
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

CSE Conference and Workshop Papers Computer Science and Engineering, Department 
of 

2007 

An Interactive Constraint-Based Approach to Sudoku An Interactive Constraint-Based Approach to Sudoku 

Christopher G. Reeson 
University of Nebraska-Lincoln, creeson@cse.unl.edu 

Kai-Chen Huang 
University of Southern California, kaichenh@usc.edu 

Ken Bayer 
University of Nebraska-Lincoln, kbayer@cse.unl.edu 

Berthe Y. Choueiry 
University of Nebraska-Lincoln, choueiry@cse.unl.edu 

Follow this and additional works at: https://digitalcommons.unl.edu/cseconfwork 

 Part of the Computer Sciences Commons 

Reeson, Christopher G.; Huang, Kai-Chen; Bayer, Ken; and Choueiry, Berthe Y., "An Interactive Constraint-
Based Approach to Sudoku" (2007). CSE Conference and Workshop Papers. 171. 
https://digitalcommons.unl.edu/cseconfwork/171 

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Conference and 
Workshop Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/cseconfwork
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F171&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F171&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/cseconfwork/171?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F171&utm_medium=PDF&utm_campaign=PDFCoverPages


An Interactive Constraint-Based Approach to Sudoku

Christopher G. Reeson1 and Kai-Chen Huang2 and Kenneth M. Bayer1 and Berthe Y. Choueiry1,2

1 Constraint Systems Laboratory, Department of Computer Science & Engineering, University of Nebraska-Lincoln
2 Information Sciences Institute, University of Southern California

creeson@cse.unl.edu, kaichenh@usc.edu, kbayer@cse.unl.edu, choueiry@cse.unl.edu

Introduction and Goals
We present SOLVER, a Java applet that uses Constraint
Processing (CP) techniques to assist human users in solv-
ing Sudoku puzzles. We also showcase CONSTRUCTOR,
another applet that allows users to enter and store puz-
zles, which they can then load in SOLVER. These ap-
plets are available from sudoku.unl.edu/Solver and su-
doku.unl.edu/Constructor. Our goals are as follows:

• To the public:Illustrate the power of CP techniques in the
context of a popular easily approachable puzzle.

• For the research:Investigate how to use CP to interac-
tively support and guide human players.

• For education:Use the Sudoku puzzle as a means to teach
basic and advanced constraint propagation techniques.

• For insight in human reasoning:and understand how it
differs from algorithmic approaches.

SOLVER is built to maximize the interactions between the
human users and CP techniques. It allows users to apply var-
ious consistency algorithms to specific constraints or the en-
tire puzzle, and interactively make assignments and domain
reductions. We also designed a ‘hint’ functionality that uses
increasingly complex propagation algorithms in a controlled
manner to guide and train the users to play the game.

Background
The Sudoku Puzzle, originally named Number Place, was
created by Howard Garns in 1979, and originally appeared in
the Dell Pencil Puzzles and Word Games magazine. Nikoli
began publishing Sudoku Puzzles in 1986 and introduced
the Sudoku name, trademarked in Japan. More recently,
newspapers across the United States have begun publishing
puzzles daily. The game has become immensely popular and
many web sites are devoted to this puzzle1.

Several programs have been developed and released on
the Internet that allow users to solve Sudoku puzzles. These
implementations vary widely. Some programs provide no
support to the player2. Others offer suggestions using a set

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1www.sudopedia.org, www.sudocue.net/guide.php
2www.websudoku.com, www.sudoweb.com

of rules loosely based on logic3. Finally, others resort to
backtrack search when their rules are not able to solve the
puzzle4. Those rules are often ‘tricks’ resulting from gener-
alizing observations made while solving puzzles. They are
often based on convoluted patterns and have strange names,
such as naked singles, cross-hatching, locked candidates,
etc. (van der Werf 2007). They are not grounded in CP tech-
niques and, often times, a number of seemingly distinct rules
are subsumed by a single constraint propagation technique.

On the theoretical side, Yato has shown that Sudoku is
NP-Complete by reduction from the Latin Square (Yato
2003). Simonis (2005) studied various models of the con-
straints in the basic 9×9 Sudoku puzzle and their associated
propagation algorithms (often based on finding matchings
in bipartite graphs) . He compared their ability to solve puz-
zles of various difficulties. Our approach differs from Simo-
nis’s in that we restrict ourselves to the most basic model
of the constraints, and use only the most common constraint
propagation algorithms (a subset of those used by Simonis).
Unlike Simonis, we focus on the interactive aspects of the
game, and have designed a ‘hint’ functionality that uses con-
straint propagation mechanisms of increasing complexity to
guide the human players and train them in playing the game.

Constraint Modeling and Solving
Many variations of the Sudoku puzzle exist. While we plan
to extend our interfaces to handle about 10 puzzle variations,
our current implementation handles only the basic puzzle.
This puzzle is a 9×9 grid, where some cells in the grid are
filled with numbers in [1..9]. The task is to complete the grid
by placing a number from 1 to 9 in each of the empty cells,
while ensuring that a number appears exactly once in every
column, row, or the nine 3×3 ‘blocks’ that form the grid. A
well-posed Sudoku has exactly one solution (Simonis 2005).
Naturally, since the problem has a fixed size, it can be solved
in fixed time (there are at most 981 combinations).

The model of the Sudoku as a Constraint Satisfaction
Problem (CSP) is straightforward. We use two representa-
tions: the binary and the non-binary models. In the former,
we have 810 binary ‘all-different’ constraints, one constraint
between any two cells that cannot take the same value. In the

3www.sudokusolver.co.uk,www.sudocue.net
4www.techfinesse.com/game/sudokusolver.php

Reeson, Huang, Bayer & Choueiry in Conference on Artificial Intelligence (AAAI 2007, Vancouver, British Columbia, Canada). 
Pages 1,976-1,977. Copyright 2007, AAAI. Used by permission.



latter, we have 27 ‘all-different’ constraints, each of arity 9,
defined over the rows, columns, and blocks.

We used the following common propagation algorithms.
(References not provided for lack of space.) On the bi-
nary constraints: Arc Consistency (AC) and Singleton Arc-
Consistency (SAC). On the non-binary constraints: General-
ized Arc-Consistency (GAC) and Singleton GAC (SGAC).
We filter the domains of the CSP variables interactively as
the user places values in the cells with Forward Checking
(FC) and Maintaining Arc-Consistency (MAC). Finally, a
depth first backtrack search displays all solutions or gives
their number on demand.

Interface
The interface allows the user to switch between SOLVER and
CONSTRUCTOR. SOLVER is shown in Figure 1. The ‘Load
Instance’ button (top left) allows the user to load any puzzle
stored in the library. CONSTRUCTOR(not pictured) allows
users to expand the library by entering and storing new in-
stances, and modifying existing ones. The main functional-

Figure 1:Interface of SOLVER.

ities provided by the interface are as follows. The buttons
along the top and left side of the grid allow the users to
enforce AC (binary) and GAC (non-binary) over the rows
and columns. The buttons on the upper right corner al-
low the users to apply AC and GAC on the blocks. Be-
low these buttons, the name of the loaded instance is dis-
played (here, ‘Base-chris1’), and ‘Reset Problem’ allows the
users to reload the problem from the library. The ‘Undo’ and
‘Redo’ buttons support every functionality of the interactive
solver, thus providing a fully interactive experience to the
users. ‘Assign Singletons’ allows the users to instantiate, at
any point, all variables whose domains have a single value,
thus reducing exertion. ‘#Solutions’ gives the number of so-
lutions for the grid being displayed. The ‘Interactive Grid’
panel below the grid gives the users the following control

options. (1) ‘Appearance’ is a set of functionalities to con-
trol the appearance of the grid (showing and hiding domains,
assigning values to cells, and removing possible values from
domains). (2) ‘Propagation’ is a set of buttons to enforce se-
lect propagation algorithms on the entire grid at any point in
time. And (3) ‘Interactive Search’ supports the users solv-
ing Sudoku one cell at a time. ‘Interactive Search’ allows
the users to select a form of propagation to be applied after
every assignment, thus monitoring the consistency of every
selection and highlighting errors. The increasingly ‘aggres-
sive’ choices are none, back checking (BC), forward check-
ing (FC), and maintain arc consistency (MAC). Finally, the
‘Hint’ panel allows users to request hints.

This functionality is the most interesting one in our sys-
tem and issignificantly more powerful than the correspond-
ing one in the online player of the NY Times. It organizes
the hints depending on (1) the level of consistency required
for guessing the hint, and (2) the condition of the domain of
a cell. The first condition checks if a cell has a single value
(Singleton); and the second condition checks if a value does
not appear in the domain of any other variable in the same
row, column, or block (Vital). Given the current state of
the grid, the ‘Hint’ functionality checks for these two condi-
tions as enforced by the following levels of consistency in in-
creasing complexity order: FC, AC, GAC on each individual
constraint, GAC on all constraints, SAC on each individual
variable, SAC on all constraints, SGAC on each individual
constraint, SGAC on all constraints. Starting from the sim-
plest consistency level (FC), ‘Hint’ records the total number
of cells that exhibit a given condition at the current consis-
tency level, and displays this number to the users. Users
can switch between the two conditions (Singleton and Vi-
tal), and visit each of the hints as they are highlighted on the
grid. Users can then move to the next level of consistency,
thus gradually sharpening their abilities to solve the puzzle.

Conclusion
SOLVER allows users to observe the effects of constraint
propagation on a familiar puzzle, while allowing them
to manually make assignments and filter domains. The
‘Hint’ functionality provides human players with help that
is solidly grounded in CP techniques. The combination of a
consistency level and hint condition guides users’ attention
and improves their understanding of the game and the under-
lying CP concepts. We plan to extend the approach to other
variations of the Sudoku puzzle.
Acknowledgments: Undergraduate Creative Activities and Re-
search Experiences (UCARE) grant of the University of Nebraska-
Lincoln and NSF CAREER Award #0133568.

References
Simonis, H. 2005. Sudoku as a Constraint Problem. InWorking
notes of the CP 2005 Workshop on Modeling and Reformulating
Constraint Satisfaction Problems, 13–27.
van der Werf, R. 2007. SudoCue–SudokuSolving Guide.
www.sudocue.net/guide.php.
Yato, T. 2003. Complexity and Completeness of Finding Another
Solution and its Application to Puzzles. Master’s thesis, Univer-
sity of Tokyo.


	An Interactive Constraint-Based Approach to Sudoku
	

	AAAI03ReesonC.dvi

