
27.1 A lower bound on data compression

How much can we compress a file without loss? We present a lower bound for any compression
algorithm under the following assumptions:

the file contains m characters
there are c different characters possible
character i appears exactly f(i) times in the file

Note that
∑c

i=1 f(i) = m by construction.

Let F be the set of all possible files satisfying the above criteria. Our approach is simply
to count the number |F | of possible files and note that at least log2 |F | bits are needed to
distinguish among all these possibilities.

We need two results, both from Math 55. The first gives a formula for |F |:

|F | =
m!

f(1)! · f(2)! · · · f(c)!

Here is a sketch of the proof of this formula. There are m! permutations of m characters,
but many are the same because there are only c different characters. In particular, the f(1)
appearances of character 1 are the same, so all f(1)! orderings of these locations are identical.
Thus we need to divide m! by f(1)!. The same argument leads us to divide by all other f(i)!.

Now we have an exact formula for |F |, but it is hard to interpret, so we replace it by a
simpler approximation. We need a second result from Math 55, namely Stirling’s formula for
approximating n!:

n! ≈
√

2πnn+.5e−n

This is a good approximation in the sense that the ratio n!/[
√

2πnn+.5e−n] approaches 1 quickly
as n grows. (In Math 55 we motivated this formula by the approximation log n! =

∑n
i=2 log i ≈∫ n

1 log xdx.) We will use Stirling’s formula in the form

log2 n! ≈ log2

√
2π + (n + .5) log2 n − n log2 e

Stirling’s formula is accurate for large arguments, so we will be interested in approximating
log2 |F | for large m. Furthermore, we will actually estimate log2 |F |

m , which can be interpreted
as the average number of bits per character to send a long file. Here goes:

log2 |F |
m

=
log2(m!/(f(1)! · · · f(c)!))

m

=
log2 m! − ∑c

i=1 log2 f(i)!
m

≈ 1
m

· [log2

√
2π + (m + .5) log2 m − m log2 e

−
c∑

i=1

(log2

√
2π + (f(i) + .5) log2 f(i) − f(i) log2 e)]

=
1
m

· [m log2 m −
c∑

i=1

f(i) log2 f(i)

+(1 − c) log2

√
2π + .5 log2 m − .5

c∑

i=1

log2 f(i)]

48

= log2 m −
c∑

i=1

f(i)
m

log2 f(i)

+
(1 − c) log2

√
2π

m
+

.5 log2 m

m
− .5

∑c
i=1 log2 f(i)

m

As m gets large, the three fractions on the last line above all go to zero: the first term looks
like O(1/m), and the last two terms look like O(log2 m

m). This lets us simplify to get

log2 |F |
m

≈ log2 m −
c∑

i=1

f(i)
m

log2 f(i)

= (
c∑

i=1

f(i)
m

) log2 m −
c∑

i=1

f(i)
m

log2 f(i)

= −
c∑

i=1

f(i)
m

log2
f(i)
m

To simplify notation slightly, we define pi = f(i)/m, which we may describe as the fraction of
characters in the file equaling the i-th character, or the probability that any given character in
the file is character i. This finally yields

log2 |F |
m

≈ −
c∑

i=1

pi log2 pi

as an (approximate) lower bound on the number of bits per character that any encoding scheme
would need to represent F . This important quantity is called the entropy H (Shannon, 1949).

H = −
c∑

i=1

pi log2 pi

Said another way, the number of bits needed to encode file F is at least Hm, where m is the
length of F . This result is also due to Shannon (1949), who invented the field of information
theory.

Let’s apply this to the example of a file consisting of c = 2k characters, each appearing equally
often. Thus pi = 2−k for i = 1 to 2k, and we may easily evaluate H = k. In other words, there
is no better scheme than the obvious one of representing each character by a k-bit number
between 0 and 2k − 1. You can confirm that Huffman’s algorithm would yield this encoding.

If we apply this to the example of the last section, a file F of 100K characters from a through
h with the probabilities given in a table, we can compute that a lower bound on the number
of bits to represent F is Hm = 222K. Since Huffman coding yielded 224K bits, we see that
Huffman got very close to the lower bound.

How much more space can Huffman coding take to encode a file than Shannon’s lower bound
Hm? A theorem of Gallagher (1978) shows that at worst Huffman will take m · (pmax + .086)
bits more than Hm, where pmax is the largest of any pi. But it often does much better, as
illustrated by the example in the last paragraph.

27.2 Other Data Compression Schemes

Earlier we claimed the Huffman coding was “optimal”, but this was under several assumptions:

49

1. The compression is lossless, i.e. uncompressing the compressed file yields exactly the
original file. When lossy compression is permitted, as for video, other algorithms can
achieve much greater compression, and this is a very active area of research because
people want to be able to send video and audio over the Web.

2. We know all the frequencies f(i) with which each character appears. How do we get this
information? We could make two passes over the data, the first to compute the f(i), and
the second to encode the file. But this can be much more expensive than passing over
the data once for large files residing on disk or tape. One way to do just one pass over
the data is to assume that the fractions f(i)/m of each character in the file are similar
to files you’ve compressed before. For example you could assume all Java programs (or
English text, or PowerPoint files, or ...) have about the same fractions of characters
appearing. A second cleverer way is to estimate the fractions f(i)/m on the fly as you
process the file. One can make Huffman coding adaptive this way.

3. We know the set of characters (the alphabet) appearing in the file. This may seem
obvious, but there is a lot of freedom of choice. For example, the alphabet could be the
characters on a keyboard, or they could be the key words and variables names appearing
in a program. To see what difference this can make, suppose we have a file consisting
of n strings aaaa and n strings bbbb concatenated in some order. If we choose the
alphabet {a, b} then 8n bits are needed to encode the file. But if we choose the alphabet
{aaaa, bbbb} then only 2n bits are needed.

Picking the correct alphabet turns out to be crucial in practical compression algorithms. Both
the UNIX compress and GNU gzip algorithms use a greedy algorithm due to Lempel and Ziv
to compute a good alphabet in one pass while compressing. Here is how it works.

If s and t are two bit strings, we will use the notation s + +t to mean the bit string gotten by
concatenating s and t.

We let F be the file we want to compress, and think of it just as a string of bits, that is 0’s
and 1’s. We will build an alphabet A of common bit strings encountered in F , and use it to
compress F . Given A, we will break F into shorter bit strings like

F = A(1)++0++A(2)++1++ · · ·++A(7)++0++ · · ·++A(5)++1++ · · ·++A(i)++j++ · · ·

and encode this by

1 + +0 + +2 + +1 + + · · · + +7 + +0 + + · · · + +5 + +1 + + · · · + +i + +j + + · · ·

The indices i of A(i) are in turn encoded as fixed length binary integers, and the bits j are
just bits. Given the fixed length (say r) of the binary integers, we decode by taking every
group of r + 1 bits of a compressed file, using the first r bits to look up a string in A, and
concatenating the last bit. So when storing (or sending) an encoded file, a header containing
A is also stored (or sent).

Here is the algorithm for encoding, including building A. Typically a fixed size is available for
A, and once it fills up, the algorithm stops looking for new characters.

50

A = {∅} ... start with an alphabet containing only an empty string
i = 0 ... points to next place in file F to start encoding
repeat

find A(k) in the current alphabet that matches as many leading bits FiFi+1Fi+2 · · · as possible
... initially only A(0) = empty string matches
... Let b be the number of bits in A(k)

if A is not full, add A(k) + +Fi+b to A
... Fi+b is the first bit unmatched by A(k)

output k + +Fi+b

i = i + b + 1
until i > length(F)

Note that A is built “greedily”, based on the beginning of the file. Thus there are no opti-
mality guarantees for this algorithm. It can perform badly if the nature of the file changes
substantially after A is filled up.

Here is an example of the algorithm running, where the alphabet A fills up after 6 characters
are inserted. In this small example no compression is obtained, but if A were large, and
the same long bit strings appeared frequently, compression would be substantial. The gzip
manpage claims that source code and English text is typically compressed 60%-70%. For
example, gzip compressed the latex source file of this section of the notes from 33142 bytes to
12300 bytes, or 63%.

F = 1 1 1 1 0 01 1 10 0 0 00 0 0 1
A(1) = A(0)++0 = 0
A(2) = A(1)++0 = 00
A(3) = A(0)++1 = 1
A(4) = A(3)++1 = 11
A(5) = A(3)++0 = 10
A(6) = A(5)++1 = 101set A is full

= A(6)++0 = 1010
= A(1)++0 = 00

Encoded F = (0,0),(1,0),(0,1), (3,1),(3,0), (5,1),(6,0),(1,0)
= 0000 0010 0001 0111 0110 1011 1100 0010

51

