
  
1 

 
 
 
 

Calculating the Exact Pooled Variance 
J. W. Rudmin, Physics Dept., James Madison University 

Harrisonburg, VA 22807 
7/6/2010 version 

 
ABSTRACT:   An exact method of calculating the variance of a pooled data set is presented.  Its major advantages 
over the many other methods are that it is simple, is easily derived and remembered, and requires no assumptions.  
The result can be concisely summarized as follows:  "The exact pooled variance is the mean of the variances plus 
the variance of the means of the component data sets."  The proof is so simple that it has certainly been done many 
times before, but it is absent in the textbooks.  Its practical significance is discussed.  
------------------------- 
 
I.  Introduction 
 
 Many introductory statistics textbooks deal with the fundamental principles of measurement, and this paper  
assumes that the reader is familiar with the different types of experimental errors and how they are handled, and 
with widely used notations and terminology.   This paper will deal with the statistical errors, and will use the 
dictionary definition of variance and standard deviation:  The standard deviation is the square root of the arithmetic 
average of the squares of the deviations from the mean, and the variance is the square of the standard deviation.  The 
standard error is the estimate of how far the mean value is likely to be in error due to random errors and a finite 
number of measurements.  This paper will use the letters i, j, k, m, & n for integers, x for data values, a for averages 
or means, v for variances, and S for sums of squares of the data values.   Thus for a data set  
D = {x1, x2 ... xN}, N is the number of data points, the mean is a = (x1+ x2+...+ xN)/N, the variance is  
v = ((x1-a)2+(x2-a)2+...+ (xN-a)2)/N, the standard deviation is �N = v1/2, and the standard error is SE = �N /(N-1)1/2.    
 
 Many texts use N-1 for the denominator in the variance.  In this case, the standard deviation is denoted by  
�N-1 and the standard error is SE= �N-1/N1/2.  Note that SE is the same either way.  SE is sometimes called the 
"standard deviation of the means".  (See the References below for a sampling of choice of �N  or �N-1 )  
 
 The standard deviation is a measure of the spread of the data about the mean.   It is roughly the typical distance 
of a data point from the mean value of the data points, but varies with the distribution of the data points around the 
mean.  For a large number N of data points, it is nearly independent of N.  The standard error is an estimate of the 
statistical uncertainty in the mean value of the data, and for large N works quite well for symmetric distributions of 
the data points around the mean.  It decreases with increasing N like N-1/2. 
 
 This reduction in SE provides a motive for pooling, or merging, data sets.  More points yield a smaller statistical 
uncertainty in the mean.  However, different experiments may actually be measuring different things.  For example, 
in measuring the acceleration of gravity in Paris using a pendulum, one experiment may eliminate the buoyancy of 
the air on the bob, and another may eliminate the thermal expansion of the length of the supporting wire, and a third 
may hold the amplitude of the swing to be a known constant.  In this case the measurements differ, and it may be 
invalid to pool the data from the different experiments.  These are examples of consistent, rather than statistical, 
errors in an experiment.  Sometimes these exist, but are unknown.  How variance changes as more data sets are 
included can yield a criterion for not pooling the data sets.  This paper will present a simple, exact, easily-
understood formula for the variance of a pooled data set when for each subset the number of points, the mean, and 
the variance are known.  This calculation is extremely simple, yet I have not found it in any statistics books.   The 
author requests that this method be referred to as "the exact pooled variance". 
 
II. Theorem:  Let several subsets of measurements of variable be merged to form a pooled data set.  For each set 
only the number of data points, the mean value, and the variance of each subset are given.  The variance of the 
pooled set is the variance of the means plus the mean of the variances of the subsets.  In this discussion, a "mean" is 
a weighted average over the subsets, and the weights are the number of data points in each subset. 
 
 In rigorous form, this can be proven for two data sets, and then extended to any number of sets by mathematical 
induction.  In this case I will simply show it for three data sets, since I think it is clearer to do so. 
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Let xi represent measurements of some variable.  Let DP  = {x1, x2, ... xn},  be a pooled data set assembled from 
data sets    D1 = {x1, x2, ... xj}, D2 = {xj+1, xj+2, ... xj+k}, and  D3 = {xj+k+1, xi+j+2, ... xj+k+m}.  Note that the number 
of points in the pooled set is     n = j+k+m. 

The mean or average of DP is aP �
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=
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.  Means a1, a2, and a3 for D1, D2, and D3, are found similarly.   Then  

 aP = (ja1 + ka2 + ma3)/n = the mean of the means.     (1)   

The sum of squares of DP is  �
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2 .  Sums S1, S2, and S3 are similarly defined for sets D1, D2, and D3.   

Then     SP= S1+ S2+S3       (2) 

Define the variance of data set DP to be 2
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argument easily shows that    vP = SP/n - aP
2.    (3) 

 
Similarly,  v1 = S1/j - a1

2,   v2 = S2/k - a2
2, and  v3 = S3/m - a3

2 . (4) 
 
Our goal is to calculate vP from the means and variances of the constituent sets. 
 
From (2), (3), and (4),  nvP  = S1+ S2+S3 -nap

2 = j(v1+a1
2 )+ k(v2+a2

2 )+ m(v3+a3
2 )- naP

2. 
 
Or,  n vP  =   jv1+ kv2+mv3 + ja1

2 + ka2
2 + ma3

2 - naP
2.     (5) 

 
The mean of the variances is   a(v) = (jv1+kv2+mv3)/n.   (6) 
 
From (1), the variance of the means is     v(a) = [j(a1-aP)2+ k(a2-aP)2+m(a3-aP)2]/n  
 
or    nv(a) = ja1

2+ ka2
2+ma3

2 -2aP(ja1+ ka2 + ma3)+naP
2  = ja1

2+ ka2
2+ma3

2 - naP
2    (7) 

 
Combining (1), (5), (6) and (7) yields  vP = a(v) + v(a)   QED   (8) 
 
Thus the variance of the pooled set is the mean of the variances plus the variance of the means. 
------------------------------------------------------------------------ 
 
III. A Numerical Example 
 
Consider three data sets D1, D2, and D3, which are pooled to create data set Dp. 
 
Data set D1contains 6 points:  32  36  27  28  30  31  
Data set D2 contains 7 points: 32  34  30  33  29  36  24  
Data set D3 contains 3 points: 39  40  42  
 
The pooled set Dp contains 16 points: 32  36  27  28  30  31  32  34  30  33  29  36  24  39  40  42  
 
Now compute the mean and variance for each data set using the data points. 
D1:  Mean =  30.66667        Variance =  8.555555  
D2:  Mean =  31.14286        Variance =  13.26531  
D3:  Mean =  40.33333        Variance =  1.555555  
Dp:  Mean =  32.6875         Variance =  22.83984  
 
The mean of the variances  =  9.303571  
The variance of the means  = 13.53627  
Then the exact pooled variance = 22.83984      Compare this with the variance of Dp above. 
 
Also note how adding D3 to D1 and D2 hardly changes the mean of the data, but doubles the variance.  D3 has a 
much smaller variance than D1 or D2, so including it using precision-weighted adjustment procedures could 
drastically change the mean and variance of the combined adjusted data.  These will be discussed later. 
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IV.   A Simple Physical Interpretation  
 
  A colleague noted that this is the parallel-axis theorem of classical mechanics.  Consider a structure such as a 
tree-branch with apples on it.  The mean value of the positions of the masses is the center of mass, and the moment 
of inertia about the center of mass is just the variance of the distance of the masses from the center of mass.  The 
parallel-axis theorem was proven by Jakob Steiner (1796-1863) in two dimensions.  This theorem uses only one 
dimension.  The book Statistics, Probability, and Decisions by Winkler also mentions the connection between 
variance and moment of inertia, so in a loose sense, this may be the earliest "proof" of the above theorem.    
 
V.  Advantages of Using the Exact Pooled Variance instead of Using the Mean Variance as an Estimate 
 
Many introductory statistics texts recommend using the mean of the variances as an estimate of the variances of the 
pooled set.   This practice should be abandoned for the following reasons. 
 1.  This practice will always yield a pooled variance which is smaller than the exact pooled variance. 
   2.  The exact variance is easily calculated, and the data to do so is always available in a pooling process. 
   3.  It is unreasonable to include the caution "if the means of the pooled sets are approximately equal", when no 
objective criterion is given for "approximately equal" and the easiest objective one is simply calculating the variance 
of the means--the second term in the exact pooled variance, which removes the need for approximating.   
   4.  In pooling data sets, if the mean, standard deviation, and standard error are to have any reasonably valid 
meaning, the pooled variance must not ignore the difference of the means of the constituent sets.  If two data sets of 
a time measurement are pooled, and one set has mean a1 = 10s, and standard deviation �1=3s, and the other has 
mean a2=20s, and �2=3s, then to say that the pooled set has mean aP =15s and �P =2s, is grossly misleading. 
 5.  If adding more data points to the pool increases the standard error, then this can be a signal that the 
measurement methods need examination, and that perhaps the new data should not be included. 
 6.  If the input data sets do not use adjusted data, then the Exact pooled variance is well-defined, associative, 
and commutative.  More data sets can be added into a pooled variance, and the result is the same, independent of the 
order in which the data sets are accumulated.   
 7.  The exact pooled variance is independent of the distribution of the data points and requires no assumptions 
that any properties of the data distribution be negligible. 
 8.  In contrast to most other methods, the exact pooled variance clearly teaches the principles of statistical 
analysis of data, and can validly be used to evaluate results. 
 9.  The procedure for calculating the exact pooled variance can be concisely stated, and is easily memorized. 
 
VI. Can a Decrease in Standard Error be a Criterion for the Validity of Pooling? 
  
 This brings us to an obvious question:  If the goal of pooling is to decrease the standard error, then why pool if 
pooling increases the standard error?   Or suppose you already have a pooled data set, and are considering adding a 
new data set to the pool (which is easily done for the exact pooled variance).  Then suppose that including this new 
data set increases the variance.  Would this be a valid justification for excluding the new set? 
 
 It would clearly valid if there are other reasons to suspect a flawed measurement.  For example, suppose thirty 
students in a physics lab each measure e/m, the charge-to-mass ratio of the electron.  The lab has, say ten 
commercially-manufactured instruments, all of the same make and model.  The instructor leads the class in pooling 
the data to show how increasing the number of measurements decreases the standard error.  He then discovers that 
three of the measurements are a factor of two lower than the rest of the measurements, and all three are from 
instrument #1.  The other nine give e/m = 0.36 ± 0.03 TC/kg, and #1 gives e/m = 0.18 ± 0.05 TC/kg.  He quickly 
checks instrument #1 himself and measures 0.179 TC/kg, so he believes that the students using #1 were following 
the correct procedure.  In this case it would be reasonable to assume that #1 is doing something different which 
halves its results compared to the other instruments and he excludes its results from the pool.  The instructor also 
notes that instrument #1 is consistent with the internationally accepted best value for e/m.  He then checks the other 
instruments and then notifies the manufacturer that nine of the ten instruments are consistently giving a result which 
is twice the CODATA14 accepted value.  Notice that in this example, the increase in the variance was grounds for 
rejecting instrument #1 from the pool, allowing a consistency for the other nine instruments which suggested a 
possible flaw in their design or construction.   
 
 A disagreement between two measurements does not indicate which of the measurements is more accurate.  
However it may indicate that further examination of the instruments is warranted, and in some cases may lead to 
new, unexpected information.  In some cases, both measurements might be published, but not combined into a 
common pool.   
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VII. Adjustment of Data and Analysis of Variance. 
 
 A method of combining data sets which differs from simple pooling is widely-used in science, and is called 
"adjustment of data".  This procedure is used by the CODATA committee to determine a best value for fundamental 
constants.10,14, This method seeks to generate a weighted average of mean values from different sources.  Usually the 
weights are chosen using the variance, standard deviation, or chi-squared functions of the composite data sets, and 
are chosen to minimize at least one of these functions. Suffice it to say, this procedure is not a pooling of data sets, 
but rather a combining of data sets which does not incorporate the differences of the mean values of the composite 
sets.  This subject is not further discussed here, so as not to distract from the main point of the paper. 
 
 "Analysis of Variance" (ANOVA) comprises a vast literature dating back to at least 193212, and summaries of 
this method are available in statistics textbooks13. In ANOVA, both of the terms a(v) and v(a) in equation (8) above 
are calculated, but instead of adding them to give the exact pooled variance, the ratio v(a)/a(v) is considered as a 
correction to the mean of the variances.  This ratio is then used with various criteria to try to achieve various goals, 
such as comparing effects of different medical treatments, maximizing profits, improving quality control in 
manufacturing, or minimizing catastrophic failures.  In any of the numerous discussions of ANOVA it would have 
been trivial to include the exact pooled variance, but I have not yet found a case of this being done. 
 
VIII. Conclusions 
 
1.  The exact variance of a data set formed by pooling subsets is the mean of the variances plus the variance of the 
means of the subsets. The means are weighted by the number of points in each subset. 
 
2.  This method of calculating the variance of pooled data sets is probably not original, even though it is not widely 
known.  In the sense of being a special case of the parallel axes theorem, it has been done before, but is not applied 
in statistics books and journals.  The author would appreciate hearing of other earlier publications of this method. 
 
3.  Advantages of using the exact pooled variance include that it is simple, requires no assumptions, is exact, is 
easily understood and remembered, is pedagogically helpful, and can yield evidence for possible consistent errors 
suggesting rejection of the pooling and/or investigation of the measurements.  Because of these advantages, the 
calculation of the exact pooled variance should be included in every introductory statistics textbook.   
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