
Performance and Scalability of Sudoku Solvers

Prestanda och Skalbarhet för Sudoku Lösare

VIKSTÉN, HENRIK
NORRA STATIONSGATAN 99

STOCKHOLM 113 64
073 643 76 29

HVIKSTEN@KTH.SE

MATTSSON, VIKTOR
FURUSUNDSGATAN 10
STOCKHOLM 115 37

073 061 74 90
VIKMAT@KTH.SE

Bachelor’s Thesis at NADA
Supervisor: Mosavat, Vahid

Examiner: Björkman, Mårten

TRITA xxx yyyy-nn

Abstract
This paper aims to clarify the differences in algorithm de-
sign with a goal of solving sudoku. A few algorithms were
chosen suitable to the problem, yet different from one an-
other. To take an everyday puzzle and utilize common com-
puter science algorithms and learn more about them. Get
relevant data to see how they perform in situations, how
easily they can be modified and used in larger sudokus.
Also how their performance scales when the puzzle grows
larger.
From the results Dancing links was the fastest and scaled
best of the algorithms tested, while Brute-force and Simu-
lated annealing struggled keeping consistent results.

Referat
Prestanda och Skalbarhet för Sudoku Lösare

Detta dokument syftar till att klargöra skillnaderna i algo-
ritmer med målet att lösa sudoku. Välja ett par olika algo-
rithmer lämpliga för problemet, men som samtidigt skiljer
sig från varandra. Att ta ett dagligt pussel och utnyttja van-
ligt förekommande algoritmer inom datavetenskap och lära
sig mer om dem. Få relevant data och se hur de presterar i
olika situationer, hur lätt de kan modifieras och användas i
större Sudokus. Även hur deras prestanda skalar när puss-
let blir större.
Dancing links var den snabbaste algoritmen och skalade
bäst av de som testades. Brute-force och Simulated anne-
aling inte var lika konsekventa genom alla tester och betyd-
ligt långsammare i överlag.

Contents

1 Introduction 1
1.1 Purpose . 1
1.2 Problem Statement . 1
1.3 Scope . 2
1.4 Statement of Collaboration . 2
1.5 Summary of Results . 2
1.6 Definitions . 3
1.7 Overview of the Document . 3

2 Background 5
2.1 What is Sudoku? . 5

2.1.1 Rules of Sudoku . 5
2.2 Solving Sudoku by Hand . 7
2.3 Solving Sudoku Using a Computer 7

2.3.1 Backtracking . 8
2.3.2 Brute-force Search . 8
2.3.3 Simulated Annealing . 9
2.3.4 Dancing Links . 9

3 Approach 13
3.1 Testing Enviroment . 13

3.1.1 Hardware and Software . 13
3.1.2 Testing Interface . 13

3.2 Time Measurement . 14
3.2.1 Nanotime . 14

4 Results 17
4.1 4x4 Sudoku . 17

4.1.1 52 Random boards . 17
4.1.2 52 Set boards . 17
4.1.3 10 Boards with no clues . 17

4.2 9x9 Sudoku . 17
4.2.1 52 Random boards . 18

4.2.2 52 Set boards . 18
4.2.3 10 Boards with no clues . 18

4.3 16x16 Sudoku . 18
4.3.1 52 Random boards . 18
4.3.2 52 Set boards . 18
4.3.3 10 Boards with no clues . 18

4.4 Scaling . 19
4.4.1 Brute-force . 19
4.4.2 Simulated Annealing . 19
4.4.3 Dancing Links . 19

5 Discussion 21
5.1 Brute-force . 21
5.2 Simulated Annealing . 22
5.3 Dancing Links . 23

6 Conclusion 25

7 References 27

List of Figures 28

Appendices 28

A 29
A.1 Random 4x4 data . 29
A.2 Set 4x4 data . 32
A.3 No clue 4x4 data . 35

B 37
B.1 Random 9x9 data . 37
B.2 Set 9x9 data . 40
B.3 No clue 9x9 data . 42

C 43
C.1 Random 16x16 data . 43
C.2 Set 16x16 data . 46
C.3 No clue 16x16 data . 48

Chapter 1

Introduction

Sudoku is a game traditionally played with pen and paper, but can be solved a lot
faster with computer algorithms. Computers can solve a 9x9 sudoku with roughly
20-25 given numbers within less than a second, way faster than a human ever could.
These algorithms open up a wide range of design paradigms and ways to solve the
puzzle. Everything from brute forcing, backtrack to stochastic search. In this report
different algorithms will be tested and conclusions about performance in different
scenarios and sizes will be made.

1.1 Purpose
In computer science, algorithms are the foundation of complex problem solving. In
this report focus is on solving sudokus.
This report is intended to reach an understanding in the scalability and performance
of different sudoku algorithms. What design paradigms fits the best for a specific
situation, how the performance scales over various sizes and the major differences
between designs. But also discuss the basics of sudoku solving.

1.2 Problem Statement
There are several different algorithms for solving sudoku, different programming
languages and design paradigms. This report will take a few of these methods,
analyze them and present the data and discuss it. Sudoku can be considered quite
an easy puzzle to solve but the algorithms can be complex. The main goal is to see
how different design paradigms perform and scale when the task get tougher, in the
end finding the best algorithm and their weaknesses.

• How does the algorithms perform?

• How do the algorithms scale when the puzzles grow?

• How is the algorithm used to solve sudoku?

1

CHAPTER 1. INTRODUCTION

• Which algorithm works best for sudoku and why?

1.3 Scope
Limiting the selection of algorithms and testing is crucial. At the same time extract
reliable data in the testing environment. That is why this report only focuses on
Java and the following algorithms:

• Brute-force
• Simulated annealing
• Dancing Links

Focus is on measuring the time an algorithm takes to solve 52 amount of sudoku
puzzles and comparing different implementations and sizes of puzzles. It was a
conscious choice to only test 52 boards at a time.

1.4 Statement of Collaboration
This project is intended to be a group effort and it is a clear success, both members
have been actively taking part in all aspects of the projects. Every single detail
has been discussed and close teamwork has always been our strong side. Although,
some work tasks have been divided slightly, while Viktor wrote our testing interface
Henrik searched the web for information, algorithms and started writing. In the
testing phase both of us were involved checking if the numbers were feasible. When
testing was done, both of us continued working with the remainder of the document.

1.5 Summary of Results
Considering the scope of the test and that algorithms can be implemented in differ-
ent ways results in this paper might not always be accurate, however, results with
our methods and algorithms are all extensively tested. Discussion and preferences
are based on data and personal observations during the tests. We do not think
that these are the best algorithms ever implemented for these design paradigms but
decided to use easy to find algorithms that came from a somewhat recognizable
source.

2

1.6. DEFINITIONS

1.6 Definitions
Box a 3x3 part of the sudoku puzzle.
Clue/Givens a number already in the sudoku puzzle that cannot be changed.
Grid/Board the entire sudoku puzzle.
Cell a 1x1 part of the sudoku puzzle.

1.7 Overview of the Document
Chapter 2 Background, introduction to sudoku and algorithms explained.
Chapter 3 Approach, testing enviroment and interface descriptions.
Chapter 4 Results, data from tests.
Chapter 5 Dicussion, discussing the results and algorithms.
Chapter 6 Conclusion, what this paper achieved.
Chapter 7 References, a list of sources of information used for the paper.
Appendix A collection of raw data from tests, including tables and diagrams.

3

Chapter 2

Background

2.1 What is Sudoku?
Sudoku is a logical number puzzle. The conventional puzzle consist of a 9x9 grid
of smaller squares divided into nine 3x3 grids. These squares is to be filled with a
number ranging from one to nine. Some numbers are given, how many you get and
positioning alters the difficulty of the puzzle.

Figure 2.1. Unsolved sudoku, 28 givens.

2.1.1 Rules of Sudoku
In order to solve a sudoku puzzle you must follow these rules.

Rule 1 A number may only appear once in every row.
Using the board in fig. 2.1 we notice that following rule one, “5 1 2 | 3 4 6 | 8

5

CHAPTER 2. BACKGROUND

7 9” could be a possible solution for the first row. However this brings us to
the second rule.

Rule 2 A number may only appear once in every column.
Using rule two we notice that previous solution does not work. In column two
row five we have a set number of one which mean that it is not possible for
us to set this number in the second column of the first row. There are even
more errors but considering them we could try shuffle the numbers around to
prevent the errors. We notice that “5 6 7 | 4 3 1 | 8 2 9 ” fullfill rule one and
two.

Rule 3 A number may only appear once in every sub 3x3 grid.
Rule three does once again make the solution invalid. Using this rule we notice
that the numbers in column 2 and 6 are wrong.
The first 3x3 subgrid contains the predetermined numbers five and six. This
mean that placing another six in this subgrid would be against the rules. Once
again moving around the numbers, this gives us a solution “5 2 1 | 4 3 7 | 8
6 9” and we notice that all three rules are fulfilled and can continue with the
rest of the board resulting in a complete solution such as the one shown in
fig. 2.2.

Figure 2.2. Solution of fig. 2.1

The board does not have to be solved one row at a time but can be solved in
any manner following the rules.

6

2.2. SOLVING SUDOKU BY HAND

2.2 Solving Sudoku by Hand

Sudoku solving can be seen as a combinatorics problem. This helps us determine
the number of possible solutions. Although this does not help a normal person
solving sudoku. To be able to solve a harder sudoku like the one from Le Monde
magazine (fig. 2.3) you would have to use special techniques.

Figure 2.3. Hard sudoku from Le Monde magazine

There are several commonly known techniques for solving Sudoku by hand,
however, all of them are limited by the human brain. According to miller’s law the
average human brain can only hold 7+/-2 things in the working memory [3]. This
means it is nearly impossible for a human to remember all cells in which a specific
number or numbers can be placed. That is why it is very common to take notes,
write possible numbers for a specific cell within it. This helps solving the puzzle
and eventually eliminates candidates.
That is a good start, although all puzzles are not that simple. Like the one in figure
2.3, we might have to implement another strategy to solve it. There are a couple
of advanced sudoku solving techniques, but among the most common are X-Wings
[4] and Swordfish [5].

2.3 Solving Sudoku Using a Computer

A lot different from a human, computers are not limited by working memory in the
same way. The ability to save and retrieve data from memory makes a computer
the perfect sudoku solver. It excels at working tasks that are repetitive, logical and
does it fast. For solving sudoku there are a few commonly used algorithms, while

7

CHAPTER 2. BACKGROUND

Brute-force is the most intuitive way for a human to write code it might not be the
best for a computer to solve it.

2.3.1 Backtracking

Figure 2.4. Sample backtracking tree

Backtracking is a commonly used constraint satisfaction problem solving algo-
rithm[10]. Backtracking is a form of search that climbs recursively down a tree
made of different choices. Whenever a backtracking algorithm is used its goal is to
reach the very end of its recursion tree where the solutions are but in order to reach
the end you will have to search your way down along a valid path. Fig 2.4 shows
the path the algorithm will work in its worst case along a small binary tree.
The algorithm will start at the top by checking if its set of constraints hold and
decide that it does (true) and decide to continue by recurse downward one level.
In this spot it once again check if the constraints hold and continue downwards as
it does. But when reaching the third level it notice that the constraints no longer
holds (false), then we know that the rest of that branch is also false and does not
have to check the rest. The algorithm will have to use the special functionality of
backtracking and go up one level. As the algorithm go up a level in the recursion
tree it will now know that the previously visited node is false. This allows it to go
down a new path if available, or up another level if there is no other path. Creating
a form of brute-force search through the solutions.
It is important to understand that a backtracking algorithm is by no means a true
brute-force algorithm. If the binary tree in fig 2.4 would have been one level deeper
a backtracking algorithm would not have to check the majority of the fourth level as
the solution does not hold in level three, while a true brute-force algorithm would
have. Thous backtracking is usually faster than a brute-force solution.

2.3.2 Brute-force Search
Brute-force is probably the most common way to solve a sudoku using a computer.
However a true brute-force solution for sudoku is not feasible due to the fact that

8

2.3. SOLVING SUDOKU USING A COMPUTER

there are approximately 6.671x1021 different 9x9 sudoku boards [8]. Therefore the
brute-force approach to sudoku is actually a backtracking algorithm that is very
natural for humans and consists of a few, very simple steps for solving.

1. For each possible number.
2. Check if any number is valid for the cell.
3. If a number is valid, add it to the cell and step to next cell else backtrack to

previous cell.
4. If a number was added to the last cell the sudoku has been solved.

While the brute-force approach is simple to understand it might not be the most
efficient one. As numbers are added as soon as they see fit they may very well create
problems for future cells creating a need to backtrack. In the worst case, some of
the very first cells would be wrong and you will have to backtrack the entire board
which means redoing all of the solution.

2.3.3 Simulated Annealing
Simulated annealing is a probabilistic method for solving the global optimization
problem [6]. The name originates from the metallurgy method annealing where you
grant metals different properties by heating and cooling it. Simulated annealing
works in a similar way [13].
To be able to utilize this method for sudoku we would have to define what has to be
optimized by the algorithm. As a sudoku is considered solved when all the cells are
filled and every rule is applicable to each cell, we can define this as the number of
cells violating the rules. When the number of cells that contradict the rules reach
zero, a completely solved board has been achieved.
Solving a sudoku using simulated annealing works by creating a potential solution
to the problem by filling all unfilled cells with a randomized value. With the entire
board filled, the algorithm will count how many errors that has been made and
iteratively swap two cells of these boxes updating the solution. If the new solution
contains less errors than the previous it is considered better and will be kept as the
starting point for future iterations. This is the cooling part of annealing. Though
as a sudoku board can be almost completely solved while still being entirely wrong,
it is also necessary to save a few solutions that is considered worse. This is the
heating part of annealing and is a necessary part of simulated annealing. Without
being able to reheat a solution, the algorithm will get stuck at trying to solve the
almost solved board even though it is unsolvable.

2.3.4 Dancing Links
Dancing links is an algorithm that utilizes a pre calculated sparse matrix of con-
straints to solve the exact cover problem efficiently. Exact cover is a constraint
programming problem where each constraint should be fulfilled once and only once.

9

CHAPTER 2. BACKGROUND

As Helmut Simonis states, Sudoku is a typical constraint programming problem [1].
Constraint programming differ from usual programming problems as you do not
specify steps for a program to do in order to reach a solution. Instead you create a
set of conditions or constraints that the solutions share. Constraints can tell what
the solution should be or what it should not be, allowing the program to easily filter
out faulty solutions [14].
For sudoku the constraints to be fulfilled are:

• A cell constraint: Each cell can only be filled with one number.
• A row constraint: A number may only occur once in each row.
• A column constraint: A number may only occur once in each column.
• A box constraint: A number may only occur once in each box [9].

This will create a sparse matrix of size (Sudoku size)3 x 4*(Sudoku size)2 where one
row for a 4x4 sudoku could look like this:

0000000000000100 0000000000000001 0000000100000000 0000000000010000

where the first 16 numbers state the cell constraint, second 16 numbers the row
constraints, third column the constraints and forth the box constraints. This par-
ticular line could be read as “Cell 14 is filled. Row 4, column 2 and box 3 has been
occupied by number 4".
Dancing links uses this matrix to solve the sudoku board using exact cover with
the very simple idea that you can both remove and add an element to a double
linked list just by moving its nodes next and previous pointers [12]. Donald Knuth,
creator of the dancing links algorithm described the algorithm by using a few short
examples and so shall this paper also use a small example. Note that this example
is based on a lecture from Colorado State University[11].
Consider you have the sparse matrix

0 0 1 0 1 1 0
1 0 0 1 0 0 1
0 1 1 0 0 1 0
1 0 0 1 0 0 0
0 1 0 0 0 0 1

10

2.3. SOLVING SUDOKU USING A COMPUTER

Creating this sparse matrix using double linked list for its rows and columns
where each 1 is represented by a node with up/down pointers for columns and
left/right for rows would create a data structure as shown in fig 2.5. It is important
to keep column head nodes(a-g) to easily know which columns that has been removed
and a primary head node(h) to determine when a solution has been found.

Figure 2.5. Linked list structure of a sparse matrix.

Dancing links uses this data structure to solve the exact cover problem using the
benefit that it can easily remove a constraint and all the related constraints. For
example, if we were to decide that column a, row 2 holds for our solution we would
have to remove this column and row from the matrix and put it into our solution.
This can easily be done by moving neighboring nodes next and previous pointers
around the nodes of this row and column as shown in figure 2.6.

Figure 2.6. fig. 2.5 with column a, row 2 covered.

Now, to solve the exact cover problem we can not have more than one of each
constraint fulfilled. We would have to remove all rows that share these constraints.
Easily enough, these rows are the neighbors of the nodes that were just removed

11

CHAPTER 2. BACKGROUND

and therefore, all rows that contradict the exact cover solution can be iteratively
removed.
Once this has been done the columns a, d and g are considered “covered” and they
will no longer be a part of the matrix along with the rows that share these columns.
The matrix would now look like this.

0 1 1 1
1 1 0 1

However, as columns b, c, e and f are still uncovered and there is no way to choose
one of these rows without covering the other, it is impossible to find a solution using
column a, row 2 as a starting point. This mean theres a need to backtrack and redo
the choice of starting point. In this example the solution would be to cover in the
order:

1. Column a, row 4.
2. Column b, row 3.
3. Column c, row 1.

This can easily be checked by hand. Adding the rows together and check if it
ends up in a row consisting of only ones but for dancing links it is when the primary
head node links to itself.

12

Chapter 3

Approach

To be able to produce reliable results that are proportional to each other it was early
decided to make sure the algorithms had the same potential within the testing soft-
ware. As stated in the scope it was also decided to use Java as the programming
language for all of the tests. The main concern was not getting reliable data mea-
sured in wall-clock time, but rather get data that can be compared between design
paradigms.

3.1 Testing Enviroment

3.1.1 Hardware and Software
To ensure that the test data was not affected by external conditions the same
computer was used for all the tests, and they were all done at the same time. The
computer specifications can be found below.

Model Lenovo Y500 laptop
CPU Intel Core i7 3630QM 2,4 GHz
Memory 8GB SO-DIMM DDR3 @ 1600MHz
GPU NVIDIA GeForce GT 650M SLI
HDD 1000GB Storage, 16GB SSD, Hybrid, 5400 RPM

The tests ran on Windows 8 with Intellij Idea version 12.0.4.

3.1.2 Testing Interface
To make the testing easier we decided to write a small testing interface. The testing
interface is very simple. It serves four purposes.

1. To load sudoku boards from file or call a sudoku generator to create a set of
sudoku boards.

13

CHAPTER 3. APPROACH

2. To safely copy sudokus for each algorithm in order to prevent that a sudoku
board is solved when another algorithm is being tested.

3. To store and present the time an algorithm was working.
4. To present runtimes and average runtime.

3.2 Time Measurement
The time measurement of the tests will be run as follows:

Initialize Algorithm a.
Store current system nanotime.
Solve the sudoku board using algorithm a.
Return difference in system time since before solving.

It was decided that the algorithms should be initialized before starting time
measurements to show actual solving time instead of time necessary to set up the
algorithm. This mean that algorithms such as dancing links that require certain
one-time pre calculation will get a slight advantage.
The best and worst time will not be included in the average time in order to grant
more precise results due to caching and other factors.

3.2.1 Nanotime
Due to the nature of certain algorithms we have chosen to measure times using
java’s nanoTime() method in the system library. There are several reasons for this.
Java’s API writes this about nanoTime:
“Returns the current value of the most precise available system timer, in nanosec-
onds. This method can only be used to measure elapsed time and is not related
to any other notion of system or wall-clock time. The value returned represents
nanoseconds since some fixed but arbitrary time (perhaps in the future, so values
may be negative). This method provides nanosecond precision, but not necessarily
nanosecond accuracy. No guarantees are made about how frequently values change.
Differences in successive calls that span greater than approximately 292 years (263
nanoseconds) will not accurately compute elapsed time due to numerical overflow.”
(Copied from java API) [7].
As we only want to know the elapsed time for the algorithms and not wall-clock
time, the API state that we will get a time in nanoseconds with nanosecond preci-
sion but not nanosecond accuracy. While a good accuracy would have been prefered
we still think that nanoTimes accuracy is close to other time methods such as cur-
rentTimeMillis() due to the reason that the algorithms are so fast in most cases
that currentTimeMillis() would return a time of zero as it does not return a floating
point value. The great amount of zeros would reduce the accuracy perhaps even

14

3.2. TIME MEASUREMENT

more than what the nanoTime method does.
When data is presented every reference to nanoseconds is Javas nanoTime function,
not wall-clock time.

15

Chapter 4

Results

4.1 4x4 Sudoku

The 4x4 test results are presented below. Notice that in the report only the average
times are shown but, additional data and diagrams can be found in Appendix A.

4.1.1 52 Random boards

Brute-force average: 48220ns
Simulated annealing average: 1339234ns
Dancing links average: 14582ns

4.1.2 52 Set boards

Brute-force average: 54087ns
Simulated annealing average: 618138ns
Dancing links average: 13205ns

4.1.3 10 Boards with no clues

Brute-force average: 107871ns
Simulated annealing average: 2375996ns
Dancing links average: 48536ns

4.2 9x9 Sudoku

The 9x9 test results are presented below. Notice that in the report only the average
times are shown but, additional data and diagrams can be found in Appendix B.

17

CHAPTER 4. RESULTS

4.2.1 52 Random boards

Brute-force average: 138742ns
Simulated annealing average: 8166863ns
Dancing links average: 47672ns

4.2.2 52 Set boards

Brute-force average: 474641ns
Simulated annealing average: 6519226ns
Dancing links average: 43755ns

4.2.3 10 Boards with no clues

Brute-force: 1048722ns
Simulated annealing: 33935818ns
Dancing links: 237391ns

4.3 16x16 Sudoku

The 16x16 test results are presented below. Notice that in the report only the aver-
age times are shown but, additional data and diagrams can be found in Appendix
C.
Simulated Annealing has been removed for this test due to being too slow. At-
tempts at completely solving a board were unsuccessful even when allowing 100000
iterations to be done, the time would not give us any useful information.

4.3.1 52 Random boards

Brute-force average: 741947ns
Dancing links average: 155394ns

4.3.2 52 Set boards

Brute-force average: 4087887ns
Dancing links average: 171438ns

4.3.3 10 Boards with no clues

Brute-force average: 17664554ns
Dancing links average: 1802376ns

18

4.4. SCALING

4.4 Scaling
A 4x4 sudoku has 16 cells to be filled, a 9x9 has 81 and a 16x16 has 256. This mean
the problem increase by about 5 times when the problem increase to a 9x9 sudoku
from a 4x4 and about 3 times when it grows from 9x9 to 16x16.

4.4.1 Brute-force
Average solve time increased with 7.9 times when problem increased from 4x4 to
9x9. Following, when the problem grew from 9x9 to 16x16 the average solve time
increased with 13.5 times.

4.4.2 Simulated Annealing
Average solve time increased with 11.2 times when the problem increased from 4x4
to 9x9.

4.4.3 Dancing Links
Average solve time increased with 4.3 time when the problem increased from 4x4 to
9x9. Following, when the problem grew from 9x9 to 16x16 the average solve time
increased with 6.5 times.

19

Chapter 5

Discussion

Solving sudoku is no problem for a computer. It is not a matter of minutes, it is a
matter of seconds or even less. Our tests are not measured in real clock time, how-
ever, that is because solving a single sudoku puzzle with javas millisecond function
returns the answer 0 too often. For a human wanting to solve a normal 9x9 sudoku
with a computer it does not matter what algorithm you choose. But to achieve top
speeds certain choices can make big differences.

5.1 Brute-force
Probably the simplest to implement and the easiest solution for humans to grasp.
The difference between the random and set boards in 9x9 shows the instability of this
method. It relies heavily on some sort of luck. Although the algorithm used in this
test is not fully brute-force but a combination of that and a stochastic optimization
by randomizing the order numbers are added to their cell, the difference between
best and worst time is significant. The worst case can be up to and over 20 times
worse than the best case. This makes the algorithm unreliable in time measurements
but in most cases still come up with a solution within a reasonable amount of time
compared to the others tested.

21

CHAPTER 5. DISCUSSION

Figure 5.1. Brute-force random boards results. Left 9x9. Right 16x16.

As the complexity of the problem grow so does the reliability of this method.
On the 16x16 sudokus the difference between worst and best case grows even more.
This can be seen in Appendix C section A.2, where the best case is 285 times faster
than the worst.

Figure 5.2. Scalability of Brute-force algorithm across different sizes.

Figure 5.2 shows a graph comparing the increase in sudoku size and the solving
time for brute-force. Note that the 4x4 sudoku is held as a starting point and
therefore both size and time are set to 1.

5.2 Simulated Annealing
Simulated annealing was by far the most unstable in testing. Results varied a lot
which makes it tough to draw a qualified conclusion about the actual performance of
the algorithm. It was the slowest in all tests, and had to be removed from the 16x16
sudoku test because it did not complete the puzzles within a reasonable amount of
iterations. On 100.000 iterations the test was terminated and the algorithm had
not produced a valid solution. The smaller sudokus, however, it was able to solve
but in some cases the algorithm got stuck on the last two cells. This was most likely

22

5.3. DANCING LINKS

due to the reheating process not working properly and could not get us out of the
bigger local minimas which resulted in a much longer solving time.
The scalability is also a huge let down for simulated annealing as it has the highest
increase in solving time on problem size increase of all the tested algorithms. At an
increase of 11.2 times the 4x4 solving time at the 9x9 sudoku simulated annealing
scalability is way above the other two algorithms.

5.3 Dancing Links
Dancing links is the most efficient algorithm of the three tested. It did not only
get an excellent time result compared with the other algorithms but also a splendid
scaling result. However, dancing links is hard to understand compared with both
brute-force and simulated annealing. The implementation of the algorithm is not
very hard but the idea behind it is very unique and therefore hard to grasp.
As exact cover is a np-complete problem it is bound to be hard to solve for computers
and therefore optimizations are necessary. The idea of using double linked lists
which has the ability to both cover and uncover a column/row in constant time by
just moving its neighbors pointers and to store only zeros to speed up search time
in the matrix grant obvious advantage in run time. Perhaps it is because of this
dancing links is completely unrivaled by the others. The scalability were not far
from being linear at 4x4 to 9x9 sudoku transfer and towards the bigger 9x9 to 16x16
change scalability still grew less than brute-force.

Figure 5.3. Scalability of Dancing links algorithm across different sizes.

The Dancing links curve goes below the sudoku size curve as seen in figure 5.3
because of the algorithms low solving time. As the sudoku increase the number of
givens also increase and dancing links seem to be able to take advantage of this much
better than other algorithms. However as the sudoku size increase even further the
number of cells to solve increase enough to break this trend.

23

Chapter 6

Conclusion

It is easy to choose which algorithm that is the best, however all of them have their
benefits and disadvantages. The brute-force algorithm is by far the easiest for a
human to grasp and understand but it has worst cases that makes average time
quite bad considering the fastest solving time. It also does not scale well when the
puzzle gets larger because the worst case scales even more as the puzzle grows. It
works perfectly fine for 9x9 sudoku but beyond that you should preferably consider
alternatives if you want a fast solver.
Simulated Annealing was overall bad, with the worst results across all tests and not
even completing the 16x16 test. However, this algorithm could potentially work
better if the probabilistic function and iterations methods were rewritten. It tough
to see how it scales because the 16x16 test failed. It is a very unreliable algorithm
for solving sudoku in its current state.
Dancing Links is by far the best algorithm, it solves the puzzles the fastest and does
not rely on guessing as much as the others, because of the constraints. With this
comes more stable results, this also makes the data easier to interpret. It was not
only the fastest across all test but also had the best scalability.

The purpose of the current study was to determine the best sudoku solver, in
which we did. Dancing Links was by far the best algorithm for the tests that were
chosen. A big part of this is because the structure of this algorithm is different from
the two others. It does not rely on guessing and uses a intelligent data structure
that fits the puzzle really well. Instead of relying on heavy iterations to get it right,
it relies on constraint programming. From our observations Dancing links is a better
sort of backtracker than brute-force, it guesses but gains a lot of benefit from the
way backtracking works and its data structure.

25

Chapter 7

References

[1] Helmut Simonis. Sudoku as a Constraint Problem [webpage]. c2005. [retrived
11 April 2013].
Available at http://homes.ieu.edu.tr/bhnich/mod-proc.pdf
[2] Tim Kovaks. Introduction to sudoku solvers [webpage]. c2009.[retrived 11 April
2013].
Available at http://www.cs.bris.ac.uk/Publications/Papers/2000948.pdf
[3] George A. Miller. The Magical Number Seven, Plus or Minus Two: Some limits
on our capacity for processing information [book]. c1956.
[4] Astraware Limited. Solving Sudoku: X-Wings [webpage]. c2008. [retrived 11
April 2013].
Available at http://www.sudokuoftheday.com/pages/techniques-8.php
[5] Astraware Limited. Solving Sudoku: Swordfish [webpage]. c2008. [retrived 11
April 2013].
Available at http://www.sudokuoftheday.com/pages/techniques-9.php
[6] Dimitris Bertsimas and John Tsitsiklis. Simulated Annealing [webpage]. c1993.
[retrived 11 April 2013].
Available at http://www.mit.edu/~dbertsim/papers/Optimization/Simulated%
20annealing.pdf
[7] Oracle. Nanotime java API [webpage]. c1996. [retrived 11 April 2013].
Available at http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/System.
html#nanoTime()
[8] Bertram Felgenhauer and Frazer Jarvis. Enumerating possible Sudoku grids
[webpage]. c2005. [retrived 11 April 2013].
Available at http://www.afjarvis.staff.shef.ac.uk/sudoku/sudoku.pdf
[9] Jonathan Chu.A Sudoku Solver in Java implementing Knuth’s Dancing Links
Algorithm [webpage]. c2009. [retrived 11 April 2013].
Available at http://www.ocf.berkeley.edu/~jchu/publicportal/sudoku/sudoku.
paper.html
[10] Peter van Beek. Backtracking search algorithm [webpage]. c2006. [fetched 11
April 2013].

27

Available at https://cs.uwaterloo.ca/~vanbeek/Publications/survey06.pdf
[11] Wim Bohm. Dancing links, A backtrack data structure and algorithm by Don-
ald Knuth [webpage, prestentation]. c2010. [retrived 11 April 2013].
Available at http://www.cs.colostate.edu/~cs420dl/slides/DLX.pdf
Released under Creative Commons Attribution licence.
[12] Donald E. Knuth. Dancing Links [webpage]. c2000. [retrived 11 April 2013].
Available at http://www.ocf.berkeley.edu/~jchu/publicportal/sudoku/0011047.
pdf
[13] Bret Wilson. Solving sudoku with Simulated Annealing [webpage]. c2011. [re-
trived 11 April 2013]. Available at http://www.cs.mercer.edu/courses/Laurie%
20White/Old%20Things/CSC%20380/Homework%207%20Presentations/Solving%20Sudoku%
20with%20Simulated%20Annealing.pptx
[14] Francesca Rossi, Peter van Beek,Toby Walsh. Constraint programming (CSP)
backtracking, Handbook of Constraint Programming [webpage]. c2006. [retrived
11 April 2013].
Available at http://books.google.se/books?id=Kjap9ZWcKOoC&pg=PA21&redir_
esc=y#v=onepage&q&f=false

List of Figures

2.1 Unsolved sudoku, 28 givens. 5
2.2 Solution of fig. 2.1 . 6
2.3 Hard sudoku from Le Monde magazine 7
2.4 Sample backtracking tree . 8
2.5 Linked list structure of a sparse matrix. 11
2.6 fig. 2.5 with column a, row 2 covered. 11

5.1 Brute-force random boards results. Left 9x9. Right 16x16. 22
5.2 Scalability of Brute-force algorithm across different sizes. 22
5.3 Scalability of Dancing links algorithm across different sizes. 23

28

Appendix A

A.1 Random 4x4 data

Data Brute-force Simulated Annealing Dancing Links
Time Per Test (ns) 49178 187305 28652

42764 3864115 17105
40625 188588 35066
42763 319444 14540
44474 2527326 16677
78258 302766 16250
44901 716717 14112
47468 2145875 12401
62007 4653102 14112
33783 883923 10691
37204 867245 12402
41480 1071227 14967
59014 77402 14967
85100 2875421 17106
61579 562768 18389
52599 3718719 17105
36776 588854 12829
52171 425070 14967
56448 585005 16678
40626 2405450 21382
39770 2286995 22237
646184 1481329 25658
36349 1253827 17533
50889 665828 17961
33355 77402 11546
41053 3661843 14540
36777 910863 11546
55165 1371427 23947
44475 75691 12829

29

APPENDIX A.

47040 1960282 17961
37632 80396 12401
41480 2032124 20954
37204 820205 7698
43191 76119 8125
41908 75692 13684
44474 1756726 11119
400694 3858555 13256
44047 4056123 13257
51744 2377226 10691
38487 3627205 7698
32927 82106 6842
40625 77830 8980
34639 195430 6414
49606 427636 58158
46184 79540 7698
47468 920272 12402
54738 1537350 9408
47040 876653 9408
53882 691059 9836
47040 2835224 10691
69705 829186 8553
99640 1666067 10263

Avrage Time (ns) 48220 1339234 14582

30

A.1. RANDOM 4X4 DATA

31

APPENDIX A.

A.2 Set 4x4 data

Data Brute-force Simulated Annealing Dancing Links
Time Per Test (ns) 132139 1927781 26086

52171 6266143 14540
56021 1272215 12402
55593 532834 15395
44902 48750 13684
52599 664118 14967
53455 777014 14112
45330 323720 11974
44474 522571 12401
52599 221942 14540
57303 777014 15823
51316 107765 14112
56875 1109286 17533
53027 257437 22237
59441 945930 13257
41908 37205 10263
59442 216384 16677
53027 463984 13256
51744 806521 15823
52172 347240 15394
75264 36777 14967
46185 342536 20526
51744 1188827 14540
50888 455005 11974
54309 1050701 13257
50461 224937 13257
52599 757770 13256
65428 300628 11546
50461 37204 11546
47896 781717 11974
53882 1405210 32500
59014 306187 21810
45329 346385 17533
53454 741947 14540
44474 37632 6843
74836 54737 9408
59441 260857 9836
44047 374181 7697
38487 36349 5987
50889 311318 5987

32

A.2. SET 4X4 DATA

52599 714151 8553
47467 480662 7269
60724 551222 8125
58158 2087717 8980
59014 1727647 10263
47040 335694 8125
52171 227075 14112
56875 462702 11118
75692 2018867 10264
45757 157798 8125
63290 626058 14539
61579 1143069 15822

Avrage Time (ns) 54087 618138 13205

33

APPENDIX A.

34

A.3. NO CLUE 4X4 DATA

A.3 No clue 4x4 data

Data Brute-force Simulated Annealing Dancing Links
Time Per Test (ns) 178324 5889824 64145

102205 850995 46613
103488 11675305 47040
114606 3055456 47895
100494 1173004 46612
99639 920272 55593
118883 1999623 47468
120166 1477909 50461
100494 2455056 46612
102633 2036828 46185

Average Time (ns) 107871 2375996 48536

35

Appendix B

B.1 Random 9x9 data

Data Brute-force Simulated Annealing Dancing Links
Time Per Test (ns) 631190 199944408 132567

297206 29858367 139837
151810 5428406 118455
190725 5664887 124870
389576 4581687 53882
165067 2330186 40197
144541 3794410 36776
160363 6522724 36777
365201 6093806 43619
327997 6164794 39770
298917 9966474 45757
148818 2637656 58159
242897 9351106 64573
361780 3306478 49605
293785 4120268 47468
193291 3994971 41053
164640 6199860 45330
304904 27877987 49178
184311 4245565 38487
266845 4130103 39771
150100 3244471 36777
149673 20924206 40626
302766 7304014 65429
1359025 16765023 50888
99639 7180855 44046
41480 5875712 47895
35494 4640273 52172
49179 6615522 43619
38915 18676554 44474

37

APPENDIX B.

38915 8543730 45329
32072 5061922 41053
34211 6303347 77830
32928 9994270 35494
53455 8231983 36777
35922 30377089 40198
30789 25408820 38488
26941 9306632 36777
24802 5005474 27369
52599 6063444 32500
29079 9513179 35066
42336 3765759 40626
25658 2263047 32928
76547 6122030 38487
31217 2764663 34211
28652 3709310 38487
31645 6604831 37632
30362 6791708 50889
31218 1925643 31645
26086 4237440 32500
35066 3983425 35066
29934 1388961 29080
30362 4869058 30363

Avrage Time (ns) 138742 8166863 47672

38

B.1. RANDOM 9X9 DATA

39

APPENDIX B.

B.2 Set 9x9 data

Data Brute-force Simulated Annealing Dancing Links
Time Per Test (ns) 895041 75139410 109474

568328 14015754 101349
481090 3034501 117600
442175 9658148 198850
759481 5665743 92797
509314 7422897 60297
603821 6837036 63290
769744 7455398 66283
506320 2955817 53882
398129 7477207 33783
543953 3823916 33356
667966 5449360 39343
619217 8306392 118883
360070 5104685 33356
1352184 13406373 40626
323293 3877799 35921
281812 5391201 33356
998101 4061255 38060
404543 6040352 37204
515729 3168352 35493
527703 10755461 37204
895896 14517370 36349
452011 10844409 55593
684217 17808454 30790
317306 3983853 29079
625631 5942851 28224
741092 1906827 26941
1685311 5552419 58586
2059065 3972307 31218
166350 2219856 27369
505893 4794649 38059
393853 7552043 29079
341680 3082397 31645
554643 19326560 31217
480234 6359795 32928
151383 2741143 29507
213817 3055884 36776
256582 6287953 29934
251022 2720617 35493
190725 2110809 32928

40

B.2. SET 9X9 DATA

218521 6997827 35921
214245 10508715 33356
196712 3704179 29507
231351 3718718 28651
179607 1316262 28224
199706 5489985 42763
196285 5902653 29080
149245 11626982 25231
162501 918133 24803
288227 6066866 37631
194574 6571047 30790
214673 5370247 33356

Avrage Time (ns) 474641 6519226 43755

41

APPENDIX B.

B.3 No clue 9x9 data

Data Brute-force Simulated Annealing Dancing Links
Time Per Test (ns) 1188826 99497956 599973

2987035 44510870 402405
1117411 16635021 348095
982279 15291390 401122
1053266 14180821 144541
1079780 86204051 144541
757343 6646311 162073
983134 28883786 133850
758625 30833804 150528
1226459 34946802 145823

Avrage Time (ns) 1048722 33935818 237391

42

Appendix C

C.1 Random 16x16 data

Data Brute-force Dancing Links
Time Per Test (ns) 152238 580729

3322301 174047
496485 142403
289509 152238
2138605 176186
603393 156087
261286 148390
1039582 174047
378457 178324
126152 258719
311319 183883
683789 228358
241186 187732
325003 268982
246745 138126
611519 196712
618789 208258
257009 144541
567472 219804
599545 135988
215101 135133
437471 209541
197567 124441
168060 153521
215101 222371
482373 132567
265562 118883
19086656 174048
3043482 90231

43

APPENDIX C.

612802 80823
206548 174903
447307 166350
432767 80395
325858 92369
3620362 189870
1872616 175759
1134090 85955
236910 156087
254016 158226
129146 89376
216384 102632
1397085 186876
186449 99212
682078 97073
255298 162501
2198474 105198
174903 76119
156514 159508
2175382 149245
374609 94935
687210 157370
1151622 171482

Avrage Time (ns) 741947 155394

44

C.1. RANDOM 16X16 DATA

45

APPENDIX C.

C.2 Set 16x16 data

Data Brute-force Dancing Links
Time Per Test (ns) 9636339 612801

13579138105198
8338893 222798
7295462 140264
7013651 225364
16494330 143685
12297087 192863
37959067 181317
1587383 221943
3805956 125297
15863995 222371
1877748 118027
4397376 197140
1184550 115889
1646397 124014
2169395 558492
4557739 168060
844580 208686
4337507 131711
5850909 144968
3114898 225791
7593951 121449
2389628 218521
18124904 235627
1899129 118027
549940 232633
419511 220660
726980 109047
938232 163357
539676 174475
242042 112041
237766 112896
169343 196712
719710 198423
513591 104771
9336139 179179
3772173 205265
1772122 96218
703033 96218
3499769 198851

46

C.2. SET 16X16 DATA

791126 211680
326714 127435
168916 159080
379740 233917
563196 106909
1229452 110757
132994 183884
3180326 105626
880074 122731
1069516 194574
15531295 118455
233061 124870

Avrage Time (ns) 4087887 171438

47

APPENDIX C.

C.3 No clue 16x16 data

Data Brute-force Dancing Links
Time Per Test (ns) 30202186 3585297

15494090 2145447
63501736 1585245
3710594 1646396
11108261 2704367
14047399 1564718
43457176 1627153
10445853 1904261
458853 1241426
12850874 1211491

Avrage Time (ns) 17664554 1802376

48

