6
≤ y < x . Thus, we prove that the 

n̂(t, v̄) =
2𝜋v̄

2(v̄ + f̄ − 2) arcsin

(

cos

(
v̄𝜋

2(v̄+f̄−2)

)

cos

(
(v̄−2)𝜋

2(v̄+f̄−2)

)

)

− (f̄ − 2)𝜋

𝜕n̂(t, v̄)

𝜕t
=

2𝜋v̄(v̄ − 4)F

G
,

G = ē

(

2ē arcsin
cos

v̄𝜋

2ē

cos
(v̄−2)𝜋

2ē

+ (v̄ − ē)𝜋

)2

cos
(v̄ − 2)𝜋

2ē

√

cos2
(v̄ − 2)𝜋

2ē
− cos

v̄𝜋

2ē
,

F = ē

(

𝜋 − 2 arcsin
cos

v̄𝜋

2ē

cos
(v̄−2)𝜋

2ē

)

cos
(v̄ − 2)𝜋

2ē

√

cos2
(v̄ − 2)𝜋

2ē
− cos

v̄𝜋

2ē
−

− (v̄ − 2)𝜋 sin
𝜋

ē
− 2𝜋 sin

(v̄ − 1)𝜋

2ē

(14)

F = 2ē

��

𝜋

2
− arcsin

cos x

cos y

�

cos y
√

cos2 y − cos2 x − y sin(x − y) − (x − y) sin(x + y)

�

,
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expression on the right‑hand side of (14) is negative on this domain. Simplifying 
this expression, we have

where

To estimate the values of A and B, we use the fact that the function z ↦ z

sin z
 is strictly 

increasing on the interval 0 < z <
𝜋

2
 . Our inequalities imply that 0 < x − y <

𝜋

6
 , 

0 < arcsin

√

1 −
cos2 x

cosy
< arcsin

√
2

3
 , and x ≤ 2y . From the first two inequalities it 

follows that A − B ≤ 0.123 . Substituting this and the third inequality into (15), we 
obtain

proving Proposition 1.   ◻

Remark 5 Note that by Proposition 1, for any value v̄ ≥ 4 , n̂(t, v̄) attains all values 
between n̂

(
1

2
, v̄
)

 and n̂(2, v̄).

2.2  Proof of Theorem 2: Explicit Computation of Errors

Proof Table 2 proves Theorem 2.   ◻

3  Summary

In this paper we took a close look at Plato’s atomistic model which proposed the five 
regular solids as the building blocks of the Universe. On one hand, we found that 
this approach contains some quantitative errors, as four of the five Platonic solids 
do not fill space without gaps. This mismatch led to criticism of Plato’s ideas, most 
notably by Aristotle.

However, not only did our computations show that the quantitative errors in Pla‑
to’s model are quite small, we also introduced another, holistic interpretation of the 
Platonic approach (possibly closer to Plato’s original ideas) which we interpreted as 
a mean field approximation to some special convex mosaics. We developed this idea 
a little further to obtain a formula which serves as a mean field approximation to all 

(15)F = 2ē sin(x − y)((A − B) sin(x + y) − y),

A =

�

2
− arcsin

cos x

cos y
√

1 −
cos2 x

cosy

=
arcsin

√

1 −
cos2 x

cosy

√

1 −
cos2 x

cosy

, B =
x − y

sin(x − y)
.

F < 2ē sin(x − y)y

(

0.369
sin(3y)

3y
− 1

)

< 0,
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convex mosaics in  d = 3 dimensions. This mean field theory not only offers a good 
quantitative approximation to a large variety of known mosaics, it may also help 
to explain some curious facts associated with 3D mosaics. We represented mosaics 
on the [n̄, v̄] symbolic plane of average nodal and cell degrees. While 2D mosaics 
appear on a curve [given by formula (2)], however, the 60 three‑dimensional mosa‑
ics examined in this paper appear scattered in the vicinity of an (imaginary) curve. 
Since our mean field theory is a straightforward generalization of Plato’s original 
approach, we called the resulting geometric constructions Platonic mosaics. If inter‑
preted over the admissible domain of pairs (f, v), Platonic mosaics provide a rea‑
sonable approximation of that imaginary curve showing that this theory, despite its 
simplicity, captures some essential geometric features of 3D mosaics.

Whether or not Platonic mosaics contribute to the vindication of Plato’s original 
views about the Universe is certainly not a mathematical question. Nevertheless, we 
hope that these geometric constructions may help to reveal some of the secrets which 
inspired Plato: the geometric patterns in which convex polyhedra may or may not fill 
space without gaps.
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