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Abstract 

Bayesian phylogeographic inference is a powerful tool in molecular epidemiological studies that 

enables reconstructing the origin and subsequent geographic spread of pathogens. Such inference is, 

however, potentially affected by geographic sampling bias. Here, we investigated the impact of 

sampling bias on the spatiotemporal reconstruction of viral epidemics using Bayesian discrete 

phylogeographic models and explored different operational strategies to mitigate this impact. We 

considered the continuous-time Markov chain (CTMC) model and two structured coalescent 

approximations (BASTA and MASCOT). For each approach, we compared the estimated and simulated 

spatiotemporal histories in biased and unbiased conditions based on simulated epidemics of rabies 

virus (RABV) in dogs in Morocco. While the reconstructed spatiotemporal histories were impacted by 

sampling bias for the three approaches, BASTA and MASCOT reconstructions were also biased when 

employing unbiased samples. Increasing the number of analyzed genomes led to more robust 

estimates at low sampling bias for CTMC. Alternative sampling strategies that maximize the 

spatiotemporal coverage greatly improved the inference at intermediate sampling bias for CTMC, and 

to a lesser extent, for BASTA and MASCOT. In contrast, allowing for time-varying population sizes in 

MASCOT resulted in robust inference. We further applied these approaches to two empirical datasets: 

a RABV dataset from the Philippines and a SARS-CoV-2 dataset describing its early spread across the 

world. In conclusion, sampling biases are ubiquitous in phylogeographic analyses but may be 

accommodated by increasing sample size, balancing spatial and temporal composition in the samples, 

and informing structured coalescent models with reliable case count data. 
 

Introduction 

 

Over the past decade, Bayesian discrete phylogeographic inference has greatly benefited viral 

epidemiological studies in unraveling the origin and subsequent spread of viral epidemics (Faria et al. 

2019; Lemey et al. 2020; Lu et al. 2021), the spatial processes driving viral spread (Müller et al. 2021), 

and environmental and human-related factors associated with viral spread (Lemey et al. 2014; Dudas 

et al. 2017; He et al. 2022). BEAST is a popular Bayesian phylodynamics software package commonly 

used in the analysis of time-stamped viral molecular sequences. It offers different discrete 

phylogeography approaches: a popular and computationally efficient discrete phylogeographic 

inference approach that makes use of continuous-time Markov chain (CTMC) modeling (Lemey et al. 

2009), also known as the discrete trait analysis or DTA, and the structured coalescent model under its 

exact and approximated forms (Vaughan et al. 2014; De Maio et al. 2015; Müller et al. 2018). CTMC 

models migration between discrete locations in the same way as nucleotide substitutions are 
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modeled. In other words, geographical locations are modeled as a neutral trait that evolves on top of 

the tree from the root to the tips. As such, CTMC modeling does not explicitly model the branching 

process that gave rise to the tree. In contrast, the structured coalescent model - which is an extension 

of the coalescent model to a structured population - is a tree-generating model that explicitly models 

how lineages coalesce within and migrate between subpopulations from present to past. Two 

computationally efficient approximations of the structured coalescent model are available in BEAST2: 

the Bayesian structured coalescent approximation (BASTA) (De Maio et al. 2015) and the marginal 

approximation of the structured coalescent (MASCOT) (Müller et al. 2018). Currently, they both 

assume constant prevalence through time for each deme/population, while the CTMC approach does 

not (Lemey et al. 2009). 

 

Bayesian discrete phylogeography approaches are complementary to mathematical modeling and 

epidemiological studies, and particularly informative when epidemiological data are scarce. In such 

contexts, viral genetic sequences are expected to compensate for the lack of epidemiological data. 

However, genetic samples may constitute a biased snapshot of the underlying viral spread, especially 

when isolated through passive surveillance systems. The impact of such sampling bias on discrete 

phylogeographic inference has been discussed and examined ever since. Indeed, CTMC estimates 

were suspected to be biased towards the most sampled location (Lemey et al. 2009) and, later, 

sampling heterogeneity was shown to inform the posterior, and more specifically the migration 

parameters, which is not the case for BASTA (De Maio et al. 2015). In BASTA, sampling evenness is not 

informative as such and the estimated migration rates are more correlated to the true values under 

simulated biased and unbiased conditions compared to CTMC (De Maio et al. 2015). As a result, BASTA 

has been argued to be more robust to sampling bias (De Maio et al. 2015). Nevertheless, the 

structured coalescent model is known to be sensitive to unsampled locations, known as ghost demes 

(Beerli 2004; Ewing and Rodrigo 2006; De Maio et al. 2015). In parallel, several studies tested 

alternative strategies to mitigate the potential effects of sampling bias, mostly focusing on CTMC as it 

was shown to be potentially less robust to sampling bias compared to the structured coalescent 

model. Downsampling that was tested early on but was limited to large datasets (Lemey et al. 2014; 

Yang et al. 2019) rapidly became a prerequisite in any SARS-CoV-2 data analysis study due to the large 

number of available sequences and the high sampling heterogeneity between countries (Hodcroft et 

al. 2021). However, Magee and Scotch (2018) showed that inference accuracy rapidly plateaus when 

using up to 25-50% of the sequence data available (Magee and Scotch 2018). Other studies aimed at 

improving inference accuracy by integrating additional reliable epidemiological data. For example, 

CTMC was extended to incorporate information on the recent migration events using individual travel 
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records (Lemey et al. 2020; Hong et al. 2021). More recently, a simulation study focused on quantifying 

the impact of sampling bias on the predicted location of internal nodes, the prediction of migration 

events that lead to large local spread as well as on the estimation of migration rates in a maximum 

likelihood framework (Liu et al.). The authors showed that prediction accuracy actually depends on 

multiple factors: the underlying migration rate, the magnitude of sampling bias and the magnitude of 

traveler sampling. Importantly, they observed a lower relative accuracy with biased samples and when 

samples overrepresent travelers. Concerning the structured coalescent model, Müller et al.  informed 

the deme population sizes with reliable case count data from the 2014 Ebola epidemic in Sierra Leone 

using MASCOT (Müller et al. 2019). This allows modeling time-varying population sizes instead of 

assuming constant population sizes over time. Sampling bias is also a concern in continuous 

phylogeography analyses in which other mitigation approaches were tested. Recently, Dellicour et al. 

downsampled SARS-CoV-2 genomic records from New York City based on hospitalisations rather than 

case counts to analyze representative samples irrespective of testing effort and strategy (Dellicour et 

al. 2021), Kalkauskas et al. incorporated sequence-free samples from unsampled areas (Kalkauskas et 

al. 2021), and Guindon and De Maio explicitly modeled sampling strategy in the data likelihood 

(Guindon and De Maio 2021).  

 

Whereas numerous studies tested strategies to deal with sampling bias, the impact of sampling bias 

on discrete phylogeographic reconstructions remains insufficiently characterized. Here, we compare 

the performance of the different phylogeographic methods using simulated viral epidemics using a 

stochastic metapopulation model, based on rabies virus (RABV) epidemics in dogs in Morocco. We 

investigated the impact of sampling bias on the spatiotemporal reconstruction of these viral epidemics 

using CTMC, BASTA, and MASCOT, with the latter two assuming populations to stay constant over 

time. Next, we explored different approaches to mitigate sampling bias, maximizing the spatial and/or 

temporal coverage of the sample, and informing the deme sizes under MASCOT with the true (time-

varying) case count data per location. The latter is to test to what degree biases originating from 

assuming constant population sizes over time can be mitigated by allowing them to vary over time. 

Finally, we applied the three algorithms to two empirical datasets: a dataset of RABV sequences 

isolated in the Philippines islands between 2004 and 2010, and a global dataset of SARS-CoV-2 

genomes of the early spread of the pandemic.  
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Results 

Simulation framework 

We simulate RABV epidemics across three or seven locations using a stochastic metapopulation model 

(Figure 1A) whose connectivity matrix is parameterized using human population mobility that we 

estimated by fitting the radiation model of (Simini et al. 2012) to human population density data from 

(WorldPop) (Figure 1B). As each location is associated to a specific deme/population, we refer to the 

two simulation frameworks as the three or seven demes framework for the remainder of the text. We 

simulate 50 epidemics that start with the introduction of a single case and lead to at least 60,000 cases 

over a 30-year period (Figure 1C). On top of the transmission chains, we simulate viral genomes for 

each case and then sub-sample starting one year after the introduction of the index case either 150 

or 500 sequences in a biased or unbiased fashion (Figure 1D). We then perform Bayesian discrete 

phylogeographic analysis on the geolocated and time-stamped sequence alignments before 

comparing the true and reconstructed evolutionary and migration histories for each discrete 

phylogeographic approach. Importantly, the vast majority of samples in the three demes framework 

contain at least one sequence of each deme which is not the case for the seven demes framework for 

which sampling bias often leads to unsampled locations, also called “ghost” demes. 

 

Robust estimation of the phylogeny and genetic parameters with respect to sampling bias  

While the focus of our simulation study is on reconstructing the spatial spread, we first assess the 

potential impact of sampling bias on estimating the phylogeny itself, as well as the evolutionary 

parameters (Figure 2A). The phylogeny of the simulated pathogen is not impacted by sampling bias 

when using CTMC, BASTA, and MASCOT (Figure 2A and S1). In addition, the average evolutionary rate 

(Figure 2C), the stationary nucleotide frequencies (Figures S2-5), and the ratio of transition-

transversion rates (Figure S6) are all well estimated at any level of sampling bias.  

 

Spatiotemporal history reconstruction in (un)biased conditions 

As the inferred spatiotemporal histories of lineages cannot be compared in a unique simple way 

between the different approaches, we use four types of summary statistics: i) the total migration 

counts - corresponding to Markov jumps in the case of CTMC and their equivalent for BASTA and 

MASCOT - that account for multiple migration events along the tree branches (Figure 3), ii) the lineage 

migration counts (Figure S7). iii) the lineage introduction dates into the sampled locations (Figure 4), 

and iv) the root location (Figure 5). We evaluate the performance of the phylogeographic models using 

five metrics: the correlation between true and estimated values, the proportion of estimated 

parameters for which the true value is in the 95% highest posterior interval (HPD) that we refer to as 
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the calibration, the mean relative bias, the mean relative 95% HPD width, and the weighted interval 

score (WIS). The WIS is a generalization of the absolute error accounting for estimation uncertainty 

(Bracher et al. 2021). The smaller the WIS, the better the inference. It is widely used to evaluate 

epidemic forecasts and favors estimates that are slightly biased but with a narrow confidence interval 

compared to estimates without bias but very large uncertainty (Bracher et al. 2021). 

 

First, we assess the reconstruction of the spatial process in the absence of sampling bias. In the 

unbiased/representative (uniform) scenario, CTMC correctly estimates the four types of parameters. 

Indeed, the correlation between the true and estimated parameter values is high, and the WIS is close 

to zero. BASTA and MASCOT show no correlation for the total migration counts on uniform samples 

and higher WIS compared to CTMC (Figures 3A and 3E) indicating biased median estimates and higher 

uncertainty around the point estimate. The correlation is over 0.5 when we consider the lineage 

migration counts under the three and seven demes frameworks. This suggests that BASTA and 

MASCOT only partly recover the global migration process in the absence of sampling bias (Figures S7 

and S15). Overall, CTMC outperforms BASTA and MASCOT when the sampling is representative of the 

true underlying transmission process, as BASTA and MASCOT only recover the big picture of the 

migration process.  

 

Secondly, we evaluate how phylogeographic algorithms perform under increasing levels of bias. While 

CTMC satisfyingly estimates the total migration counts in the absence of sampling bias, the correlation 

and the calibration drop rapidly with bias and the mean relative 95% HPD width tends to decrease 

suggesting that bias strongly impacts CTMC estimates (Figure 3A-C). Nevertheless, the WIS and the 

mean relative bias remain smaller than those of BASTA and MASCOT, even at high levels of bias. 

Consequently, CTMC leads to median estimates that are closer to the true values but with 95% HPDs 

that are too narrow. It leads to a biased picture of the geographical process with some transition 

events that are drastically underestimated (Figure S7). BASTA and MASCOT less accurately estimate 

the total migration counts with no correlation between simulated and estimated values. They are also 

less confident with an average 95% HPD width that is ten to thirty times higher compared to CTMC. 

This uncertainty is exacerbated in large samples analyzed with MASCOT in the seven demes 

framework, for which almost 30% (87 out of 300) of the chains have low ESS values often due to 

bimodal structured coalescent posterior density. Additionally, BASTA and MASCOT partly recover the 

global migration process (lineage migration counts) even at high levels of bias since correlation and 

calibration are not impacted by bias (Figure S8). When we consider transmission dynamics between 
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three demes, BASTA and MASCOT yield higher correlation levels than in the seven demes scenario 

(Figures S15 and S16). Overall, the WIS indicate better performance of CTMC over BASTA and MASCOT. 

 

When it comes to the estimation of lineage introduction dates, BASTA seems to outcompete CTMC 

and MASCOT under the three demes framework (Figure S17) but not under the seven demes 

framework (Figure 4A-E). In the three demes framework, the uncertainty around the median estimate 

remains high for BASTA and MASCOT, and the correlation and the calibration are barely affected by 

bias for BASTA, contrary to CTMC and MASCOT. In the seven demes framework, correlation is low for 

both BASTA and MASCOT but not affected by bias. CTMC performs poorly with a sharp decrease in 

both correlation and calibration in the three demes framework, and a slighter decrease in the seven 

demes framework. It also tends to estimate more ancient lineage introduction dates compared to 

BASTA and MASCOT in both frameworks. Of note, samples of 500 sequences displayed a higher 

correlation than samples of 150 sequences at low and intermediate levels of bias for CTMC (conditions 

2.5, 5 and 10 in Figures 4A and S8A).  

 

Finally, we analyze the potential impact of sampling bias on root location estimation (Figure 5A and 

S18A). Of note, the location probability of the true root location is very heterogeneous among the 50 

simulated epidemics when there is no or little sampling bias, notably for the two approximations of 

the structured coalescent model. Root location prediction by CTMC is affected by sampling bias, 

notably in the three demes framework (Figure S18), which is in agreement with previous findings (De 

Maio et al. 2015). As for the other parameters, BASTA and MASCOT perform less well compared to 

CTMC, at any level of bias. On the other hand, sampling bias moderately worsens their estimates. They 

also perform relatively better in the three demes framework. 

 

Sample balancing mitigates the impact of sampling bias 

We test alternative sampling strategies in order to mitigate the impact of sampling bias. Large and 

biased samples of 5,000 sequences that we refer to as biobanks were generated, then discrete 

phylogeographic analyses were carried out on sub-samples of 150 or 500 sequences, which aimed at 

reproducing real life situations. For example, researchers may have access to numerous viral 

specimens from biobanks but cannot analyze all of them due to computational limitations, potential 

underlying biased sampling that may lead to spurious results, or financial limitations. 

 

Similar to the analyses on systematically biased samples, the estimation of the total migration counts 

(Figure 3F-J), lineage migration counts (Figure S6F-J), lineage introduction dates (Figures 4E-H), and 
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root location posterior probabilities (Figure 5B-C) is strongly impacted in biased sub-samples (uniform 

surv.) for the three approaches. By maximizing the spatial (region) or the spatiotemporal coverage 

(region+year), the correlation of lineage migration counts increased substantially for the CTMC even 

when the underlying sampling bias was high (weight=20, i.e. sequences from oversampled regions are 

20 times more likely to be samples), and to a lesser extent for BASTA and MASCOT. Calibration 

remained high for BASTA and MASCOT, as shown earlier (Figures 3G and 4F) while it considerably 

improved for CTMC. Estimates of the lineage migration counts by BASTA and MASCOT are improved 

in the region and region+year conditions compared to the uniform surv. condition, illustrated by a 

decreased mean relative 95% HPD width and decreased WIS. Still, performance remained lower than 

for CTMC. In the three demes framework, we obtain even stronger improvements in terms of 

correlation and decreased mean relative bias for BASTA and MASCOT (Figure S15). Overall, 

subsampling strategies that maximize the spatial or spatiotemporal coverage considerably improved 

the inference of the geographical spread by the CTMC, and improved inference under BASTA and 

MASCOT to a lesser extent. 

 

True incidence data as a predictor of the time-varying deme sizes mitigate sampling bias in MASCOT 

Due to the lack of statistical power (data not shown), we have forced all deme sizes to be equal in 

BASTA and MASCOT and to be constant over time, the latter being currently the default assumption 

of both structured coalescent models. This hypothesis is potentially impactful given that deme sizes 

are directly related to the migration history in the structured coalescent model (De Maio et al. 2015; 

Müller et al. 2018). To relax this assumption and allow for time-varying effective population sizes, we 

next use the monthly incidence data from our simulations as a predictor of the deme sizes over time 

in the generalized linear model (GLM) extension of MASCOT and denote the resulting model as 

MASCOT-GLM. This approach is only available for MASCOT, we can therefore not perform the same 

analysis for BASTA. 

 

By accommodating for the time variations of deme sizes, the correlation, mean relative 95% HPD 

width, mean relative bias, and WIS are markedly improved with MASCOT-GLM compared to BASTA 

and MASCOT for the total migration counts (Figure 3A-E), lineage migration counts (Figure S7A-E), and 

lineage introduction dates (Figure 4A-E) even under high levels of sampling bias in the systematically 

biased conditions (scenarios 5, 10, 20, and 50) and in the biased sub-samples (uniform surv.). In 

addition to the strong correlation between simulated and estimated values, the uncertainty around 

the true value and the bias (mean relative bias and WIS) are low compared to BASTA and MASCOT 

with constant population sizes.  
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Analysis of the spread of RABV in the Philippines 

As a case study to compare the performance of the three algorithms, we analyze the spread of RABV 

in dog populations between six Philippine islands (Luzon, Catanduanes, Oriental Mindoro, Cebu, 

Negros Oriental, and Mindanao) using 233 sequences of the RABV glycoprotein gene isolated between 

2004 and 2010 (Saito et al. 2013; Tohma et al. 2014). Discrete phylogeography is particularly adapted 

here to model transmission in animal populations across an archipelago. In this dataset, sampling is 

highly heterogeneous across the different islands: Luzon represents up to 65% of the total dataset 

while Oriental Mindoro is represented only by a single sequence (Figure S19). This heterogeneity is 

very unlikely to be representative of the underlying transmission but rather due to case 

underreporting outside Luzon.  

 

Previous studies on RABV in the Philippines suggested that although the circulating lineages likely 

circulate independently in the main islands (Saito et al. 2013; Tohma et al. 2014), inter-island 

transmission events can lead to sustained circulation in previously rabies-free islands (Tohma et al. 

2016). Importantly, the patterns of spatial spread were evaluated using the CTMC at a finer spatial 

scale (Tohma et al. 2014). Here, the CTMC model also predicts a highly spatially-structured phylogeny 

with few migration events between islands. It reconstructs four island-specific clades located in 

Catanduanes, Luzon, Mindanao, and Negros Oriental with high node and location posterior support 

(Figure 6A). BASTA and MASCOT also predict the Catanduanes, Mindanao, and Negros Oriental clades 

with high node and location posterior support (Figure 6B-C). However, the migration history of the 

Luzon clade is more uncertain with potential intense migrations between Luzon and Oriental Mindoro 

islands, the most and least sampled islands, respectively. As shown in the simulations, CTMC might be 

overconfident compared to BASTA and MASCOT but the uncertainty of the two approximations of the 

structured coalescent model might be related to the pseudo-ghost demes, i.e. locations for which very 

few sequences are available. As we don’t have information regarding the number of cases over time, 

we could not apply MASCOT-GLM to this dataset. 

 

Analysis of the early spread of SARS-CoV-2 across the world  

In the context of zoonotic diseases, surveillance systems mostly rely on disease monitoring in human 

populations. Thus, there are typically no reliable estimates of the number of new cases in wild animal 

populations and, depending on the country and the species considered, domestic animal populations. 

However, for pathogens infecting the human population, such estimates are typically widely available, 

as is the case for SARS-CoV-2 and as has also been shown used previously when studying Dengue virus, 

HIV and West Nile virus (Gill et al. 2016; Dellicour, Lequime, et al. 2020). 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 8, 2022. ; https://doi.org/10.1101/2022.07.07.498932doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.07.498932
http://creativecommons.org/licenses/by-nd/4.0/


10 

 

To compare the phylogeographic reconstructions of the four algorithms tested above, we analyze a 

dataset of SARS-CoV-2 genomic sequences from the early stage of the pandemic (Lemey et al. 2020). 

In the original study, the initial wave of SARS-CoV-2 infections was investigated using a novel travel 

history-aware extension of the CTMC model, which we here refer to as CTMC-TRAVEL.  

 

We again use the CTMC model, BASTA and MASCOT as well as MASCOT-GLM to analyze the dataset. 

MASCOT-GLM is informed using the seven-day moving average of case count data either from Our 

World In Data (Ritchie et al. 2020) or from the (World Health Organization (WHO)). MASCOT-GLM is 

then referred to as MASCOT-WID and MASCOT-WHO, respectively (Figure S20). Due to the low 

number of mutations accumulated in the SARS-CoV-2 genome at the start of the pandemic, the 

posterior support of internal nodes for each algorithm is low and the tree topology very uncertain 

(Morel et al. 2021). Besides, we do not intend to reconstruct the origins of SARS-CoV-2 which in any 

case cannot be addressed solely with phylogeographic analyses (Pipes et al. 2021). That is why our 

comparison focuses on the posterior support of four clades originally identified by (Lemey et al. 2020): 

clades A, A.1, B.1, and B.4. Whereas clades A.1, B.1, and B.4 are predicted with high posterior support 

by all algorithms, clade A is predicted with a satisfying posterior support only by CTMC (Figure S21). In 

general, CTMC and MASCOT-WHO predictions are closer to the original predictions than the other 

algorithms, in terms of tree topology (Figure S21A) and of total migration counts (Figure 7). As 

previously shown, BASTA and MASCOT lead to more uncertain ancestral migration histories with the 

extreme case of BASTA for which the posterior evolutionary rate and the structured coalescent density 

are bimodal. We report two maximum clade credibility (MCC) trees for BASTA, corresponding to the 

two modes of the evolutionary rate and structured coalescent density (Figures S21B-C and S22). The 

first mode of BASTA infers a tree topology and a migration history that are similar to CTMC and CTMC-

TRAVEL. For example, the predicted location of the MRCA of the B.4 lineage is China for CTMC-TRAVEL, 

CTMC, and the 1st mode of BASTA, whereas it is located in Oceania by MASCOT and the 2nd mode of 

BASTA (Table S1). For the latter two reconstructions, most of the ancestral branches were not inferred 

to occur in China and, similarly to the RABV dataset, these approaches predict the least sampled 

locations (Africa and Oceania) to play a major role in the transmission process.  

 

We next incorporated incidence data from either Our World In Data or the WHO into MASCOT-GLM. 

Interestingly, the reconstructions differed strongly between the two datasets for incidence. While 

MASCOT-WID predictions are uncertain with multimodal total migration counts (Figure 7) and do not 

reflect the original spread from China (Figure S21E), MASCOT-WHO estimated migration counts that 
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are close to the estimates of CTMC-TRAVEL (Figure 7) and its MCC tree is in agreement with the origin 

of the pandemic (Figure S21E). Importantly, the two datasets differ strongly in how well early cases 

are covered (Figure S20), with the WHO dataset being more representative of the incidence over time. 

Overall and as also suggested by our simulations, while the structured coalescent model, in principle, 

allows to mitigate sampling biases, it can itself be highly biased when the wrong population dynamics 

are assumed. 

 

Discussion 

Sampling bias is a key challenge in phylodynamic inference (Frost et al. 2015), as in discrete 

phylogeography. In its early developments, the evaluation of the impact of sampling bias on Bayesian 

discrete phylogeography models was restricted by the availability of whole genomes (Lemey et al. 

2009). The SARS-CoV-2 pandemic has led to a paradigm shift as genomic surveillance became part of 

routine surveillance systems around the world (Hodcroft et al. 2021). Here, we evaluated the impact 

of sampling bias on discrete phylogeography inference using simulated and real data to provide 

insightful knowledge on how sampling bias affects such inference and how it could be mitigated. 

 

Inference performance in absence of sampling bias 

In our simulation study, genetic parameters (i.e., average evolutionary rate, stationary nucleotide 

frequencies, ratio of transition-transversion rates) are correctly estimated and tree topologies match 

the corresponding simulated transmission chains for all approaches. In addition, CTMC leads to high 

correlation between simulated and estimated spatiotemporal parameters as well as low relative and 

absolute error in absence of sampling bias. Overall, CTMC reconstructs the spatiotemporal histories 

well and its estimates are more accurate in large samples. BASTA and MASCOT do not correctly infer 

the spatiotemporal parameters in the seven demes framework but correlation between simulated and 

estimated total migration counts is slightly improved in the three demes framework while remaining 

lower than CTMC. This could result from three different causes. First, we assumed that all deme sizes 

are equal and constant over time in BASTA and MASCOT, the former to avoid overparameterization 

and the latter being the only available assumption in current implementations. Such a 

parameterization is more appropriate in the case of endemic circulation with limited time-varying 

dynamics such as local extinctions. However, large variations in time and local extinctions occur in our 

simulations meaning that we had to assume incorrect population dynamics in BASTA and MASCOT. 

This is confirmed by the better performance of MASCOT-GLM in uniform samples that accommodates 

for the true population dynamics. Secondly, we would expect BASTA and MASCOT to perform better 

on “even” samples that contain approximately as many sequences of each sampled location (De Maio 
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et al. 2015). In our simulation study, uniform sampling does not imply an even representation of 

sampled locations. Indeed, locations where the virus has not circulated much are less represented. 

Such an effect is more pronounced in the seven demes framework than the three demes framework 

and we effectively observe poorer performances of BASTA and MASCOT in the seven demes 

framework. Finally, the structured coalescent model is known to be sensitive to ghost demes, i.e. 

unsampled locations (Beerli 2004; Ewing and Rodrigo 2006; De Maio et al. 2015). As we considered 

the sampling process to be naive of the number of affected locations, locations where the virus has 

not circulated much may remain unsampled. This is true for the seven demes framework only for 

which we observe poorer performance of BASTA and MASCOT compared to the three demes 

framework. However, the impact of ghost deme inclusion and potential misspecification on the 

estimation of the migration patterns remains unclear. While two studies showed that accounting for 

ghost demes in the structured coalescent model improves the inference of deme size (Beerli 2004; 

Ewing and Rodrigo 2006), Ewing and Rodriguo also showed that adding just a few sequences from the 

ghost deme leads to the overestimation of the migration rate (Ewing and Rodrigo 2006).  

 

Inference performance under sampling bias 

We show that CTMC, BASTA, and MASCOT are impacted by spatial sampling bias in different ways. 

CTMC performance is dramatically impaired with increasing levels of sampling bias. This is directly 

linked to the geographical sampling frequencies that inform the likelihood of CTMC (De Maio et al. 

2015). It also tends to be overconfident, and this overconfidence worsens with stronger sampling bias 

as previously shown (De Maio et al. 2015). However, the impact of sampling bias can be mitigated by 

either using large samples at low levels of sampling bias or controlling for sampling bias by balancing 

sample composition (region and region+year subsamples) at intermediate levels of sampling bias. 

These results were well-replicated in a simpler framework of transmission between three locations 

which rules out the confounding effect of the simulation complexity and unsampled locations on our 

results (see section 4 of the Supplementary Materials).  

 

BASTA and MASCOT do not accurately estimate the total migration counts nor the lineage introduction 

dates in biased and unbiased conditions. Nevertheless, the overall migration process evaluated by the 

lineage migration counts is relatively well captured with a correlation around 0.5 that is not impacted 

by sampling bias contrary to CTMC in both the three demes and seven demes scenarios. We show that 

the approximations of the structured coalescent model are generally less confident than CTMC which 

is in agreement with a previous study (De Maio et al. 2015) and their uncertainty around median 

estimates increases with sampling bias. We also show that sample composition impacts the inference 
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of BASTA and MASCOT in the three demes framework since correlation levels are strongly improved 

and bias and uncertainty are reduced for all spatiotemporal parameters in “even” samples (region and 

region+year), despite the underlying surveillance bias. Still, BASTA and MASCOT estimates display 

lower correlation with the simulated values, higher uncertainty and higher relative and absolute bias 

compared to CTMC. In the seven demes framework, the results are less clear which may be due to the 

presence of ghost demes. Interestingly, BASTA seems to outperform CTMC and MASCOT in the 

inference of the lineage introduction dates in the three demes framework. This result was however 

not replicated in the seven demes framework. 

 

While structured coalescent methods potentially allow mitigating sampling biases as previously shown 

(De Maio et al. 2015), assuming incorrect population dynamics very likely introduces biases. These 

models currently assume constant population sizes which leads to biases in the case of true underlying 

complex population dynamics, which we salvaged by modeling these population dynamics more 

accurately, using a GLM approach, whenever the required data to do so were available. Indeed, using 

incidence data to inform population dynamics in MASCOT counteracts the impact of sampling bias 

even at high levels. This result also underlines that sampling frequencies do not inform the structured 

coalescent model when population dynamics are known (De Maio et al. 2015). It also shows that the 

inclusion of ghost demes is not necessary when the true population dynamics are used. Overall, our 

results showcase the importance of considering the assumptions of population dynamics on the 

ancestral state reconstruction in structured coalescent model approximations. 

 

Analysis of empirical RABV and SARS-CoV-2 datasets 

We further compare the approaches on real datasets of RABV and SARS-CoV-2. As dog case counts 

were not available for RABV, we compare only CTMC, BASTA, and MASCOT. CTMC predicts a highly 

spatially-structured migration process whereas BASTA and MASCOT predict a non-parsimonious 

scenario. We observe similar results for the SARS-CoV-2 dataset. As we have set equal deme sizes in 

BASTA and MASCOT but a single tip is sampled for Oriental Mindoro in the RABV dataset and Africa in 

the SARS-CoV-2 dataset, the two algorithms compensate for location underrepresentation by 

estimating high backwards-in-time migration rates to the underrepresented location (Oriental 

Mindoro and Africa). Our results are in line with previous studies reporting strong differences between 

CTMC and the structured coalescent model on real datasets (De Maio et al. 2015; Dudas et al. 2018). 

However, there is also evidence in the literature of a good agreement between the two types of 

models (Faria et al. 2017; Brynildsrud et al. 2018; Yang et al. 2019; Mavian et al. 2020). Such similarities 

can result from sample composition (at least ten sequences per location in (Yang et al. 2019)), the 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 8, 2022. ; https://doi.org/10.1101/2022.07.07.498932doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.07.498932
http://creativecommons.org/licenses/by-nd/4.0/


14 

parameters used for comparison (probability of clade ancestral location in (Faria et al. 2017)), prior 

information (information on the root location in (Brynildsrud et al. 2018)), or the underlying 

transmission dynamics. Besides, these studies focused on the overall migration process which 

corresponds to the lineage migration counts in our simulation study and we showed that the overall 

migration process is roughly estimated at any level of bias. In brief, we show on real datasets that 

singletons may be inferred as drivers of the migration process in an unparsimonious way by structured 

coalescent model approximations. This result supplements a previous study on the impact of the 

inclusion of few ghost deme sequences on the inference of migration rates (Ewing and Rodrigo 2006), 

however their impact remains unclear and deserves close consideration.  

 

Interestingly, the posterior density of the structured coalescent model in BASTA is bimodal for the 

SARS-CoV-2 dataset. Its major mode corresponds to a past migration history close to CTMC-TRAVEL 

and our expectations of SARS-COV-2 spread at the start of the pandemic, whereas the minor mode 

corresponds to the non-parsimonious scenario. Such bimodality was not observed for MASCOT in the 

SARS-CoV-2 analysis. This difference in estimation is not unexpected since the two structured 

coalescent model approximations are different. However, it is not clear which characteristics of the 

two algorithms would lead to different behaviors. Another possibility relies on the choice of operators 

that determine how well the two approximations explore the parameter and tree space in which case 

MASCOT should lead to a bimodal posterior density on the long run.  

 

Practical implications for the analysis of empirical datasets 

Computation time is an important consideration in real-life situations. CTMC is a fast algorithm that 

can handle many sequences while facing little convergence issues, which made it the predominant 

approach. For example, CTMC and its extensions have been extensively used during the SARS-CoV-2 

pandemic (Candido et al. 2020; Dellicour, Durkin, et al. 2020; Lemey et al. 2020; Alteri et al. 2021; 

Butera et al. 2021; Dellicour et al. 2021; Kaleta et al. 2022; Perez et al. 2022). In general, researchers 

analyzed large datasets whose composition was corrected or reflected case counts (Candido et al. 

2020; Lemey et al. 2020) or the number of hospitalizations per geographical location (Dellicour et al. 

2021). According to our results, even though the pool of available sequences is not representative of 

the underlying transmission process, CTMC inference should be little impacted when using even sub-

samples of the available sequences. However, we did not test sampling strategies based on case 

counts in our simulations.  
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With BASTA and MASCOT, computation time can become rapidly cumbersome and even impractical - 

also as a result of poor mixing of structured coalescent model parameters - when the number of 

sequences and locations increase. In such cases, these approaches are not able to discriminate which 

migration routes are the most important in the migration process leading to bimodal structured 

coalescent posterior densities, as observed for MASCOT on large samples of 500 sequences in the 

seven demes framework and for BASTA on the SARS-CoV-2 dataset. Repeating these problematic 

analyses with different starting values did not redeem these issues. Other studies have reported 

similar issues (Richardson et al. 2018). However, these problematic inferences can potentially be 

overcome by informing structured coalescent models with additional covariate data on viral 

population size dynamics. Indeed, as a result of adding such data, MASCOT-GLM not only 

outperformed the other approaches at estimating spatiotemporal parameters but also displayed 

improved mixing as expected with GLM approaches which improves the computational burden. 

However, such improvements depend on the availability and informativeness of the case count data 

used, notably on the early viral population size dynamics. This is illustrated in our analysis of the SARS-

CoV-2 data for which the addition of WHO data led to improved chain mixing and past migration 

inference compared to the Our World in Data data, knowing that the dynamics are rather similar in 

the two datasets but they go back to January, 4th 2020 for the WHO data and to January, 23rd 2020 

for the Our World in Data data.  

 

Limitations 

We acknowledge several limitations of our study. First, BASTA and MASCOT are expected to perform 

better on even samples, a condition that we did not directly test. In the representative (uniform) 

samples, location frequencies inform CTMC and thus it would be expected to be favored over BASTA 

and MASCOT. Still, we show that MASCOT and BASTA perform better on even (region and region+year) 

samples in the three demes framework even if they are derived from biased large biobanks. This result 

suggests that BASTA and MASCOT perform better on even samples with no ghost demes. Second, our 

sub-sampling procedure in the simulation analysis could leave some locations unsampled, which can 

be considered as an extreme case of sampling bias. While this happened in only a few highly biased 

samples in the three demes framework, it is very common in the seven demes framework even in 

absence of sampling bias. It is difficult to determine whether the poor performance of MASCOT and 

BASTA in absence of bias in the seven demes framework compared to the three demes framework is 

due to ghost demes or is simply due to the higher number of locations. Additionally, we cannot rule 

out that the effects of sampling bias we observe are due to unsampled locations/unspecified ghost 

demes rather than unrepresentative sampling. We did not include unsampled locations as ghost 
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demes in such conditions. However, this is unlikely to improve migration rate estimation (Ewing and 

Rodrigo 2006). Third, the impact of sampling bias certainly depends on the underlying overall 

migration rate as shown by (Liu et al.), an impact that we did not investigate here. 

 

Another limitation concerns the incorporation of epidemiological data in phylogeographic models. 

Here, deme sizes in MASCOT-GLM are informed by case count data but this kind of data may not be 

readily available (Grubaugh et al. 2019) and is known to be often biased due to varying testing effort 

and strategy, as well as differential testing behaviors by age (Buckee et al. 2021). It is difficult to predict 

how MASCOT-GLM would perform if parameterized with biased case counts, a case that we did not 

address in our simulations. The comparison between the WHO and WID cases data, however, suggests 

that biased coverage of the true case load could bias such inference. If case count data are not reliable, 

one could use hospitalization data instead (Dellicour et al. 2021). Further, a similar approach is 

available under the CTMC framework but we did not test it here. This framework consists in modeling 

the migration process with CTMC and the overall population dynamics with the GLM extension (Gill et 

al. 2016) of the skygrid coalescent model (Gill et al. 2013). In this extension, case count over all 

locations could be used as a predictor of the viral population size over time. Yet, such an approach 

assumes a panmictic population and remains rare. 

 

Finally, it is difficult to generalize our results in regards to the number of demes. Our choice of the 

number of locations was influenced by the RABV scenario in Morocco. While a scenario with three 

demes was doable, the one with seven demes turned out to be difficult to analyze, notably due to 

computational burden (Supplementary Materials). More research and development is needed for 

datasets with a large number of locations (> 15) and it currently seems unlikely that such analyses are 

possible at all with BASTA and MASCOT. 

Perspectives 

In conclusion, sampling bias can be tackled at different levels of data generation and analysis in 

phylogeographic analyses: sample constitution, inference model choice, and data integration (e.g. 

through an integrated GLM). Other studies also assess the impact of sampling bias in post hoc analyses 

(Chaillon et al. 2020; Vrancken et al. 2020) or explicitly model sampling patterns (Guindon and De 

Maio 2021). Although the exploration of the impact of sampling bias has increased over the recent 

years and more robust methodologies have been developed, many aspects remain unclear, among 

which the impact of unsampled locations, biased epidemiological data incorporation, or the relative 

performances on even versus representative samples. Whenever possible, we would advise to opt for 

an even sampling strategy across geographical locations, compare the inferences of the different 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 8, 2022. ; https://doi.org/10.1101/2022.07.07.498932doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.07.498932
http://creativecommons.org/licenses/by-nd/4.0/


17 

approaches or compare the inferences over multiple sub-samples when analyzing real datasets. These 

considerations are all the more important in a world of ever-growing genome sequence generation 

and concern not only human viral diseases but also zoonoses and epizooties.  

 

Material and Methods 
Simulation study 

Simulation of viral transmission chains using a metapopulation model 

In order to address the impact of spatial sampling bias on discrete phylogeographic inference, we 

performed a detailed simulation study. Sampling bias concerns all diseases, but it is even more 

challenging to address in the context of zoonotic diseases for which most of the transmission process 

is unobserved. We grounded our study in the context of dog rabies in North Africa where transmission 

processes are relatively well-documented. It was notably shown that rabies transmission relies on 

human movement over long distances. We simulated rabies epidemics in dog populations according 

to realistic scenarios using a stochastic, discrete-time and spatially-explicit model implemented in R 

using the Rccp package (Eddelbuettel and Balamuta 2018). We divided the Moroccan dog population 

into three or seven subpopulations corresponding to arbitrary regions (see the section below on the 

parametrization of the mobility matrix, Figure S22). We divided each subpopulation into three 

compartments: susceptible, exposed, and infectious individuals (Figure 1A). At each discrete time step, 

we drew newborns and dead individuals in the susceptible compartment from Poisson distributions 

with respective means the birth rate and the death rate . We defined the force of infection , 

i.e. the per-capita rate of infection of susceptible individuals in region i on day t, as: 

, 

where  is the transmission rate of rabies scaled by , i.e. the human population size in region i,  

is the per-capita mobility rate of individuals moving from region j to region i,  is the number of 

infectious individuals in region i on day t-1, and  is a scale factor (see below for more information). 

Exhaustive dog census data were not available and it is well known that human-mediated movement 

plays a major role in the spread of rabies in North Africa (Talbi et al. 2010; Dellicour et al. 2017), thus 

we assumed that dog populations were proportional to human populations (Table S2). We scaled the 

rabies transmission rate by population size to ensure that the force of infection is density-independent 

as previously documented on rabies  (Morters et al. 2013). We used the scale factor  to monitor the 

proportion of inter-region infections. Its value was arbitrarily chosen so that 1% of infection events 

occurred between regions, and the basic reproduction ratio is approximately equal to 1.05 within and 
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between regions. At each time step, we drew the number of newly exposed individuals in each region 

from Poisson distributions with a mean specified by the number of susceptible individuals in region i 

on day t-1 ( ) multiplied by the force of infection in region i on day t ( ). Once an individual 

 entered the exposed compartment, it was uniquely identified. The location of its infector was 

drawn from a multinomial distribution with the following probabilities: 

. 

Once the location of the infector was drawn, the ID of the infector was randomly sampled from the 

set of infectors present in the location. All infectious individuals in each region had the same 

probability of infection. The incubation period of exposed individuals was drawn from a gamma 

distribution with shape 2 and rate 11.055 (Hampson et al. 2009) and its infectious period was drawn 

from a discretized gamma distribution adapted from Hampson et al. (Hampson et al. 2009) so that it 

could not exceed 15 days (World Health Organization (WHO) 2018). Finally, the life span was drawn 

from an exponential distribution with rate . If natural death occurred before the end of the 

incubation or infectious periods, the individual was removed prematurely. Otherwise, the individual 

went through the exposed and infectious compartment before dying from rabies (Table S2). 

 

We initiated all simulations with the introduction of a single index case in Region 3 (Figure S22). 

According to Darkaoui et al., there are on average 400 confirmed animal cases per year in Morocco 

(Darkaoui et al. 2017) which is certainly an underestimation (Broban et al. 2018). We assumed a 20% 

reporting rate of dog cases in Morocco (Taylor et al. 2017), and thus retained epidemics with at least 

60,000 cases over a 30-year period (Figure 1C). We analyzed the results for 50 simulations. 

 

Parametrization of the between-region mobility matrix 

To avoid computational difficulties and over-parameterization of the different discrete 

phylogeographic models, we aggregated the fifteen official Moroccan regions retrieved from the 

GADM dataset (http://www.gadm.org) into three or seven locations (in two simulated scenarios, 

respectively) that are based on human demographics and ecological features (Figure S22). Dog 

mobility was defined across locations by fitting a radiation model to a raster of human population 

distribution (WorldPop) using the R package movement (Golding et al. 2015). In the radiation model, 

commuting is determined by the job seeking behavior modeled as an absorption and radiation process 

(Simini et al. 2012). The average commuting flux  from location  to location  with population  

and , respectively is: 
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with  the total population in the circle of radius  centred at  (excluding the source and 

destination population).  

 

We used a model of human mobility as it has been shown that humans play a major role in dog rabies 

spread and maintenance in North Africa, especially across long distances (Talbi et al. 2010; Dellicour 

et al. 2017). We preferred the radiation model over the gravity model for two reasons: the radiation 

model has been shown to outcompete the gravity model at local and large scales (Simini et al. 2012), 

and it presents the advantage of having no free parameter(s). In our study, we inferred the average 

daily number of commuters between raster cells of 20 km with more than 1,000 inhabitants per km2. 

The size of the cells corresponds approximately to the municipality level, and the density threshold 

corresponds to the urban density in Morocco. The number of commuters was then aggregated at the 

location level. 

 

Evolutionary model of RABV genomes associated with cases 

Simulation studies that analyze the accuracy of phylogeographical techniques often use the inference 

model as the simulation model (De Maio et al. 2015; Müller et al. 2017; Kalkauskas et al. 2021). Here, 

we took an epidemiological perspective by simulating rabies epidemics using a metapopulation model 

and by inferring the spatiotemporal history of rabies from RABV sequences and not from phylogenetic 

trees. After simulating rabies epidemics as described above, RABV genomes associated with each case 

were simulated according to the HKY model (Hasegawa et al. 1985). We simulated in R sequence 

evolution forwards-in-time along the transmission chains which were used in the same way as a 

phylogeny. We opted for a simple evolutionary process in which selection, gene partition, and site 

heterogeneity were not considered. Parameter values are listed in Table S2. The genome of the index 

case is a real canine rabies genome of 13 kb length isolated in Morocco in 2013 (GenBank Accession 

Number KF155001.1) (Marston et al. 2013).  

 

Sampling schemes of viral sequences 

The aim of the study is to determine the impact of sampling bias on phylogeographic inference and 

how alternative sampling schemes may mitigate the effects of such sampling bias. To address the 

former issue, we sampled either uniformly (uniform) or with a sampling bias favoring viral sequences 

from highly populated locations (Regions 3 and 4). In the latter scenario, sequences from Regions 1, 

2, 5, 6, and 7 had a weight equal to one, whereas Regions 3 and 4 had a weight equal to 2.5, 5, 10, 20 
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or and 50 (biased-2.5, biased-5, biased-10, biased-20, and biased-50, respectively, Figure 1D). To 

mitigate the potential effects of sampling bias, we tested a different setup reproducing a surveillance 

system. In this setup, a biobank of 5,000 sequences were drawn from each epidemic with a weight of 

one for Regions 1, 2, 5, 6, and 7, and a weight of 10 or 20 for Region 3 and 4. Subsets of sequences 

were sampled from the biobank either uniformly (uniform surv.), by maximizing the spatial coverage 

(max per region), or by maximizing the spatiotemporal coverage (max per region and per year). For all 

sampling schemes, a large sample of 500 sequences and a nested sample of 150 sequences were 

drawn over the entire epidemic except for the first year, as we assumed that the spread of the virus 

would remain undetected at the start of the epidemic as observed in other settings (Townsend et al. 

2013). 

 

Discrete phylogeographic analysis in BEAST 

Generation of BEAST XML files and phylogeography inference set up 

Tailored XML template files for the BASTA and MASCOT structured coalescent models, as well as for 

the discrete trait analysis (CTMC) model, were edited using the lxml Python package to add sequence 

alignments along with their metadata. Bayesian phylogeographic analyses were performed using 

BEAST v1.10.5 (Suchard et al. 2018) for the CTMC model (Lemey et al. 2009), and BEAST v2.6.4 

(Bouckaert et al. 2019) for MASCOT v2.2.1 (Müller et al. 2018) and BASTA v3.0.1 (De Maio et al. 2015), 

making use of the BEAGLE library v3.1.1 (Ayres et al. 2012). We assumed an HKY substitution model 

with a strict molecular clock. Population dynamics in the CTMC model followed a constant population 

size prior. We chose this prior since the model of population dynamics is not expected to impact 

migration history inference and the constant population size model is often chosen for the analysis of 

endemic diseases. For the BASTA and MASCOT structured coalescent models, all demes were set to 

have equal size due to numerical issues leading to a computation time of over 70 hours per million 

iterations (data not shown). For both models, asymmetric migration matrices were inferred and 

Bayesian stochastic search variable selection (BSSVS) was used to avoid over-parametrization. The 

detailed list of prior distributions is available in Table S3 for each inference framework.  

 

If deme sizes are set to be equal in the structured coalescent model but the actual population 

dynamics vary through time, the model tends to explain population dynamics by migration dynamics. 

In our simulations, the incidence changed dramatically over time and location (Figure 1C), thus the 

inference by the structured coalescent model is expected to improve when accounting for time-

varying population dynamics. To test this hypothesis, we used monthly incidence data from our 

simulations as a predictor of the deme sizes by using a GLM in MASCOT (Müller et al. 2019). We tested 
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this alternative parametrization (MASCOT-GLM) in the following conditions: uniform, biased-2.5, 

biased-5, biased-10, biased-20, biased-50, uniform surv. 10, and uniform surv. 20.  

 

These different BEAST analyses were run for at least 20 and 40 million steps, and sampled every 2,000 

and 4,000 steps for small and large alignments, respectively. In total, 8,800 XML files were run for this 

study, for a total of an estimated 1,500 hours of computation on multi-core CPUs across different 

computing infrastructures (Table S4). 

 

Analysis of phylogeographic inference output 

For each BEAST analysis, adequate mixing was assessed based on the effective sample size (ESS) values 

of the continuous parameters. We calculated ESS values using a Python function adapted from Tracer 

v1.7.2 (Rambaut et al. 2018). When at least one continuous parameter had an ESS value below 200, 

chains were resumed to reach at most 120 million iterations. Analyses that exhibited ESS values lower 

than 200 at this point were discarded (Tables S5 and S6). Due to the higher computational burden of 

BASTA, the ESS cut-off was reduced to 100. We discarded a 10% burn-in in the selected chains. The 

combined posterior tree distributions were summarized into MCC trees using TreeAnnotator for 

BASTA and the CTMC, and the Python library dendropy (Sukumaran and Holder 2010) for MASCOT 

and MASCOT-GLM. Summary statistics, ESS values, Bayes factors (BFs) on migration rates (Lemey et 

al. 2009), root state probabilities, dates of lineage introduction, and lineage migration counts were 

calculated in Python before plotting the results in R using the ggplot2 package (Wickham 2016). 

 

Performance analysis 

To assess the accuracy of the phylogenetic reconstruction, the time to the most recent common 

ancestor (TMRCA) of every pair of sampled tips was computed on both the MCC tree and the simulated 

transmission chain, and these outcomes were subsequently compared using the Pearson correlation 

coefficient (Figure 1A). In addition, we evaluated the impact of sampling bias and alternative sampling 

strategies on the estimation of the total migration counts, lineage migration counts, and dates of first 

lineage introduction into each sampled location using five metrics: 

 

● Kendall's tau correlation: a rank-correlation measure that is less sensitive to outliers compared 

to Pearson’s correlation coefficient 
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● calibration 

 

 

 

● mean relative bias 

 

 

 

● mean relative 95% highest posterior density (HPD) width  

 

 

 

● weighted interval score (WIS): a generalization of the absolute error accounting for estimation 

uncertainty. We present the formula of the WIS and refer to the original article for further 

details, notably on the interval score (Bracher et al. 2021). 

 

 

We denote  the true value of the parameter,  the parameter posterior distribution,  the median 

estimate, the 95% HPD,  the number of prediction intervals included in the calculation of 

the WIS,  the observed outcome by forecast ,  the predictive median on the  

prediction interval,  the interval score on the  prediction interval and  its 

weight. The mean relative bias and the mean relative 95% HPD width are defined when the true value 

is not zero. However, the total migration counts and the lineage migration counts for some pairs of 

locations can be null in our simulations whereas the algorithms infer a non-null median. These cases 

were not considered in the calculation of the mean relative bias and the mean relative 95% HPD width. 

We reported their numbers in the caption of the corresponding figures. 
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Data analysis 

RABV expansion in the Philippines  

We extended our comparative analysis of the CTMC, BASTA, and MASCOT by analyzing a set of RABV 

genetic sequences using the three approaches. In total, 233 sequences corresponding to the RABV 

glycoprotein gene were sampled in the Philippines from 2004 and 2010 (Saito et al. 2013). In the 

original discrete phylogeographic analysis, the authors studied viral spread across 11 out of the 17 

Philippines regions and showed that the genetic diversity was highly spatially-structured, notably at 

the island level (Tohma et al. 2014). Here, we evaluated spread across the six sampled islands (Luzon, 

Catanduanes, Oriental Mindoro, Cebu, Negros Oriental, and Mindanao) to compare the 

reconstructions on a highly structured dataset and limit the number of demes that considerably slow 

down BASTA and MASCOT. We assumed an HKY nucleotide substitution model with an among-site 

rate heterogeneity modeled by a discretized gamma distribution (Yang 1994), and an uncorrelated 

relaxed molecular clock with an underlying lognormal distribution (Drummond et al. 2006). For the 

CTMC, we assumed a constant size coalescent model for the viral demographics as in the original 

analysis. For MASCOT and BASTA, current implementations assume a constant population size model 

for the viral demographics within demes. A detailed description of the priors is reported in Table S7. 

For each algorithm, we combined three post-burnin independent chains of 50 million iterations each. 

 

The early dynamics of SARS-CoV-2 worldwide spread 

Tracking viral disease spread in animal populations faces many challenges, and to our knowledge, no 

reliable incidence data are available for zoonoses such as rabies. In this context, MASCOT-GLM cannot 

readily be used. We analyzed the early worldwide spread of SARS-CoV-2 to compare the inferences of 

the CTMC, BASTA, MASCOT, and MASCOT-GLM. Lemey et al. analyzed this dataset to characterize 

SARS-CoV-2 spread across 44 location states by incorporating individual travel histories of sampled 

individuals to help correct for sampling bias and unsampled locations (Lemey et al. 2020). By using the 

carefully obtained results of (Lemey et al. 2020) as a reference, we can evaluate how the four 

algorithms are impacted by sampling bias.  

 

The dataset comprises 282 SARS-CoV-2 genomic sequences sampled in the five continents from 

December 24th, 2019 to March 4th, 2020. We assumed an HKY nucleotide substitution model with a 

proportion of invariant sites, an among-site rate heterogeneity modeled by a discretized gamma 

distribution, and a strict molecular clock. For the CTMC, we assumed an exponential growth model for 

the viral demographics. MASCOT and BASTA assume a constant size model for the viral demes 

demographics. Contrary to the original study, we analyzed migration between six discrete locations: 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 8, 2022. ; https://doi.org/10.1101/2022.07.07.498932doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.07.498932
http://creativecommons.org/licenses/by-nd/4.0/


24 

Africa, Americas, Asia, China, Europe, and Oceania. For MASCOT-GLM, we used the daily number of 

confirmed cases at the continent level from Our World In Data (Ritchie et al. 2020), or from the (World 

Health Organization (WHO)) as a predictor of the deme sizes. The former is referred to as MASCOT-

WID, and the latter as MASCOT-WHO. We smoothed the number of new confirmed cases using a 

seven-day moving average. The detailed description of the priors is reported in Table S8. We combined 

three post-burnin independent chains of 50 or 100 million iterations for each inference.  

 

Data Availability 

All scripts used to simulate epidemics and perform the analyses presented in this article are available 

at https://github.com/mlayan/Sampling_bias including examples of output files. Output files which 

are not in the GitHub repository are available upon reasonable request to the authors. Supplementary 

data are available at Molecular Biology and Evolution online. 
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Figure 1. Rabies virus (RABV) epidemic simulation framework. We simulate realistic epidemics by 

emulating the scenario of RABV spread in dog populations in Morocco. A: Metapopulation model of 

rabies spread in dogs. In each geographical location j, the dog population is divided into three 

compartments: susceptible, exposed but yet not infectious, and infectious individuals. Individuals are 

born at rate b and die from natural causes at rate γ. The rate of infection corresponds to the per-capita 

force of infection Λj,t that aggregates the force of infection from infectors in location j and all the other 

locations. Individuals become infectious at rate 𝜀. We identify all infected individuals and simulate 

their infector, incubation period, infectious period and date of death. B: Connectivity between the 

seven arbitrary Moroccan regions estimated by the radiation model and estimated dog population 

size per region. Curvature indicates flux direction. C: Example for one simulation of the prevalence 
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(first row) and cumulative number (second row) of rabid cases per month and location. D: Graphical 

illustration of the potential impact of sampling bias on the reconstruction of the phylogenetic 

relationships between viral samples over an epidemic, assuming no intra-host evolution. 
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Figure 2. Estimation of genetic and phylogenetic parameters under spatially-biased sampling 

conditions. A: Comparison of the simulated transmission chain and the estimated maximum clade 

credibility (MCC) tree topologies. For the estimated and simulated topologies, we computed the total 

divergence time between every pair of sampled tips. We compared the two using linear regression. B: 

Pearson’s determination coefficient of the pairwise divergence time between the simulated 

transmission chain and the MCC tree. C: Estimation of the evolutionary rate. Each dot corresponds to 

the median estimate of the evolutionary rate in one simulation (n = 50 per sampling protocol and 

sample size).  
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Figure 3. Impact and mitigation of spatial bias on the estimation of the total migration counts. A-E: 

Impact of the increasing levels of spatial bias on the correlation, the calibration, the mean relative 95% 

highest posterior density (HPD) width, the mean relative bias, and the WIS between the simulated and 
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the estimated total migration counts. F-J: Mitigation of the impact of spatial bias on the correlation, 

the calibration, the mean relative 95% HPD width, the mean relative bias, and the WIS between the 

simulated and estimated total migration counts by using alternative sampling strategies. In the left 

and right columns, samples are drawn from biobanks with an underlying bias of 10 and 20, 

respectively. Overall, the algorithms correctly estimate the total migration counts when the 

correlation and the calibration are high (close to 1 and 100, respectively) and when the mean relative 

95% HPD width, the mean relative bias, and the WIS are close to zero. Finally, the mean relative bias 

and the mean relative 95% HPD width are not defined when the true value is null. We removed 612 

out of 3,600 and 380 out of 3,600 simulated migration events in the small and large samples, 

respectively, due to null true values. 
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Figure 4. Impact and mitigation of spatial bias on the estimation of the lineage introduction dates. 

A-D: Impact of the increasing levels of spatial bias on the correlation, the calibration, the mean relative 

95% highest posterior density (HPD) width, and the mean relative bias between the simulated and the 

estimated introduction dates. Uniform samples are representative of the simulated spatiotemporal 

dynamics of the virus. Samples 2.5, 5, 10, 20 and 50 samples biased towards Regions 3 and 4. Samples 

2.5 and 5 correspond to low levels of bias, samples 10 and 20 to intermediate levels of bias and sample 

50 to high levels of bias. E-H: Mitigation of the impact of spatial bias on the correlation, the calibration, 

the mean relative 95% HPD width, and the mean relative bias between the simulated and estimated 

introduction dates by using alternative sampling strategies. In the left and right columns, samples are 

drawn from biobanks with an underlying bias of 10 and 20, respectively.  
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Figure 5. Impact and mitigation of spatial bias on the estimation of the root location. A: Posterior 

probability of estimating the true root state for increasing levels of biais. B-C: Mitigation of the effects 

of spatial biais using alternative sampling strategies under a surveillance bias of 10 and 20, 

respectively. Each dot corresponds to the median root state posterior probability in one simulation (n 

= 50 per sampling protocol and sample size). 
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Figure 6. Maximum clade credibility (MCC) trees and median total migration counts estimated on 

the rabies dataset. A-C: MCC trees and median number of total migration counts estimated on the 
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rabies dataset by CTMC, BASTA, and MASCOT, respectively. Branch width is proportional to the 

maximal ancestral location probability predicted by the algorithms, and branches are colored by the 

maximal ancestral location. Posterior support of the Negros Oriental, Catanduanes, Mindanao, and 

Luzon island lineages are reported. Pie charts displayed at root nodes represent the posterior 

probability distribution of the root location. Median estimates of the total migration counts are 

reported as heatmaps. Gray tiles correspond to transitions associated with a migration rate that is not 

statistically supported, i.e., with a Bayes factor lower than 3. 
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Figure 7. Posterior distributions of the total migration counts estimated on the SARS-CoV-2 data. 

Source locations are displayed by rows and destination locations by columns. For CTMC, BASTA and 

MASCOT, posterior distributions of the total migration counts with a Bayes factor (BF) < 3 are not 

depicted but marked as non-significant (NS). We identify bimodal marginal posterior distributions with 

a (*) and we report for each posterior distribution the median and 95% HPD. We normalize the width 

of the violin plots so that the cumulative density is equal to one.  
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