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1. Introduction

This chapter begins by discussing what statistics are and why the study of statistics
1s important. Subsequent sections cover a variety of topics all basic to the study of

statistics. The only theme common to all of these sections is that they cover
concepts and ideas important for other chapters in the book.

. What are Statistics?

. Importance of Statistics
. Descriptive Statistics

. Inferential Statistics
Variables

Percentiles

. Measurement

. Levels of Measurement
Distributions
Summation Notation

. Linear Transformations

R " T amom g aQ®m >

Logarithms

M. Exercises
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What Are Statistics
by Mikki Hebl

Learning Objectives

1. Describe the range of applications of statistics

2. Identify situations in which statistics can be misleading
3. Define “Statistics”

Statistics include numerical facts and figures. For instance:

 The largest earthquake measured 9.2 on the Richter scale.

e Men are at least 10 times more likely than women to commit murder.
 One in every 8 South Africans is HIV positive.

By the year 2020, there will be 15 people aged 65 and over for every new baby
born.

The study of statistics involves math and relies upon calculations of numbers. But
it also relies heavily on how the numbers are chosen and how the statistics are
interpreted. For example, consider the following three scenarios and the
interpretations based upon the presented statistics. You will find that the numbers
may be right, but the interpretation may be wrong. Try to identify a major flaw
with each interpretation before we describe it.

1) A new advertisement for Ben and Jerry's ice cream introduced in
late May of last year resulted in a 30% increase in ice cream sales for
the following three months. Thus, the advertisement was effective.

A major flaw is that ice cream consumption generally increases in the
months of June, July, and August regardless of advertisements. This
effect is called a history effect and leads people to interpret outcomes
as the result of one variable when another variable (in this case, one
having to do with the passage of time) is actually responsible.

2) The more churches in a city, the more crime there is. Thus,
churches lead to crime.

11



A major flaw is that both increased churches and increased crime rates
can be explained by larger populations. In bigger cities, there are both
more churches and more crime. This problem, which we will discuss
in more detail in Chapter 6, refers to the third-variable problem.
Namely, a third variable can cause both situations; however, people
erroneously believe that there is a causal relationship between the two
primary variables rather than recognize that a third variable can cause
both.

3) 75% more interracial marriages are occurring this year than 25
years ago. Thus, our society accepts interracial marriages.

A major flaw is that we don't have the information that we need. What
is the rate at which marriages are occurring? Suppose only 1% of
marriages 25 years ago were interracial and so now 1.75% of
marriages are interracial (1.75 is 75% higher than 1). But this latter
number is hardly evidence suggesting the acceptability of interracial
marriages. In addition, the statistic provided does not rule out the
possibility that the number of interracial marriages has seen dramatic
fluctuations over the years and this year is not the highest. Again,
there is simply not enough information to understand fully the impact
of the statistics.

As a whole, these examples show that statistics are not only facts and figures; they
are something more than that. In the broadest sense, “statistics” refers to a range of
techniques and procedures for analyzing, interpreting, displaying, and making
decisions based on data.

12



Importance of Statistics
by Mikki Hebl

Learning Objectives
1. Give examples of statistics encountered in everyday life
2. Give examples of how statistics can lend credibility to an argument

Like most people, you probably feel that it is important to “take control of your

life.” But what does this mean? Partly, it means being able to properly evaluate the

data and claims that bombard you every day. If you cannot distinguish good from

faulty reasoning, then you are vulnerable to manipulation and to decisions that are

not in your best interest. Statistics provides tools that you need in order to react

intelligently to information you hear or read. In this sense, statistics is one of the

most important things that you can study.

To be more specific, here are some claims that we have heard on several

occasions. (We are not saying that each one of these claims is true!)

* 4 out of 5 dentists recommend Dentine.

e Almost 85% of lung cancers in men and 45% in women are tobacco-related.

e Condoms are effective 94% of the time.

» Native Americans are significantly more likely to be hit crossing the street than
are people of other ethnicities.

 People tend to be more persuasive when they look others directly in the eye and
speak loudly and quickly.

» Women make 75 cents to every dollar a man makes when they work the same
job.

A surprising new study shows that eating egg whites can increase one's life span.

» People predict that it is very unlikely there will ever be another baseball player
with a batting average over 400.

» There 1s an 80% chance that in a room full of 30 people that at least two people
will share the same birthday.

» 79.48% of all statistics are made up on the spot.

All of these claims are statistical in character. We suspect that some of them sound
familiar; if not, we bet that you have heard other claims like them. Notice how
diverse the examples are. They come from psychology, health, law, sports,
business, etc. Indeed, data and data interpretation show up in discourse from
virtually every facet of contemporary life.

13



Statistics are often presented in an effort to add credibility to an argument or
advice. You can see this by paying attention to television advertisements. Many of
the numbers thrown about in this way do not represent careful statistical analysis.
They can be misleading and push you into decisions that you might find cause to
regret. For these reasons, learning about statistics 1s a long step towards taking
control of your life. (It is not, of course, the only step needed for this purpose.) The
present electronic textbook is designed to help you learn statistical essentials. It
will make you into an intelligent consumer of statistical claims.

You can take the first step right away. To be an intelligent consumer of
statistics, your first reflex must be to question the statistics that you encounter. The
British Prime Minister Benjamin Disraeli is quoted by Mark Twain as having said,
“There are three kinds of lies -- lies, damned lies, and statistics.” This quote
reminds us why it is so important to understand statistics. So let us invite you to
reform your statistical habits from now on. No longer will you blindly accept
numbers or findings. Instead, you will begin to think about the numbers, their
sources, and most importantly, the procedures used to generate them.

We have put the emphasis on defending ourselves against fraudulent claims
wrapped up as statistics. We close this section on a more positive note. Just as
important as detecting the deceptive use of statistics is the appreciation of the
proper use of statistics. You must also learn to recognize statistical evidence that
supports a stated conclusion. Statistics are all around you, sometimes used well,
sometimes not. We must learn how to distinguish the two cases.

Now let us get to work!

14



Descriptive Statistics
by Mikki Hebl

Prerequisites
e none

Learning Objectives
1. Define “descriptive statistics”
2. Distinguish between descriptive statistics and inferential statistics

Descriptive statistics are numbers that are used to summarize and describe data.
The word “data” refers to the information that has been collected from an
experiment, a survey, an historical record, etc. (By the way, “data” is plural. One
piece of information is called a “datum.”) If we are analyzing birth certificates, for
example, a descriptive statistic might be the percentage of certificates issued in
New York State, or the average age of the mother. Any other number we choose to
compute also counts as a descriptive statistic for the data from which the statistic is
computed. Several descriptive statistics are often used at one time to give a full
picture of the data.

Descriptive statistics are just descriptive. They do not involve generalizing
beyond the data at hand. Generalizing from our data to another set of cases is the
business of inferential statistics, which you'll be studying in another section. Here
we focus on (mere) descriptive statistics.

Some descriptive statistics are shown in Table 1. The table shows the
average salaries for various occupations in the United States in 1999.

15



Table 1. Average salaries for various occupations in 1999.

$112,760 pediatricians

$106,130 dentists

$100,090 podiatrists

$76,140 physicists

$53,410 architects,

$49,720 school, clinical, and counseling
psychologists

$47,910 flight attendants

$39,560 elementary school teachers

$38,710 police officers

$18,980 floral designers

Descriptive statistics like these offer insight into American society. It is interesting
to note, for example, that we pay the people who educate our children and who
protect our citizens a great deal less than we pay people who take care of our feet
or our teeth.

For more descriptive statistics, consider Table 2. It shows the number of
unmarried men per 100 unmarried women in U.S. Metro Areas in 1990. From this
table we see that men outnumber women most in Jacksonville, NC, and women
outnumber men most in Sarasota, FL. You can see that descriptive statistics can be
useful if we are looking for an opposite-sex partner! (These data come from the
Information Please Almanac.)

Table 2. Number of unmarried men per 100 unmarried women in U.S. Metro Areas

in 1990.
Cities with mostly Men per 100 Cities with mostly Men per 100
men Women women Women
1. Jacksonville, NC 224 1. Sarasota, FL 66
2. Killeen-Temple, TX 123 2. Bradenton, FL 68
3. Fayetteville, NC 118 3. Altoona, PA 69
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4. Brazoria, TX 117 4. Springfield, IL 70

5. Lawton, OK 116 5. Jacksonville, TN 70
6. State College, PA 113 6. Gadsden, AL 70
7. Clarksville- 113 7. Wheeling, WV 70

Hopkinsville, TN-KY

8. Anchorage, Alaska 112 8. Charleston, WV 71

9. Salinas-Seaside- 112 9. St. Joseph, MO 71
Monterey, CA

10. Bryan-College 1M1 10. Lynchburg, VA 71
Station, TX

NOTE: Unmarried includes never-married, widowed, and diwvorced persons, 15 years or older.

These descriptive statistics may make us ponder why the numbers are so disparate
in these cities. One potential explanation, for instance, as to why there are more
women in Florida than men may involve the fact that elderly individuals tend to
move down to the Sarasota region and that women tend to outlive men. Thus, more
women might live in Sarasota than men. However, in the absence of proper data,
this is only speculation.

You probably know that descriptive statistics are central to the world of
sports. Every sporting event produces numerous statistics such as the shooting
percentage of players on a basketball team. For the Olympic marathon (a foot race
of 26.2 miles), we possess data that cover more than a century of competition. (The
first modern Olympics took place in 1896.) The following table shows the winning
times for both men and women (the latter have only been allowed to compete since
1984).

Table 3. Winning Olympic marathon times.

Women
Year Winner Country Time
1984 | Joan Benoit USA 2:24:52
1988 | Rosa Mota POR 2:25:40
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1992 | Valentina Yegorova uT 2:32:41
1996 | Fatuma Roba ETH 2:26:05
2000 | Naoko Takahashi JPN 2:23:14
2004 | Mizuki Noguchi JPN 2:26:20
Men

Year Winner Country Time

1896 | Spiridon Louis GRE 2:58:50
1900 | Michel Theato FRA 2:59:45
1904 | Thomas Hicks USA 3:28:53
1906 | Billy Sherring CAN 2:51:23
1908 | Johnny Hayes USA 2:55:18
1912 Kenneth McArthur S. Afr. 2:36:54
1920 Hannes Kolehmainen FIN 2:32:35
1924 | Albin Stenroos FIN 2:41:22
1928 Boughra El Ouafi FRA 2:32:57
1932 | Juan Carlos Zabala ARG 2:31:36
1936 | Sohn Kee-Chung JPN 2:29:19
1948 Delfo Cabrera ARG 2:34:51
1952 | Emil Ztopek CZE 2:23:03
1956 | Alain Mimoun FRA 2:25:00
1960 | Abebe Bikila ETH 2:15:16
1964 | Abebe Bikila ETH 2:12:11
1968 | Mamo Wolde ETH 2:20:26
1972 Frank Shorter USA 2:12:19
1976 | Waldemar Cierpinski E.Ger 2:09:55
1980 | Waldemar Cierpinski E.Ger 2:11:03
1984 | Carlos Lopes POR 2:09:21
1988 | Gelindo Bordin ITA 2:10:32
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1992 | Hwang Young-Cho S. Kor 2:13:23

1996 | Josia Thugwane S. Afr. 2:12:36
2000 Gezahenge Abera ETH 2:10.10
2004 | Stefano Baldini ITA 2:10:55

There are many descriptive statistics that we can compute from the data in the
table. To gain insight into the improvement in speed over the years, let us divide
the men's times into two pieces, namely, the first 13 races (up to 1952) and the
second 13 (starting from 1956). The mean winning time for the first 13 races is 2
hours, 44 minutes, and 22 seconds (written 2:44:22). The mean winning time for
the second 13 races is 2:13:18. This is quite a difference (over half an hour). Does
this prove that the fastest men are running faster? Or is the difference just due to
chance, no more than what often emerges from chance differences in performance
from year to year? We can't answer this question with descriptive statistics alone.
All we can affirm is that the two means are “suggestive.”

Examining Table 3 leads to many other questions. We note that Takahashi
(the lead female runner in 2000) would have beaten the male runner in 1956 and all
male runners in the first 12 marathons. This fact leads us to ask whether the gender
gap will close or remain constant. When we look at the times within each gender,
we also wonder how far they will decrease (if at all) in the next century of the
Olympics. Might we one day witness a sub-2 hour marathon? The study of
statistics can help you make reasonable guesses about the answers to these
questions.
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Inferential Statistics
by Mikki Hebl

Prerequisites
o Chapter 1: Descriptive Statistics

Learning Objectives

Distinguish between a sample and a population

Define inferential statistics

Identify biased samples

Distinguish between simple random sampling and stratified sampling
Distinguish between random sampling and random assignment

N W=

Populations and samples

In statistics, we often rely on a sample --- that is, a small subset of a larger set of
data --- to draw inferences about the larger set. The larger set is known as the
population from which the sample is drawn.

Example #1: You have been hired by the National Election Commission to
examine how the American people feel about the fairness of the voting
procedures in the U.S. Who will you ask?

It is not practical to ask every single American how he or she feels about the
fairness of the voting procedures. Instead, we query a relatively small number of
Americans, and draw inferences about the entire country from their responses. The
Americans actually queried constitute our sample of the larger population of all
Americans. The mathematical procedures whereby we convert information about
the sample into intelligent guesses about the population fall under the rubric of
inferential statistics.

A sample is typically a small subset of the population. In the case of voting
attitudes, we would sample a few thousand Americans drawn from the hundreds of
millions that make up the country. In choosing a sample, it is therefore crucial that
it not over-represent one kind of citizen at the expense of others. For example,
something would be wrong with our sample if it happened to be made up entirely
of Florida residents. If the sample held only Floridians, it could not be used to infer
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the attitudes of other Americans. The same problem would arise if the sample were
comprised only of Republicans. Inferential statistics are based on the assumption
that sampling is random. We trust a random sample to represent different segments
of society in close to the appropriate proportions (provided the sample is large
enough; see below).

Example #2: We are interested in examining how many math classes have
been taken on average by current graduating seniors at American colleges ;
and universities during their four years in school. Whereas our population in
the last example included all US citizens, now it involves just the graduating
seniors throughout the country. This is still a large set since there are ;
thousands of colleges and universities, each enrolling many students. (New
York University, for example, enrolls 48,000 students.) It would be
prohibitively costly to examine the transcript of every college senior. We
therefore take a sample of college seniors and then make inferences to the
entire population based on what we find. To make the sample, we might first i
choose some public and private colleges and universities across the United
States. Then we might sample 50 students from each of these institutions.
Suppose that the average number of math classes taken by the people in our
sample were 3.2. Then we might speculate that 3.2 approximates the number
we would find if we had the resources to examine every senior in the entire !
population. But we must be careful about the possibility that our sample is
non-representative of the population. Perhaps we chose an overabundance of
math majors, or chose too many technical institutions that have heavy math
requirements. Such bad sampling makes our sample unrepresentative of the
population of all seniors.

To solidify your understanding of sampling bias, consider the following
example. Try to identify the population and the sample, and then reflect on
whether the sample is likely to yield the information desired.
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Example #3: A substitute teacher wants to know how students in the class ;
did on their last test. The teacher asks the 10 students sitting in the front row
to state their latest test score. He concludes from their report that the class
did extremely well. What is the sample? What is the population? Can you
identify any problems with choosing the sample in the way that the teacher
did?

In Example #3, the population consists of all students in the class. The sample is
made up of just the 10 students sitting in the front row. The sample is not likely to
be representative of the population. Those who sit in the front row tend to be more
interested in the class and tend to perform higher on tests. Hence, the sample may
perform at a higher level than the population.

Example #4: A coach is interested in how many cartwheels the average
college freshmen at his university can do. Eight volunteers from the

freshman class step forward. After observing their performance, the coach
concludes that college freshmen can do an average of 16 cartwheels in a row
without stopping. ;

In Example #4, the population is the class of all freshmen at the coach's university.
The sample is composed of the 8 volunteers. The sample is poorly chosen because
volunteers are more likely to be able to do cartwheels than the average freshman;
people who can't do cartwheels probably did not volunteer! In the example, we are
also not told of the gender of the volunteers. Were they all women, for example?
That might affect the outcome, contributing to the non-representative nature of the
sample (if the school is co-ed).

Simple Random Sampling

Researchers adopt a variety of sampling strategies. The most straightforward is
simple random sampling. Such sampling requires every member of the population
to have an equal chance of being selected into the sample. In addition, the selection
of one member must be independent of the selection of every other member. That
is, picking one member from the population must not increase or decrease the
probability of picking any other member (relative to the others). In this sense, we
can say that simple random sampling chooses a sample by pure chance. To check

22



your understanding of simple random sampling, consider the following example.
What is the population? What is the sample? Was the sample picked by simple
random sampling? Is it biased?

Example #5: A research scientist is interested in studying the experiences of
twins raised together versus those raised apart. She obtains a list of twins
from the National Twin Registry, and selects two subsets of individuals for
her study. First, she chooses all those in the registry whose last name begins
with Z. Then she turns to all those whose last name begins with B. Because
there are so many names that start with B, however, our researcher decides
to incorporate only every other name into her sample. Finally, she mails out
a survey and compares characteristics of twins raised apart versus together.

In Example #35, the population consists of all twins recorded in the National Twin
Registry. It is important that the researcher only make statistical generalizations to
the twins on this list, not to all twins in the nation or world. That is, the National
Twin Registry may not be representative of all twins. Even if inferences are limited
to the Registry, a number of problems affect the sampling procedure we described.
For instance, choosing only twins whose last names begin with Z does not give
every individual an equal chance of being selected into the sample. Moreover, such
a procedure risks over-representing ethnic groups with many surnames that begin
with Z. There are other reasons why choosing just the Z's may bias the sample.
Perhaps such people are more patient than average because they often find
themselves at the end of the line! The same problem occurs with choosing twins
whose last name begins with B. An additional problem for the B's is that the
“every-other-one” procedure disallowed adjacent names on the B part of the list
from being both selected. Just this defect alone means the sample was not formed
through simple random sampling.

Sample size matters

Recall that the definition of a random sample is a sample in which every member
of the population has an equal chance of being selected. This means that the
sampling procedure rather than the results of the procedure define what it means
for a sample to be random. Random samples, especially if the sample size is small,
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are not necessarily representative of the entire population. For example, if a
random sample of 20 subjects were taken from a population with an equal number
of males and females, there would be a nontrivial probability (0.06) that 70% or
more of the sample would be female. (To see how to obtain this probability, see the
section on the binomial distribution in Chapter 5.) Such a sample would not be
representative, although it would be drawn randomly. Only a large sample size
makes it likely that our sample is close to representative of the population. For this
reason, inferential statistics take into account the sample size when generalizing
results from samples to populations. In later chapters, you'll see what kinds of
mathematical techniques ensure this sensitivity to sample size.

More complex sampling

Sometimes it is not feasible to build a sample using simple random sampling. To
see the problem, consider the fact that both Dallas and Houston are competing to
be hosts of the 2012 Olympics. Imagine that you are hired to assess whether most
Texans prefer Houston to Dallas as the host, or the reverse. Given the
impracticality of obtaining the opinion of every single Texan, you must construct a
sample of the Texas population. But now notice how difficult it would be to
proceed by simple random sampling. For example, how will you contact those
individuals who don’t vote and don’t have a phone? Even among people you find
in the telephone book, how can you identify those who have just relocated to
California (and had no reason to inform you of their move)? What do you do about
the fact that since the beginning of the study, an additional 4,212 people took up
residence in the state of Texas? As you can see, it i1s sometimes very difficult to
develop a truly random procedure. For this reason, other kinds of sampling
techniques have been devised. We now discuss two of them.

Random assignment

In experimental research, populations are often hypothetical. For example, in an
experiment comparing the effectiveness of a new anti-depressant drug with a
placebo, there is no actual population of individuals taking the drug. In this case, a
specified population of people with some degree of depression is defined and a
random sample is taken from this population. The sample is then randomly divided
into two groups; one group is assigned to the treatment condition (drug) and the
other group is assigned to the control condition (placebo). This random division of
the sample into two groups is called random assignment. Random assignment is
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critical for the validity of an experiment. For example, consider the bias that could
be introduced if the first 20 subjects to show up at the experiment were assigned to
the experimental group and the second 20 subjects were assigned to the control
group. It is possible that subjects who show up late tend to be more depressed than
those who show up early, thus making the experimental group less depressed than
the control group even before the treatment was administered.

In experimental research of this kind, failure to assign subjects randomly to
groups is generally more serious than having a non-random sample. Failure to
randomize (the former error) invalidates the experimental findings. A non-random
sample (the latter error) simply restricts the generalizability of the results.

Stratified Sampling

Since simple random sampling often does not ensure a representative sample, a
sampling method called stratified random sampling is sometimes used to make the
sample more representative of the population. This method can be used if the
population has a number of distinct “strata” or groups. In stratified sampling, you
first identify members of your sample who belong to each group. Then you
randomly sample from each of those subgroups in such a way that the sizes of the
subgroups in the sample are proportional to their sizes in the population.

Let's take an example: Suppose you were interested in views of capital
punishment at an urban university. You have the time and resources to interview
200 students. The student body is diverse with respect to age; many older people
work during the day and enroll in night courses (average age is 39), while younger
students generally enroll in day classes (average age of 19). It is possible that night
students have different views about capital punishment than day students. If 70%
of the students were day students, it makes sense to ensure that 70% of the sample
consisted of day students. Thus, your sample of 200 students would consist of 140
day students and 60 night students. The proportion of day students in the sample
and in the population (the entire university) would be the same. Inferences to the
entire population of students at the university would therefore be more secure.
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Variables
by Heidi Ziemer

Prerequisites
enone

Learning Objectives
1. Define and distinguish between independent and dependent variables
2. Define and distinguish between discrete and continuous variables

3. Define and distinguish between qualitative and quantitative variables

Independent and dependent variables

Variables are properties or characteristics of some event, object, or person that can
take on different values or amounts (as opposed to constants such as st that do not
vary). When conducting research, experimenters often manipulate variables. For
example, an experimenter might compare the effectiveness of four types of
antidepressants. In this case, the variable is “type of antidepressant.” When a
variable is manipulated by an experimenter, it is called an independent variable.
The experiment seeks to determine the effect of the independent variable on relief
from depression. In this example, relief from depression is called a dependent
variable. In general, the independent variable is manipulated by the experimenter
and its effects on the dependent variable are measured.

Example #1: Can blueberries slow down aging? A study indicates that
antioxidants found in blueberries may slow down the process of aging. In
this study, 19-month-old rats (equivalent to 60-year-old humans) were fed
either their standard diet or a diet supplemented by either blueberry,
strawberry, or spinach powder. After eight weeks, the rats were given
memory and motor skills tests. Although all supplemented rats showed
improvement, those supplemented with blueberry powder showed the most
notable improvement.

1. What is the independent variable? (dietary supplement: none, blueberry,
strawberry, and spinach)



2. What are the dependent variables? (memory test and motor skills test)

Example #2: Does beta-carotene protect against cancer? Beta-carotene
supplements have been thought to protect against cancer. However, a study
published in the Journal of the National Cancer Institute suggests this is
false. The study was conducted with 39,000 women aged 45 and up. These
women were randomly assigned to receive a beta-carotene supplement or a
placebo, and their health was studied over their lifetime. Cancer rates for
women taking the beta-carotene supplement did not differ systematically
from the cancer rates of those women taking the placebo.

1. What is the independent variable? (supplements: beta-carotene or
placebo)

2. What is the dependent variable? (occurrence of cancer)

Example #3: How bright is right? An automobile manufacturer wants to
know how bright brake lights should be in order to minimize the time
required for the driver of a following car to realize that the car in front is
stopping and to hit the brakes.

1. What is the independent variable? (brightness of brake lights)

2. What is the dependent variable? (time to hit brakes)

Levels of an Independent Variable

If an experiment compares an experimental treatment with a control treatment,
then the independent variable (type of treatment) has two levels: experimental and
control. If an experiment were comparing five types of diets, then the independent
variable (type of diet) would have 5 levels. In general, the number of levels of an
independent variable is the number of experimental conditions.
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Qualitative and Quantitative Variables

An important distinction between variables is between qualitative variables and
quantitative variables. Qualitative variables are those that express a qualitative
attribute such as hair color, eye color, religion, favorite movie, gender, and so on.
The values of a qualitative variable do not imply a numerical ordering. Values of
the variable “religion” differ qualitatively; no ordering of religions is implied.
Qualitative variables are sometimes referred to as categorical variables.
Quantitative variables are those variables that are measured in terms of numbers.
Some examples of quantitative variables are height, weight, and shoe size.

In the study on the effect of diet discussed previously, the independent
variable was type of supplement: none, strawberry, blueberry, and spinach. The
variable “type of supplement” is a qualitative variable; there is nothing quantitative
about it. In contrast, the dependent variable “memory test” is a quantitative
variable since memory performance was measured on a quantitative scale (number
correct).

Discrete and Continuous Variables

Variables such as number of children in a household are called discrete variables
since the possible scores are discrete points on the scale. For example, a household
could have three children or six children, but not 4.53 children. Other variables
such as “time to respond to a question” are continuous variables since the scale is
continuous and not made up of discrete steps. The response time could be 1.64
seconds, or it could be 1.64237123922121 seconds. Of course, the practicalities of
measurement preclude most measured variables from being truly continuous.
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Percentiles
by David Lane

Prerequisites
enone

Learning Objectives
1. Define percentiles
2. Use three formulas for computing percentiles

A test score in and of itself is usually difficult to interpret. For example, if you
learned that your score on a measure of shyness was 35 out of a possible 50, you
would have little idea how shy you are compared to other people. More relevant is
the percentage of people with lower shyness scores than yours. This percentage is
called a percentile. If 65% of the scores were below yours, then your score would
be the 65th percentile.

Two Simple Definitions of Percentile

There i1s no universally accepted definition of a percentile. Using the 65th
percentile as an example, the 65th percentile can be defined as the lowest score that
1s greater than 65% of the scores. This is the way we defined it above and we will
call this “Definition 1.” The 65th percentile can also be defined as the smallest
score that is greater than or equal to 65% of the scores. This we will call
“Definition 2.” Unfortunately, these two definitions can lead to dramatically
different results, especially when there is relatively little data. Moreover, neither of
these definitions is explicit about how to handle rounding. For instance, what rank
1s required to be higher than 65% of the scores when the total number of scores is
507 This is tricky because 65% of 50 is 32.5. How do we find the lowest number
that is higher than 32.5% of the scores? A third way to compute percentiles
(presented below) is a weighted average of the percentiles computed according to
the first two definitions. This third definition handles rounding more gracefully
than the other two and has the advantage that it allows the median to be defined
conveniently as the 50th percentile.
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A Third Definition

Unless otherwise specified, when we refer to “percentile,” we will be referring to
this third definition of percentiles. Let's begin with an example. Consider the 25th
percentile for the 8 numbers in Table 1. Notice the numbers are given ranks
ranging from 1 for the lowest number to 8 for the highest number.

Table 1. Test Scores.

Number Rank
3 1
5 2
7 3
8 4
9 5
11 6
13 7
15 8

The first step is to compute the rank (R) of the 25th percentile. This is done using
the following formula:

P
R=——X(N+1
100 (V+1)

where P is the desired percentile (25 in this case) and N is the number of numbers
(8 in this case). Therefore,

R = 25 ><(8+1)—9—225
100 4T

If R is an integer, the Pth percentile is be the number with rank R. When R is not
an integer, we compute the Pth percentile by interpolation as follows:

1. Define IR as the integer portion of R (the number to the left of the decimal
point). For this example, IR = 2.

2. Define FR as the fractional portion of R. For this example, FR = 0.25.
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3. Find the scores with Rank Ir and with Rank Ir + 1. For this example, this means

the score with Rank 2 and the score with Rank 3. The scores are 5 and 7.

4. Interpolate by multiplying the difference between the scores by Fr and add the
result to the lower score. For these data, this is (0.25)(7 - 5)+5=15.5.

Therefore, the 25th percentile is 5.5. If we had used the first definition (the smallest
score greater than 25% of the scores), the 25th percentile would have been 7. If we

had used the second definition (the smallest score greater than or equal to 25% of
the scores), the 25th percentile would have been 5.
For a second example, consider the 20 quiz scores shown in Table 2.

Table 2. 20 Quiz Scores.

Score

Rank

© © 000 N N NOO O O oo ;v b

©

10
10
10
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N ) A A ama A A a A =
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We will compute the 25th and the 85th percentiles. For the 25th,

25 21
R=—-x(20+1)=—=525

100
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IR=5and FR = 0.25.

Since the score with a rank of IR (which is 5) and the score with a rank of IR + 1
(which is 6) are both equal to 5, the 25th percentile is 5. In terms of the formula:

25th percentile = (.25) x (5-5) + 5= 5.

For the 85th percentile,

85
= —X = .
R=—05x(20+1) =1785

IR=17and FR =0.85

Caution: FR does not generally equal the percentile to be
computed as it does here.

The score with a rank of 17 is 9 and the score with a rank of 18 is 10. Therefore,
the 85th percentile is:

(0.85)(10-9) + 9 = 9.85

Consider the 50th percentile of the numbers 2, 3,5,9.

R = >0 X (4+1)=25
100 -

IR=2and FR =0.5.

The score with a rank of IR is 3 and the score with a rank of IR + 1 is 5. Therefore,
the 50th percentile is:

(0.5)(5-3) +3=4.

Finally, consider the 50th percentile of the numbers 2,3,5,9, 11.

R = >0 Xx(5+1)=3
100 B

IR =3and FR = 0.
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Whenever FR = 0, you simply find the number with rank IR. In this case, the third
number is equal to 5, so the 50th percentile is 5. You will also get the right answer
if you apply the general formula:

50th percentile = (0.00) (9 -5) + 5 = 5.
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Levels of Measurement
by Dan Osherson and David M. Lane

Prerequisites
e Chapter 1: Variables

Learning Objectives

1. Define and distinguish among nominal, ordinal, interval, and ratio scales

2. ldentify a scale type

3. Discuss the type of scale used in psychological measurement

4. Give examples of errors that can be made by failing to understand the proper
use of measurement scales

Types of Scales

Before we can conduct a statistical analysis, we need to measure our dependent
variable. Exactly how the measurement is carried out depends on the type of
variable involved in the analysis. Different types are measured differently. To
measure the time taken to respond to a stimulus, you might use a stop watch. Stop
watches are of no use, of course, when it comes to measuring someone's attitude
towards a political candidate. A rating scale is more appropriate in this case (with
labels like “very favorable,” “somewhat favorable,” etc.). For a dependent variable
such as “favorite color,” you can simply note the color-word (like “red”) that the
subject offers.

Although procedures for measurement differ in many ways, they can be
classified using a few fundamental categories. In a given category, all of the
procedures share some properties that are important for you to know about. The
categories are called “scale types,” or just “scales,” and are described in this
section.

Nominal scales

When measuring using a nominal scale, one simply names or categorizes
responses. Gender, handedness, favorite color, and religion are examples of
variables measured on a nominal scale. The essential point about nominal scales is
that they do not imply any ordering among the responses. For example, when
classifying people according to their favorite color, there is no sense in which
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green is placed “ahead of” blue. Responses are merely categorized. Nominal scales
embody the lowest level of measurement.

Ordinal scales

A researcher wishing to measure consumers' satisfaction with their microwave
ovens might ask them to specify their feelings as either “very dissatisfied,”
“somewhat dissatisfied,” “somewhat satisfied,” or “very satisfied.” The items in
this scale are ordered, ranging from least to most satisfied. This is what
distinguishes ordinal from nominal scales. Unlike nominal scales, ordinal scales
allow comparisons of the degree to which two subjects possess the dependent
variable. For example, our satisfaction ordering makes it meaningful to assert that
one person is more satisfied than another with their microwave ovens. Such an
assertion reflects the first person's use of a verbal label that comes later in the list
than the label chosen by the second person.

On the other hand, ordinal scales fail to capture important information that
will be present in the other scales we examine. In particular, the difference between
two levels of an ordinal scale cannot be assumed to be the same as the difference
between two other levels. In our satisfaction scale, for example, the difference
between the responses “very dissatisfied” and “somewhat dissatisfied” is probably
not equivalent to the difference between “somewhat dissatisfied” and “somewhat
satisfied.” Nothing in our measurement procedure allows us to determine whether
the two differences reflect the same difference in psychological satisfaction.
Statisticians express this point by saying that the differences between adjacent
scale values do not necessarily represent equal intervals on the underlying scale
giving rise to the measurements. (In our case, the underlying scale is the true
feeling of satisfaction, which we are trying to measure.)

What if the researcher had measured satisfaction by asking consumers to
indicate their level of satisfaction by choosing a number from one to four? Would
the difference between the responses of one and two necessarily reflect the same
difference in satisfaction as the difference between the responses two and three?
The answer is No. Changing the response format to numbers does not change the
meaning of the scale. We still are in no position to assert that the mental step from
1 to 2 (for example) is the same as the mental step from 3 to 4.
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Interval scales

Interval scales are numerical scales in which intervals have the same interpretation
throughout. As an example, consider the Fahrenheit scale of temperature. The
difference between 30 degrees and 40 degrees represents the same temperature
difference as the difference between 80 degrees and 90 degrees. This is because
each 10-degree interval has the same physical meaning (in terms of the kinetic
energy of molecules).

Interval scales are not perfect, however. In particular, they do not have a true
zero point even if one of the scaled values happens to carry the name “zero.” The
Fahrenheit scale illustrates the issue. Zero degrees Fahrenheit does not represent
the complete absence of temperature (the absence of any molecular kinetic energy).
In reality, the label “zero” is applied to its temperature for quite accidental reasons
connected to the history of temperature measurement. Since an interval scale has
no true zero point, it does not make sense to compute ratios of temperatures. For
example, there is no sense in which the ratio of 40 to 20 degrees Fahrenheit is the
same as the ratio of 100 to 50 degrees; no interesting physical property is preserved
across the two ratios. After all, if the “zero” label were applied at the temperature
that Fahrenheit happens to label as 10 degrees, the two ratios would instead be 30
to 10 and 90 to 40, no longer the same! For this reason, it does not make sense to
say that 80 degrees is “twice as hot” as 40 degrees. Such a claim would depend on
an arbitrary decision about where to “start” the temperature scale, namely, what
temperature to call zero (whereas the claim is intended to make a more
fundamental assertion about the underlying physical reality).

Ratio scales

The ratio scale of measurement is the most informative scale. It is an interval scale
with the additional property that its zero position indicates the absence of the
quantity being measured. You can think of a ratio scale as the three earlier scales
rolled up in one. Like a nominal scale, it provides a name or category for each
object (the numbers serve as labels). Like an ordinal scale, the objects are ordered
(in terms of the ordering of the numbers). Like an interval scale, the same
difference at two places on the scale has the same meaning. And in addition, the
same ratio at two places on the scale also carries the same meaning.

The Fahrenheit scale for temperature has an arbitrary zero point and is
therefore not a ratio scale. However, zero on the Kelvin scale is absolute zero. This
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makes the Kelvin scale a ratio scale. For example, if one temperature is twice as
high as another as measured on the Kelvin scale, then it has twice the kinetic
energy of the other temperature.

Another example of a ratio scale is the amount of money you have in your
pocket right now (25 cents, 55 cents, etc.). Money is measured on a ratio scale
because, in addition to having the properties of an interval scale, it has a true zero
point: if you have zero money, this implies the absence of money. Since money has
a true zero point, it makes sense to say that someone with 50 cents has twice as
much money as someone with 25 cents (or that Bill Gates has a million times more
money than you do).

What level of measurement is used for psychological variables?

Rating scales are used frequently in psychological research. For example,
experimental subjects may be asked to rate their level of pain, how much they like
a consumer product, their attitudes about capital punishment, their confidence in an
answer to a test question. Typically these ratings are made on a 5-point or a 7-point
scale. These scales are ordinal scales since there is no assurance that a given
difference represents the same thing across the range of the scale. For example,
there is no way to be sure that a treatment that reduces pain from a rated pain level
of 3 to a rated pain level of 2 represents the same level of relief as a treatment that
reduces pain from a rated pain level of 7 to a rated pain level of 6.

In memory experiments, the dependent variable is often the number of items
correctly recalled. What scale of measurement is this? You could reasonably argue
that it is a ratio scale. First, there is a true zero point; some subjects may get no
items correct at all. Moreover, a difference of one represents a difference of one
item recalled across the entire scale. It is certainly valid to say that someone who
recalled 12 items recalled twice as many items as someone who recalled only 6
items.

But number-of-items recalled is a more complicated case than it appears at
first. Consider the following example in which subjects are asked to remember as
many items as possible from a list of 10. Assume that (a) there are 5 easy items and
5 difficult items, (b) half of the subjects are able to recall all the easy items and
different numbers of difficult items, while (c) the other half of the subjects are
unable to recall any of the difficult items but they do remember different numbers
of easy items. Some sample data are shown below.
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Subject Easy Items Difficult ltems Score

A 0 0 1 1 0 0 0 0 0 0 2
B 1 0 1 1 0 0 0 0 0 0 3
C 1 1 1 1 1 1 1 0 0 0 7

D 1 1 1 1 1 0 1 1 0 1 8

Let's compare (i) the difference between Subject A's score of 2 and Subject B's
score of 3 and (i1) the difference between Subject C's score of 7 and Subject D's
score of 8. The former difference is a difference of one easy item; the latter
difference is a difference of one difficult item. Do these two differences necessarily
signify the same difference in memory? We are inclined to respond “No” to this
question since only a little more memory may be needed to retain the additional
easy item whereas a lot more memory may be needed to retain the additional hard
item. The general point is that it is often inappropriate to consider psychological
measurement scales as either interval or ratio.

Consequences of level of measurement

Why are we so interested in the type of scale that measures a dependent variable?
The crux of the matter is the relationship between the variable's level of
measurement and the statistics that can be meaningfully computed with that
variable. For example, consider a hypothetical study in which 5 children are asked
to choose their favorite color from blue, red, yellow, green, and purple. The
researcher codes the results as follows:

Color Code

Blue
Red
Yellow
Green
Purple

a b~ W N -

This means that if a child said her favorite color was “Red,” then the choice was
coded as “2,” if the child said her favorite color was “Purple,” then the response
was coded as 5, and so forth. Consider the following hypothetical data:
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Subject Color Code

Blue
Blue
Green
Green
Purple

a b WON -
(&) I N

Each code is a number, so nothing prevents us from computing the average code
assigned to the children. The average happens to be 3, but you can see that it would
be senseless to conclude that the average favorite color is yellow (the color with a
code of 3). Such nonsense arises because favorite color is a nominal scale, and
taking the average of its numerical labels is like counting the number of letters in
the name of a snake to see how long the beast is.

Does it make sense to compute the mean of numbers measured on an ordinal
scale? This is a difficult question, one that statisticians have debated for decades.
The prevailing (but by no means unanimous) opinion of statisticians is that for
almost all practical situations, the mean of an ordinally-measured variable is a
meaningful statistic. However, there are extreme situations in which computing the
mean of an ordinally-measured variable can be very misleading.

39



Distributions
by David M. Lane and Heidi Ziemer

Prerequisites
e Chapter 1: Variables

Learning Objectives

Define “distribution”

Interpret a frequency distribution

Distinguish between a frequency distribution and a probability distribution
Construct a grouped frequency distribution for a continuous variable
Identify the skew of a distribution

Identify bimodal, leptokurtic, and platykurtic distributions

AN D B W N

Distributions of Discrete Variables

I recently purchased a bag of Plain M&M's. The M&M's were in six different
colors. A quick count showed that there were 55 M&M's: 17 brown, 18 red, 7
yellow, 7 green, 2 blue, and 4 orange. These counts are shown below in Table 1.

Table 1. Frequencies in the Bag of M&M's

Color Frequency
Brown 17
Red 18
Yellow 7
Green 7
Blue 2
Orange 4

This table is called a frequency table and it describes the distribution of M&M
color frequencies. Not surprisingly, this kind of distribution is called a frequency
distribution. Often a frequency distribution is shown graphically as in Figure 1.
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Figure 1. Distribution of 55 M&M's.

-
(@)

Frequency
o

The distribution shown in Figure 1 concerns just my one bag of M&M's. You
might be wondering about the distribution of colors for all M&M's. The
manufacturer of M&M's provides some information about this matter, but they do
not tell us exactly how many M&M's of each color they have ever produced.
Instead, they report proportions rather than frequencies. Figure 2 shows these
proportions. Since every M&M is one of the six familiar colors, the six proportions
shown in the figure add to one. We call Figure 2 a probability distribution because
if you choose an M&M at random, the probability of getting, say, a brown M&M is
equal to the proportion of M&M's that are brown (0.30).
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Figure 2. Distribution of all M&M's.

Notice that the distributions in Figures 1 and 2 are not identical. Figure 1 portrays
the distribution in a sample of 55 M&M's. Figure 2 shows the proportions for all
M&M's. Chance factors involving the machines used by the manufacturer
introduce random variation into the different bags produced. Some bags will have a
distribution of colors that is close to Figure 2; others will be further away.

Continuous Variables

The variable “color of M&M” used in this example is a discrete variable, and its
distribution is also called discrete. Let us now extend the concept of a distribution
to continuous variables.

The data shown in Table 2 are the times it took one of us (DL) to move the
cursor over a small target in a series of 20 trials. The times are sorted from shortest
to longest. The variable “time to respond” is a continuous variable. With time
measured accurately (to many decimal places), no two response times would be
expected to be the same. Measuring time in milliseconds (thousandths of a second)
is often precise enough to approximate a continuous variable in psychology. As
you can see in Table 2, measuring DL's responses this way produced times no two
of which were the same. As a result, a frequency distribution would be
uninformative: it would consist of the 20 times in the experiment, each with a
frequency of 1.
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Table 2. Response Times

568 720
577 728
581 729
640 777
641 808
645 824
657 825
673 865
696 875
703 1007

The solution to this problem is to create a grouped frequency distribution. In a
grouped frequency distribution, scores falling within various ranges are tabulated.
Table 3 shows a grouped frequency distribution for these 20 times.

Table 3. Grouped frequency distribution

Range Frequency

500-600
600-700
700-800
800-900
900-1000
1000-1100

- O O o0 OO W

Grouped frequency distributions can be portrayed graphically. Figure 3 shows a
graphical representation of the frequency distribution in Table 3. This kind of graph
is called a histogram. Chapter 2 contains an entire section devoted to histograms.
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Figure 3. A histogram of the grouped frequency distribution shown in Table
3. The labels on the X-axis are the middle values of the range they
represent.

Probability Densities

The histogram in Figure 3 portrays just DL's 20 times in the one experiment he
performed. To represent the probability associated with an arbitrary movement
(which can take any positive amount of time), we must represent all these potential
times at once. For this purpose, we plot the distribution for the continuous variable
of time. Distributions for continuous variables are called continuous distributions.
They also carry the fancier name probability density. Some probability densities
have particular importance in statistics. A very important one is shaped like a bell,
and called the normal distribution. Many naturally-occurring phenomena can be
approximated surprisingly well by this distribution. It will serve to illustrate some
features of all continuous distributions.

An example of a normal distribution is shown in Figure 4. Do you see the
“bell”? The normal distribution doesn't represent a real bell, however, since the left
and right tips extend indefinitely (we can't draw them any further so they look like
they've stopped in our diagram). The Y-axis in the normal distribution represents
the “density of probability.” Intuitively, it shows the chance of obtaining values
near corresponding points on the X-axis. In Figure 4, for example, the probability
of an observation with value near 40 is about half of the probability of an
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observation with value near 50. (For more information, see Chapter 7.)

I I I I
20 40 60 80

Figure 4. A normal distribution.

Although this text does not discuss the concept of probability density in detail, you
should keep the following ideas in mind about the curve that describes a
continuous distribution (like the normal distribution). First, the area under the
curve equals 1. Second, the probability of any exact value of X is 0. Finally, the
area under the curve and bounded between two given points on the X-axis is the
probability that a number chosen at random will fall between the two points. Let us
illustrate with DL's hand movements. First, the probability that his movement takes
some amount of time is one! (We exclude the possibility of him never finishing his
gesture.) Second, the probability that his movement takes exactly
598.956432342346576 milliseconds is essentially zero. (We can make the
probability as close as we like to zero by making the time measurement more and
more precise.) Finally, suppose that the probability of DL's movement taking
between 600 and 700 milliseconds is one tenth. Then the continuous distribution
for DL's possible times would have a shape that places 10% of the area below the
curve in the region bounded by 600 and 700 on the X-axis.
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Shapes of Distributions

Distributions have different shapes; they don't all look like the normal distribution
in Figure 4. For example, the normal probability density is higher in the middle
compared to its two tails. Other distributions need not have this feature. There is
even variation among the distributions that we call “normal.” For example, some
normal distributions are more spread out than the one shown in Figure 4 (their tails
begin to hit the X-axis further from the middle of the curve --for example, at 10
and 90 if drawn in place of Figure 4). Others are less spread out (their tails might
approach the X-axis at 30 and 70). More information on the normal distribution
can be found in a later chapter completely devoted to them.

The distribution shown in Figure 4 is symmetric; if you folded it in the
middle, the two sides would match perfectly. Figure 5 shows the discrete
distribution of scores on a psychology test. This distribution is not symmetric: the
tail in the positive direction extends further than the tail in the negative direction. A
distribution with the longer tail extending in the positive direction is said to have a
positive skew. It is also described as “skewed to the right.”
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45 55 65 75 85 95 105 115 125 135 145 155 165
Figure 5. A distribution with a positive skew.

Figure 6 shows the salaries of major league baseball players in 1974 (in thousands
of dollars). This distribution has an extreme positive skew.
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Figure 6. A distribution with a very large positive skew.

A continuous distribution with a positive skew is shown in Figure 7.

Figure 7. A continuous distribution with a positive skew.
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Although less common, some distributions have a negative skew. Figure 8 shows
the scores on a 20-point problem on a statistics exam. Since the tail of the
distribution extends to the left, this distribution is skewed to the left.

20

—
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Frequency
o

0
75 95 115 135 155 175 195

Figure 8. A distribution with negative skew. This histogram shows the
frequencies of various scores on a 20-point question on a statistics
test.
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A continuous distribution with a negative skew is shown in Figure 9.

Figure 9. A continuous distribution with a negative skew.

The distributions shown so far all have one distinct high point or peak. The
distribution in Figure 10 has two distinct peaks. A distribution with two peaks is
called a bimodal distribution.
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Figure 10. Frequencies of times between eruptions of the Old Faithful
geyser. Notice the two distinct peaks: one at 1.75 and the other at
4.25.

Distributions also differ from each other in terms of how large or “fat” their tails
are. Figure 11 shows two distributions that differ in this respect. The upper
distribution has relatively more scores in its tails; its shape is called leptokurtic.
The lower distribution has relatively fewer scores in its tails; its shape is called
platykurtic.
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Figure 11. Distributions differing in kurtosis. The top distribution has long
tails. It is called “leptokurtic.” The bottom distribution has short tails.
It is called “platykurtic.”
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Summation Notation
by David M. Lane

Prerequisites
e None

Learning Objectives

1. Use summation notation to express the sum of all numbers

2. Use summation notation to express the sum of a subset of numbers
3. Use summation notation to express the sum of squares

Many statistical formulas involve summing numbers. Fortunately there is a
convenient notation for expressing summation. This section covers the basics of
this summation notation.

Let's say we have a variable X that represents the weights (in grams) of 4
grapes. The data are shown in Table 1.

Table 1. Weights of 4 grapes.

Grape X
1 4.6
2 5.1
3 4.9
4 4.4

We label Grape 1's weight X1, Grape 2's weight X», etc. The following formula
means to sum up the weights of the four grapes:

4
2.
i=1

The Greek letter 2 indicates summation. The “1 = 17 at the bottom indicates that

the summation is to start with X; and the 4 at the top indicates that the summation

will end with X4. The “X;” indicates that X is the variable to be summed as 1 goes
from 1 to 4. Therefore,
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4
in=X1+X2+X3+X4=4.6+5.1+4.9+4.4=19
i=1

The symbol

3
2.
i=1

indicates that only the first 3 scores are to be summed. The index variable 1 goes
from 1 to 3.

When all the scores of a variable (such as X) are to be summed, it is often
convenient to use the following abbreviated notation:

>x

Thus, when no values of 1 are shown, it means to sum all the values of X.
Many formulas involve squaring numbers before they are summed. This is
indicated as

DX =46"+51"+49"+ 4.4’
= 21.16 + 26.01 + 24.01 + 19.36 = 90.54.

Notice that:

2
(z X) # Z X?
because the expression on the left means to sum up all the values of X and then
square the sum (192 = 361), whereas the expression on the right means to square
the numbers and then sum the squares (90.54, as shown).

Some formulas involve the sum of cross products. Table 2 shows the data for

variables X and Y. The cross products (XY) are shown in the third column. The
sum of the cross products is 3 +4 + 21 = 28.
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Table 2. Cross Products.

X Y XY
1 3 3
2 2 4
3 7 21

In summation notation, this is written as:

ZXY = 28
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Linear Transformations
by David M. Lane

Prerequisites
e None

Learning Objectives

1. Give the formula for a linear transformation

2. Determine whether a transformation is linear

3. Describe what is linear about a linear transformation

Often it is necessary to transform data from one measurement scale to another. For
example, you might want to convert height measured in feet to height measured in
inches. Table 1 shows the heights of four people measured in both feet and inches.
To transform feet to inches, you simply multiply by 12. Similarly, to transform
inches to feet, you divide by 12.
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Table 1. Converting between feet and inches.

Feet Inches
5.00 60
6.25 75
5.50 66
5.75 69

Some conversions require that you multiply by a number and then add a second
number. A good example of this is the transformation between degrees Centigrade
and degrees Fahrenheit. Table 2 shows the temperatures of 5 US cities in the early
afternoon of November 16, 2002.

Table 2. Temperatures in 5 cities on 11/16/2002.

City Degrees Fahrenheit | Degrees Centigrade
Houston 54 12.22
Chicago 37 2.78

Minneapolis 31 -0.56
Miami 78 25.56
Phoenix 70 21.11

The formula to transform Centigrade to Fahrenheit is:

F=1.8C + 32

The formula for converting from Fahrenheit to Centigrade is

C = 0.5556F - 17.778

The transformation consists of multiplying by a constant and then adding a second
constant. For the conversion from Centigrade to Fahrenheit, the first constant is 1.8
and the second is 32.

Figure 1 shows a plot of degrees Centigrade as a function of degrees
Fahrenheit. Notice that the points form a straight line. This will always be the case
if the transformation from one scale to another consists of multiplying by one
constant and then adding a second constant. Such transformations are therefore
called linear transformations.
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Figure 1. Degrees Centigrade as a function of degrees Fahrenheit
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Logarithms
by David M. Lane

Prerequisites
* Chapter 1: Distributions

Learning Objectives

1. Compute logs using different bases

2. Convert between bases

3. State the relationship between logs and proportional change

The log transformation reduces positive skew. This can be valuable both for
making the data more interpretable and for helping to meet the assumptions of
inferential statistics.

Basics of Logarithms (Logs)

Logs are, in a sense, the opposite of exponents. Consider the following simple
expression:

102 =100

Here we can say the base of 10 is raised to the second power. Here is an example
of a log:

Log10(100) = 2

This can be read as: The log base ten of 100 equals 2. The result is the power that
the base of 10 has to be raised to in order to equal the value (100). Similarly,

Log10(1000) = 3

since 10 has to be raised to the third power in order to equal 1,000.

These examples all used base 10, but any base could have been used. There
is a base which results in “natural logarithms” and that is called e and equals
approximately 2.718. It is beyond the scope of this book to explain what is
“natural” about it. Natural logarithms can be indicated either as: Ln(x) or loge(x)

Changing the base of the log changes the result by a multiplicative constant.
To convert from Logio to natural logs, you multiply by 2.303. Analogously, to
convert in the other direction, you divide by 2.303.
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Taking the antilog of a number undoes the operation of taking the log.
Therefore, since Logio(1000) = 3, the antilogio of 3 is 1,000. Taking the antilog of
a number simply raises the base of the logarithm in question to that number.

Logs and Proportional Change

A series of numbers that increases proportionally will increase in equal amounts
when converted to logs. For example, the numbers in the first column of Table 1
increase by a factor of 1.5 so that each row is 1.5 times as high as the preceding
row. The Logio transformed numbers increase in equal steps of 0.176.

Table 1. Proportional raw changes are equal in log units.

Raw Log
4.0 0.602
6.0 0.778
9.0 0.954
13.5 1.130

As another example, if one student increased their score from 100 to 200 while a
second student increased their's from 150 to 300, the percentage change (100%) is
the same for both students. The log difference is also the same, as shown below.

Logio(100) = 2.000
Logio(200) = 2.301
Difference: 0.301

Logio(150) = 2.176
Logio (300) = 2.477
Difference: 0.301

Arithmetic Operations

Rules for logs of products and quotients are shown below.
Log (AB) = Log(A) + Log(B)
Log (A/B) = Log(A) - Log(B)

For example,

Il
w

Logio (10 x 100) = Logio(10) + Logipo(100) =1 + 2
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Similarly,
LOglo (lOO/lO)

Logi10(100)

- Logi10(10)

2

60



Statistical Literacy

by Denise Harvey and David M. Lane

Prerequisites
o Chapter 1: Levels of Measurement

The Board of Trustees at a university commissioned a top management-consulting
firm to address the admission processes for academic and athletic programs. The
consulting firm wrote a report discussing the trade-off between maintaining
academic and athletic excellence. One of their key findings was:

The standard for an athlete’s admission, as reflected in SAT
scores alone, 1s lower than the standard for non-athletes by as
much as 20 percent, with the weight of this difference being
carried by the so-called “revenue sports” of football and
basketball. Athletes are also admitted through a different
process than the one used to admit non-athlete students.

What do you think?
Based on what you have learned in this chapter about measurement scales, does it
make sense to compare SAT scores using percentages? Why or why not?

Think about this before continuing:

As you may know, the SAT has an arbitrarily-determined lower
limit on test scores of 200. Therefore, SAT is measured on
either an ordinal scale or, at most, an interval scale. However, it
is clearly not measured on a ratio scale. Therefore, it is not
meaningful to report SAT score differences in terms of
percentages. For example, consider the effect of subtracting 200
from every student's score so that the lowest possible score 1s 0.
How would that affect the difference as expressed in
percentages?
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Exercises

Prerequisites
 All material presented in Chapter: “Introduction”

1. A teacher wishes to know whether the males in his/her class have more
conservative attitudes than the females. A questionnaire is distributed assessing
attitudes and the males and the females are compared. Is this an example of
descriptive or inferential statistics?

2. A cognitive psychologist is interested in comparing two ways of presenting
stimuli on sub- sequent memory. Twelve subjects are presented with each method
and a memory test is given. What would be the roles of descriptive and
inferential statistics in the analysis of these data?

3. If you are told only that you scored in the 80th percentile, do you know from
that description exactly how it was calculated? Explain.

4. A study is conducted to determine whether people learn better with spaced or
massed practice. Subjects volunteer from an introductory psychology class. At
the beginning of the semester 12 subjects volunteer and are assigned to the
massed-practice condition. At the end of the semester 12 subjects volunteer and
are assigned to the spaced-practice condition. This experiment involves two
kinds of non-random sampling: (1) Subjects are not randomly sampled from
some specified population and (2) subjects are not randomly assigned to
conditions. Which of the problems relates to the generality of the results? Which
of the problems relates to the validity of the results? Which problem is more
serious?

5. Give an example of an independent and a dependent variable.

6. Categorize the following variables as being qualitative or quantitative:
Rating of the quality of a movie on a 7-point scale
Age
Country you were born in
Favorite Color
Time to respond to a question
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7. Specify the level of measurement used for the items in Question 6.

8. Which of the following are linear transformations?
Converting from meters to kilometers
Squaring each side to find the area
Converting from ounces to pounds
Taking the square root of each person's height.
Multiplying all numbers by 2 and then adding 5
Converting temperature from Fahrenheit to Centigrade

9. The formula for finding each student’s test grade (g) from his or her raw score
(s) on a test is as follows: g =16 + 3s

Is this a linear transformation?
If a student got a raw score of 20, what is his test grade?

10. For the numbers 1,2, 4, 16, compute the following:
>X
22X
(ZX)-

11. Which of the frequency polygons has a large positive skew? Which has a large
negative skew?

12. What is more likely to have a skewed distribution: time to solve an anagram
problem (where the letters of a word or phrase are rearranged into another
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word or phrase like “dear” and “read” or “funeral” and “real fun) or scores on
a vocabulary test?

Questions from Case Studies

Angry Moods (AM) case study

13. (AM) Which variables are the participant variables? (They act as independent
variables in this study.)

14. (AM) What are the dependent variables?

15. (AM) Is Anger-Out a quantitative or qualitative variable?

Teacher Ratings (TR) case study

16. (TR) What is the independent variable in this study?

ADHD Treatment (AT) case study

17. (AT) What is the independent variable of this experiment? How many levels
does it have?

18. (AT) What is the dependent variable? On what scale (nominal, ordinal, interval,
ratio) was it measured?
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2. Graphing Distributions

A. Qualitative Variables

B. Quantitative Variables
1. Stem and Leaf Displays
. Histograms
Frequency Polygons
Box Plots
Bar Charts
Line Graphs
Dot Plots
C. Exercises

No LR B

Graphing data is the first and often most important step in data analysis. In this day
of computers, researchers all too often see only the results of complex computer
analyses without ever taking a close look at the data themselves. This is all the
more unfortunate because computers can create many types of graphs quickly and
easily.

This chapter covers some classic types of graphs such bar charts that were
invented by William Playfair in the 18th century as well as graphs such as box
plots invented by John Tukey in the 20th century.
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Graphing Qualitative Variables
by David M. Lane

Prerequisites
e Chapter 1: Variables

Learning Objectives

1. Create a frequency table

2. Determine when pie charts are valuable and when they are not
3. Create and interpret bar charts

4. Identify common graphical mistakes

When Apple Computer introduced the iMac computer in August 1998, the
company wanted to learn whether the iMac was expanding Apple’s market share.
Was the iMac just attracting previous Macintosh owners? Or was it purchased by
newcomers to the computer market and by previous Windows users who were
switching over? To find out, 500 iMac customers were interviewed. Each customer
was categorized as a previous Macintosh owner, a previous Windows owner, or a
new computer purchaser.

This section examines graphical methods for displaying the results of the
interviews. We’ll learn some general lessons about how to graph data that fall into
a small number of categories. A later section will consider how to graph numerical
data in which each observation is represented by a number in some range. The key
point about the qualitative data that occupy us in the present section is that they do
not come with a pre-established ordering (the way numbers are ordered). For
example, there is no natural sense in which the category of previous Windows
users comes before or after the category of previous Macintosh users. This
situation may be contrasted with quantitative data, such as a person’s weight.
People of one weight are naturally ordered with respect to people of a different
weight.

Frequency Tables

All of the graphical methods shown in this section are derived from frequency
tables. Table 1 shows a frequency table for the results of the iMac study; it shows
the frequencies of the various response categories. It also shows the relative
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frequencies, which are the proportion of responses in each category. For example,
the relative frequency for “none” of 0.17 = 85/500.

Table 1. Frequency Table for the iMac Data.

Previous Ownership Frequency Relative Frequency
None 85 0.17
Windows 60 0.12
Macintosh 355 0.71
Total 500 1

Pie Charts

The pie chart in Figure 1 shows the results of the iMac study. In a pie chart, each
category is represented by a slice of the pie. The area of the slice is proportional to
the percentage of responses in the category. This is simply the relative frequency
multiplied by 100. Although most iMac purchasers were Macintosh owners, Apple
was encouraged by the 12% of purchasers who were former Windows users, and
by the 17% of purchasers who were buying a computer for the first time.

Macintosh

Windows

Figure 1. Pie chart of iMac purchases illustrating frequencies of previous

computer ownership.
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Pie charts are effective for displaying the relative frequencies of a small number of
categories. They are not recommended, however, when you have a large number of
categories. Pie charts can also be confusing when they are used to compare the
outcomes of two different surveys or experiments. In an influential book on the use
of graphs, Edward Tufte asserted “The only worse design than a pie chart is several
of them.”

Here is another important point about pie charts. If they are based on a small
number of observations, it can be misleading to label the pie slices with
percentages. For example, if just 5 people had been interviewed by Apple
Computers, and 3 were former Windows users, it would be misleading to display a
pie chart with the Windows slice showing 60%. With so few people interviewed,
such a large percentage of Windows users might easily have occurred since chance
can cause large errors with small samples. In this case, it is better to alert the user
of the pie chart to the actual numbers involved. The slices should therefore be
labeled with the actual frequencies observed (e.g., 3) instead of with percentages.

Bar charts

Bar charts can also be used to represent frequencies of different categories. A bar
chart of the iMac purchases is shown in Figure 2. Frequencies are shown on the Y-
axis and the type of computer previously owned is shown on the X-axis. Typically,
the Y-axis shows the number of observations in each category rather than the
percentage of observations in each category as is typical in pie charts.
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Figure 2. Bar chart of iMac purchases as a function of previous computer
ownership.

Comparing Distributions

Often we need to compare the results of different surveys, or of different
conditions within the same overall survey. In this case, we are comparing the
“distributions” of responses between the surveys or conditions. Bar charts are often
excellent for illustrating differences between two distributions. Figure 3 shows the
number of people playing card games at the Yahoo web site on a Sunday and on a
Wednesday in the spring of 2001. We see that there were more players overall on
Wednesday compared to Sunday. The number of people playing Pinochle was
nonetheless the same on these two days. In contrast, there were about twice as
many people playing hearts on Wednesday as on Sunday. Facts like these emerge
clearly from a well-designed bar chart.
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Figure 3. A bar chart of the number of people playing different card games
on Sunday and Wednesday.

The bars in Figure 3 are oriented horizontally rather than vertically. The horizontal
format is useful when you have many categories because there is more room for
the category labels. We’ll have more to say about bar charts when we consider
numerical quantities later in this chapter.

Some graphical mistakes to avoid

Don’t get fancy! People sometimes add features to graphs that don’t help to convey
their information. For example, 3-dimensional bar charts such as the one shown in
Figure 4 are usually not as effective as their two-dimensional counterparts.
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Figure 4. A three-dimensional version of Figure 2.

Here is another way that fanciness can lead to trouble. Instead of plain bars, it is
tempting to substitute meaningful images. For example, Figure 5 presents the iMac
data using pictures of computers. The heights of the pictures accurately represent
the number of buyers, yet Figure 5 is misleading because the viewer's attention will
be captured by areas. The areas can exaggerate the size differences between the
groups. In terms of percentages, the ratio of previous Macintosh owners to
previous Windows owners is about 6 to 1. But the ratio of the two areas in Figure 5
is about 35 to 1. A biased person wishing to hide the fact that many Windows
owners purchased iMacs would be tempted to use Figure 5 instead of Figure 2!
Edward Tufte coined the term “lie factor” to refer to the ratio of the size of the
effect shown in a graph to the size of the effect shown in the data. He suggests that
lie factors greater than 1.05 or less than 0.95 produce unacceptable distortion.
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Figure 5. A redrawing of Figure 2 with a lie factor greater than 8.

Another distortion in bar charts results from setting the baseline to a value other
than zero. The baseline is the bottom of the Y-axis, representing the least number
of cases that could have occurred in a category. Normally, but not always, this
number should be zero. Figure 6 shows the iMac data with a baseline of 50. Once
again, the differences in areas suggests a different story than the true differences in
percentages. The number of Windows-switchers seems minuscule compared to its
true value of 12%.
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Figure 6. A redrawing of Figure 2 with a baseline of 50.

Finally, we note that it is a serious mistake to use a line graph when the X-axis
contains merely qualitative variables. A line graph is essentially a bar graph with
the tops of the bars represented by points joined by lines (the rest of the bar is
suppressed). Figure 7 inappropriately shows a line graph of the card game data
from Yahoo. The drawback to Figure 7 is that it gives the false impression that the
games are naturally ordered in a numerical way when, in fact, they are ordered
alphabetically.
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Figure 7. A line graph used inappropriately to depict the number of people
playing different card games on Sunday and Wednesday.

Summary

Pie charts and bar charts can both be effective methods of portraying qualitative
data. Bar charts are better when there are more than just a few categories and for
comparing two or more distributions. Be careful to avoid creating misleading
graphs.
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Graphing Quantitative Variables

Stem and Leaf Displays
Histograms

Frequency Polygons
Box Plots

Bar Charts

Line Graphs

Dot Plots

As discussed in the section on variables in Chapter 1, quantitative variables are
variables measured on a numeric scale. Height, weight, response time, subjective
rating of pain, temperature, and score on an exam are all examples of quantitative
variables. Quantitative variables are distinguished from categorical (sometimes
called qualitative) variables such as favorite color, religion, city of birth, favorite
sport in which there is no ordering or measuring involved.

There are many types of graphs that can be used to portray distributions of
quantitative variables. The upcoming sections cover the following types of graphs:
(1) stem and leaf displays, (2) histograms, (3) frequency polygons, (4) box plots,
(5) bar charts, (6) line graphs, (7) dot plots, and (8) scatter plots (discussed in a
different chapter). Some graph types such as stem and leaf displays are best-suited
for small to moderate amounts of data, whereas others such as histograms are best-
suited for large amounts of data. Graph types such as box plots are good at
depicting differences between distributions. Scatter plots are used to show the
relationship between two variables.

NNk »N =
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Stem and Leaf Displays
by David M. Lane

Prerequisites
* Chapter 1: Distributions

Learning Objectives

1. Create and interpret basic stem and leaf displays

2. Create and interpret back-to-back stem and leaf displays

3. Judge whether a stem and leaf display is appropriate for a given data set

A stem and leaf display is a graphical method of displaying data. It is particularly
useful when your data are not too numerous. In this section, we will explain how to
construct and interpret this kind of graph.

As usual, we will start with an example. Consider Table 1 that shows the
number of touchdown passes (TD passes) thrown by each of the 31 teams in the
National Football League in the 2000 season.

Table 1. Number of touchdown passes.

37,33,33,32,29,28,
28,23,22,22,22,21,
21,21, 20,20,19, 19,
18,18,18,18,16,15,
14,14,14,12,12,9,6

A stem and leaf display of the data is shown in Figure 1. The left portion of Figure
1 contains the stems. They are the numbers 3, 2, 1, and 0, arranged as a column to
the left of the bars. Think of these numbers as 10’s digits. A stem of 3, for example,
can be used to represent the 10’s digit in any of the numbers from 30 to 39. The
numbers to the right of the bar are leaves, and they represent the 1’s digits. Every
leaf in the graph therefore stands for the result of adding the leaf to 10 times its
stem.
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32337
2|001112223889
1]2244456888899
0|69

Figure 1. Stem and leaf display of the number of touchdown passes.

To make this clear, let us examine Figure 1 more closely. In the top row, the four
leaves to the right of stem 3 are 2, 3, 3, and 7. Combined with the stem, these
leaves represent the numbers 32, 33, 33, and 37, which are the numbers of TD
passes for the first four teams in Table 1. The next row has a stem of 2 and 12
leaves. Together, they represent 12 data points, namely, two occurrences of 20 TD
passes, three occurrences of 21 TD passes, three occurrences of 22 TD passes, one
occurrence of 23 TD passes, two occurrences of 28 TD passes, and one occurrence
of 29 TD passes. We leave it to you to figure out what the third row represents. The
fourth row has a stem of 0 and two leaves. It stands for the last two entries in Table
1, namely 9 TD passes and 6 TD passes. (The latter two numbers may be thought
of as 09 and 06.)

One purpose of a stem and leaf display is to clarify the shape of the
distribution. You can see many facts about TD passes more easily in Figure 1 than
in Table 1. For example, by looking at the stems and the shape of the plot, you can
tell that most of the teams had between 10 and 29 passing TD's, with a few having
more and a few having less. The precise numbers of TD passes can be determined
by examining the leaves.

We can make our figure even more revealing by splitting each stem into two
parts. Figure 2 shows how to do this. The top row is reserved for numbers from 35
to 39 and holds only the 37 TD passes made by the first team in Table 1. The
second row is reserved for the numbers from 30 to 34 and holds the 32, 33, and 33
TD passes made by the next three teams in the table. You can see for yourself what
the other rows represent.

3|7

3233

2889
2|001112223
1|56888899
1]22444
0|69
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Figure 2. Stem and leaf display with the stems split in two.

Figure 2 is more revealing than Figure 1 because the latter figure lumps too many
values into a single row. Whether you should split stems in a display depends on
the exact form of your data. If rows get too long with single stems, you might try
splitting them into two or more parts.

There is a variation of stem and leaf displays that is useful for comparing
distributions. The two distributions are placed back to back along a common
column of stems. The result is a “back-to-back stem and leaf display.” Figure 3
shows such a graph. It compares the numbers of TD passes in the 1998 and 2000
seasons. The stems are in the middle, the leaves to the left are for the 1998 data,
and the leaves to the right are for the 2000 data. For example, the second-to-last
row shows that in 1998 there were teams with 11, 12, and 13 TD passes, and in
2000 there were two teams with 12 and three teams with 14 TD passes.

1114
317

332 |3] 233

8865 | 2] 889
443311102 001112223
987776665 | 1] 56888899
321 |1] 22444
710] 69

Figure 3. Back-to-back stem and leaf display. The left side shows the 1998
TD data and the right side shows the 2000 TD data.

Figure 3 helps us see that the two seasons were similar, but that only in 1998 did
any teams throw more than 40 TD passes.

There are two things about the football data that make them easy to graph
with stems and leaves. First, the data are limited to whole numbers that can be
represented with a one-digit stem and a one-digit leaf. Second, all the numbers are
positive. If the data include numbers with three or more digits, or contain decimals,
they can be rounded to two-digit accuracy. Negative values are also easily handled.
Let us look at another example.

Table 2 shows data from the case study Weapons and Aggression. Each
value is the mean difference over a series of trials between the times it took an
experimental subject to name aggressive words (like “punch’) under two
conditions. In one condition, the words were preceded by a non-weapon word such

78


http://onlinestatbook.com/2/case_studies/guns.html

as “bug.” In the second condition, the same words were preceded by a weapon
word such as “gun” or “knife.” The issue addressed by the experiment was whether
a preceding weapon word would speed up (or prime) pronunciation of the
aggressive word compared to a non-weapon priming word. A positive difference
implies greater priming of the aggressive word by the weapon word. Negative
differences imply that the priming by the weapon word was less than for a neutral
word.

Table 2. The effects of priming (thousandths of a second).

43.2,42.9, 35.6, 25.6, 25.4, 23.6, 20.5, 19.9, 14.4, 12.7, 11.3,
10.2,10.0,9.1,7.5,5.4,4.7,3.8,2.1,1.2,-0.2,-6.3, -6.7,
-8.8,-10.4, -10.5, -14.9, -14.9, -15.0, -18.5, -27 .4

You see that the numbers range from 43.2 to -27.4. The first value indicates that
one subject was 43.2 milliseconds faster pronouncing aggressive words when they
were preceded by weapon words than when preceded by neutral words. The value
-27.4 indicates that another subject was 27.4 milliseconds slower pronouncing
aggressive words when they were preceded by weapon words.

The data are displayed with stems and leaves in Figure 4. Since stem and
leaf displays can only portray two whole digits (one for the stem and one for the
leaf) the numbers are first rounded. Thus, the value 43.2 is rounded to 43 and
represented with a stem of 4 and a leaf of 3. Similarly, 42.9 is rounded to 43. To
represent negative numbers, we simply use negative stems. For example, the
bottom row of the figure represents the number —27. The second-to-last row
represents the numbers -10, -10, -15, etc. Once again, we have rounded the original
values from Table 2.

4133

316

2100456

1100134

011245589
-010679
-11005559
=217
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Figure 4. Stem and leaf display with negative numbers and rounding.

Observe that the figure contains a row headed by “0” and another headed by “-0.”
The stem of O is for numbers between 0 and 9, whereas the stem of -0 is for
numbers between 0 and -9. For example, the fifth row of the table holds the
numbers 1,2,4,5,5,8,9 and the sixth row holds 0, -6, -7, and -9. Values that are
exactly 0 before rounding should be split as evenly as possible between the “0” and
“-0” rows. In Table 2, none of the values are 0 before rounding. The “0” that
appears in the “-0” row comes from the original value of -0.2 in the table.

Although stem and leaf displays are unwieldy for large data sets, they are
often useful for data sets with up to 200 observations. Figure 5 portrays the
distribution of populations of 185 US cities in 1998. To be included, a city had to
have between 100,000 and 500,000 residents.

41899

4|6

44455

4333

4|01

3199

31677777

3|55

3223

3|111

218899

21666667

21444455

2]22333

21000000
1|88888888888899999999999
1|666666777777
1|444444444444555555555555
1]2222222222222222222333333333
1]000000000000000111111111111111111111111111

Figure 5. Stem and leaf display of populations of 185 US cities with
populations between 100,000 and 500,000 in 1988.

Since a stem and leaf plot shows only two-place accuracy, we had to round the
numbers to the nearest 10,000. For example the largest number (493,559) was
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rounded to 490,000 and then plotted with a stem of 4 and a leaf of 9. The fourth
highest number (463,201) was rounded to 460,000 and plotted with a stem of 4 and
a leaf of 6. Thus, the stems represent units of 100,000 and the leaves represent
units of 10,000. Notice that each stem value is split into five parts: 0-1, 2-3, 4-5,
6-7, and 8-9.

Whether your data can be suitably represented by a stem and leaf display
depends on whether they can be rounded without loss of important information.
Also, their extreme values must fit into two successive digits, as the data in Figure
5 fit into the 10,000 and 100,000 places (for leaves and stems, respectively).
Deciding what kind of graph is best suited to displaying your data thus requires
good judgment. Statistics is not just recipes!
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Histograms
by David M. Lane

Prerequisites
» Chapter 1: Distributions
* Chapter 2: Graphing Qualitative Data

Learning Objectives

1. Create a grouped frequency distribution

2. Create a histogram based on a grouped frequency distribution
3. Determine an appropriate bin width

A histogram is a graphical method for displaying the shape of a distribution. It is
particularly useful when there are a large number of observations. We begin with
an example consisting of the scores of 642 students on a psychology test. The test
consists of 197 items each graded as “correct” or “incorrect.” The students' scores
ranged from 46 to 167.

The first step is to create a frequency table. Unfortunately, a simple
frequency table would be too big, containing over 100 rows. To simplify the table,
we group scores together as shown in Table 1.

Table 1. Grouped Frequency Distribution of Psychology Test Scores

Interval’'s Lower | Interval's Upper | Class Frequency

Limit Limit

39.5 49.5 3
49.5 59.5 10
59.5 69.5 53
69.5 79.5 107
79.5 89.5 147
89.5 99.5 130
99.5 109.5 78
109.5 119.5 59
119.5 129.5 36
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129.5 139.5 11

139.5 149.5 6
149.5 159.5 1
159.5 169.5 1

To create this table, the range of scores was broken into intervals, called class
intervals. The first interval is from 39.5 to 49.5, the second from 49.5 to 59.5, etc.
Next, the number of scores falling into each interval was counted to obtain the
class frequencies. There are three scores in the first interval, 10 in the second, etc.

Class intervals of width 10 provide enough detail about the distribution to be
revealing without making the graph too “choppy.” More information on choosing
the widths of class intervals is presented later in this section. Placing the limits of
the class intervals midway between two numbers (e.g.,49.5) ensures that every
score will fall in an interval rather than on the boundary between intervals.

In a histogram, the class frequencies are represented by bars. The height of each
bar corresponds to its class frequency. A histogram of these data is shown in Figure

l.
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