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Get Me to My GATE On Time: Efficiently Solving
General-Sum Bayesian Threat Screening Games

Aaron Schlenker and Matthew Brown and Arunesh Sinha and Milind Tambe1 and Ruta Mehta2

Abstract. Threat Screening Games (TSGs) are used in domains
where there is a set of individuals or objects to screen with a lim-
ited amount of screening resources available to screen them. TSGs
are broadly applicable to domains like airport passenger screening,
stadium screening, cargo container screening, etc. Previous work on
TSGs focused only on the Bayesian zero-sum case and provided
the MGA algorithm to solve these games. In this paper, we solve
Bayesian general-sum TSGs which we prove are NP-hard even when
exploiting a compact marginal representation. We also present an al-
gorithm based upon a adversary type hierarchical tree decomposition
and an efficient branch-and-bound search to solve Bayesian general-
sum TSGs. With this we provide four contributions: (1) GATE, the
first algorithm for solving Bayesian general-sum TSGs, which uses
hierarchical type trees and a novel branch-and-bound search, (2)
the Branch-and-Guide approach which combines branch-and-bound
search with the MGA algorithm for the first time, (3) heuristics based
on properties of TSGs for accelerated computation of GATE, and
(4) experimental results showing the scalability of GATE needed for
real-world domains.

1 Introduction

Screening for threats represents a significant security challenge,
whether it is preventing an attack at a sports complex, interdicting
illicit cargo shipping, or enforcing border protection. Such domains
require finding the best way to allocate limited screening resources
so as to reduce the expected consequences of a possible attack. This
challenge is especially pronounced in settings where both screening
efficiency and screening effectiveness are central objectives. As an
example, the Transportation Security Administration (TSA) in the
United States has launched the Dynamic Aviation Risk Management
Solution (DARMS) initiative where risk-based approaches are being
proposed to improve vital aspects of aviation security such as pas-
senger screening [1].

Threat Screening Games (TSGs) [4] have been introduced to
model screening domains where the screener must process a set of
people or objects coming into an secure area, while an adversary tries
to sneak in an attack through screening. An example is a terrorist try-
ing to pass through airport screening with plastic explosives in their
carry-on luggage to attack a flight from New York to Los Angeles.
Indeed, airport threat screening by itself is a vast worldwide prob-
lem, emphasizing the tremendous importance of research on the TSG
model; particularly given that the TSA in the United States appears
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to be moving forward with this model [4]. However, even beyond air-
port screening the TSG model is applicable for screening of cargo in
ports (again an important worldwide challenge), the screening of sta-
dium patrons or protecting against illegal trafficking across borders.
In TSGs, the screener uses different types of screening resources
where each resource: (i) detects a possible attack method with dif-
ferent levels of effectiveness; and (ii) has a capacity limit in terms of
the number of screenees that can be processed by that resource in a
certain time period. The goal of the screener is to find the most ef-
fective way to allocate screenees to screening resources while being
constrained by the capacity limits on the use of those resources. Fur-
ther complicating the optimization is that screening resources can be
combined into screening teams. The presence of screening teams in-
troduce complex capacity constraints into the optimization problem
as all teams containing the same resource must satisfy the original
resource capacity constraints on that resource. This creates a diffi-
cult challenge as the most effective teams can only be used a limited
number of times and selecting the passengers to apply the highest
scrutiny to becomes an important problem.

The focus of this paper is on solving Bayesian general-sum TSGs.
Previous research in TSGs [4] solves the game with the zero-sum
assumption - a restrictive case that does not hold in many real world
domains. By using the zero-sum assumption and a compact marginal
representation the previous work[4] solves the game in polynomial
time using an LP. Unfortunately, Bayesian general-sum games are
NP-hard to solve even when exploiting a compact marginal represen-
tation for the screener’s strategy. Hence, the problem we are solving
is fundamentally more difficult than what is considered in previous
research and in order for the TSG model to be extended to real world
domains an approach to solve the general-sum case is necessary. Be-
yond [4], there has been work done on Bayesian general-sum secu-
rity games [6, 8, 13] but as discussed in Section 2, TSGs differ from
security games in crucial aspects. Thus, for large scale TSGs novel
techniques and efficient solution algorithms need to be developed to
apply the Bayesian general-sum TSG model to real world domains.

To solve Bayesian general-sum TSGs we present an algorithm
that uses hierarchical adversary type trees to break a TSG down
into smaller, restricted games containing a subset of the adversary
types. These restricted games are solved using an efficient branch-
and-bound search tree combined with MGA [4]; the solution infor-
mation from these ‘child’ nodes are then passed up to the ‘parent’
nodes in the hierarchical tree where the information provides (i) in-
feasible strategy information for pruning, (ii) tighter bounds, and (iii)
branching heuristics which provide faster computation at the parent
nodes. We also provide heuristics based upon the properties of TSGs
that increase the computational speed of the algorithm even further.

Thus, by improving upon techniques for solving Bayesian general-



sum Stackelberg games and exploiting a compact TSG represen-
tation, we provide the following contributions: (1) GATE, the first
algorithm for solving Bayesian general-sum TSGs, which uses hi-
erarchical type trees and a novel branch-and-bound search, (2)
the Branch-and-Guide approach which combines branch-and-bound
search with MGA for the first time, (3) heuristics based on the prop-
erties of TSGs for accelerated computation of GATE by reducing the
adversary strategy space that needs to be explored in the hierarchical
type tree, and (4) solution quality and experimental results showing
the scalability of GATE for large scale TSG instances.

2 Related Work
The problem of threat screening has been explored extensively in lit-
erature. However, it has been pointed out [4] that the TSG approach
(which is inspired by security games) is much better than prior non-
game-theoretic models in domains such as, screening for shipping
containers [2], stadium patrons [15], and airport passengers [11, 12]
or simple game-based models such as [19]. Specifically, previous
non-game-theoretic approaches fails to model a rational adversary
aiming to take advantage of vulnerabilities in the screening strate-
gies whereas TSGs take this into account when devising screening
strategies.

Furthermore, previous solution methods for solving security
games fail to apply directly to our domain. This happens because
TSGs (i) include a group of non-player screenees that all must be
screened while a single adversary tries to pass through screening un-
detected, (ii) model screening resources with different efficacies and
capacities that can be combined to work in teams and (iii) do not
have an explicitly modeled set of targets. These are fundamental dif-
ferences from traditional security games [9, 14, 16, 18] where the
defender protects a set of targets against a single adversary. Previous
research in TSGs provides an efficient solution method for the zero-
sum case where our techniques are not helpful, but as mentioned
in the introduction these techniques are not applicable to Bayesian
general-sum TSGs.

In terms of solving Bayesian Stackelberg games there are three
main approaches in previous literature: the Multiple LPs ap-
proach [5], the DOBSS algorithm [13], and the HSBA algorithm [8].
Multiple LPs fails to scale up for Bayesian Stackelberg games as it
requires solving an exponential number of LPs [5]. DOBSS is an al-
gorithm that exactly solves Bayesian Stackelberg games. However, it
uses the normal form representation of the game which in our case is
infeasible as our pure strategy space is exponentially larger than the
space they were considering. HSBA represents the closest alternative
solution method for our problem. HSBA breaks down the Bayesian
game into smaller restricted games and solves the restricted games
using an efficient branch and bound search with column generation.
The solution information from these restricted games is then used to
solve the original game more effectively. Unfortunately, [4] shows
that column generation is not a scalable approach even for solving
large scale Bayesian zero-sum TSGs. Still, in this paper we make
use of some techniques in HSBA, namely breaking the game down
into smaller restricted games, which we describe in more depth in
Section 5 along with significant innovations for solving general-sum
TSGs in Sections 5 and 6.

3 Threat Screening Game Model
A threat screening game (TSG) is a Stackelberg game played be-
tween the screener (leader) and an adversary (follower) in the pres-

ence of a set of non-player screenees that pass through a screening
checkpoint operated by the screener. While TSGs are applicable to
many domains, given that readers may be familiar with passenger
screening at airports, we use examples from that domain. A TSG is
composed of the following:
• Time windows: These represent the temporal dimension of screen-

ing as screenees arrive over time. This is modeled by slicing the
game into a set of time windows W . The superscript w is used to
indicate a specific time window.

• Screenee categories: Screenees have implicit characteristics, e.g.,
risk level and flight, which can be used to aggregate them into
screenee categories c ∈ C as they are functionally indistinguish-
able within the context of the game. The total number of screenees
in each category c is Nc and the number of screenees in c that ar-
rive at the screening checkpoint during time window w is Nw

c . A
constant arrival rate is assumed for screenees within each screenee
category and time window. All screenees in a category arriving in
the same time window are screened equally in expectation accord-
ing to the randomized screening strategy.

• Adversary actions: The adversary chooses a time window w ∈W
to go through screening, a screenee category c ∈ C to pose as
during screening, and an attack method m ∈ M . An example ad-
versary action is w = 8:00AM-9:00AM, c = {HighRisk, Flight1},
and m = on-body explosives.

• Adversary types: The adversary has implicit characteristics that
cannot be chosen, e.g., TSA-assigned risk level. We consider ad-
versary types θ ∈ Θ, which restrict the adversary to select from
screenee categoriesCθ ⊂ C. The adversary knows their own type,
but the screener only knows a prior distribution z over the adver-
sary types.

• Resource types: The set of screening resource types is R and all
resources of type r ∈ R, e.g., all walk-through metal detectors,
can be used to screen a combined total of at most Lwr screenees
during time window w.

• Team types: Screenees are screened by one or more resources
types, e.g., walk through metal detector and x-ray machine. Each
unique combination of resources types constitutes a screening
team type t. The set of all valid team types, denoted by T , is given
a priori.

• Team type effectiveness: Team types vary in their ability to detect
different attack methods. For team type t, Etm is the probability of
detection against attack method m.
Pure strategy A pure strategy P for the screener can be repre-

sented by |W | × |C| × |T | non-negative integer-valued numbers
Pwc,t, where each Pwc,t is the number of screenees in c assigned to
be screened by team type t during time window w. Pure strategy
P must assign every screenee to a team type while satisfying the
resource type capacity constraints for each time window, via the fol-
lowing constraints:∑

t∈T I
t
r

∑
c∈C P

w
c,t ≤ Lwr ∀w,∀r (1)∑

t∈T P
w
c,t = Nw

c ∀w,∀c (2)

where Itr is an indicator function returning 1 if team type t contains
resource type r and 0 otherwise. We denote the set of all valid pure
strategies as P̂ and we assume P̂ 6= ∅, i.e., it is possible to assign
every screenee to a team type.

For example, consider a game with one time window w1 and two
screening resources r1, r2 with capacity constraints Lr1,r2 = 20,
respectively. The resources are combined into three screening teams
t1 = {r1}, t2 = {r1, r2} and t3 = {r3}. There are three categories



c1, c2 and c3 and each has Nc = 9 passengers. Figure 1(a) shows an
example of a pure strategy allocation in this game.

The pure strategies for the adversary types are denoted as aθ,wc,m
which specifies that adversary type θ selects time window w, scree-
nee category c, and attack method m.
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(a) Pure Strategy 
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(b) Marginal Strategy 

Figure 1. TSG Strategies

In the security games literature, two approaches are commonly
used to handle scale-up: marginal strategies [9, 10] and column gen-
eration [6, 20]. To solve large-scale zero-sum TSGs [4] employed
a marginal-based approach, showing that such an approach signifi-
cantly outperformed the use of column generation. Hence we con-
tinue with the use of marginal strategies.

Marginal strategy A marginal strategy n for the screener can
be represented by |W | × |C| × |T | non-negative real-valued num-
bers nwc,t, where nwc,t is the number of screenees in c assigned to be
screened by team type t during time window w. We would want this
marginal strategy to be a valid mixed strategy (implementable), i.e.,
there should exist a probability distribution over P̂ given by qP (i.e.,∑
P∈P̂ qP = 1, 0 ≤ qP ≤ 1) such that nwc,t =

∑
P qPP

w
c,t. An

example marginal screener strategy is shown in Figure 1(b) with the
same game parameters described previously.

Utilities Since all screenees in category c are screened equally in
expectation, we can interpret nwc,t/Nw

c as the probability that a scree-
nee in category c arriving during time window w will be screened by
team type t. Then, the probability of detecting an adversary type in
category c during time window w using attack method m is given
by xwc,m =

∑
tE

t
mn

w
c,t/N

w
c . The payoffs for the screener are given

in terms of whether adversary type θ chooses screenee category c
and is either detected during screening, denoted as Uds,c, or is unde-
tected during screening, denoted as Uus,c. Similarly, the payoffs for
adversary type θ are given in terms of whether θ chooses screenee
category c and is either detected during screening, denoted as Udθ,c,
or is undetected during screening, denoted as Uuθ,c. Given adversary
type θ pure strategy aθ,wc,m, the screener’s expected utility is given by
Us(a

θ,w
c,m) = xwc,mU

d
s,c + (1−xwc,m)Uus,c and the expected utility for

adversary type θ is given byUθ(aθ,wc,m) = xwc,mU
d
θ,c+(1−xwc,m)Uuθ,c.

4 Approach
While it has been shown that Bayesian Stackelberg games are hard to
solve [5], it is interesting to observe that Bayesian general-sum TSGs
are hard to solve even in the marginal strategy space as we prove
next. This result shows that finding the optimal marginal strategy n
for Bayesian general-sum TSGs is fundamentally more complex than
the zero-sum case which can be solved in polynomial time as an LP.
Thus, it is not surprising that the solution approaches used in [4] are
not directly applicable to the general-sum case.

Theorem 1. Finding the optimal solution in Bayesian general-sum
TSGs is NP-hard even in the relaxed marginal strategy space.

Proof. We reduce from the knapsack problem to our problem. As-
sume n items with weights wi and value vi with a sack of capacity
K. Wlog, assume wi and K are integers. Construct a game with n
adversary types |Θ| = n. Each type of adversary has two flights
to board: f0, f1. Thus, C = {(θi, fj) | 0 ≤ i ≤ n, j ∈ {0, 1}}.
Choose the other parameters of the game as follows: two resources
r1,r2 with capacities Lr1 = K and Lr2 = ∞. We have two teams
t1 = {r1} and t2 = {r2}. There is only one attack method m1. For
this game Et1m1

= 1 and Et2m1
= 0, i.e., t2 is not effective at all at

detecting m1. The number of screenees for each screenee category
N(θi,f0) = wi and N(θi,f1) = 1 for all θi ∈ Θ. Each type θi occurs
with probability vi∑

θi
vi

.

The utilities for the screener are Uds,(θi,f0) = 0, Uus,(θi,f0) = 0,
∀ θi and Uds,(θi,f1) = 2, Uus,(θi,f1) = 1, ∀ θi. Thus, the screener
strictly prefers the adversary of every type to choose f1. The utilities
for the adversary are set as follows: UdΘ,(θi,f0) = 1, UuΘ,(θi,f0) = 2,
∀ θi and UdΘ,(θi,f1) = 0, UuΘ,(θi,f1) = 1, ∀ θi. Thus, the ad-
versary will choose (θi, f1) only when the probability of detection
x(θi,f0) = 1, x(θi,f1) = 0 (breaking ties in favor of the screener).
This happens only when all of the screenees N(θi,f0) = wi are
screened by t1. Thus, we have from the capacity constraints that∑
θi chooses f1 wi ≤ K. Therefore, for the choice of f1 by adver-

sary of type θi, the screener earns vi∑
θi
vi

and otherwise the screener

earns 0. Given, the optimization problem maximizes this utility:∑
θi chooses f1

vi∑
θi
vi

, the optimization provides a solution for the

knapsack problem.
The resulting TSG instance from the knapsack problem has two

flights, two resources, two teams, and as many adversary types as
the number of items n in the knapsack problem. The screenee types
assigned to t1 gives the knapsack solution. Therefore, the reduction
from the knapsack problem is overall polynomial in the number of
items n.

The optimal marginal strategy for a Bayesian general-sum TSG
can be obtained by solving the mixed integer linear program
MarginalStrategyMILP, provided below.

max
n,s,x,a

∑
θ∈Θ

zθsθ (3)

sθ − Us(aθ,wc,m) ≤ (1− aθ,wc,m) · Z ∀θ, w, c,m (4)

0 ≤ kθ − Uθ(aθ,wc,m) ≤ (1− aθ,wc,m) · Z ∀θ, w, c,m (5)

xwc,m =
∑
t∈T

Etm
nwc,t
Nw
c

∀w, c,m (6)

∑
t∈T

Itr
∑
c∈C

nwc,t ≤ Lwr ∀w, r (7)

∑
t∈T

nwc,t = Nw
c ∀w, c (8)

nwc,t ≥ 0 ∀w, c, t (9)

aθ,wc,m ∈ {0, 1} ∀θ, w, c,m (10)∑
w,c,m

aθ,wc,m = 1 ∀θ (11)

Equations 10 and 11 force each adversary type θ to choose a pure
strategy. Equation 3 is the objective function which maximizes the
screener expected utility as a weighted summation of screener ex-
pected utility against adversary type θ, sθ , multiplied by the prob-
ability of encountering adversary type θ, zθ . Equation 4 defines the



screener’s expected payoff against each adversary type, contingent
on the choice of pure strategies by the adversary types. The constraint
places an upper bound of Us(aθ,wc,m) on sθ , but only if aθ,wc,m = 1, as
Z denotes an arbitarily large constant. For all other pure strategies of
adversary type θ, the RHS is arbitrarily large. Similarly, Equation 5
places an upper bound of Uθ(aθ,wc,m) on the utility of adversary type θ,
kθ , for aθ,wc,m = 1. Additionally, Equation 5 also lower bounds kθ by
the largest Uθ(aθ,wc,m) over all aθ,wc,m. Taken together these upper and
lower bounds ensure that the pure strategy selected by adversary type
θ is a best response to the screener marginal strategy n. Equations
7-9 requires that n satisfies the resource type capacity constraints
(i.e., Equation 1) and screenee category assignment constraints (i.e.,
Equation 2).

Even though MarginalStrategyMILP represents a NP-hard prob-
lem, solving it does not necessarily produce an implementable
marginal screener strategy, i.e., the marginal strategy may not map
to a probability distribution over pure strategies. The issue of im-
plementability was addressed in [4] for TSGs by introducing the
Marginal Guided Algorithm (MGA), which uses the (potentially
non-implementable) marginal strategy to additionally restrict the
constraints of a TSG to obtain a provably implementable marginal
strategy though it can possibly lose solution quality in the process.

5 GATE: Solving Bayesian General-Sum TSG
Despite operating in the marginal screener strategy space, solving the
MarginalStrategyMILP is computationally expensive due to the pres-
ence of the integer variables that encode the adversary strategy space.
Therefore, we instead seek to solve Bayesian general-sum TSGs
using an algorithmic approach for exploring the adversary strategy
space. An example of the adversary strategy space for two adversary
types and two actions per type is shown in Figure 2(a). The leaf nodes
in this tree represent all possible joint pure strategy combinations for
the two adversary types.

As mentioned previously a standard algorithmic approach that
could be used to solve Bayesian general-sum TSGs is Multiple LPs
[5]. This technique exploits the fact that, by fixing the joint adversary
pure strategy, the underlying optimization problem is converted from
a MILP to an LP. Thus, an LP can be solved for each leaf node in the
adversary strategy tree to obtain the best marginal screener strategy
which induces that joint adversary pure strategy as a best response.
The marginal strategy with the highest screener utility is returned
as the solution for the TSG. However, the number of joint adversary
pure strategies is exponential in the number of adversary types Θ and
thus Multiple LPs is not scalable for large problem instances. There-
fore, we propose the General-sum Algorithm for Threat screening
game Equilibria (GATE) and in this section we provide an intuitive,
high level description. In Section 6 we provide a detailed algorithm
as our experimental results show GATE does not scale leading to the
need for heuristics to further speed up computation.

5.1 Hierarchical Type Trees
At a high level GATE seeks to exploit the structure of TSGs and re-
duce the number of joint adversary pure strategies that need to be
evaluated. GATE achieves this reduction by building off intuition
from the HBSA algorithm [8], which involves constructing a hier-
archical type tree. Such a tree decomposes the game with each node
in the tree corresponding to a restricted game over a subset of ad-
versary types. The idea is to solve these smaller, restricted games to
efficiently obtain (1) infeasibility information to eliminate large sets

of joint adversary pure strategies, and (2) utility upper bound infor-
mation that can be used to terminate the evaluation of joint adversary
pure strategies.

GATE operates on restricted TSGs, where we define TSG(Θ
′
)

to be a TSG with a subset of adversary types Θ
′
⊂ Θ. It is impor-

tant to note that, despite not including all adversary types, TSG(Θ
′
)

does not ignore the screenee categories associated with adversary
types Θ\Θ

′
. Indeed, TSG(Θ

′
) must still satisfy the constraint that

all screenees in each category must be assigned to a screening team
type, i.e., Equation 8. By continuing to enforce these constraints, the
upper bounds generated will be tighter as the screener cannot focus
all the screening resources on just a subset of screenee categories,
helping to improve the ability of GATE to prune out joint adversary
pure strategies.

The subsets of adversary types are decomposed such that each
level in the hierarchical type tree forms a partition over Θ satisfying
Θ

′
i ∩ Θ

′
j = ∅, ∀i,∀j, i 6= j as well as ∪iΘ

′
i = Θ. Additionally, the

set of adversary types in each parent node is the union of the sets of
adversary types of all of its children, with the root node of the hierar-
chical type tree corresponding to the full problem. Figure 2(b) shows
an example of a hierarchical tree structure with full binary partition-
ing for a game with four adversary types. The root node is the parent
to two restricted games with two adversary types, each of which is a
parent to two restricted games for individual adversary types.

The evaluation of the hierarchical tree starts at the leaf nodes and
works up the tree such that all child nodes are evaluated before the
parent nodes are evaluated. Every node is processed by evaluating
the pure strategies of the restricted game and propagating up only the
feasible pure strategies (i.e., pure strategies inducible as an adversary
best response). [8] proved that if a pure strategy aθ′ can never be a
best response for adversary type θ′ in a restricted game TSG(Θ′)
with Θ′ = {θ′} then any joint pure strategy containing aθ′ can never
be a best response in any TSG(Θ′′) with Θ′ ⊂ Θ′′. Thus, at a given
node, it is only necessary to consider joint pure strategies in the cross
product of the sets of feasible pure strategies passed up from the child
nodes.

For each pure strategy to be propagated, the corresponding utility
with respect to the restricted game is also passed up. [8] also proved
that it is possible to upper bound the screener utility for joint adver-
sary pure strategy aΘ in TSG(Θ) by

∑
θ∈Θ zθβ(aθ) where zθ is the

normalized probability of adversary type θ in TSG(Θ′) and β(aθ)
is the upper bound on the screener utility for adversary pure strategy
aθ in the restricted game TSG({θ}). These upper bounds can be
used to determine the order to evaluate joint pure strategies as well
as when it no longer necessary to evaluate joint pure strategies. This
propagation of pure strategies and upper bounds continues until the
root node is solved to obtain the best solution for the game.

Example Consider a game with four adversary types Θ =
{θ1, θ2, θ3, θ4}, like in Figure 2(b), where each adversary type has
two actions available, a1

θi
, a2
θi

. The full game is broken down into the
restricted games and we solve the leaf nodes in the hierarchical tree
first. Suppose that after we solve all of the leaf nodes we get the fol-
lowing action sets for the adversaries: θ1 = {a1

θ1
}, θ2 = {a1

θ2
, a1
θ2
},

θ3 = {a1
θ3
}, θ4 = {a1

θ4
} (as the other actions are found to be infeasi-

ble). Then, in the node {θ1, θ2} we evaluate [a1
θ1

,a2
θ2

] and [a1
θ1

,a1
θ2

]
while for node {θ3, θ4} we evaluate [a2

θ3
,a1
θ4

]. Now, at the root node
(Θ) we only have to evaluate two joint adversary pure strategies (i.e.,
[a1
θ1

,a1
θ2

,a2
θ3

,a1
θ4

] and [a1
θ1

,a2
θ2

,a2
θ3

,a1
θ4

]) instead of 16 (cross prod-
uct of all adversary type strategy sets) in order to find the optimal
strategy for the game.



(b) Hierarchical Adversary Type Tree – Binary Partitioning (a) Two Adversary Type Game Tree 
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Figure 2. Bayesian Adversary Strategy Space

5.2 Advantages of GATE

As mentioned earlier, security games techniques do not apply to
TSGs directly, and thus, HBSA is not well suited for our problem. In
particular, HBSA utilizes a Branch-and-Price framework [3] which
requires running column generation (given the large number of de-
fender strategies in complex domains) to evaluate every single adver-
sary joint pure strategy in the hierarchical type tree. While Branch-
and-Price is a general approach frequently used for Bayesian Stack-
elberg games, column generation has been shown to be incapable of
scaling for large-scale TSGs even in the zero-sum case due to the
massive number of screener pure strategies [4]. Thus, having to re-
peatedly run column generation for the Bayesian general-sum TSGs
is a non-starter.

To efficiently evaluate the joint adversary pure strategies in the
nodes of the hierarchical tree, we introduce Branch-and-Guide,
which combines branch-and-bound search with MGA to simultane-
ously mitigate the challenges of both scalability and implementabil-
ity when solving Bayesian general-sum TSGs. Branch-and-Guide
may be run at the root node of the hierarchical type tree, so that given
a large of joint adversary pure strategies, we may be able to prune
out a large number of them using upper-bounds, speeding up our
computation. Furthermore, Branch-and-Guide exploits the fact that
for a fixed joint adversary pure strategy, an implementable marginal
screener strategy can be obtained quickly (even if it not necessarily
optimal) and thus can avoid having to rely on column generation.

An example of the adversary strategy tree explored in Branch-and-
Guide is shown in Figure 3, with the size and ordering of the tree
based on the feasible joint adversary pure strategies and correspond-
ing upper bounds propagated up by the child nodes. Branches to the
left fix the joint adversary pure strategy, converting MarginalStrate-
gyMILP into a linear program which can be solved efficiently. How-
ever, the resulting marginal strategy may not be implementable and
thus we run MGA on the marginal while ensuring that the selected
joint adversary pure strategy is still a best response. This two-step
process produces an implementable marginal strategy that gives a
lower bound on the overall solution quality. Branches to the right
represent the upper bound on the screener utility for the next best
joint adversary pure strategy which is calculated using the solution
quality information passed up from the child nodes. If the screener
utility for the best solution found thus far is higher than the upper
bound than the next best joint adversary pure strategy, then the exe-
cution of Branch-and-Guide can be terminated without exploring the
remaining joint adversary pure strategies.

MGA Node 

Upper Bound Node 

           Lower Bound 1: 
First Leaf: at1 = 1, arest = 0 

         Lower Bound 2: 
Second Leaf: at1 = 0, at2 = 1,  
                    arest = 0 

       Upper Bound 1: 
  First Node: aall ϵ [0,1] 

       Upper Bound 2: 
  Second Node: at1 = 0, arest ϵ [0,1] 

Upper Bound |a| 

         UB1  UB2  …  UB|a| 

LB1, … , LB|a|: Possibly Not Ordered  

      Lower Bound |a|: 
Last leaf: a|a| = 1, arest = 0 

Figure 3. Branch-and-Guide Tree

6 Scaling Up GATE

While GATE incorporates state-of-the-art techniques to solve
MarginalStrategyMILP, it fails to scale up to real world problem
sizes for TSGs (see comparison in Evaluation). Thus, we employ
intuitive heuristics that further narrows down the search space for
GATE, thereby enabling up to 10X run time improvement with only
5-10% solution quality loss. There are two distinct steps in GATE
where additional heuristics can help: the processing step at the leafs
of the hierarchical type tree and the processing step at the intermedi-
ate and root nodes. In this section we first present GATE-H (GATE
with heuristics) formally and then describe the heuristics used to
speed up the computation.

6.1 GATE-H: GATE with Heuristics

GATE-H solves TSGs efficiently by limiting both the number of ad-
versary pure strategies passed up the hierarchical adversary type tree
from restricted games and by limiting the number of adversary strate-
gies evaluated in the individual nodes. Each node in the hierarchical
tree is solved using Algorithm 1, beginning at the leaf nodes. The
feasible adversary pure strategy set, denoted as A

′
, is passed up to

the parent nodes as each child is solved. Notice that not all strategies
need be evaluated at a given node for the computation to terminate



Algorithm 1: GATE− H− NODE(Θ,Ai
Θ,B

i,Us,UΘ,K)

//AiΘ: Pruned feasible pure strategy set for all adversary types
1. A

′′
:= all-Joint-Adversary-Pure-Strategies()

2. B
′
(aΘ) := getBound(aΘ, B

i) ∀aΘ ∈
∏

Θ A
i
Θ

3. sort(A
′′
, B

′
(aΘ)) //sort aΘ in descending order of B

′
(aΘ)

4. aΘ := [A1
Θ(1), A2

Θ(1), ..., A
|Θ|
Θ (1)]

5. r∗, r
′

= −∞ //Save best and iterative solutions
repeat

6. (feasible, n, r) := MGA(aΘ)
if feasible then

7. A
′

:= A
′
∪ aΘ

if r > r∗ then
8a. r∗ := r
8b. n∗ := n

9. B
′
(aΘ) := r

else
10. A

′′
:= A

′′
\aΘ

11. Every K iterations
if r

′
= r∗ 6= −∞ then

12. break
else

13. r
′

:= r∗

14. aΘ := getNextStrategy(aΘ, r
∗, AiΘ, B

i)
until aΘ = NULL
return (n∗, r∗, A

′
, B

′
)

as either the Branch-and-Guide heuristic or K cutoff heuristic, both
introduced later in this section, can end the computation early.

When solving a given node in GATE-H we take in the adversary
set (Θ) and the screener’s and adversary’s utilities (Us and UΘ, re-
spectively), with the feasible strategies (AiΘ) and bound information
(Bi) is acquired from the children of that node as shown in Algo-
rithm 1. In the case of solving a leaf node in the binary tree we
enumerate all of that adversary type’s strategies and get bound in-
formation by solving an upper bound LP, described in Section 6.2.
After constructing the joint adversary pure strategy set (Line 1), we
order the set by their upper bound values (Line 3) and evaluate each
strategy one by one (main loop starts after Line 5). Heuristics are
used inside of this loop, leading to GATE-H.

Algorithm 2: getNextStrategy(aΘ, r
∗,Ai

Θ,B
i)

for i = |Θ| to 1 Step-1 do
j := index-of(aΘ,AiΘ)
//Set each adversary type strategy equal to left most leaf
aiΘ := [A1

Θ(1), ..., A
|Θ|−1
Θ (1), A

|Θ|
Θ (j + 1)]

if r∗ < getBound(aΘ, B) then
return aΘ

return NULL

The first of the two heuristics used is the Branch-and-Guide ap-
proach (Line 14 - getNextStrategy()) which ends the computation
early if the value of the current best strategy is greater than the next
highest upper bound. The second heuristic, discussed in more detail
in Section 6.3, is the K cutoff (Line 11) which ends the computation
early if the current best solution is not improving after K iterations.

Algorithm 2 describes the getNextStrategy function in detail. Es-

sentially the function builds the next strategy to be evaluated by it-
erating through all of the adversary types and grabbing the highest
valued strategy in their respective pure strategy lists.

6.2 Tuning Leaf Node Computation
At the leaf nodes in our hierarchical type tree we solve the restricted
game for each adversary type. For GATE to be exact, we must re-
turn all feasible adversary strategies from each leaf node. If we do
not return all feasible pure strategies, we have a heuristic approach,
which may run well in practice but is not guaranteed to be optimal.
Nonetheless, in some cases even for optimality it might suffice for
us it might suffice for us to return only some promising strategies.
Below we note a special condition under which it is optimal to just
consider one adversary strategy at each leaf in the hierarchical tree.

Lemma 1. Let nθ represent the optimal allocation against type θ
at the leaf. Let nθ[Cθ] be the part of the allocation that is assigned
to screenees in screenee category Cθ . If the strategy n formed by
putting together all nθ[Cθ]: n =

∑
θ nθ[Cθ] is feasible then n is the

optimal defender strategy and the single adversary best response for
each single type is the adversary best response in the overall game.

Proof Sketch. First, note that the strategy n achieves the payoff∑
θ zθs

∗
θ , where s∗θ is the defender utility in the restricted game with

just the type θ. Also, clearly s∗θ is an upper bound on the defender
utility for the restricted game. By the result from [8], the upper bound
on the defender utility is

∑
θ zθs

∗
θ which is achieved by n.

We can use Branch-and-Guide as described earlier to return fewer
promising adversary strategies, but the question that arises when us-
ing Branch-and-Guide at the leaf nodes is how to compute the up-
per bounds for the nodes on the right of the tree (Recall for non-
leaf nodes this upper bound is computed from the upper bounds that
are propagated up from each child). One approach to compute this
upper bound is to adapt the ORIGAMI [9] approach; ORIGAMI is
the fastest technique for solving non-Bayesian general-sum security
games without resource scheduling constraints. The underlying idea
is to solve an LP to minimize the utility of the adversary by inducing
the largest possible attack set (set of targets that are equally and most
attractive for the attacker) and [9] shows this provides the optimal
defender utility in games without scheduling constraints. However,
even for a TSG with a single time window and a single adversary
type, ORIGAMI may not provide the optimal solution.

Therefore, ORIGAMI cannot be applied directly to find upper
bounds on the adversary pure strategies at the leaf nodes. Thus, we
provide UpperBoundLP, shown below, to calculate the upper bound
at the leaf nodes in the hierarchical tree.

min
n,q,s,x

kθ′ (12)

s.t. kθ′ ≥ x
w
c,mU

d
θ
′
,c

+ (1− xwc,m)Uu
θ
′
,c
∀w,∀c,∀m

(13)

xwc,m =
∑
t∈T E

t
m
nwc,t
Nwc

∀w,∀c, ∀m (14)∑
t∈T I

t
r

∑
c∈C n

w
c,t ≤ Lwr ∀r, ∀w (15)∑

t∈T n
w
c,t ≤ Nw

c , nwc,t ≥ 0 ∀c,∀w (16)

The objective function 12 minimizes the attacker’s utility for the
adversary type θ

′
. Equation 13 enforces that the adversary payoff be

the maximal payoff for the adversary given a marginal strategy n.



Equations 14-16 enforce the resource constraints from the original
game. This LP uses a slightly modified formulation when enforcing
the capacity constraints. Namely, replace Equation 7 with 16, i.e., we
relax the constraint that every passenger in a given category c for a
time window w must be screened.

Theorem 2. UpperBoundLP provides an upper bound on the
screener utility dθ′ for a non-Bayesian TSG.

Proof. By relaxing constraint 7 to constraint 16, we can only expand
the attack set of the adversary from the original formulation. This
happens as Equation 16 allows for an adversary to not be screened
which can only increase their utility for targets, thus possibly increas-
ing their attack set. Since the adversary breaks ties in the screener’s
favor this can only increase the screener’s possible utility.

The above approach serves two purposes: we enormously reduce
the set of strategies that are sent up to the parent even if all the ad-
versary strategies are evaluated in the Branch-and-Guide tree, as the
attack set is much smaller than the set of all feasible strategies. The
running time is also reduced, given the small attack set and the effi-
cient LP to obtain this attack set and upper bounds.

6.3 Tuning Non-leaf Node Computation

Section 6.2 focused on reducing the number of adversary pure strate-
gies returned from the leaf nodes. However, another very important
area to prune the search space is at the interior nodes in the binary
tree. One way to approach this problem is using Branch-and-Guide
in these nodes and stopping the search once the current best solution
is better than the next highest upper bound. This can possibly provide
significant speed-ups in terms of the computation speed of GATE but
it is not quite enough. Unfortunately, in our experiments it turned out
that most of the joint adversary pure strategies were evaluated in the
interior nodes by MGA as the stopping condition for Branch-and-
Guide was almost never met.

Thus, we take inspiration from column generation and security
games literature [17] where column generation is stopped if the so-
lution quality does not change much with new columns being added.
This heuristic almost always provides a very good approximation.
We adopt this same principle so that when evaluating adversary
strategies in the Branch-and-Guide approach if the current solution
quality does not change over the next K strategies then we can stop
the computation and declare the current solution as the final solu-
tion with the adversary strategies evaluated so far propagated to the
parent. This approach can also be adopted at the root. Here K is a
parameter that we can vary, but we use K = 30 for the experiments
as it seems to work the best for our problem. This approach serves
two purposes: (1) it reduces the run time at each intermediate node
and the root node and (2) it reduces the number of adversary pure
strategies propagated up the tree.

GATE-H then allows us to solve large-scale Bayesian general-sum
TSGs. Further, empirically these heuristics maintain high solution
quality while decreasing the runtime by an order of magnitude.

7 Evaluation

We evaluate GATE-H using synthetic examples from the passenger
screening domain as real world data is not available. We solved the
LPs and MILPs using CPLEX 12.5 with the barrier method, as this
was found to work the best, on USC’s HPC Linux cluster limited

to one Hewlett-Packard SL230 node with 2 processors. The adver-
sary and screener payoffs are generated uniformly at random with
Uua ∈ [2, 11] and Uus ∈ [−1,−10]. For both the adversary and the
screener we set Ud = 0. The default values for the experiments
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are 6 adversary risk levels, 5 screening resource types, 10 screen-
ing teams, 2 attack methods and 3 time windows unless otherwise
specified. For all experiments the capacity resource constraints also
remain constant. All results are averaged over 20 randomly generated
game instances.

Scaling Up and Solution Quality The first experiment tests the
scalability of each approach and provides solution quality informa-
tion for GATE-H relative to the MarginalStrategyMILP. This exper-
iment provides information about the trade-off between runtime and
solution quality for our heuristic algorithm. The four different vari-
ations of GATE that were tested are: (1) GATE which evaluates all
adversary pure strategies in each of the restricted games and only
uses Branch-and-Guide at the root, (2) GATE-H-BG which uses the
Branch-and-Guide heuristic in all nodes, (3) GATE-H-K which uses
the K = 30 cutoff in all nodes and (4) GATE-H-BG-K which uses
both Branch-and-Guide and the K cutoff in all nodes. In Figure 4
we show the runtime results for all of the algorithms. On the x-axis
we vary the number of flights from 60 to 120 in increments of 20.
On the y-axis is the runtime in seconds. For example, for 80 flights
MarginalStrategyMILP takes almost 10,000 seconds to finish. GATE
did not finish in any of the instances showing it cannot scale to large
TSG instances. GATE-H-BG also does not perform well as it fails to
beat the average runtime of the MILP over all of the instances. As
can be seen GATE-H-BG-30 and GATE-H-30 significantly reduce
the runtime with an average of a 10 fold improvement over all cases
and GATE-H-BG-30 providing a 20 fold speed up at 120 flights.

In Figure 5 we compare the solution quality of the MILP with
GATE-H-BG-30 and GATE-H-30. We do not include GATE and
GATE-H-BG as they do not finish in a majority of instances making
it difficult to compare the solution quality. On the x-axis we again
vary the number of flights from 60 to 120 in increments of 20. On
the y-axis is the screener’s utility. For instance, for 60 flights GATE-
H-BG-30 returns an average screener utility of -0.5974. As the graph
shows the average solution quality loss over these game instances
is always less than .0411 for both GATE-H-BG-30 and GATE-H-30
compared to the MILP. These results show that both GATE-H-BG-30
and GATE-H-30 provide good approximations for large scale TSGs.

Our next experiment aimed to test the ability of GATE-H-BG-30
and GATE-H-30 to scale up to much larger TSG instances. The re-



-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

60 80 100 120

Sc
re

e
n

e
r 

U
ti

lit
y 

Number of Flights 

Solution Quality 

MILP

GATE-H-BG-30

GATE-H-30

Figure 5. Solution Quality - MILP and GATE

sults are shown in Figure 6. On the x-axis we increase the number
of flights from 160 to 220 in increments of 20. On the y-axis we
show the average runtime in seconds to solve each of the TSG in-
stances. For example, GATE-H-BG-30 took on average 2,396 sec-
onds to solve a game with 200 flights. An interesting trend here is
that the runtime peaks at 180 flights and starts to decrease afterward.
This trend could be related to the resource saturation problem as seen
in other security games [7], where the observation is that resource op-
timization is easiest when the resources available are comparatively
small or equal to the number of targets and becomes difficult when
this is not the case.
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Moving Towards Zero Sum The last experiment aimed to test
what happens to the solution quality of GATE-H-BG-30 and GATE-
H-30 as the game payoffs move toward zero-sum. For this experi-
ment, we use 40 flights and have only one time window as the MILP
does not scale in these instances. We vary an r-coefficient from 0 to
-0.9 in increments of -0.1, where r = 0 means there is no correlation
between the attacker’s and screener’s payoffs and r = −1 means the
game is zero-sum (Note: -1 is not tested as there is a specialized algo-
rithm to deal with that case where our techniques are not useful). In
previous experiments we do not explicitly set a correlation between
the adversary’s and screener’s payoffs although it may be the case.
On the x-axis is the r-coefficient and the y-axis shows the screener’s
utility. For example, when r = 0 the MarginalStrategyMILP returns
a screener utility -0.889, GATE-H-BG-30 returns a screener utility
-0.917 and GATE-H-30 returns a solution quality of -0.931. In this
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experiment an interesting trend appears. As we move toward zero-
sum games the relative performance of both GATE-H-BG-30 and
GATE-H-30 progressively worsens. However, until the game payoffs
are nearly zero-sum (r = −0.9) both GATE-H variations do have a
solution quality loss greater than 11.385%. This experiment again
shows that both GATE-H-BG-30 and GATE-H-30 provide good ap-
proximations in general-sum TSGs. (A careful reader might notice
in Figures 5 and 5 that there are slight differences in solution qual-
ity between GATE-H-BG-30 and GATE-H-30, however these are not
statistically significant.)

8 Summary

The TSG model provides an extensible and adaptable model for
game-theoretic screening in the real world. It improves upon previ-
ous models in security games that fail to capture important properties
of the screening domain, e.g., the presence of non-player screenees
in the game and complex team capacity constraints. The model also
improves on work done on threat screening, such as screening sta-
dium patrons [15], cargo container screening [2], and screening air-
port passengers [12, 11].

Previous work done on TSGs [4] focused on the Bayesian zero-
sum case and in this paper we extend TSGs to the Bayesian general-
sum case. We provide four contributions to accomplish this task: (1)
the GATE algorithm which efficiently solves large scale Bayesian
general-sum TSGs, (2) the Branch-and-Guide approach which com-
bines branch-and-bound search and MGA in order to efficiently solve
nodes in the hierarchical tree, (3) heuristics that speed up the compu-
tation of GATE, and (4) experimental evaluation of GATE showing
the scalability of our algorithm.

Using the aforementioned contributions this paper presents a prac-
tical approach for solving Bayesian general-sum TSGs that scales up
to problem sizes encountered in the real world. Thus, with this paper
we hope to increase the applicability of TSGs by providing tech-
niques for solving large scale Bayesian general-sum TSGs.
Acknowledgments: This research was supported by the United
States Department of Homeland Security through the National Cen-
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