
Package Merge in UML 2: Practice vs. Theory? ⋆

Alanna Zito, Zinovy Diskin and Juergen Dingel

School of Computing, Queen’s University
Kingston, Ontario, Canada

{zito,zdiskin,dingel}@cs.queensu.ca

Abstract. The notion of compliance is meant to facilitate tool interop-
erability. UML 2 offers 4 compliance levels. Level Li+1 is obtained from
Level Li through an operation called package merge. Package merge is
intended to allow modeling concepts defined at one level to be extended
with new features. To ensure interoperability, package merge has to en-
sure compatibility: the XMI representation of the result of the merge has
to be compatible with that of the original package. UML 2 lacks a precise
and comprehensive definition of package merge. This paper reports on
our work to understand and formalize package merge. Its main result is
that package merge as defined in UML 2.1 does not ensure compatibility.
To expose the problem and possible remedies more clearly, we present
this result in terms of a very general classification of model extension
mechanisms.

1 Introduction

Since UML is intended to support systems engineering in general, its scope is
extremely broad. Potential application domains include not only software and
hardware engineering, but also data and business process engineering. Particular
domains may only require certain features of UML, while others may be com-
pletely irrelevant. To support its use in different domains, UML was designed in
a modular fashion: Modeling features are defined in separate, and, as much as
possible, independent units, called packages.

To support exchange of models and interoperability between UML tools,
UML 2 partitions the set of all its modeling features into 4 horizontal layers called
compliance levels. Level L0 only contains the features necessary for modeling the
kind of class-based structures typically encountered in object-oriented languages.
Level L3, on the other hand, encompasses all of UML. It extends level L2 with
features that allow the modeling of information flows, templates, and model
packaging. According to the UML 2.1 specification, a tool compliant at level
Li must have “the ability to output diagrams and to read in diagrams based
on the XMI schema corresponding to that compliance level” [11, Section 2.3].
Moreover, to achieve interoperability, the tool must be compatible with tools at

⋆ Research supported by IBM CAS Ottawa and OCE Centre of Communications and
Information Technology

lower compliance levels; that is, it must be able to load all models from tools
that are compliant at lower levels, without loss of information.

The precise definition of the compliance levels in UML 2.1 rests on a novel
operation called package merge. Informally, package merge is intended to al-
low concepts defined in one package to be extended with features defined in
another. The package defining level Li+1 is obtained from Li by merging new
features into the package describing Li. For instance, the level L1 package is
created by merging 11 packages (e.g., Classes::Kernel, Actions::BasicActions,
Interactions::BasicInteractions, and UseCases) into the level L0 package. In the
UML 2.1 specification, package merge is described by a set of transformations
and constraints grouped by metamodel types [11, Section 7.3.40]. The constraints
define pre-conditions for the merge, such as when two package elements “match”,
while the post-conditions are given by the transformations. The merge of two
packages proceeds by merging their contents as follows: Two matching elements
are merged recursively. Elements that do not have a matching counterpart in the
other package are deep-copied. The specification describes the general principle
behind package merge as follows [11, Section 7.3.40, page 116]:

“a resulting element will not be any less capable than it was prior to the
merge. This means, for instance, that the resulting navigability, multi-
plicity, visibility, etc. of a receiving model element will not be reduced
as a result of a package merge.”

In the same paragraph, the specification states that package merge must ensure
compatibility in the sense that the XMI representation of the resulting package
must be compatible with that of the original package. This “compatibility prop-
erty” of package merge is crucial. It guarantees that a tool T compliant at some
level is compatible with all tools compliant at lower levels, because it allows T

to load models created with lower level tools without loss of information.
Theoretically at least, package merge may be useful not only for the definition

of the UML metamodel, but also for users of UML in general. However, a more
thorough evaluation of package merge, not to mention a more general adoption,
is not straight-forward:

– The detailed semantics of package merge is currently only discussed for cer-
tain types found mostly in metamodels (e.g., classes, associations, and prop-
erties). It is not clear how to extend package merge to other types such as
interactions and state machines.

– The semantics of package merge is perceived as complicated. For instance,
the UML manual describes it as “complex and tricky” and recommends the
use of package merge only for “metamodel builders forced to reuse the same
model for several different, divergent purposes” [12, p. 508]. One reason for
this perception may be that the general intent of package merge is not clear.
The general principle in the specification cited above is too imprecise.

The long-term goal of our work is to study the general principles underlying
package merge. The goal of this paper is to report on the first results of our

2

work. In particular, we will present a general classification of package exten-
sion mechnisms based on a convenient notational and terminological framework.
Moreover, the application of this classification to package merge in UML 2 will
allow us to conclude that:

1. Package merge as defined in the UML 2.1 specification does not ensure com-
patibility; that is, the XMI representation of the result of the merge is not
necessarily compatible with the XMI representation of the original package.

2. It appears that package merge as used for the definition of the compliance
levels of UML 2.1 does ensure the compatibility property.

After providing the necessary background and briefly reviewing related work
in the next section, Section 3 will present the general classification. Section 4 will
describe its application to package merge. Section 5 will conclude and outline
further work.

2 Background

2.1 Package merge

To illustrate package merge, consider a simple class model of employees as shown
in package BasicEmployees on the left of Figure 1.

Fig. 1. A package merge example

Suppose we want to extend this model with the information an office man-
ager might have as shown in package EmployeeLocation. To this end, package
EmployeeLocation is merged into package BasicEmployees, as indicated by the
arrow in between the two packages in Figure 1. We say that BasicEmployees

is the receiving package. Its elements (classes Person, Employee, and Job and
the association worksAs) are called receiving elements. EmployeeLocation is the
merged package. Its elements (classes Employee and Building and association
worksIn) are called the merged elements. The resulting package is shown in Fig-
ure 2. It is obtained by merging the merged elements into the receiving package.
Since the class Employee in EmployeeLocation matches the class of the same
name in BasicEmployee, the two are merged recursively by adding the prop-
erty officeNum to the receiving class. The class Building and the association

3

Fig. 2. The result of the merge in Figure 1

worksIn, however, do not match any elements in the receiving package and are
simply copied. Note that the ≪merge≫ arrow merely implies these transforma-
tions and that the resulting package is actually not shown in Figure 1.

2.2 Compatibility

The UML specification clearly states that all model extension mechanisms used
to define compliance levels such as package merge must have the “compatibility
property” mentioned above. This property asserts the compatibility of the XMI
representation of the resulting package with that of the receiving package and
thus ensures that a tool is compatible with all tools compliant at lower levels.
We refine the definition of the “compatibility property” as follows. We say that
package A is compatible with package B, if every document allowed by the XML
Schema of B is also allowed by the XML Schema of A. We refer to the constraints
expressable in XML Schema (e.g., the elements and attributes that can appear
in a document, and the order and number of child elements) as compatibility
constraints. Additional constraints that a package may contain such as OCL
constraints are referred to as validity constraints.

2.3 Related work

According to [13], package merge was partially inspired by two specification
combination mechanisms offered in Catalysis: “and” and “join”. However, while
related on first glance, both differ substantially from package merge. The “and”
operation is for use with subtyping, while the “join” operation allows a specifi-
cation to “impose additional preconditions to those defined in another view” [9,
p. 697].

Speaking in more precise terms, two issues are to be distinguished in package
merge. The first is the merge procedure as such. In this context, package merge is
a particular case of a known problem in databases and, more recently, the Seman-
tic Web. About twenty years ago this problem was referred to as view/schema

4

integration [3]; its more recent name is model merge [5]. Package merge is a typ-
ical example of the schema integration problem when schema matching is easy
(because schemas to be merged were designed by the same team) and based on
name coincidence.

The second issue is an evaluation of the merge result: whether it is good
or bad w.r.t. the goals of package merge. The primary criterion here is level
compliance; that is, in more detail, compatibility of the legal instances of the
receiving package with the resulting package (as a metadata schema). It follows
then that we need to evaluate the relationship between the resulting P ′ and
receiving P packages in terms of sets of their instances. This issue is well-studied
in mathematical logic and model theory under the name of theory extension
(and yes, theory is one more synonym for our term package; definition and basic
results can be found in any textbook on mathematical logic, see e.g., [2]). This
observation is essential for package merge, since it is a well-known fact that
extensions can be non-conservative; that is, new data/structure added to the
theory can influence the “old” part of the theory in such a way that not all old
instances can be augmented with new structure (be compatible with the new
structure). It shows that package merge mechanism as such does not guarantee,
in general, compatibility between the packages and a more thorough investigation
is needed.

The notion of theory as it is formulated in mathematical logic is heavily based
on a specific syntax (logical connectives and quantifiers) and is not suited for
package merge studies. The same dependance on syntax also prevents the use of
many results obtained in schema/model integration for package merge. We need
a more abstract framework, and here the so-called institutions, introduced in
[10] and now well known in the algebraic specifications community, provide the
necessary instrumentary. Our theoretical considerations in sect.3 are inspired by
institutions and, in fact, just adjust the definitions to the PM context (see also
[6, 1] for a similar elaboration in other contexts).

The issues of package merge and extension can be seen in a even wider context
as particular problems in generic model management, a prominent program that
has recently appeared in databases [4] and is rapidly broadening its agenda
towards a general theory of model manipulation and transformation (see [8] for
a survey).

3 Theoretical foundations via examples.

In this section we describe a general framework for package merge and exten-
sion. Here we use the term package as a generic term meaning either a data
model/schema, or XML Schema, or metadata model, or, in general, any object
P having an associated set of instances, inst (P).

Our plan is as follows. We will begin with considering a series of generic
examples of package merge (PM), presented in Tables 1, 2, to outline the scope of
the issue. While discussing these examples, we offer a convenient terminology and
notation to encode them. Particularly, we show that relations between the (sets

5

of) instances of the receiving and the resulting packages constitute the essence of
the compatibility issues in package merge. Moreover, we will develop a taxonomy
of these relationships and demonstrate how it works. Then we elaborate the
notation in more precise terms and, in fact, make it ready for formalization. The
latter is omitted due to space limitations.

3.1 Basic terminology, definitions and taxonomy of package

extensions

In formal terms, package merge (PM) is an operation that takes two packages,
P1, called the merged package, and P2, the receiving package, then integrates
their contents in a certain way, and assigns the name P2 to the result. In the
usual programming language notation, it can be written as P2 := P1 + P2. The
intuition of incremental increase of the content of the receiving package suggests
another notation, P ′ = P + ∆, which we will follow further.

Table 1. Generic examples of package extensions

1 2 3 4 5

Multiplicities for
associations

owns drives Package
Pure structural base of

the package
left right left right

Correspondences
between

associations

Compatibility of old
instances and, if not,

their fixability

P 1..* 1..3 N/A N/A N/A

∆∆∆∆(L,R) 2..4 2..4 L R
Context P:Person:
P.drives ⊆ P.owns N/A

P’(L,R)=
P+∆∆∆∆(L,R)

1..* 1..4 same same Depends on (L,R)

 A few versions of merge with different values of parameters (L,R)

P’1 same same 1..2 0..3 same Optional extension:
all old instances are

compatible

P’21 same same same 1..* same
(i) all of them

P’22 same same same 2..* same
(ii) some of them

P’23 same same same 5..* same
(iii) none of them
(as extension is
inconsistent)

P’3 same * same * same same

M
an

da
to

ry
 e

xt
en

si
on

: n
on

e
of

ol

d
in

st
an

ce
s

 is
 c

om
pa

ti
bl

e.

Y
et

 th
er

e
is

 a
n

op
ti

on
 to

 f
ix

 ..
.

(iv) none of them
but the extension

is consistent

P’
Structure/Schema,

S

Compatibility constraints,
CC

Validity constraint,
CV

Type of extension:
Conservative, non-
conservative,
inconsistent, totally non-
conservative

owns
Car Person

drives

owns
Car Person

drives

owns
Car Person

6

Consider Table 1. The top row presents a (piece of some) receiving package
P , and the second row is the merged package ∆; the resulting package is shown
in the third row. The contents of each package participating in the table are sep-
arated into three parts: the structural base (graph of classes and associations),
multiplicities (left and right) for the participating associations and correspon-
dences (constraints) between associations (columns 2..4). The merged package
∆ is parameterized by the left, L, and right, R, multiplicities of the associa-
tion drives. Since there is no association drives in the receiving package, this
association together with its multiplicities L,R will be copied to the resulting
package; hence, the latter is also parameterized by L,R. As for multiplicities
for association owns, according to the PM-rules, the resulting multiplicity has
the lowest lower bound and greatest upper bound of the receiving and merged
multiplicities.. This explains the P ′(L,R) row in the table.

The next five rows present five samples of merge differing only in the values
of parameters, mainly in the right multiplicity for drives. These quantitative
changes, however, cause all five cases to be qualitatively different w.r.t. relations
between the sets of package instances, inst (P) and inst (P ′) respectively. We
will call the elements of the former old instances and those of the latter new. In
the 1st example (package P ′1), since the right end of association drives has the
optional multiplicity, all old instances can be well considered as new instances
and we have inclusion inst (P) ⊂ inst (P ′). In such cases, we will say that all old
instances are compatible with the new package structure, and that package P ′ is
an optional extension of package P .

The next four rows present cases when none of the old instances can be
loaded into the new package structure; in other words, sets inst (P) and inst (P ′)
are disjoint. We will say that package P ′ is a mandatory extension of P .

If an instance I of package P is incompatible, we may try to fix it by adding
missing items, in our case, missing drives-links. As examples P ′21, P

′

22, P
′

23 show,
we can encounter situations when (i) all, (ii) some or (iii) none of the old in-
stances are fixable in this sense. Note that package P ′23 is totally inconsistent
(has no instances), which of course implies that none of the old instances can
be loaded into it. The case (iv) in the P ′3-row is more interesting. There, the left
multiplicity of the owns-association for the merged package ∆(L,R) is changed
from 2..4 to *. This multiplicity will go to the result (by the same PM- rule
described above), and then package P ′3 – in contrast to package P ′23 – is consis-
tent: it does have instances consisting of Car-objects only. However, none of the
old instances (of package P) can be fixed to become one of these P3-instances.
Correspondingly, we call the three subtypes (i,ii,iv) of consistent mandatory
extensions conservative, non-conservative and totally non-conservative while in
case (iii) the extension is itself inconsistent.

Among these three, the case of non-conservative extension (P ′22) is the most
interesting. In general, the new constraints in package P ′ are statements about
new items in the structure. Often, they relate these new items with the old
ones (those in package P) like, for example, the correspondence statement in
Table 1. The question is whether such statements can somehow constrain the

7

old structure embedded in the new structure. In other words, let us take an
instance I ′ ∈ inst (P ′) of the resulting package, and forget about its additional
structure, thus coming to a instance I = ←I ′ ∈ inst (P) of the receiving package.
Let inst←

∆
(P) (where ∆ refers to the package extension in question) denote the

set of all such reduct-instances. At first glance, it may seem that the equality
inst←

∆
(P) = inst (P) should hold but, in general, this is not the case. The point

is that the new structure together with new constraints may be such a strong
imposition over its old structure subset that not every old instance can be a
reduct of some new instance. This phenomenon is well studied in mathematical
logic and model theory under the name of non-conservative extension of theories
(see, e.g., [2]). In the package merge context (where packages are, in fact, theories
in a special graph-based logic [7]), it means that (for a mandatory package
extension), not every old instance can be fixed to become compatible with the
new structure (and hence be loaded into it).

Table 2 presents a simple example of non-conservative package extension
(in the bottom row); some details for the extension P ′22 in Table 1. It clearly
shows that while every new instance can be mapped to an old instance by for-
getting about its new extra structure (move from the right to the left in every
row of the table), the inverse mapping is only partially defined (and, of course,
is multivalued). In more formal terms, for any mandatory package extension
P ′ = P + ∆, a forgetful or reduct mapping red

∆
: inst (P ′) → inst (P) (to be

read “forget ∆”) is always defined but is not surjective. The inverse multi-
valued mapping ext

∆
: inst (P) → inst (P ′) (read “fix it by extending with ∆”)

is only partially defined. Note that in general we need to consider two versions of
extending mappings: one is the (incomplete) extension of old instances towards
compatibility into new package, the other is their complete extension to valid
instances of P ′. The example in the I2 − J2 row of Table 2 shows that these two
mappings can be fundamentally different.

3.2 Unification and notation

All the examples above can be considered in some unified way and conveniently
specified as follows. Let us consider a package as a triple P = (S,CC , CV) where:

– S is some structure or schema having a certain set of instances, inst (S). A
typical example of a schema is a graph underlying a UML class diagram (nodes
are class names and edges are associations), whose instances are specified by
object diagrams over this schema. Another example is the tree structure of an
XML document declared in its DTD, where its instances are all possible XML
documents with this structure.

– CC is a set of constraints regulating compatibility (hence the subscript C)
of instances with the structure (think of UML multiplicities for associations or
DTD constraints specifying optionality of elements in the XML document).

– CV is an additional set of constraints specifying (in, say, OCL) valid in-
stances among the compatible ones.

8

Since constraints narrow the set of instances, a package has three sets of
instances associated with it:

instV (P) ⊂ instC(P) ⊂ instB(P)
def
= inst (S)

which we will call, respectively, valid, compatible and basic instances of P . For
example, instance J2 in Table 2 is a compatible but not valid instance of package
P ′, while instance J3 is valid (and hence compatible).

Table 2. Example of non-conservative package extension (some details for the row P
′

22

in Table 1). The table is to be read from bottom to top.

Instances of package P’22 Instances of package P

compatible valid

Package P Package P22’ is a mandatory and non-conservative extension of P

:owns

:owns

John:Person #c2 :Car

Mary:Person

owns

1..3
Car Person

1..*

:owns

:owns

:owns

John: Person #c3 :Car

#c2:Car Mary: Person

#c1:Car
:owns

#c4 :Car :owns

#c1:Car

instance J3

:owns

:drives

:drives

:drives :owns

John:Person #c2 :Car

#c1:Car Mary:Person

:owns

instance J2

:owns

:owns

:owns

John:Person #c2 :Car

#c1:Car Mary:Person

:owns

...

Instance J2 is compatible but
not valid.

instance I2

instance I3

1..*

1..* 2..*

1..4 owns

drives

Person Car

Validity Constraints: Context Person:
self.owns->includesAll(self.drives)

:owns

:owns

:drives

#c3 :Car

Mary:Person

#c4 :Car

John:Person

#c2 :Car
:drives

Instance I1 is not compatible and cannot
be fixed, i.e., augmented with missing
items to become compatible.

instance I1

No instances J1 (that would become I1
after forgetting their drives-links)

Correspondingly, package extension is described by the expression P ′ = P+∆

with the increment ∆ = (∆S ,∆C ,∆V) consisting of three component incre-
ments: in pure structure, ∆S , in compatibility constraints to it, ∆C , and in
validity constraints to compatible instances ∆V (we write ∆C ,∆V).

9

There is a delicate and important issue in specifying increments for con-
straints. The example in the top three rows of Table 1 shows that the merged
package ∆ can (i) change the compatibility of items in the (old) structure in the
receiving package (multiplicities for association owns) and, of course, (ii) spec-
ify compatibility of new items added to the structure in the resulting package
(multiplicities for drives). Thus, in general, ∆C := ∆C + ∆∗

C
, and similarly for

∆V , where the ∗-index near ∆ refers to constraints talking about the new items
in the new structure while ∆ without this index refers to changes in constraints
for old items in the new structure.

We will also assume that our ∆’s are always positive increments (addition),
and to specify a decrement we write (−∆). In more formal terms, it means that
the sets of structures and constraints are partially ordered and, for example,
S′ = S + ∆ means that S ⊂ S′ while S′ = S − ∆ means that S′ ⊂ S in
that partial order on structures (normally, an ordinary sub-structure relation).
Similarly, C ′ = C + ∆ means that we strengthened the set of constraints by
either adding new constraints to it or, maybe, by strengthening some of the
constraints in C. In this notation, for example, the relation between packages P

and P ′22 in Table 2 can be specified by the following equalities: S′ = S + ∆S ,
C ′

C
= CC − ∆C + ∆∗

C
, C ′

V
= CV + ∆∗

V
.

4 Applications to UML 2.1 Compliance Levels

Having described and classified the general forms that package extension can
take, we can now consider in more detail how the theory applies to package
merge and the definition of UML compliance levels. The resulting package of
a package merge can extend the receiving package in different ways, depending
on the contents of the merged package. Some of these ensure compliance level
compatibility, while others do not. We present here several examples of how
package merge is used to define the compliance levels of UML 2.1, and show how
each fits into the taxonomy of package extensions introduced in the Section 3.
The taxonomy can be briefly summarized in pseudo-code as

if (extension is optional) then

all instances are compatible

else //extension is mandatory

if (extension is conservative) then

all instances are not compatible, but can be fixed

else if (extension is non-conservative) then

if (extension is totally non-conservative) then

no instances are compatible or fixable

else

no instances are compatible, but some are fixable

4.1 Examples of Optional Extension

The top row of Table 3 shows an example of a package merge taken from the def-
inition of UML compliance levels in [11]. The Level 2 package shows the relation-

10

Table 3. Examples of package merge resulting in optional extension

1a. Optional extension 1b. Resulting package of (1a)

2. Optional extension with weakened compatibility

3. Optional extension with strengthened validity

11

ship between the metaclasses Classifier and Generalization at level 2 compliance.
One of the packages merged in to form level 3 compliance is the PowerTypes

package, which contains additional structure for Classifiers and Generalizations.
These additional elements (one class and two associations) are copied into the
resulting package (which is also shown in Table 3), since they do not have match-
ing elements in the receiving package. According to the definitions introduced
in the previous section, the resulting package is an optional extension of the
receiving package, meaning that it ensures that level 2 models are compatible
with level 3-compliant tools.

The resulting package does not always add extra structure to the receiving
package; it may only change the compatibility or validity constraints of the ex-
isting structure. This is a special case of optional extension. The second row of
Table 3 shows two examples; since the resulting packages for both have the same
structure as the receiving, they are not shown. The rules for package merge are
such that existing compatibility constraints are always made less strict (weak-
ened). For example, imagine that we want to add more features to UML with a
fourth level of compliance. In Table 3, the Level 3 package contains part of the
definition of the metaclass Property at level 3 compliance. The (imaginary) Extra

Defaults package defines that a Property may have more than one default value.
According to package merge rules, the associations owningProperty:Property →

defaultValue:ValueSpecification in the merged and receiving package will match,
and their matching association ends will be recursively merged. The resulting
defaultValue end has a multiplicity of 0..*, which is calculated by taking the
lowest lower bound and the highest upper bound from the merged and receiving
ends. A level 3-compliant model will thus never lose information when being
imported into a level-4 compliant tool, since the resulting multiplicity is wider
(weaker) than that of the receiving. It is interesting to note that, while the rules
for merging multiplicities ensure the compatibility of the receiving and resulting
packages, they also allow for previously illegal instances to be legal in the re-
sulting package. For example, consider merging multiplicities 1..2 and 5..7. The
resulting multiplicity will be 1..7, which includes values (i.e., 3..4) that were not
allowed in either of the two original multiplicities. This is a consequence the fact
that, as defined in UML 2.1, multiplicities must be a single, continuous interval.

Validity constraints, on the other hand, can be strengthened as the result
of a merge. Section 3 introduced the notion of valid instances of a package as
those instances which are compatible and which satisfy any additional semantic
constraints on the model. The rules for package merge do not guarantee that
instances of lower compliance levels will remain valid at higher levels. For ex-
ample, Table 3 shows a package Level 0, which contains a part of the definition
of operations at compliance level 0. One of the packages merged in to form
level 1 compliance is the Infrastructure::Constructs package, which contains an
identical definition of Operation, but with the additional constraint that the or-
deredness of an operation is derived from its return value. According to the rules
for package merge, the constraint on the merged element Operation is added to
the constraints on the receiving element Operation. The resulting package has

12

the same structure as the receiving package, but its validity constraints have
been added to (strengthened). If a model created at compliance level 0 does not
derive the isOrdered property of its operations from their return parameters, it
could be imported into a level 1-compliant tool, but would not fulfill all semantic
constraints of that level.

4.2 Examples of Mandatory Extension

The resulting package of a package merge can also be a mandatory extension
of the receiving. Figure 3 shows an example from [11]. The Level 1 package
contains a part of the definition of an ActivityEdge at that compliance level. The
IntermediateActivities package, which is merged in to form level 2 compliance,
contains an association ActivityEdge → guard:ValueSpecification, which has a
non-optional (i.e., non-zero) multiplicity. A model created at level 1 compliance
would not be compatible with a level 2-compliant tool, since its activity edges
do not have a corresponding guard; it could not be imported “as-is” into the
tool. However, since the extension in this case is conservative, it is possible
to fix a non-compatible instance. The UML 2.1 specification explicitly states
[11, Section 12.3.5], that the default value for the guard is “true”, so a non-
compatible model can be fixed by simply adding the default value as a guard on
all ActivityEdges which do not have one.

With merges Resulting package

Fig. 3. Example of package merge resulting in mandatory extension

It is also possible for a package merge to result in a non-conservative manda-
tory extension of the receiving package. Although we do not present an example
of this situation in terms of UML compliance levels, it is illustrated in examples
P ′21, P

′

22 and P ′23 of Table 1.

13

4.3 Summary

In terms of the notation introduced in Section 3, the rules for package merge
ensure the following properties:

1. S′ = S + ∆S , structure is never removed;
2. C ′

C
= CC − ∆C + ∆∗

C
, compatibility constraints to the old structure are

always weakened,
3. C ′

V
= CV ± ∆V + ∆∗

V
, validity constraints to the old structure can be

strengthened or weakened.

Based on these rules, the relation of the receiving package to the resulting can
range over our entire taxonomy of package extension. To the best of our knowl-
edge, most of the uses of package merge for defining compliance levels of UML 2.1
result in optional extensions, and are thus compatible. The few instances of
mandatory extension are conservative with fixes explicitly defined. However, in
general, using package merge to define compliance levels for MOF-based models
does not guarantee that successive levels will be compatible.

5 Conclusion and Future Work

UML 2.1 introduced the operation of package merge to faciliate the definition
of compatible compliance levels. In order to better understand package merge,
we have developed a theory of package extension, which is based on viewing an
extension to a package as being made up of a pure structural increment, a com-
patibility constraint increment, and a validity constraint increment. This theory
leads us to a taxonomy of the possible relationships between the original and ex-
tended package. The taxonomy distinguishes between optional extensions, which
ensure compatibility, and mandatory extensions which do not. Mandatory exten-
sions can be further subdivided into conservative, non-conservative and totally
non-conservative extension, based on whether all, some or none of the original
instances can be fixed to become compatible. This theory is influenced by con-
cepts in model theory and mathematical logic, where theory extension has been
well-studied. Our classification of package extension types allowed us to look at
the relationship between the receiving and resulting package of a package merge
in a more formal way. We have discovered that the rules for package merge do
not prevent mandatory extension, and thus, it cannot guarantee compatibility
when used to define compliance levels. However, in the definition of the compli-
ance levels of UML 2.1, it appears that package merge is used in such a way as
to ensure compatibility.

Future work on this topic includes completing a full formalization of our
theory of package extension, as well as a formal definition of package merge.
We are also interested in examining the notion of “fixability” in more depth to
determine some sort of general guidelines or canonical way to fix incompatible
models (where possible). Finally, another potential area of study is the impact
of this work on UML modeling tools - for example, the ideal tool would have to

14

assess the compatibility and validity of models imported from tools of a lower
compliance level, as well as suggest possible ways of fixing incompatible models.
Acknowledgements We would like to thank Bran Selic and Jim Amsden for
taking the time to answer our questions about packge merge.

References

[1] S. Alagic and P. Berstein. A model theory for generic schema management. In
Eighth International Workshop on Databases and Programming Languages, pages
228–246, 2001.

[2] J. Barwise, editor. Handbook of Mathematical Logic, volume 90 of Studies in Logic
and the Foundations of Mathematics. North-Holland Publishing Company, 1977.

[3] C. Batini, M. Lenzerini, and S. Navathe. A comparative analysis of methodologies
for database schema integration. ACM Computing Surveys, 18(4):323–364, 1986.

[4] P. Bernstein, A. Halevy, and R. Pottinger. A vision for management of complex
models. SIGMOD Record, 29(4):55–63, 2000.

[5] P. Bernstein and R.Pottinger. Merging models based on given correspondences.
In Proc. Very large databases, VLDB’2003, 2003.

[6] Z. Diskin. Abstract metamodeling, I: How to reason about meta-metamodeling in
a formal way. In K. Baclawski, H. Kilov, A. Thalassinidis, and K. Tyson, editors,
8th OOPSLA Workshop on Behavioral Specifications, OOPSLA99. Northeastern
University, College of Computer Science, 1999.

[7] Z. Diskin, B. Kadish, F. Piessens, and M. Johnson. Universal arrow foundations for
visual modeling. In Diagrams’2000: 1st Int. Conf. on the Theory and Applications
of Diagrams, Springer LNAI#1889, pages 345–360, 2000.

[8] Zinovy Diskin and Boris Kadish. Generic model management. In Doorn, Rivero,
and Ferraggine, editors, Encyclopedia of Database Technologies and Applications,
pages 258–265. Idea Group, 2005.

[9] D.F. D’Souza and A.C. Wills. Objects, Components, and Frameworks with UML.
Addison Wesley, 1999.

[10] J.A. Goguen and R.M. Burstall. Institutions: Abstract model theory for specifi-
cation and programming. Journal of ACM, 39(1):95–146, 1992.

[11] Object Management Group. Unified Modeling Language: Superstructure (version
2.1, ptc/06-01-02), January 2006.

[12] I. Jacobson J. Rumbaugh and G. Booch. The Unified Modeling Language Refer-
ence Manual. Addison Wesley, 2 edition, 2004.

[13] B. Selic, January 2006. Personal communication.

15

