
1. We use the Simpson’s rule error estimate formula:

|ES| ≤
b− a

180
h4M,

where a = 0, b = 3, h = b−a
n

= 3
n
, and M = 1 is an upper bound for the absolute

value of the fourth derivative of sin x. This means we need to find n with

3

180

(
3

n

)4

≤ 0.02 =
1

50

⇐⇒ n4 ≥ 35 · 50

180
=

33 · 5
2

= 67.5.

Since 24 = 16 and 34 = 81 and the number of subintervals has to be even for
Simpson’s rule, we see that 4 subintervals are required.

2. For both parts of this question you have a choice between the washer and shell
methods.

(a) Using the washer method, the volume is

π

∫ 1

0

(
√

x)2 − x2 dx = π

∫ 1

0

x− x2 dx

= π

[
x2

2
− x3

3

]1

0

= π

(
1

2
− 1

3

)
=

π

6
.

(b) Rewriting the curves as x = y2 and x = y and using the washer method, the
volume is

π

∫ 1

0

(y + 1)2 − (y2 + 1)2 dy = π

∫ 1

0

−y4 − y2 + 2y dy

= π

[
−y5

5
− y3

3
+ y2

]1

0

= π

(
−1

5
− 1

3
+ 1

)
=

7π

15
.

3. (a) Use the arclength formula:

F (x) =

∫ x

0

√
1 + f ′(t)2 dt =

∫ x

0

√
1 + 4t2 sinh2(t2) dt.

(b) By the Fundamental Theorem of Calculus,

F ′(x) =

√
1 + 4x2 sinh2(x2)

=⇒ F ′(1) =
√

1 + 4 sinh2 1.

4. Since the population is growing exponentially, it is given by a function P (t) = P0e
rt,

where r is a positive constant and P0 is the initial population. The given data tell



us that

300 = P0e
r(1)

900 = P0e
2r.(2)

Dividing (2) by (1) yields er = 3, and substituting this in either equation gives
P0 = 100.

5. (a) Rewrite the integral as

∫
e2x+1 cos(e2x) dx = e

∫
e2x cos(e2x) dx. Let u = e2x

so that du = 2e2x dx. Then we have

e

∫
e2x cos(e2x) dx =

e

2

∫
cos u du =

e

2
sin u + C =

e

2
sin(e2x) + C.

(b) Solve using integration by parts. Let u = ex and dv = cos x dx so that
du = ex dx and v = sin x. Therefore,∫

ex cos x dx = ex sin x−
∫

ex sin x dx.

Now use integration by parts to evaluate

∫
ex sin x dx. Let u = ex and dv =

sin x dx so that du = ex dx and v = − cos x. Therefore,∫
ex cos x dx = ex sin x−

(
−ex cos x +

∫
ex cos x dx

)
+ C ′,

= ex sin x + ex cos x−
∫

ex cos x dx + C ′,

2

∫
ex cos x dx = ex sin x + ex cos x + C ′,∫
ex cos x dx =

1

2
ex sin x +

1

2
ex cos x + C.

(c) Use the trigonometric substitution x = 2 sin θ. Therefore, dx = 2 cos θ dθ and
we have ∫ √

4− x2 dx =

∫ (√
4− 4 sin2 θ

)
(2 cos θ) dθ,

=

∫
(2 cos θ)(2 cos θ) dθ = 4

∫
cos2 θ dθ,

= 2

∫
(1 + cos 2θ) dθ = 2θ + sin 2θ + C.

Using the fact that θ = sin−1 x

2
and sin 2θ = 2 sin θ cos θ =

1

2
x
√

4− x2 (using an

appropriate right triangle), the integral in terms of x is∫ √
4− x2 dx = 2 sin−1 x

2
+

1

2
x
√

4− x2 + C.

6. (a) Use the substitution u = 1 + ln x. Then du =
1

x
dx and we have∫ e2

1

1

x(1 + ln x)2
dx =

∫ 3

1

1

u2
du =

[
−1

u

]3

1

= −1

3
+ 1 =

2

3
.



(b) The integral is improper because the integrand is undefined at the upper limit.
Therefore, we evaluate∫ 3

0

1√
3− x

dx = lim
b→3−

∫ b

0

1√
3− x

dx.

Let u = 3− x so that du = −dx and the integral becomes∫ b

0

1√
3− x

dx =

∫ 3−b

3

−1√
u

du = [−2
√

u]3−b
3 = −2

√
3− b + 2

√
3.

Then,

lim
b→3−

∫ b

0

1√
3− x

dx = lim
b→3−

−2
√

3− b + 2
√

3 = 2
√

3.

(c) Here, the integrand has an asymptote at x = 1. Therefore, we split the integral
in two:∫ 2

0

1

(1− x)2
dx =

∫ 1

0

1

(1− x)2
dx +

∫ 2

1

1

(1− x)2
dx,

= lim
b→1−

∫ b

0

1

(1− x)2
dx + lim

a→1+

∫ 2

a

1

(1− x)2
dx.

To evaluate the integrals we let u = 1 − x so that du = −dx. Therefore, for the
first limit we have

lim
b→1−

∫ b

0

1

(1− x)2
dx = lim

b→1−

∫ 1−b

1

−1

u2
du = lim

b→1−

[
1

u

]1−b

1

= lim
b→1−

1

1− b
− 1 = ∞.

Since the first integral diverges, the integral

∫ 2

0

1

(1− x)2
dx also diverges.

7. (a) We rewrite the series as
∞∑

n=0

ln

(
2 + n

1 + n

)
=

∞∑
n=0

− ln(1 + n) + ln(2 + n).

This is a telescoping series whose nth partial sum is given by:

sn = − ln 1 + ln 2− ln 2 + ln 3− ln 3 + ln 4 + . . .− ln n + ln(n + 1),

= − ln 1 + ln(n + 1) = ln(n + 1).

Therefore, the sum of the series is lim
n→∞

sn = lim
n→∞

ln(n + 1) = ∞ and the series

diverges.

(b) Since
ln n

n3
<

n

n3
=

1

n2
for n ≥ 1 and

∞∑
n=1

1

n2
converges (p-series with p > 1), the

series converges by the Direct Comparison Test.

8. (a) The series is
∑∞

n=0
(x−3)n

4n+1 = 1
4

∑∞
n=0

(
x−3

4

)n
which is geometric. It therefore con-

verges absolutely for
∣∣x−3

4

∣∣ < 1, which is the interval (−1, 7), and diverges at all other
points.

(b) Applying the ratio test to determine absolute convergence we have

lim
n→∞

an+1

an

= lim
n→∞

|3x− 4|n+1

√
n + 1

√
n

|3x− 4|n
= lim

n→∞

√
n

n + 1
|3x− 4| = |3x− 4|

from which we know that the series converges absolutely on |3x − 4| < 1, which is the
interval (1, 5/3), and diverges on |3x− 4| > 1.



At the endpoint x = 5/3 we have
∑∞

n=1
1√
n

=
∑∞

n=1
1

n1/2 , which is a divergent p-series

since it has p = 1/2 ≤ 1.

At the endpoint x = 1 we have
∑∞

n=1
(−1)n
√

n
which is an alternating series. Since the

size of the terms is decreasing and goes to zero as n →∞, the series is convergent by the
alternating series test. It is not absolutely convergent because when we take absolute values
we again get the divergent p-series

∑∞
n=1

1√
n
. Therefore it is conditionally convergent.

The conclusion is that the power series is absolutely convergent for x in (1, 5/3), condi-
tionally convergent at x = 1, and divergent at all other points.

9. (a) We use the binomial series (1 + x)m =
∑∞

k=0

(
m
k

)
xk with m = −1/2, and replace x

with −x2. The result is

(1− x2)−1/2 =
∞∑

k=0

(
−1/2

k

)
(−x2)k =

∞∑
k=0

(
−1/2

k

)
(−1)kx2k

(b) The derivative of sin−1 x is 1√
1−x2 = (1 − x2)−1/2, so we can simply integrate the

series from part (a):

sin−1 x =

∫
(1− x2)−1/2 dx =

∫ ∞∑
k=0

(
−1/2

k

)
(−1)kx2k dx = C +

∞∑
k=0

(
−1/2

k

)
(−1)kx2k+1

2k + 1

The constant C is found to be zero since sin−1 0 = 0. The problem asks for the Taylor
polynomial of order 3, so in this case we only need the terms for k = 0 and k = 1. The
coefficients are

(−1/2
0

)
= 1 when k = 0 and −

(−1/2
1

)
(1/3) = 1/6 when k = 1, so our order

3 Taylor polynomial is x +
x3

6
.

10. We take y =
∞∑

n=0

anx
n. Then y′ =

∑∞
n=1 nanx

n−1 and the differential equation is

2x2 = y′ − x2y

=
∞∑

n=1

nanx
n−1 − x2

∞∑
n=0

anx
n

= a1 + 2a2x +
∞∑

m=2

[
(m + 1)am+1 − am−2

]
xm

from which we see that a1 = 0, a2 = 0, 3a3− a0 = 2 and that (m + 1)am+1− am−2 = 0 for
m ≥ 3. We can put this last equation into the more useful form am+1 = am−2/(m + 1), or
the even more convenient an+3 = an/(n + 3).

Using the initial condition we have a0 = y(0) = −1, so we can now work out all of the
coefficients from the above equations.

a0 = −1 ⇒ a3 =
1

3
⇒ a6 =

1

6
· 1
3

⇒ a9 =
1

9
· 1
6
· 1
3

a1 = 0 ⇒ a4 = 0 ⇒ a7 = 0 ⇒ a10 = 0

a2 = 0 ⇒ a5 = 0 ⇒ a8 = 0 ⇒ a11 = 0

This then gives the first four non-zero terms of the series to be

y = −1 +
1

3
x3 +

1

18
x6 +

1

162
x9 + · · ·


