1. We use the Simpson’s rule error estimate formula:
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where a =0, b =3, h = b_T“ = %, and M =1 is an upper bound for the absolute
value of the fourth derivative of sin z. This means we need to find n with
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|Eg| < h*M,

— n = 67.5.

Since 2% = 16 and 3* = 81 and the number of subintervals has to be even for
Simpson’s rule, we see that 4 subintervals are required.
2. For both parts of this question you have a choice between the washer and shell

methods.
(a) Using the washer method, the volume is

1 1
W/(\/E)Q—xzdx = 7T/.CE—II?2CZQZ
0 0

(b) Rewriting the curves as x = y? and x = y and using the washer method, the
volume is

1 1
7T/(y+1)2—(312+1)2dy - W/ —y' =y + 2y dy
0 0

3. (a) Use the arclength formula:

F(z) = /0 VI+ f2dt = /0 \/1 + 42 sinh?(£2) dt.

(b) By the Fundamental Theorem of Calculus,

F'(z) = \/1 + 422 sinh?(22)

= F'(1) = V1+4sinh*1.

4. Since the population is growing exponentially, it is given by a function P(t) = Pye™,
where 7 is a positive constant and F, is the initial population. The given data tell



us that

300 = Py’
900 = Py

Dividing (2) by (1) yields e" = 3, and substituting this in either equation gives
Py = 100.

5. (a) Rewrite the integral as /62“1 cos(e*) dx = 6/62‘” cos(e**) dx. Let u = e**

so that du = 2¢** dr. Then we have
e/e% cos(e**) dx = g/cosu du = gsinu +C = gsin(e%) +C.

(b) Solve using integration by parts. Let u=¢e" and dv = cosx dr so that
du = €® dr and v = sinx. Therefore,

/e””cosx dx:exsinx—/exsina: dz.

Now use integration by parts to evaluate / e“sinx dr. Let u=¢€" and dv =

sinz dx so that du = e* dxr and v = — cosz. Therefore,
/e”” cosr dr = e sinz — (—er cosT + /ex cos T dac) + ',
= exsinx—i-e””cosx—/excosx dr + ',
2/6‘”0051 dr = é€"sinx + e“cosz + ',

1 1
/excosxdx = §exsinx+§excosx+0.

(c) Use the trigonometric substitution x = 2sin@. Therefore, dr = 2cosf df and
we have

/de = /(\/m) (2cosf) db,
= /(20089)(2 cosf) df = 4/00820 do,

= 2/(1+00829) df = 20 + sin 20 4 C.

1
Using the fact that § =sin™" g and sin 20 = 2sinf cosf = §x\/4 — 22 (using an

appropriate right triangle), the integral in terms of x is

1
/\/4—:E2 dr = QSin_lg+ 533\/4—$2+C.

1
6. (a) Use the substitution u = 1+ Inz. Then du = — dz and we have
T
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(b) The integral is improper because the integrand is undefined at the upper limit.
Therefore, we evaluate

! d li /b ! d

x = lim —— dx
V3—=x =3~ Jo V3 —x
Let u = 3 — x so that du = —dx and the integral becomes
3—b
—1
dr = 2/u)3t = —2v3 — b+ 2V/3.
[ == [ d= vy

Then,
b

li dr = lim —2v/3 2vV3 =2
bf?—o\/g—x e —b+2v3=2V3

(c) Here, the integrand has an asymptote at x = 1. Therefore, we split the integral

in two:
2 1 2
1 1 1
——dx = —d ——d
KA<1—m213 A (1—ap I*[‘u—xv "
b S|
= i — = d li — dx.
o A= TN ) T
To evaluate the integrals we let u = 1 — x so that du = —dx. Therefore, for the

first limit we have

b 1 1-b -1 1-b 1
lim ——— dx = lim — du= lim |— = lim —— — 1 = o0.
—1- Jo (1 —x)? b—1- )1 u? b—1- U],
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1
Since the first integral diverges, the integral / m dz also diverges.
0 —x
7. (a) We rewrite the series as

Zl (?iZ) —Z—ln(1+n)+ln(2+n).

n=0

This is a telescoplng series whose nth partial sum is given by:
Sp = —Inl+mn2—-In2+mm3—-m3+mnd+...—Inn+In(n+1),
= —Inl+In(n+1)=In(n+1).

Therefore, the sum of the series is lim s, = lim In(n + 1) = co and the series

n—oo n—oo

diverges.

Inn n
(b) Since — < — = — for n > 1 and Z — converges (p-series with p > 1), the
n n®  n

series converges by the Direct Comparlson Test
8. (a) The series is Y 7 3" — Iy (52 3) which is geometric. It therefore con-

n=0 4”*1
verges absolutely for ‘x 3! < 1, which is the interval (—1,7), and diverges at all other
points.
(b) Applying the ratio test to determine absolute convergence we have

T — 4‘n+1

lim 27— iy B = lim

n—0oo  dp n—oo  4/n+ 1 ’3.1' — 4’” n—oo
from which we know that the series converges absolutely on [3z — 4| < 1, which is the
interval (1,5/3), and diverges on |3z — 4] > 1.

1|3x—4| = |3z — 4]



At the endpoint = 5/3 we have >~ | \/Lﬁ =5, #, which is a divergent p-series
since it has p=1/2 < 1.

At the endpoint © = 1 we have ) >, % which is an alternating series. Since the
size of the terms is decreasing and goes to zero as n — oo, the series is convergent by the
alternating series test. It is not absolutely convergent because when we take absolute values
we again get the divergent p-series > -, \/iﬁ Therefore it is conditionally convergent.

The conclusion is that the power series is absolutely convergent for z in (1,5/3), condi-
tionally convergent at x = 1, and divergent at all other points.

9. (a) We use the binomial series (1 +z)™ = Y7 (')«* with m = —1/2, and replace =
with —z%. The result is

e 5 A G (e

(b) The derivative of sin™'x is \/11_7 (1 — 2%)7/2, so we can simply integrate the

series from part (a):

Sin_lx—/( de‘/Z( 1/2) X 2kdx—C'+Z( 1/2)%

The constant C is found to be zero since sin”™' 0 = 0. The problem asks for the Taylor

polynomial of order 3, so in this case we only need the terms for £ = 0 and £ = 1. The

coefficients are (_B/Q) = 1 when k = 0 and —(_11/2)(1/3) = 1/6 when k = 1, so our order
3

3 Taylor polynomial is x + %

10. We take y = Z apx”. Then v =3 7 na,z™ ! and the differential equation is
n=0

2% — i — 22y
(e.) o

= Z napz"t — x? Z a, "
n=1 n=0

=a + 2@21’ + Z [(m + 1)(Zm+1 — am,ﬂ "
m=2
from which we see that a; = 0, as = 0, 3a3 — ag = 2 and that (m + 1)a,41 — a2 = 0 for
m > 3. We can put this last equation into the more useful form a,,+1 = @y—2/(m + 1), or
the even more convenient a,.3 = a,/(n + 3).
Using the initial condition we have ag = y(0) = —1, so we can now work out all of the
coefficients from the above equations.

= 1 N 1 1 N 1 1 1

ag = — az = - ag = = - = ag=—+—=-—

’ °T3 76 3 796
ar=0 = au=0 = a;=0 = ayp=0
=0 = a3=0 = ag= = a1 =0

This then gives the first four non-zero terms of the series to be
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=—14+=-2"4+ ="+ —2"+---
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