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Abstract

Turing’s formula allows one to estimate the total probability as-
sociated with letters from an alphabet, which are not observed in a
random sample. In this paper we give conditions for the consistency
and asymptotic normality of the relative error of Turing’s formula of
any order. We then show that these conditions always hold when the
distribution is regularly varying with index α ∈ (0, 1].
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1 Introduction

In many situations one works with data that has no natural ordering and is
categorical in nature. In such cases, an important problem is to estimate the
probability of seeing a new category that has not been observed before. This
probability is called the missing mass. See [23, 3, 2, 9] and the references
therein for a discussion of its properties. The problem of estimating the miss-
ing mass arises in many applications, including ecology [16, 5, 6], genomics
[21], speech recognition [18, 7], authorship attribution [11, 28, 32], and com-
puter networks [29]. Perhaps the most famous estimator of the missing mass
is Turing’s formula, sometimes also called the Good-Turing formula. This
formula was first published by I. J. Good in [15], where the idea is credited,
largely, to Alan Turing. To discuss this estimator and how it works, we begin
by formally defining our framework.

Let A = (a1, a2, . . . ) be a countable alphabet and let P = (p1, p2, . . . )
be a probability distribution on A. We refer to the elements in A as letters.
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These represent the various categories of our data. Assume that X1, . . . , Xn

is a random sample of size n from A according to P, let

yk,n =
n∑
i=1

1[Xi=ak]

be the number of times that letter ak appears in the sample, and let

Nr,n =
∑
k

1[yk,n=r]

be the number of letters observed exactly r times.
Define

π0,n =
∑
k

pk1[yk,n=0].

This is the missing mass, i.e. the probability that the next observation will be
of a letter that has not yet been observed. Turing’s formula is an estimator
of π0,n given by

T0,n =
N1,n

n
.

One way to see how well this estimator works is through simulations; for a
recent simulation study see [17]. Other approaches, based on decision theory
and Bayesian inference, are given in [8] and [13]. A simpler approach is to
consider the bias of Turing’s formula and to see when

E [T0,n − π0,n] ≈ 0.

Many discussions are given in, e.g., [27, 22, 32]. Along similar lines, it can
be easily shown that

(T0,n − π0,n)
p→ 0 as n→∞. (1)

While this may seem to resolve the issue of consistency, it is not as infor-
mative as it first appears. This is because, as is easy to see, we have both
T0,n

p→ 0 and π0,n
p→ 0 as n→∞. Thus, we cannot know if (1) tells us that

T0,n is estimating π0,n well, or if both are just very small. This is an issue
with the studies of bias as well.

A different and, arguably, more meaningful way to think about consis-
tency was introduced in [25]. There, the question under consideration was
when does the relative error of Turing’s formula approach zero, i.e. when
does

T0,n − π0,n

π0,n

p→ 0 as n→∞ (2)

hold. Specifically, [25] and [2] showed that a sufficient condition for (2) is
that the underlying distribution, P, is regularly varying.
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Another approach to understanding and using Turing’s formula is to ask
when asymptotic normality holds. In particular, conditions under which
there exists a deterministic sequence gn with

gn (T0,n − π0,n)
d→ N(0, 1) as n→∞ (3)

are given in [12, 33, 30, 31]. Results of this type are important for construct-
ing statistical tests and confidence intervals. See [32] for an application to
authorship attribution.

In this paper we give conditions for the asymptotic normality of the
relative error of Turing’s formula. Specifically, we give conditions under
which there exists a deterministic sequence hn with

hn
T0,n − π0,n

π0,n

d→ N(0, 1) as n→∞. (4)

These conditions also imply consistency of the relative error in the sense of
(2). We note that (4) leads to confidence intervals and hypothesis tests quite
different from those determined by (3). The nature of this difference will be
studied in a future work. All of our results are presented not just for Turing’s
formula, but also for higher order Turing’s formulae, which we discuss in the
next section.

We will prove (4) under a new sufficient condition. Interestingly, this
condition turn out to be more restrictive than the one for (3). This is likely
due to the fact that, since we are now dividing by π0,n, we must make sure
that it does not approach zero too quickly. We note that our approach is
quite different from the one used in [25] to prove (2). That approach uses
tools specific to regularly varying distributions, which we will not need.

The remainder of the paper is organized as follows. In Section 2 we recall
Turing’s formulae of higher orders and give conditions for the asymptotic
normality and consistency of their relative errors. In Section 3, we give some
comments on the assumptions of the main results and give alternate ways
of checking them. Then, in Section 4, we show that the assumptions always
hold when the distribution, P, is regularly varying with index α ∈ (0, 1]. For
α 6= 1 this is the condition under which the consistency results of [25] were
obtained. Finally, proofs of the main results are given in Section 5.

Before proceeding we introduce some notation. For x > 0 we denote the
gamma function by Γ(x) =

∫∞
0 e−ttx−1dt. For real valued functions f and

g, we write f(x) ∼ g(x) as x → c to mean limx→c
f(x)
g(x) = 1. For sequences

an and bn, we write an ∼ bn to mean limn→∞
an
bn

= 1. We write N(µ, σ2)

to refer to a normal distribution with mean µ and variance σ2. We write
d→ to refer to convergence in distribution and p→ to refer to convergence in
probability.
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2 Main Results

In this section we give our main results about the asymptotic normality and
consistency of the relative error of Turing’s formula. We begin by recalling
higher order Turing’s formulae, which were introduced in [15]. For any r =
0, 1, . . . , n− 1 let

πr,n =
∑
k

pk1[yk,n=r]

be the probability that the next observation will be of a letter that has been
observed exactly r times, and let

µr,n := E[πr,n] =

(
n

r

)∑
k

pr+1
k (1− pk)n−r.

An estimator of πr,n is given by

Tr,n =
r + 1

n− r
Nr+1,n,

which is Turing’s formula of order r. Turing’s formula of order 0 is just called
Turing’s formula and is the most useful in applications as it estimates the
probability of seeing a letter that has never been observed before. We now
recall the results about asymptotic normality given in [33] and [31].

Let gn be a deterministic sequence of positive numbers such that

lim sup
n→∞

gn
n1−β <∞ for some β ∈ (0, 1/2). (5)

For an integer s, we say that Condition As is satisfied if

lim
n→∞

g2
nn

s−2
∑
k

psk(1− pk)n−s = cs (6)

for some cs ≥ 0. The following result is given in [31] and for the case r = 0
in [33].

Lemma 1. Fix any integer r ≥ 0 and let gn be a deterministic sequence
of positive numbers satisfying (5). If Conditions Ar+1 and Ar+2 hold with
cr+1 + cr+2 > 0, then

gn (Tr,n − πr,n)
d→ N

(
0,

(r + 1)cr+1 + cr+2

r!

)
as n→∞.

We are now ready to state our main result.

Theorem 1. Fix any integer r ≥ 0 and let gn be a deterministic sequence
of positive numbers satisfying (5). If r ≥ 2 assume that

lim sup
n→∞

g2
n

∑
k

p2
k(1− pk)n−2 <∞. (7)
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If Conditions Ar+1 and Ar+2 hold with cr+1 > 0 and cr+2 ≥ 0, then

µr,ngn

(
Tr,n − πr,n

πr,n

)
d→ N

(
0,

(r + 1)cr+1 + cr+2

r!

)
as n→∞.

Proof. The proof is given in Section 5.

Remark 1. Note that Theorem 1 does not, in general, give
√
n-convergence.

In fact, the rate of convergence is different for different distributions. In
Section 4 we will characterize the rates for the case of regularly varying dis-
tributions.

Since the most important case is when r = 0, we restate Theorem 1 for
this case.

Corollary 1. Let gn be a deterministic sequence of positive numbers satis-
fying (5). If Conditions A1 and A2 hold with c1 > 0 and c2 ≥ 0, then

µ0,ngn

(
T0,n − π0,n

π0,n

)
d→ N(0, c1 + c2) as n→∞.

The results of Theorem 1 may not appear to be of practical use since we
generally do not know the values of gn, µr,n, cr+1, or cr+2. However, it turns
out that we do not need to know these quantities. So long as a sequence gn
satisfying the assumptions exists, it and everything else can be estimated.

Corollary 2. If the conditions of Theorem 1 are satisfied, then
√
r + 1E[Nr+1,n]√

(r + 1)E[Nr+1,n] + (r + 2)E[Nr+2,n]

(
Tr,n − πr,n

πr,n

)
d→ N(0, 1)

and √
r + 1Nr+1,n√

(r + 1)Nr+1,n + (r + 2)Nr+2,n

(
Tr,n − πr,n

πr,n

)
d→ N(0, 1).

Proof. The proof is given in Section 5.

In the proof of Theorem 1, it is shown that, under the assumptions of that
theorem, µr,ngn →∞. This means that we can immediately get consistency.

Corollary 3. If the conditions of Theorem 1 are satisfied, then

Tr,n − πr,n
πr,n

p→ 0. (8)

The assumptions of Corollary 3 are quite general. Different conditions
are given in Corollary 5.3 of [2]. The most general possible conditions for
(8) are not known, but it is known is that some conditions are necessary. In
fact, [24] showed that there cannot exist an estimator of π0,n for which (8)
holds for every distribution.
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3 Discussion

In this section we discuss the assumptions of Theorem 1 and give alternate
ways to verify them. We begin by giving several equivalent ways to check
that Condition As holds. Toward this end, we introduce the notation

Φs(n) =
ns

s!

∑
k

pske
−npk .

Lemma 2. For any integer s ≥ 1 the following are equivalent:

a) lim
n→∞

g2
nn

s−2
∑
k

psk(1− pk)n−s = cs,

b) lim
n→∞

(s− 1)!
g2
n

n
µs−1,n−1 = cs,

c) lim
n→∞

s!
g2
n

n2
E[Ns,n] = cs,

d) lim
n→∞

s!
g2
n

n2
Φs(n) = cs.

Proof. The proof is given in Section 5.

Remark 2. An intuitive interpretation of Φs(n) is as follows. Consider
the case where the sample size is not fixed at n, but is a random variable
n∗, where n∗ follows a Poisson distribution with mean n. In this case yk,n∗

follows a Poisson distribution with mean npk and Φs(n) = E[Ns,n∗ ]. In this
sense, Condition d) can be thought of as a Poissonization of Condition c).
Poissonization is a useful tool when studying the occupancy problem and is
discussed, at length, in [14].

We now turn to the effects of Condition As.

Lemma 3. 1. Let s ≥ 1 be an integer. If Condition As holds with cs > 0
then

lim
n→∞

gn

n1/2
=∞ (9)

and

lim
n→∞

gn
gn+1

= 1. (10)

2. When r ≥ 2 and Condition Ar+1 holds, (7) is equivalent to

lim sup
n→∞

∑
k:pk<1/n

(gnpk)
2 <∞.

Proof. The proof is given in Section 5.
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It is important to note that (9) is implicitly used in the proof of Lemma 1
as given in [33] and [31], although it is not directly mentioned there. Further,
(9) implies that the assumption in (5) that β ∈ (0, 1/2) is not much of a
restriction. It also tells us that gn must approach infinity quickly, but (5)
tell us that it should not do so too quickly. On the other hand, (10) is a
smoothness assumption. It looks like a regular variation condition, but is a
bit weaker, see Theorem 1.9.8 in [4].

Remark 3. Lemmas 2 and 3 help to explain what kind of distributions sat-
isfy the assumptions of Theorem 1. Specifically, the two lemmas imply that
r!n−1g2

nµr,n → cr+1 > 0. In light of (5), this means that µr,n cannot ap-
proach zero too quickly. Thus, πr,n cannot approach zero quickly either. This
condition means that the distribution must have heavy tails of some kind.
Arguably, the best known distributions with heavy tails are those that are
regularly varying, which we focus on in the next section.

4 Regular Variation

In this section we show that the assumptions of Theorem 1 are always sat-
isfied when P is regularly varying. The concept of regular variation of a
probability measure on an alphabet seems to have originated in the classical
paper [19], see also [14] for a recent review. We begin by introducing the
measure

ν(dx) =
∑
k

δpk(dx),

where δy denotes the Dirac mass at y, and the function

ν̄(x) = ν([x, 1]) =
∑
k

1[pk≥x].

We say that P is regularly varying with index α ∈ [0, 1] if

ν̄(x) ∼ `(1/x)x−α as x ↓ 0, (11)

where ` is slowly varying at infinity, i.e. for any t > 0 it satisfies

lim
x→∞

`(xt)

`(x)
= 1.

In this case we write P ∈ RVα(`). When α = 0 we say that P is slowly
varying and when α = 1 we say that it is rapidly varying. These cases have
different behavior from the others and we will discuss them separately.

To better understand the meaning of regular variation, we recall the
following result from [14]. It says that P ∈ RVα(`) with α ∈ (0, 1) if and
only if

pk ∼ `∗(k)k−1/α as k →∞,
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where `∗ is a slowly varying at infinity function, in general, different from `.
We now state the main results of this section.

Proposition 1. If P ∈ RVα(`) for some α ∈ (0, 1) then, for any integer
r ≥ 0,

καn
α/2[`(n)]1/2

(
Tr,n − πr,n

πr,n

)
d→ N(0, 1) as n→∞,

where κα =
√

αΓ(r+1−α)
r!(2r+2−α) .

Proof. Let gn = n1−α/2[`(n)]−1/2. Proposition 17 in [14] implies that for
every integer s ≥ 1

lim
n→∞

s!
g2
n

n2
Φs(n) = αΓ(s− α).

By Lemmas 2 and 3 this implies that

µr,n ∼
α

r!
Γ(r + 1− α)n−(1−α)`(n).

Thus
µr,ngn ∼

α

r!
Γ(r + 1− α)nα/2[`(n)]1/2

and (r+ 1)cr+1 + cr+2 = (r+ 1)αΓ(r+ 1−α) +αΓ(r+ 2−α) = α(2r+ 2−
α)Γ(r + 1− α). From here the result follows by Theorem 1.

Next, we turn to the case when α = 1.

Proposition 2. Assume that P ∈ RV1(`) and let

`1(y) =

∫ ∞
y

u−1`(u)du.

If r = 0 then

n1/2[`1(n)]1/2
(
T0,n − π0,n

π0,n

)
d→ N(0, 1) as n→∞,

and if r ≥ 1 then

κ1n
1/2[`(n)]1/2

(
Tr,n − πr,n

πr,n

)
d→ N(0, 1) as n→∞,

where κ1 = [r(2r + 1)]−1/2.

We note that the integral in the definition of `1 converges, see the proof of
Proposition 14 in [14]. Further, by Karamata’s Theorem (see e.g. Theorem
2.1 in [26]), `1 is slowly varying at infinity.
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Proof. We begin with the case r = 0. In this case we let gn = n1/2[`1(n)]−1/2.
Proposition 18 in [14] implies that

lim
n→∞

g2
n

n2
Φ1(n) = 1 and 2Φ2(n) ∼ n`(n).

This means that µ0,n ∼ `1(n) and that

2
g2
n

n2
Φ2(n) ∼ `(n)

`1(n)
→ 0, (12)

where the convergence follows by Karamata’s Theorem, see e.g. Theorem 2.1
in [26]. Thus µ0,ngn ∼ n1/2[`1(n)]1/2 and c1 + c2 = 1. From here the first
part follows by Corollary 1.

Now assume that r ≥ 1. In this case we let gn = n1/2[`(n)]−1/2. Propo-
sition 18 in [14] says that for s ≥ 2

lim
n→∞

s!
g2
n

n2
Φs(n) = (s− 2)!,

which means that
µr,n ∼

`(n)

r
.

This implies that µr,ngn ∼ r−1
√
n`(n) and that (r + 1)cr+1 + cr+2 = (2r +

1)(r − 1)!. Putting everything together and applying Theorem 1 gives the
result.

Remark 4. From the proof of Proposition 2 we see that, when α = 1 and
r ≥ 1, we have gn = n1/2[`(n)]−1/2. Further, Φ1(n) ∼ n`1(n), which means
that

g2
n

n2
Φ1(n) ∼ `1(n)

`(n)
→∞,

where the convergence follows by (12). Thus condition A1 fails to hold. How-
ever, Conditions As for s ≥ 2 hold.

Remark 5. When α = 0 the distributions may no longer be heavy tailed
and the results of Theorem 1 need not hold. In fact, while all geometric
distributions are regularly varying with α = 0, [25] showed that for some of
them (8) does not hold, and thus neither does the result of Theorem 1.

We can also show that, under a mild additional condition, the assump-
tions of Theorem 1 do not hold for α = 0. Specifically, assume that P ∈
RV0(`) and that there is a slowly varying at infinity function `0 such that∑

k

pk1[pk≤x] ∼ x`0(1/x) as x ↓ 0.
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In this case, Proposition 19 in [14] implies that

`(x) ∼
∫ x

1
u−1`0(u)du as x→∞,

and that for each s ≥ 1

Φs(n) ∼ 1

s
`0(n).

Thus, to get s! g
2
n
n2 Φs(n) to converge to a positive constant cs, we must take

gn ∼ n
√

cs
(s−1)!`0(n) . However, since `0 is slowly varying at infinity, gn does

not satisfy (5) for any β ∈ (0, 1/2), and the assumptions of Theorem 1 do
not hold. Thus, the question of when and if asymptotic normality holds in
this case cannot be answered using Theorem 1.

Combining Corollaries 2 and 3 with Propositions 1 and 2 gives the fol-
lowing.

Corollary 4. If P ∈ RVα(`) with α ∈ (0, 1] then for any integer r ≥ 0 we
have

√
r + 1Nr+1,n√

(r + 1)Nr+1,n + (r + 2)Nr+2,n

(
Tr,n − πr,n

πr,n

)
d→ N(0, 1)

and (
Tr,n − πr,n

πr,n

)
p→ 0.

Note that, in the above, we do not need to know what α and ` are, only
that they exist.

Remark 6. Using a different approach, [25] showed that, when α ∈ (0, 1),
the second convergence in Corollary 4 can be replaced by almost sure conver-
gence. This was extended to the case α = 1 and r = 0 by Corollary 5.3 of
[2].

5 Proofs

In this section we give the proofs of our results. We begin by introduc-
ing some notation and giving several lemmas that may be of independent
interest. For any integer r ≥ 0 let

Πr,n =

r∑
i=0

πi,n =
∑
k

pk1[yk,n≤r]

be the total probability of all letters observed at most r times, and let

Mr,n = E[Πr,n].

Note that, for r ≥ 1, we have πr,n = Πr,n−Πr−1,n and µr,n = Mr,n−Mr−1,n.
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Lemma 4. For any integer r ≥ 1 and any ε > 0

P (|πr,n − µr,n| > ε) ≤ P (|Πr,n −Mr,n| > ε/2) + P (|Πr−1,n −Mr−1,n| > ε/2)

≤ 4ε−2 [Var(Πr,n) + Var(Πr−1,n)] .

The proof is similar to that of Lemma 20 in [25]. We include it for
completeness.

Proof. Define the events A = [−ε/2 < Πr,n −Mr,n < ε/2], B = [−ε/2 <
Mr−1,n − Πr−1,n < ε/2], and C = [−ε < πr,n − µr,n < ε]. Since A ∩ B ⊂ C
it follows that P (Cc) ≤ P (Ac ∪Bc) ≤ P (Ac) + P (Bc), which gives the first
inequality. The second follows by Chebyshev’s inequality.

We will need bounds on the variances in the above lemma.

Lemma 5. For any integer r ≥ 0 we have

Var(Πr,n) ≤
r+2∑
i=2

ni−2
∑
k

pik(1− pk)n−i.

This result follows from the fact that the random variables {yk,n : k =
1, 2, . . . } are negatively associated, see [10]. For completeness we give a
detailed proof.

Proof. Note that

Var(Πr,n) = E[Π2
r,n]− (E[Πr,n])2

= E

(∑
k

pk1[yk,n≤r]

)2
−(∑

k

pkP (yk,n ≤ r)

)2

=
∑
k

p2
kP (yk,n ≤ r) +

∑
k 6=`

pkp`P (yk,n ≤ r, y`,n ≤ r)

−
∑
k

p2
k [P (yk,n ≤ r)]2 −

∑
k 6=`

pkp`P (yk,n ≤ r)P (y`,n ≤ r)

≤
∑
k

p2
kP (yk,n ≤ r)

+
∑
k 6=`

pkp` [P (yk,n ≤ r, y`,n ≤ r)− P (yk,n ≤ r)P (y`,n ≤ r)]

≤
∑
k

p2
kP (yk,n ≤ r),

where the last inequality follows by the well-known fact that, for a multino-
mial distribution, [P (yk,n ≤ r, y`,n ≤ r)− P (yk,n ≤ r)P (y`,n ≤ r)] ≤ 0, see
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e.g. [20]. Combining the above with the fact that yk,n has a binomial distri-
bution with parameters n and pk gives

Var(Πr,n) ≤
∑
k

p2
k

r∑
i=0

(
n

i

)
pik(1− pk)n−i

=
r∑
i=0

(
n

i

)∑
k

pi+2
k (1− pk)n−i

≤
r∑
i=0

ni
∑
k

pi+2
k (1− pk)n−i

=

r+2∑
i=2

ni−2
∑
k

pik(1− pk)n+2−i

≤
r+2∑
i=2

ni−2
∑
k

pik(1− pk)n−i,

which completes the proof.

To help simplify the above bound, we give the following result.

Lemma 6. If 1 ≤ s ≤ t ≤ u <∞ then

nt−2
∑
k

ptk(1− pk)n−t ≤ ns−2
∑
k

psk(1− pk)n−s

+nu−2
∑
k

puk(1− pk)n−u.

Proof. Observing that

n−2
∑
k

(
npk

1− pk

)t
(1− pk)n

≤ n−2
∑
k

max

{(
npk

1− pk

)s
,

(
npk

1− pk

)u}
(1− pk)n

≤ ns−2
∑
k

psk(1− pk)n−s + nu−2
∑
k

puk(1− pk)n−u

gives the result.

Proof of Lemma 2. Observing that

(s− 1)!
g2
n

n
µs−1,n−1 = (s− 1)!

g2
n

n

(
n− 1

s− 1

)∑
k

psk(1− pk)n−s

∼ g2
nn

s−2
∑
k

psk(1− pk)n−s
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and

s!
g2
n

n2
E[Ns,n] = s!

g2
n

n2

(
n

s

)∑
k

psk(1− pk)n−s

∼ g2
nn

s−2
∑
k

psk(1− pk)n−s

gives the equivalence between a), b), and c). The equivalence between c)
and d) is shown in [31].

Proof of Lemma 3. First note that for s ≥ 1

lim
n→∞

ns−1
∑
k

psk(1− pk)n−s ≤ lim
n→∞

∑
k

pk(npk)
s−1e−pk(n−s)

= es
∑
k

pk lim
n→∞

(npk)
s−1e−pkn = 0,

where we use the well-known fact that (1 − x) ≤ e−x for x ≥ 0 (see, e.g.,
4.2.29 in [1]) and we interchange limit and summation by dominated conver-
gence and the fact that the function f(x) = xs−1e−x is bounded for x ≥ 0.
Combining the above with Condition As and the assumption that cs > 0
gives g2

n/n→∞, which implies (9).
We now turn to (10). Throughout the proof of this part we use the

formulation of Condition As given in d) of Lemma 2. We have

g2
n+1(n+ 1)s−2

∑
k

pske
−(n+1)pk → cs,

and hence

g2
nn

s−2
∑
k

pske
−(n+1)pk =

g2
n

g2
n+1

ns−2

(n+ 1)s−2
g2
n+1(n+ 1)s−2

∑
k

pke
−(n+1)pk

∼ cs
g2
n

g2
n+1

.

Combining this with the fact that

g2
nn

s−2
∑
k

pske
−(n+1)pk ≤ g2

nn
s−2
∑
k

pske
−npk → cs

gives
lim sup
n→∞

gn
gn+1

≤ 1.

Now, let An = {k : pk ≤ n−1/2} and let Bn = Acn = {k : pk > n−1/2}.
Note that the cardinality of Bn is bounded by n1/2. Using the facts that the

13



function f(t) = tse−nt is decreasing on (s/n, 1] and that sn−1 < n−1/2 for
large enough n gives

0 ≤ lim sup
n→∞

g2
nn

s−2
∑
k∈Bn

pske
−npk ≤ lim sup

n→∞
g2
nn

s−2
∑
k∈Bn

n−s/2e−n
1/2

≤ lim
n→∞

( gn
n1−β

)2
n.5(s+1)−2βe−n

1/2
= 0,

where the convergence follows by (5). This implies that

lim inf
n→∞

g2
nn

s−2
∑
k

pske
−(n+1)pk ≥ lim inf

n→∞
g2
nn

s−2
∑
k∈An

pske
−npke−pk

≥ lim inf
n→∞

g2
nn

s−2e−n
−1/2

∑
k∈An

pske
−npk

= lim
n→∞

g2
nn

s−2
∑
k

pske
−npk = cs.

Now note that

g2
nn

s−2
∑
k

pske
−(n+1)pk =

g2
n

g2
n+1

ns−2

(n+ 1)s−2
g2
n+1(n+ 1)s−2

∑
k

pke
−(n+1)pk

∼ cs
g2
n

g2
n+1

.

This implies that
lim inf
n→∞

gn
gn+1

≥ 1,

which completes the proof of the first part.
We now turn to the second part. Note that when Ar+1 holds for r ≥ 2

we have

lim sup
n→∞

g2
n

∑
k:pk≥1/n

p2
k(1− pk)n−2

= lim sup
n→∞

g2
n

n2

∑
k:pk≥1/n

(npk)
2(1− pk)n−2

≤ lim sup
n→∞

g2
n

n2

∑
k

(npk)
r+1(1− pk)n−(r+1) = cr+1

and that for n ≥ 2(
1− 1

n

)n−2

g2
n

∑
k:pk<1/n

p2
k ≤ g2

n

∑
k:pk<1/n

p2
k(1− pk)n−2 ≤ g2

n

∑
k:pk<1/n

p2
k.

From here, the fact that
(
1− 1

n

)n−2 → e−1 gives the result.

14



Proof of Theorem 1. We have

µr,ngn

(
Tr,n − πr,n

πr,n

)
=
µr,n
πr,n

gn (Tr,n − πr,n) .

By Lemma 1 and Slutsky’s Theorem it suffices to show that
πr,n
µr,n

p→ 1.

When r = 0, Chebyshev’s inequality implies that for any ε > 0

P

(∣∣∣∣π0,n

µ0,n
− 1

∣∣∣∣ > ε

)
= P (|π0,n − µ0,n| > µ0,nε) ≤ ε−2 Var (π0)

µ2
0,n

.

Similarly, when r ≥ 1, Lemma 4 implies that for any ε > 0

P

(∣∣∣∣πr,nµr,n
− 1

∣∣∣∣ > ε

)
≤ 4ε−2

[
Var(Πr,n)

µ2
r,n

+
Var(Πr−1,n)

µ2
r,n

]
.

In both cases we can combine the above with Lemma 5 to show that

P

(∣∣∣∣πr,nµr,n
− 1

∣∣∣∣ > ε

)
≤ 8ε−2

∑r+2
i=2 n

i−2
∑

k p
i
k(1− pk)n−i

µ2
r,n

= 8ε−2

∑r+2
i=2 g

2
nn

i−2
∑

k p
i
k(1− pk)n−i

g2
nµ

2
r,n

.

We must now show that this approaches zero. By (7), the fact that Condition
Ar+2 holds, and Lemma 6, the limsup of the numerator is bounded and it
suffices to show that [gnµr,n]−1 → 0. To see this note that by (5) and
Lemmas 2 and 3

1

gnµr,n
=
gn
n

n

g2
nµr,n

∼ r!

cr+1

gn
n

=
r!

cr+1

gn
n1−β n

−β → 0,

which concludes the proof.

Proof of Corollary 2. We begin with the first part. Note that Lemma 2
combined with Lemma 3 implies that

µr,ngn ∼
cr+1

r!

n

gn
∼ (r + 1)

gn
n

E[Nr+1,n]

and

(r + 1)2 g
2
n

n2
E[Nr+1,n] + (r + 2)(r + 1)

g2
n

n2
E[Nr+2,n]→ (r + 1)cr+1 + cr+2

r!
.

Putting everything together and applying Slutsky’s Theorem gives the first
part. For the second part, we note that in the proof of Theorem 3.3 in [31]
it was shown that

(r + 1)!
g2
n

n2
Nr+1,n

p→ cr+1 and (r + 2)!
g2
n

n2
Nr+2,n

p→ cr+2.

From here the result follows as in the previous part.
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