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Abstract

This article presents the architecture of Junior, a robatiticle capable of navi-
gating urban environments autonomously. In doing so, thécieis able to select
its own routes, perceive and interact with other traffic, ardcute various urban
driving skills including lane changes, U-turns, parkingdamerging into moving
traffic. The vehicle successfully finished and won secondepia the DARPA Ur-
ban Challenge, a robot competition organized by the U.S. (aovent.

1 Introduction

The vision of self-driving cars promises to bring fundana¢change to one of the most essential
aspects of our daily lives. In the U.S. alone, traffic accid@ause the loss of over 40,000 people
annually, and a substantial fraction of the world’s enesgyded for personal car-based transporta-
tion (U.S. Department of Transportation, 2005). A safef-daVing car would fundamentally im-
prove the safety and comfort of the driving population, whiéducing the environmental impact
of the automobile.

In 2003, the Defense Advanced Research Projects Agency (DARRated a series of competi-
tions aimed at the rapid technological advancement of amaus vehicle control. The first such
event, the “DARPA Grand Challenge,” led to the developmentedfisles that could confidently
follow a desert trail at average velocities nearing 20mphetBer et al., 2006). In October 2005,
Stanford’s robot “Stanley” won this challenge and becaneditist robot to finish the 131-mile long
course (Montemerlo et al., 2006). The “DARPA Urban Challehghich took place on November
3, 2007, brought about vehicles that could navigate in traffa mock urban environment.

The rules of the DARPA Urban Challenge were complex (DARPA, 2002hicles were provided
with a digital street map of the environment, in the form dk@ad Network Description Fileor
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Figure 1: Junior, our entry in the DARPA Urban Challenge. Juisi@quipped with five different
laser measurement systems, a multi-radar assembly, anftissigoal inertial navigation system,
as shown in this figure.

RNDF. The RNDF contained geometric information on lanes, laaekings, stop signs, parking

lots, and special checkpoints. Teams were also provided avhigh-resolution aerial image of

the area, enabling them to manually enhance the RNDF beferevidnt. During the Urban Chal-

lenge event, vehicles were given multiple missions, defagesequences of checkpoints. Multiple
robotic vehicles carried out missions in the same envirarinagé the same time, possibly with

different speed limits. When encountering another vehiegeh robot had to obey traffic rules.
Maneuvers that were specifically required for the Urban @ngk included: passing parked or
slow-moving vehicles, precedence handling at intersestwith multiple stop signs, merging into

fast-moving traffic, left turns across oncoming traffic,pag in a parking lot, and the execution
of U-turns in situations where a road is completely blockéghicle speeds were generally limited
to 30mph, with lower speed limits in many places. DARPA adediteleven vehicles to the final

event, of which the present vehicle was one.

“Junior,” the robot shown in Figure 1, is a modified 2006 VeWegen Passat Wagon, equipped
with five laser rangefinders (manufactured by IBEO, Riegl, Sarkd Velodyne), an Applanix
GPS-aided inertial navigation system, five BOSCH radars, hi&l tjuad core computer systems,
and a custom drive-by-wire interface developed by Volkssveg Electronic Research Lab. The
vehicle has an obstacle detection range of up to 120 metais;eaches a maximum velocity of
30mph, the maximum speed limit according to the Urban Chgdenles. Junior made its driving
decisions through a distributed software pipeline thaggrdtes perception, planning, and control.
This software is the focus of the present article.



Figure 2: All computing and power equipment is placed in thak of the vehicle. Two Intel quad
core computers (bottom right) run the bulk of all vehicletaafre. Other modules in the trunk
rack include a power server for selectively powering indiidal vehicle components, and various
modules concerned with drive-by-wire and GPS navigatiof.[2OF inertial measurement unit is
also mounted in the trunk of the vehicle, near the rear axle.

Junior was developed by a team of researchers from Stanfoneekgity, Volkswagen, and its

affiliated corporate sponsors: Applanix, Google, Intel,Hvi®avidow Ventures, NXP, and Red
Bull. This team was mostly comprised of the original Stanf@eting Team, which developed the
winning entry “Stanley” in the 2005 DARPA Grand Challenge (Nemerlo et al., 2006). In the

Urban Challenge, Junior placed second, behind a vehicle @amegie Mellon University, and

ahead of the third-place winner from Virginia Tech.

2 Vehicle

Junior is a modified 2006 Passat wagon, equipped with a #dstiturbo diesel injection engine.
The 140 hp vehicle is equipped with a limited-torque stagnrotor, an electronic brake booster,
electronic throttle, gear shifter, parking brake, and sigmals. A custom interface board provides
computer control over each of these vehicle elements. Th@&erprovides electric power to
Junior's computing system through a high-current protetgfiernator, supported by a battery-
backed electronically controlled power system. For dguelent purposes, the cabin is equipped
with switches that enable a human driver to engage vari@esrehic interface components at will.
For example, a human developer may choose the computer tkctie steering wheel and turn
signals, while retaining manual control over the throtthel ahe vehicle brakes. These controls
were primarily for testing purposes; during the actual cetitipn, no humans were allowed inside
the vehicles.

For inertial navigation, an Applanix POS LV 420 system pd®& real-time integration of multiple
dual-frequency GPS receivers which includes a GPS Azimahadthg measurement subsystem,
a high-performance inertial measurement unit, wheel odighwa a distance measurement unit
(DMI), and the Omnistar satellite-based Virtual Base Stasiervice. The real-time position and
orientation errors of this system were typically below 1@9and 0.1 degrees, respectively.

Two side-facing SICK LMS 291-S14 sensors and a forward-pdiRIEGL LMS-Q120 laser sen-



sor provide measurements of the adjacent 3-D road struaharenfrared reflectivity measurements
of the road surface for lane marking detection and precigébricle localization.

For obstacle and moving vehicle detection, a Velodyne HRE-& mounted on the roof of the
vehicle. The Velodyne, which incorporates 64 laser diodes spins at up to 15 Hz, generates
dense range data covering a 360 horizontal field-of-viewaB@ degree vertical field-of-view.
The Velodyne is supplemented by two SICK LDLRS sensors mousitéige rear of the vehicle,
and two IBEO ALASCA XT lidars mounted in the front bumper. Five BOH Long Range Radars
(LRR2) mounted around the front grill provide additional infation about moving vehicles.

Junior’'s computer system consists of two Intel quad coreessr Both computers run Linux, and
they communicate over a gigabit ethernet link.

3 Software Architecture

Junior’s software architecture is designed as a data dpyagline in which individual modules
process information asynchronously. This same softwani@tacture was employed successfully
by Junior’s predecessor Stanley in the 2005 challenge (dvoetlo et al., 2006). Each module
communicates with other modules via an anonymous publibkfsibe message passing protocol,
based on the Inter Process Communication Toolkit (IPC) (Singamd Apfelbaum, 1998).

Modules subscribe to message streams from other modulésh afe then sent asynchronously.
The result of the computation of a module may then be puldisbether modules. In this way,
each module is processing data at all times, acting as ampgpdihe time delay between entry of
sensor data into the pipeline to the effect on the vehicletsadors is approximately 300ms. The
software is roughly organized into five groups of modules.

e sensor interfaces— The sensor interfaces manage communication with the leehitd
individual sensors, and make resulting sensor data alaitabthe rest of the software
modules.

e perception modules— The perception modules segment the environment data ioxowun
vehicles and static obstacles. They also provide preclisgalization of the vehicle relative
to the digital map of the environment.

e navigation modules— The navigation modules determine the behavior of the \@hihe
navigation group consists of a number of motion plannenss pl hierarchical finite state
machine for invoking different robot behaviors and preirentieadlocks.

e drive-by-wire interface — Controls are passed back to the vehicle through the drive-by
wire interface. This module enables software control ofttivettle, brake, steering, gear
shifting, turn signals, and emergency brake.

¢ global services- A number of system level modules provide logging, time gtiag, mes-
sage passing support, and watchdog functions to keep ttveasefrunning reliably.

Table 1 lists the actual processes running on the robot'spatens during the race event, and
Figure 3 shows a overview of the data flow between modules.



Process name Computer| Description

PROCESS-CONTROL 1 starts and restarts processes, adds process control via IPC

APPLANIX 1 Applanix interface (via IPC).

LDLRS1 & LDLRS2 1 Sick LDLRS laser interface (via IPC).

IBEO 1 IBEO laser interface (via IPC).

SICK1 & SICK2 1 Sick LMS laser interfaces (via IPC).

RIEGL 1 Riegl laser interface (via IPC).

VELODYNE 1 Velodyne laser interface (via IPC and shared memory). This modute als
projects the 3d points using Applanix pose information.

CAN 1 CAN bus interface

RADAR1 - RADARS | 1 Radar interfaces (via IPC).

PERCEPTION 1 IPC/Shared Memory interface of Velodyne data, obstacle detectiomnuign
tracking and scan differencing

RNDF_LOCALIZE 1 1D localization using RNDF

HEALTHMON 1 logs computer health information (temperature, processes, CPU amdmne
usage)

PROCESS-CONTROLY 2 start/restarts processes and adds process control over IPC

CENTRAL 2 IPC-server

PARAM_SERVER 2 central server for all parameters

ESTOP 2 IPC/serial interface to DARPA E-stop

HEALTHMON 2 monitors the health of all modules

POWER 2 IPC/serial interface to power-server (relay card)

PASSAT 2 IPC/serial interface to vehicle interface board

CONTROLLER 2 vehicle motion controller

PLANNER 2 path planner and hybrid A* planner

Table 1: Table of processes running during the Urban Chadleng
4 Environment Perception

Junior’s perceptual routines address a wide variety ofaabstdetection and tracking problems.
Figure 4a shows a scan from the primary obstacle detectisosethe Velodyne. Scans from the
IBEO lasers, shown in Figure 4b, and LDLRS lasers are used fgeuent the Velodyne data in
blind spots. A radar system complements the laser system @arly warning system for moving
objects in intersections.

4.1 Laser Obstacle Detection

In urban environments, the vehicle encounters a wide yaokstatic and moving obstacles. Ob-
stacles as small as a curb may trip a fast-moving vehicle esecting small objects is of great
importance. Overhangs and trees may look like large olestatla distance, but traveling under-
neath is often possible. Thus, obstacle detection mustdemthe 3-D geometry of the world.
Figure 5 depicts a typical output of the obstacle detectoarine in an urban environment. Each
red object corresponds to an obstacle. Towards the botigimt, & camera image is shown for
reference.

The robot’s primary sensor for obstacle detection is thedgahe laser. A simple algorithm for
detecting obstacles in Velodyne scans would be to find paeiittssimilar x-y coordinates whose
vertical displacement exceeds a given threshold. Indeedalgorithm can be used to detect large
obstacles such as pedestrians, signposts, and cars. Hovage and calibration error are high
enough with this sensor that the displacement thresholdatdre set low enough in practice to
detect curb-sized objects without substantial numberaleéfpositives.
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Figure 3: Flow diagram of the Junior Software.

An alternative to comparing vertical displacements is tmpare the range returned by two adja-
cent beams, where “adjacency” is measured in terms of theipgiangle of the beams. Each of
the 64 lasers has a fixed pitch angle relative to the vehiahadr, and thus would sweep out a circle
of a fixed radius on a flat ground plane as the sensor rotatepe®lerrain locally compresses
these rings, causing the distance between adjacent ririgs smaller than the inter-ring distance
on flat terrain. In the extreme case, a vertical obstacleesaadjacent beams to return nearly equal
ranges. Because the individual beams strike the ground htshatlow angles, the distance be-
tween rings is a much more sensitive measurement of tefige shan vertical displacement. By
finding points that generate inter-ring distances thaeditfom the expected distance by more than
a given threshold, even obstacles that are not appareng teetitical thresholding algorithm can
be reliably detected.

In addition to terrain slope, rolling and pitching of the i@ will cause the rings traced out by the
individual lasers to compress and expand. If this is notrtak account, rolling to the left can
cause otherwise flat terrain to the left of the vehicle to tected incorrectly as an obstacle. This
problem can be remedied by making the expected distancestnekt ring a function of range,
rather than the index of the particular laser. Thus as theheelolls to the left, the expected range
difference for a specific beam decreases as the ring movesrdim the vehicle. Implemented in
this way, small obstacles can be reliably detected eveneasathsor rolls and pitches.
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Figure 4: (a) The Velodyne contains 64 laser sensors antesodd 10 Hz. It is able to see objects
and terrain out to 60 meters in every direction. (b) The IBEGssepossesses four scan lines which
are primarily parallel to the ground. The IBEO is capable aédeng large vertical obstacles, such
as cars and signposts.

Figure 5: Obstacles detected by the vehicle are overlayedamrial imagery (left) and Velodyne
data (right). In the example on the right, the curbs alond lsates of the road are detected.

Two more issues must be addressed when performing obstatgetidn in urban terrain. First,
trees and other objects frequently overhang safe drivimfaces and should not be detected as
obstacles. Overhanging objects are filtered out by comgdhieir height with a simple ground
model. Points that fall in a particular x-y grid cell that eed the height of the lowest detected
point in the same cell by more than a given threshold (thet@itthe vehicle plus a safety buffer),
are ignored as overhanging obstacles.

Second, the Velodyne sensor possesses a “blind spot” bétendehicle. This is the result of
the sensor’'s geometry and mounting location. Furthersit aannot detect small obstacles such
as curbs in the immediate vicinity of the robot due to selftosion. Here the IBEO and SICK
LDLRS sensors are used to supplement the Velodyne data. Bebatlsof these sensors are es-
sentially 2-D, ground readings cannot be distinguishechfvertical obstacles, and hence obstacles
can only be found at very short range (where ground measuntsraee unlikely). Whenever either
of these sensors detects an object within a close range (fidrsrfer the LDLRS and 5 meters
for the IBEO), the measurement is flagged as an obstacle. ®mbioation between short-range
sensing in 2-D and longer range sensing using the 3-D semswaidps high reliability. We note
that a 5 meter cut-off for the IBEO sensor may seem overly pasBc, as this laser is designed
for long range detection (100 meters and more). Howeversénsor presents a large number of



Figure 6: A map of a parking lot. Obstacles colored in yellow t@&ll obstacles, brown obstacles
are curbs, and green obstacles are overhanging objectsrézdpranches) that are of no relevance
to ground navigation.

false positive detections on non-flat terrain, such as datls.

Our obstacle detection method worked exceptionally welthe Urban Challenge, we know of no
instance in which our robot Junior collided with an obstatteparticular, Junior never ran over a
curb. We also found that the number of false positives wasrkatly small, and false positives
did not measurably impact the vehicle performance. In anss, static obstacle detection worked
flawlessly.

4.2 Static Mapping

In many situations, multiple measurements have to be iatedrover time even for static environ-
ment mapping. Such is the case, for example, in parkingwdisye occlusion or range limitations
may make it impossible to see all relevant obstacles atadigi Integrating multiple measurements
is also necessary to cope with certain blind spots in the raeaye of the vehicle. In particular,
curbs are only detectable beyond a certain minimum randeanelodyne laser. To alleviate these
problems, Junior caches sensor measurement into local rrgusre 6 shows such a local map,
constructed from many sensor measurements over time.rénitfeolors indicate different obstacle
types on a parking lot. The exact map update rule relies ostdreard Bayesian framework for
evidence accumulation (Moravec, 1988). This safeguaslsahot against spurious obstacles that
only show up in a small number of measurements.
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Figure 7: Examples of free space analysis for Velodyne scBims green lines represent the area
surrounding the robot that is observed to be empty. Thiseemd is incorporated into the static
map, shown in black and blue.

A key downside of accumulating static data over time into @ ar@ses from objects that move. For
example, a passage may be blocked for a while, and then besrdrable again. To accommodate
such situations, the software performs a local visibilidycalation. In each polar direction away
from the robot, the grid cells between the robot and the s¢aetected object are observed to be
free. Beyond the first detected obstacle, of course, it is gsipte to say whether the absence of
further obstacles is due to occlusion. Hence, no map upgltdhkes place beyond this range. This
mechanism may still lead to an overly conservative map, iygiecally works well for navigating
cluttered spaces such as parking lots. Figure 7 illustthesegion in which free space is detected
in a Velodyne sensor scan.

4.3 Dynamic Object Detection and Tracking

A key challenge in successful urban driving pertains to iotheving traffic. The present software
provides a reliable method for moving object detection amdligtion based on patrticle filters.

Moving object detection is performed on a synthetic 2-D sochthe environment. This scan is
synthesized from the various laser sensors by extractmgaihge to the nearest detected obstacle
along an evenly spaced array of synthetic range sensorsuséhef such a synthetic scan comes
with several advantages over the raw sensor data. Firspitpactness allows for efficient com-
putation. Second, the method is applicable to any of thestbiestacle-detecting range sensors
(Velodyne, IBEO, and SICK LDLRS), and any combination theredhe latter property stems
from the fact that any of those laser measurements can bead@agsily into a synthetic 2-D range
scan, rendering the scan representation relatively semdependent. This synergy thus provides
our robot with a unified method for finding, tracking, and peéidg moving objects. Figure 8a
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Figure 8: (a) Synthetic 2-D scan derived from Velodyne dédiaScan differencing provides areas
in which change has occurred, colored here in green andcegdirdcks of other vehicles. (d) The
corresponding camera image.



Figure 9: The side lasers provide intensity informatiort teanatched probabilistically with the
RNDF for precision localization.

shows such a synthetic scan.

The moving object tracker then proceeds in two stages. , kirstentifiesareas of changeFor
that, it compares two synthetic scans acquired over a bnef interval. If an obstacle in one of
the scans falls into the free space of the respective otlagx, fuis obstacle is a witness of motion.
Figure 8b shows such a situation. The red color of a scansjorels to an obstacle that is new,
and the green color marks the absence of a previously se&actehs

When such witnesses are found, the tracker initializes af geatrticles as possible object hypothe-
ses. These patrticles implement rectangular objects @réift dimensions, and at slightly different
velocities and locations. A patrticle filter algorithm is thesed to track such moving objects over
time. Typically, within three sightings of a moving objettig filter latches on and reliably tracks
the moving object.

Figure 8c depicts the resulting tracks; a camera image o$dnge scene is shown in Figure 8d.
The tracker estimates the location, the yaw, the veloaitgl,the size of the object.

5 Precision Localization

One of the key perceptual routines in Junior’s softwaregpestto localization. As noted, the robot
is given a digital map of the road network in form of an RNDF. Wihe RNDF is specified in
GPS coordinates, the GPS-based inertial position compaytede Applanix system is generally
not able to recover the coordinates of the vehicle with seflicaccuracy to perform reliable lane
keeping without sensor feedback. Further, the RNDF is itsalfcurate, adding further errors if
the vehicle were to blindly follow the road using the RNDF angpbkanix pose estimates. Junior
therefore estimates a local alignment between the RNDF ampaasent position using local sensor
measurements. In other words, Junior continuously loeslizelf relative to the RNDF.

This fine-grained localization uses two types of informatiooad reflectivity and curb-like obsta-



Figure 10: Typical localization result: The red bar illadts the Applanix localization, whereas
the yellow curve measures the posterior over the lateratippsf the vehicle. The green line
depicts the response from the lane line detector. In this,¢he error is approximately 80 cm.

cles. The reflectivity is sensed using the RIEGL LMS-Q120 d®dSICK LMS sensors, both of
which are pointed towards the ground. Fig. 9 shows the reéfigcinformation obtained through
the sideways mounted SICK sensors, and integrated overTimgdiagram illustrates the varying
infrared reflectivity of the lane markings.

The filter for localization is a 1-D histogram filter which iesates the vehicle’s lateral offset rela-
tive to the RNDF. This filter estimates the posterior disthinu of any lateral offset based on the
reflectivity and the sighted curbs along the road. It “revgdrdch a probabilistic fashion, offsets
for which lane-marker-like reflectivity patterns align vithe lane markers or the road side in the
RNDF. The filter “penalizes” offsets for which an observedocwoould reach into the driving cor-
ridor of the RNDF. As a result, at any point in time the vehicdéireates a fine-grained offset to
the measured location by the GPS-based INS system.

Figure 10 illustrates localization relative to the RNDF ireattrun. Here the green curves depicts
the likely locations of lane markers in both lasers, and #léow curve depicts the posterior dis-
tribution in the lateral direction. This specific poster@mviates from the Applanix estimate by
about 80 cm, which, if not accounted for, would make Junisti®els drive on the center line. In
the Urban Challenge Event, localization offsets of 1 metemore were common. Without this
localization step, Junior would have frequently crossedcénter line unintentionally, or possibly
hit a curb.

Finally, Figure 11 shows a distribution of lateral offsetreztions that were applied during the
Urban Challenge.
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Figure 11: Histogram of average localization correctionsirdy the race. At times the lateral
correction exceeds one meter.

5.1 Smooth Coordinates

When integrating multiple sensor measurements over tim@aif be tempting to use the INS
pose estimates (the output of the Applanix) to calculatee¢teive offset between different mea-
surements. However, in any precision INS system, the etdoingosition frequently “jumps” in
response to GPS measurements. This is because INS systevidephemost likelyposition
at the present time. As new GPS information arrives, it issfids that the most likely position
changes by an amount inconsistent with the vehicle motitie. @roblem, then, is that when such
a revision occurs, past INS measurements have to be catrasteell, to yield a consistent map.

Such a problem is known in the estimation literature as (ac#ts) smoothing (Jazwinsky, 1970).

To alleviate this problem, Junior maintains an intersiaoothcoordinate system that is robust
to such jumps. In the smooth coordinate system, the robatigross defined as the sum of all
incremental velocity updates:

T = $0+2At$t
t

wherex is the first INS coordinate, antl are the velocity estimates of the INS. In this internal
coordinate system, sudden INS position jumps have no effeat the sensor data are always
locally consistent. Vehicle velocity estimates from thes@@stimation system tend to be much
more stable than the position estimates, even when GP&snittent or unavailable. X and Y

velocities are particularly resistant to jumps becausgdine partially observed by wheel odometry.

This “trick” of smooth coordinates makes it possible to ntaiimlocally consistent maps even when
GPS shifts occur. We note, however, that the smooth codalgystem may cause inconsistencies
in mapping data over long time periods, hence can only beexpia local mapping problems. This
is not a problem for the present application, as the robat maintains local maps for navigation.

In the software implementation, the mapping between rasb@) and smooth (local) coordinates
only requires that one maintain the sum of all estimatioftshivhich is initialized by zero. This
correction term is then recursively updated by adding mishes between actual INS coordinates
and the velocity-based value.



Figure 12: Global planning: Dynamic programming propagat@ues through a crude discrete
version of the environment map. The color of the RNDF is regméstive of the cost to move to
the goal from each position in the graph. Low costs are gredrhggh costs are red.

6 Navigation

6.1 Global Path Planning

The first step of navigation pertains to global path plannifige global path planner is activated
for each new checkpoint; it also is activated when a permtamad blockage leads to a change
of the topology of the road network. However, instead of piag one specific path to the next
checkpoint, the global path planner plans paths from eargtion in the map to the next check-
point. As a result, the vehicle may depart from the optimah@end select a different one without
losing direction as to where to move.

Junior’s global path planner is an instancedghamic programmingor DP (Howard, 1960). The
DP algorithm recursively computes for each cell in a discketrsion of the RNDF theumulative
costsof moving from each such location to the goal point. The reiwerupdate equation for the
cost is standard in the DP literature. Liéf{x) be the cost of a discrete location in the RNDF,
with V' (goal) = 0. Then the following recursive equation defines the backup amnplicitly, the
cumulative cost functiofv:

V(z) «— min c(z,u)+ > ply|z,u) V(y)

Herew is an action, e.g., drive along a specific road segment. Irt cases, there is only one
admissible action. At intersections, however, there amecels (go straight, turn left, ...). Multi-
lane roads offer the choice of lane changes. For these dasesaximization over the control



choicew in the expression above will provide multiple terms, the imization of which leads to
the fastest expected path.

In practice, not all action choices are always successfok ekample, a shift from a left to a
right lane only “succeeds” if there is no vehicle in the riggme; otherwise the vehicle cannot
shift lanes. This is accommodated in the use of the tramsgrobabilityp(y | =, ). Junior, for
example, might assess the success probability of a larteashifly given discrete location as low as
10%. The benefit of this probabilistic view of decision makia that it penalizes plans that delay
lane changes to the very last moment. In fact, Junior tenésegute lane shifts at the earliest
possibility, and it trades off speed gains with the probabiand the cost) of failure when passing
a slow moving vehicle at locations where a subsequent nightis required (which may only be
admissible when in the right lane).

A key ingredient in the recursive equation above is the efstu). In most cases, the cost is
simply the time it takes to move between adjacent cells iiberete version of the RNDF. In this
way, the speed limits are factored into the optimal pathutaton, and the vehicle selects the path
that in expectation minimizes arrival time. Certain manesysuch as left turns across traffic, are
“penalized” by an additional time penalty to account for tis& that the robot takes when making
such a choice. In this way, the cost functieimplements a careful balance between navigation
time and risk. So in some cases, Junior engages on a slighirdai as to avoid a risky left turn,
or a risky merge. The additional costs of maneuvers canrdineet by hand (as they were for the
Urban Challenge) or learned from simulation data in repradiee environments.

Figure 12 shows a propagated cumulative cost function. Hereumulative cost is indicated by
the color of the path. This global function is brought to beaassess the “goodness” of each
location beyond the immediate sensor reach of the vehicle.

6.2 RNDF Road Navigation

The actual vehicle navigation is handled differently foreoon road navigation and the free-style
navigation necessary for parking lots.

Figure 13 visualizes a typical situation. For each prinicgadh, the planner rolls out a trajectory
that is parallel to the smoothed center of the lane. This sheoblane center is directly computed
from the RNDF. However, the planner also rolls out trajee®that undergo lateral shifts. Each of
those trajectories is the result of an internal vehicle &mn with different steering parameters.
The score of a trajectory considers the time it will take tibof@ this path (which may be infinite
if a path is blocked by an obstacle), plus the cumulative costputed by the global path planner,
for the final point along the trajectory. The planner theesks the trajectory which minimizes this
total cost value. In doing so, the robot combines optimate@election with dynamic nudging
around local obstacles.

Figure 14 illustrates this decision process in a situatitveng a slow-moving vehicle blocks the
right lane. Even though lane changes come with a small pecadt, the time savings due to faster
travel on the left lane result in a lane change. The planresr siteers the robot back into the right
lane when the passing maneuver is complete.



Figure 13: Planner roll-outs in an urban setting with mugtigiscrete choices. (a) For each prin-
ciple path, the planner rolls out trajectories that undéaggral shifts. (b) A driving situation with
two discrete plan choices, turn right or drive straight thylo the intersetion. The paths are colored
according to the DP value function, with red being high cost green being low cost.

We find that this path planner works well in well-defined t@8ituations. It results in smooth
motion along unobstructed roads, and in smooth and welheéfpassing maneuvers. The planner
also enables Junior to avoid small obstacles that mightdxteo a lane, such as parked cars on
the side. However, it is unable to handle blocked roads @rsetctions, and it also is unable to
navigate parking lots.

6.3 Free-Form Navigation

For free-form navigation in parking lots, the robot utikze second planner, which can generate ar-
bitrary trajectories irrespective of a specific road suet This planner requires a goal coordinate
and a map. It identifies a near-cost optimal path to the gaalldrsuch a path exist.



Figure 14: A passing maneuver. The additional cost of being slightly sub-optimal lane is
overwhelmed by the cost of driving behind a slow driver, @agiSunior to change lanes and pass.
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Figure 15: Graphical comparison of search algorithms. : L&ftassociates costs with centers of
cells and only visits states that correspond to grid-ceitees. Center: Field D* (Ferguson and
Stentz, 2005) associates costs with cell corners and alosary linear paths from cell to cell.
Right: Hybrid A* associates a continuous state with eachamd the score of the cell is the cost
of its associated continuous state.

This free-form planner is a modified version of A*, which weldaybrid A*. In the present
application, hybrid A* represents the vehicle state in a digzrete grid. Two of those dimensions
represent the:-y-location of the vehicle center in smooth map coordinatetira the vehicle
heading directiory, and a forth dimension pertains the direction of motionhesitforward or
reverse.

One problem with regular (non-hybrid) A* is that the resudtidiscrete plan cannot be executed
by a vehicle, simply because the world is continuous, whefegastates are discrete. To remedy
this problem, hybrid A* assigns to each discrete cell in A*omtinuous vehicle coordinate. This

continuous coordinate is such that it can be realized byc¢hehrobot.

To see how this works, lefr,y,0) be the present coordinates of the robot, and suppose those
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Figure 16: Hybrid-state A* heuristics. (a) Euclidean dmgta in 2-D expand21, 515 nodes. (b)
The non-holonomic-without-obstacles heuristic is a gigant improvement, as it expands465
nodes, but as shown in (c), it can lead to wasteful explanatibdead-ends in more complex
settings (8, 730 nodes). (d) This is rectified by using the latter in conjumetivith the holonomic-
with-obstacles heuristid (), 588 nodes).

coordinates lie in celt; in the discrete A* state representation. Then, by definjtiba continuous
coordinates associated with cellarex; = x, y; = y, andd; = 0. Now predict the (continuous)
vehicle state after applying a contrelfor a given amount of time. Suppose the prediction is
(«',y,0"), and assume this prediction falls into a different cell, ated ;. Then, if this is the
first time c; has been expanded, this cell will be assigned the assoaatgthuous coordinates
xz; =2a',y; =y, andf; = #'. The result of this assignment is that there exists an actwgfolu

in which the continuous coordinates associated withGethan actually be attained—a guarantee
which is not available for conventional A*. The hybrid A* algthm then applies the same logic
for future cell expansions, using;, y;, ¢;) whenever making a prediction that starts in egllWe
note that hybrid A* is guaranteed to yield realizable paths,it is not complete. That is, it may
fail to find a path. The coarser the discretization, the méenchybrid A* will fail to find a path.

Figure 15 compares hybrid A* to regular A* and Field D* (Fesgn and Stentz, 2005), an alter-
native algorithm that also considers the continuous natfithe underlying state space. A path
found by plain A* cannot easily be executed; and even the msuabother Field D* path possesses
kinks that a vehicle cannot execute. By virtue of associatorginuous coordinates with each grid
cell in Hybrid A*, our approach results in a path that is exable.

The cost function in A* follows the idea of execution time. iGnnplementation assigns a slightly
higher cost to reverse driving to encourage the vehicle it dnormally.” Further, a change of
direction induces an additional cost to account for the tintakes to execute such a maneuver.
Finally, we add a pseudo-cost that relates to the distangcearby obstacles so as to encourage the
vehicle to stay clear of obstacles.

Our search algorithm is guided by two heuristics, called riba-holonomic-without-obstacles
heuristicand theholonomic-with-obstacles heuristicAs the name suggests, the first heuristic
ignores obstacles but takes into account the non-holonoatige of the car. This heuristic, which
can be completely pre-computed for the entire 4D space ¢kelocation, and orientation, and
direction of motion), helps in the end-game by approachueggoal with the desired heading. The
second heuristic is a dual of the first in that it ignores the-holonomic nature of the car, but com-
putes the shortest distance to the goal. It is calculatadebly performing dynamic programming
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Figure 17: Path smoothing with Conjugate Gradient. This sheraises a vehicle model to guar-
antee that the resulting paths are attainable. The Hybrigdaih is shown in black. The smoothed
path is shown in blue (front axle) and cyan (rear axle). Théwped path is much smoother than
the Hybrid A* path, and can thus be driven faster.

in 2-D (ignoring vehicle orientation and motion directiof§oth heuristics are admissible, so the
maximum of the two can be used.

Figure 16a illustrates A* planning using the commonly usedtliean distance heuristic. As
shown in Figure 16b, the non-holonomic-without-obstablegristic is significantly more efficient
than Euclidean distance, since it takes into account vebigéntation. However, as shown in Fig-
ure 16c, this heuristic alone fails in situations with U4séd dead ends. By adding the holonomic-
with-obstacles heuristic, the resulting planner is higifficient, as illustrated in Figure 16d.

While hybrid A* paths are realizable by the vehicle, the smalinber of discrete actions available
to the planner often lead to trajectories with rapid changeaseering angles, which may still lead
to trajectories that require excessive steering. In a finat-processing stage, the path is further
smoothed by a Conjugate Gradient smoother that optimizeasianiteria as hybrid A*. This
smoother modifies controls and moves waypoints locallyhénaptimization, we also optimize for
minimal steering wheel motion and minimum curvature. Feglif shows the result of smoothing.

The hybrid A* planner is used for parking lots and also fortakr traffic maneuvers, such as
U-turns. Figure 18 shows examples from the Urban Challendé¢reassociated National Qualifi-
cation Event. Shown there are two successful U-turns angbariéng maneuver. The example in
Figure 18d is based on a simulation of a more complex parkingrhe apparent suboptimality of
the path is the result of the fact that the robot “discovelng’map as it explores the environment,
forcing it into multiple backups as a previously believedefipath is found to be occupied. All
of those runs involve repetitive executions of the hybridaddorithm, which take place while the
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Figure 18: Examples of trajectories generated by Junigtsid A* planner. Trajectories in (a)—
(c) were driven by Junior in the DARPA Urban challenge: (3)sfiow U-turns on blocked roads,
(c) shows a parking task. The path in (d) was generated inlation for a more complex maze-like
environment. Note that in all cases the robot had to replaasponse to obstacles being detected
by its sensors. In particular, this explains the sub-ogitgnaf the trajectory in (d).

vehicle is in motion. When executed on a single core of Junimimputers, planning from scratch
requires up to 100 milliseconds; in the Urban Challenge,mptamwas substantially faster because
of the lack of obstacles in parking lots.

6.4 Intersections and Merges

Intersections are places that require discrete choicesavetred by the basic navigation modules.
For example, at multi-way intersections with stop signd)icles may only proceed through the
intersection in the order of their arrival.

Junior keeps track of specific “critical zones” at intergmtd. For multi-way intersections with
stop signs, such critical zones correspond to regions redrsop sign. If such a zone is occupied
by a vehicle at the time the robot arrives, Junior waits uhig zone has cleared (or a timeout
has occurred). Intersection critical zones are shown inr€id9. In merging, the critical zones
correspond to segments of roads where Junior may have tgpmeedence to moving traffic. If
an object is found in such a zone, Junior uses its radars anethiicle tracker to determine the
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Figure 19: Critical zones: (a) At this four-way stop sign, Yoasitical zones are colored in red,
whereas critical zones without vehicles are shown in gréerhis image, a vehicle can be seen
driving through the intersection from the right. (b) Crificanes for merging into an intersection.

velocity of moving objects. Based on the velocity and proxyma threshold test then marks the
zone in question as busy, which then results in Junior wa#itha merge point. The calculation
of critical zones is somewhat involved. However, all congpioins are performed automatically
based on the RNDF, and ahead of the actual vehicle operation.

Figure 20 visualizes a merging process during the qualidicavent to the Urban Challenge. This
test involves merging into a busy lane with 4 human-drivemales, and across another lane with 7
human-driven cars. The robot waits until none of the critzcaes are busy, and then pulls into the
moving traffic. In this example, the vehicle was able to pafe$y into 8 second gaps in two-way

traffic.

6.5 Behavior Hierarchy

An essential aspect of the control software is logic thavemés the robot from getting stuck.
Junior'sstuckness detectds triggered in two ways: through timeouts when the vehisl@aiting
for an impasse to clear, and through the repeated travefrsalogation in the map—which may
indicate that the vehicle is looping indefinitely.

Figure 21 shows the finite state machine (FSM) that is usedviicts between different driving
states, and that invokes exceptions to overcome stuckinbissESM possesses 13 states (of which
11 are shown; 2 are omitted for clarity). The individual statn this FSM correspond to the
following conditions:

e LOCATE_VEHICLE: This is the initial state of the vehicle. Before it catart driving,
the robot estimates its initial position on the RNDF, andtstesad driving or parking lot
navigation, whichever is appropriate.

¢ FORWARD.DRIVE: This state corresponds to forward driving, lane kag@nd obstacle
avoidance. When not in a parking lot, this is the preferredgaion state.



(b)

Figure 20: Merging into dense traffic during the qualificatevents at the Urban Challenge. (a)
Photo of merging test; (b)-(c) The merging process.

e STOPSIGN.WAIT: This state is invoked when the robot waits at at a stgm $0 handle
intersection precedence.

e CROSSINTERSECTION: Here the robot waits if it is safe to cross anrisgetion (e.g.,
during merging), or until the intersection is clear (if itaa all-way stop intersection). The
state also handles driving until Junior has exited the setetion.

e STOPFOR CHEATERS: This state enables Junior to wait for another carimgoout of
turn at a four way intersection.

¢ UTURN_DRIVE: This state is invoked for a U-turn.

e UTURN_STOP: Same as UTURRIVE, but here the robot is stopping in preparation
for a U-turn.

e CROSSDIVIDER: This state enables Junior to cross the yellow linkefastopping and
waiting for oncoming traffic) in order to avoid a partial robldckage.

e PARKING_NAVIGATE: Normal parking lot driving.
e TRAFFIC_JAM: In this sate, the robot uses the general-purpose hyriplanner to get



UTURN_DRIVE

MISSION_COMPLETE

Figure 21: Finite State Machine that governs the robot'sin.

(a) Blocked intersection (b) Hybrid A* (c) Successful traversal

Figure 22: Navigating a simulated traffic jam: After a timéperiod, the robot resorts to hybrid
A* to find a feasible path across the intersection.

around a road blockage. The planner aims to achieve any mat3®) meters away on the
current robot trajectory. Use of the general-purpose maatows the robot to engage in
unrestricted motion and disregard certain traffic rules.

e ESCAPE: This state is the same as TRAFBKM, only more extreme. Here the robot
aims for any waypoint on any base trajectory more than 20nsiatgay. This state enables
the robot to choose a suboptimal route at an intersectiomdeardo extract itself out of a
jam.

e BAD _RNDF: In this state, the robot uses the hybrid A* planner tagete a road that does
not match the RNDF. It triggers on one lane, one way roads if CRDWIDER fails.

¢ MISSION_.COMPLETE: This state is set when race is over.



For simplicity, Figure 21 omits ESCAPE and TRAFFIBM. Nearly all states have transitions to
ESCAPE and TRAFFIGAM.

At the top level, the FSM transitions between the normalidgvstates, such as lane keeping
and parking lot navigation. Transitions to lower drivingdés (exceptions) are initiated by the
stuckness detectors. Most of those transition invoke at“paiiod” before the corresponding
exception behavior is invoked. The FSM returns to normabbgh after the successful execution
of a robotic behavior.

The FSM makes the robot robust to a number of contingencaseXample:

e For a blocked lane, the vehicle considers crossing into gpmsite lane. If the opposite
lane is also blocked, a U-turn is initiated, the internal RNBRodified accordingly, and
dynamic programming is run to regenerate the RNDF value iomct

¢ Failure to traverse a blocked intersection is resolved bgkimg the hybrid A* algorithm,
to find a path to the nearest reachable exit of the intersece Figure 22 for an example.

e Failure to navigate a blocked one-way road results in usilgitht A* to the next GPS
waypoint. This feature enables vehicles to navigate RNDHs sparse GPS waypoints.

e Repeated looping while attempting to reach a checkpointteesuthe checkpoint being
skipped, so as to not jeopardize the overall mission. Thimer avoids infinite looping
if a checkpoint is unreachable.

¢ Failure to find a path in a parking lot with hybrid A* makes tludot temporarily erase its
map. Such failures may be the result of treating as statiectdthat since moved away —
which cannot be excluded.

¢ In nearly all situations, failure to make progress for egteh periods of time ultimately
leads to the use of hybrid A* to find a path to a nearby GPS wantpdiVhen this rare
behavior is invoked, the robot does not obey traffic ruleslanger.

In the Urban Challenge event, the robot almost never entergafathe exception states. This is
largely because the race organizers repeatedly pausedldbewhen it was facing traffic jams.
However, extensive experiments prior to the Urban Challesingeved that it was quite difficult to
make the robot fail to achieve its mission, provided thatth&sion remained achievable.

6.6 Manual RNDF Adjustment

Ahead of the Urban Challenge event, DARPA provided teams sbowjith an RNDF, but also with
a high-resolution aerial image of the site. While the RNDF waslpced by careful ground-based
GPS measurements along the course, the aerial image wdsapeadcfrom a commercial vendor
and acquired by aircratft.

To maximize the accuracy of the RNDF, the team manually aeljluiahd augmented the DARPA-
provided RNDF. Figure 23 shows a screen shot of the editos fbiol enables an editor to move,
add, and delete waypoints. The RNDF editor program is fasigimto incorporate new waypoints
in real time (10Hz).
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Figure 23: RNDF editor tool.

(b) Some new constraints

Figure 24. Example: Effect of adding and moving waypointsh@ RNDF. Here the corridor is
slightly altered to better match the aerial image. The RNDEoegermits for such alterations in
an interactive manner, and displays the results on the bagsetbry without any delay.

The editing required three hours of a person’s time. In atainphase, waypoints were shifted
manually, and roughly 400 new way points were added mantalthe 629 lane waypoints in
the RNDF. Those additions increased the spatial coherentteedRNDF and the aerial image.
Figure 24 shows a situation in which the addition of such twltil waypoint constraints leads to
substantial improvements of the RNDF.

To avoid sharp turns at the transition of linear road segméme tool provides an automated RNDF
smoothing algorithm. This algorithm upsamples the RNDF & meter intervals, and sets those
as to maximize the smoothness of the resulting path. Thengattion of these additional points
combines a least squares distance measure with a smootheassire. The resulting “smooth



Figure 25: The SRNDF creator produces a smooth base trajeanitmmatically by minimizing a
set of nonlinear quadratic constraints. The original RND&hiswn in blue. The smooth SRNDF
is shown in green.

RNDF,” or SRNDF, is then used instead of the original RNDF foralaation and navigation.
Figure 25 compares the RNDF and the SRNDF for a small fractidheo€ourse.

7 The Urban Challenge

7.1 Results

The Urban Challenge took place Nov. 3, 2007, in Victorville,.&Agure 26 shows images of the
start and the finish of the Urban Challenge. Our robot Junieemat an obstacle, and according to
DARPA, it broke no traffic rule. A careful analysis of the raog$ and official DARPA documen-

tation revealed two situations (described below) in whighidr behaved suboptimally. However,
all of those events were deemed rule conforming by the ragamigers. Overall, Junior’s localiza-
tion and road following behaviors were essentially flawl&3te robot never came close to hitting
a curb or crossing into opposing traffic.

The event was organized in three missions, which differel@mgth and complexity. Our robot
accomplished all three missions in 4 hours 5 minutes, andd@sks of run time. During this time,
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Figure 27: Scans of other robots encountered in the race.

the robot traveled a total of 55.96 miles, or 90.068 km. l&rage speed while in run mode was
thus 13.7 mph. This is slower than the average speed in the Géénd Challenge (Montemerlo
et al., 2006; Urmson et al., 2004), but most of the slowdowr wvaused by speed limits, traffic
regulations (e.g., stop signs), and other traffic. The tote from the start to the final arrival was
5 hours, 23 minutes, and 2 seconds, which includes all pauss.t Thus, Junior was paused for
a total of 1 hour, 17 minutes and 56 seconds. None of thoseepamsre caused by Junior, or
requested by our team. An estimated 26 minutes and 27 sewa@rds‘local’ pauses, in which
Junior was paused by the organizers because other vehietesstuck. Our robot was paused six
times because other robots encountered problems on theaaffsection, or were involved in an
accident. The longest local pause (10 min, 15 sec) occurhesh\yunior had to wait behind a two-
robot accident. Because of DARPA's decision to pause robotsodcould not exercise its hybrid
A* planner in these situations. DARPA determined Junior'pisiged total time to be 4 hours, 29
minutes, and 28 seconds. Junior was judged to be the secstedtfeinishing robot in this event.

7.2 Notable Race Events

Figure 27 shows scans of other robots encountered in the @ezall, DARPA officials estimate
that Junior faced approximately 200 other vehicles durirggrace. The large number of robot-
robot encounters was a unique feature of the Urban Challenge.

There were several notable encounters during the race chwhinior exhibited particularly intel-
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Figure 28: Junior mission times during the Urban Challengme$ marked green correspond to
local pauses, and times in red to all-pauses, in which aicletwere paused.

ligent driving behavior, as well as two incidents where dumade clearly suboptimal decisions
(neither of which violated any traffic rules).

Hybrid A* on the Dirt Road

While the majority of the course was paved, urban terrainythets were required to traverse a
short off-road section connecting the urban road netwoa0mph highway section. The off-road
terrain was graded dirt path with a non-trivial elevatiomege, reminiscent of the 2005 DARPA
Grand Challenge course. This section caused problems ferad@f the robots in the competition.
Junior traveled down the dirt road during the first missiommiediately behind another robot and
its chase car. While Junior had no difficulty following thetdivad, the robot in front of Junior
stopped three times for extended periods of time. In resptmthe first stop, Junior also stopped
and waited behind the robot and its chase car. After seeingiaement for a period of time,
Junior activated several of its recovery behaviors. Fighior considered CROSSIVIDER, a
preset passing maneuver to the left of the two stopped cédmsreTwas not sufficient space to fit
between the cars and the berm on the side of the road, so Jneioswitched to the BAORNDF
behavior, in which the Hybrid A* planner is used to plan anitagloy path to the next DARPA
waypoint. Unfortunately, there was not enough space torgetna the cars even with the general
path planner. Junior repeatedly repositioned himself errdlad in an attempt to find a free path
to the next waypoint, until the cars started moving agaimialuepeated this behavior when the
preceding robot stopped a second time, but was paused by DARfANe first robot recovered.
Figure 29a shows data and a CROBK/IDER path around the preceding vehicle on the dirt road.



(a) Navigating a blocked dirt road (b) Passing a disabled robot at parking lot entrance
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Figure 29: Key moments in the Urban Challenge race.

Passing Disabled Robot

The course included several free-form navigation zonegewhe robots were required to navigate
around arbitrary obstacles and park in parking spots. Agdapproached one of these zones
during the first mission, it encountered another robot whiati become disabled at the entrance to
the zone. Junior queued up behind the robot, waiting forettter the zone. After the robot did not
move for a given amount of time, Junior passed it slowly onléifteusing the CROS®IVIDER
behavior. Once Junior had cleared the disabled vehicleHtteid A* planner was enabled to
navigate successfully through the zone. Figure 29b shawp#ssing maneuver.



Avoiding Opposing Traffic

During the first mission, Junior was traveling down a two-w@gd and encountered another robot
in the opposing lane of traffic. The other robot was drivingtsthat its left wheels were approxi-
mately one foot over the yellow line, protruding into oncagtraffic. Junior sensed the oncoming
vehicle and quickly nudged the right side of its lane, wheéthen passed at full speed without
incident. This situation is depicted in Figure 29c.

Reacting to an Aggressive Merge

During the third mission, Junior was traveling around aeatrgffic circle which featured promi-
nently in the competition. Another robot was stopped at @ sign waiting to enter the traffic
circle. The other robot pulled out aggressively in frontahidr, who was traveling approximately
15mph at the time. Junior braked hard to slow down for theratbieot, and continued with its
mission. Figure 29d depicts the situation during this merge

Junior Merges Aggressively

Junior merged into moving traffic successfully on numerotsasions during the race. On one
occasion during the first mission, however, Junior turnédflem a stop sign in front of a robot
that was moving at 20mph with an uncomfortably small gap.aDaim this merge is shown in
Figure 29e. The merge was aggressive enough that the chrasiéveas paused the other vehicle.
Later analysis revealed that Junior saw the oncoming ehyet believed there was a sufficient
distance to merge safely. Our team had previously loweradingdistance thresholds to compen-
sate for overly conservative behavior during the qualiftcaevent. In retrospect, these thresholds
were set too low for higher speed merging situations. Whikernterge was definitely suboptimal
behavior, it was later judged not be a violation of the rulg©BRPA.

Pulling Alongside a Waiting Car

During the second mission, Junior pulled up behind a robatingaat a stop sign. The lane was
quite wide, and the other robot was offset towards the riglg ef the lane. Junior, on the other
hand, was traveling down the left side of the lane. When pyiforward, Junior did not register

the other car as being inside the lane of travel, and thusnbegaull alongside of the car waiting

at the stop sign. As Junior tried to pass, the other car pédiedard from the stop sign and left

the area. This incident highlights how difficult it can be #orobot to distinguish between a car
stopped at a stop sign and a car parked on the side of the readzi@ure 29f.

8 Discussion

This paper described a robot designed for urban drivingnfStd’s robot Junior integrates a num-
ber of recent innovations in mobile robotics, such as priistib localization, mapping, tracking,

global and local planning, and an FSM for making the robotsblbo unexpected situations. The
results of the Urban Challenge, along with prior experimeatsied out by the research team,
suggest that the robot is capable of navigating in othertrolamd human traffic. The robot suc-
cessfully demonstrated merging, intersection handliagkipg lot navigation, lane changes, and



autonomous U-turns.

The approach presented here features a number of innogatidnch are well-grounded in past
research on autonomous driving and mobile robotics. Thesmvations include the obstacle/curb
detection method, the vehicle tracker, the various motianners, and the behavioral hierarchy
that addresses a broad range of traffic situations. Togdtese methods provide for a robust
system for urban in-traffic autonomous navigation.

Still, a number of advances are required for truly autonasnanlban driving. The present robot
is unable to handle traffic lights. No experiments have beafopmed with a more diverse set
of traffic participants, such as bicycles and pedestriaimallly, DARPA frequently paused robots
in the Urban Challenge to clear up traffic jams. In real urbaffié;, such interventions are not
realistic. It is unclear if the present robot (or other rabiotthis event!) would have acted sensibly
in lasting traffic congestion.
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