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Abstract

A general method to combine several estimators of the same quantity is
investigated. In the spirit of model and forecast averaging, the final estimator
is computed as a weighted average of the initial ones, where the weights
are constrained to sum to one. In this framework, the optimal weights,
minimizing the quadratic loss, are entirely determined by the mean square
error matrix of the vector of initial estimators. The averaging estimator is
built using an estimation of this matrix, which can be computed from the
same dataset. A non-asymptotic error bound on the averaging estimator
is derived, leading to asymptotic optimality under mild conditions on the
estimated mean square error matrix. This method is illustrated on standard
statistical problems in parametric and semi-parametric models where the
averaging estimator outperforms the initial estimators in most cases.

Keywords: Averaging, Parametric estimation, Weibull model, Boolean
model

1. Introduction

We are interested in estimating a parameter θ in a statistical model, based
on a collection of preliminary estimators T1, ..., Tk. In general, the relative
performance of each estimator depends on the true value of the parameter,
the sample size, or other unknown factors, in which case deciding in advance
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what method to favor can be difficult. This situation occurs in numerous
problems of modern statistics like forecasting or non-parametric regression,
but it remains a major concern even in simple parametric problems. In this
paper, we study a general methodology to combine linearly several estima-
tors in order to produce a final single better estimator.

The issue of dealing with several possibly competing estimators of the
same quantity has been extensively studied in the literature these past decades.
One of the main solution retained is to consider a weighted average of the
Ti’s. The idea of estimator averaging actually goes back to the early 19th
century with Pierre Simon de Laplace [19], who was interested in finding the
best combination between the mean and the median to estimate the loca-
tion parameter of a symmetric distribution, see the discussion in [29]. More
generally, the solution can be expressed as a linear combination of the initial
estimators

θ̂λ = λ⊤T =
k
∑

i=1

λiTi, (1)

for λ a vector of weights lying in a subset Λ of Rk and T = (T1, . . . , Tk)
⊤.

A large number of statistical frameworks fit with this description. For ex-
ample, model selection can be viewed as a particular case for Λ the set of
vertices. Similarly, convex combinations corresponds to the simplex Λ =
{λ :

∑k
i=1 λi = 1, λi ≥ 0} while linear combinations to Λ = R

k. Another
well-used framework consists in relaxing the positivity condition of convex
combination, corresponding to the set Λ = {λ :

∑k
i=1 λi = 1}.

Estimator averaging has received a particular attention for prediction pur-
poses. Ever since the paper of Bates and Granger [2], dealing with forecast
averaging for time series, the literature on this subject has greatly developed,
see for instance [10, 30] in econometrics and [7] in machine learning. In this
framework, the parameter θ represents the future observation of a series to be
predicted and T = (T1, ..., Tk) a collection of predictors. Averaging methods
have also been widely used for prediction in a regression framework. In this
case, θ is the response variable to predict given some regressors, and T is
a collection of models output. These so-called model averaging procedures
are shown to provide good alternatives to model selection for parametric
regression, see [23] for a survey. Model averaging has been studied in both
Bayesian [26, 32] and frequentist contexts [3, 13, 15]. In closed relation, func-
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tional aggregation deals with the same problem in non-parametric regression
[4, 9, 24, 31, 35]. Aggregation methods have also been extensively studied for
density estimation, as an alternative to classical bandwidth selection meth-
ods [5, 6, 27, 34].

In [13], Hansen introduced a least squares model average estimator, in
the same spirit as the forecast average estimator proposed in [2]. Loosely
speaking, this estimator aims to mimic the oracle, defined as the linear com-
bination θ̂λ that minimizes the quadratic loss E(θ̂λ−θ)2, under the constraint
on the weights

∑k
i=1 λi = 1. Under this constraint, the oracle expresses in

terms of the mean squared error matrix Σ of T. The averaging estimator is
then defined by replacing Σ by an estimator Σ̂.

The main objective of this paper is to apply the latter idea to classical
estimation problems, not restricted to prediction. Although it can be applied
to non-parametric models, our procedure is essentially designed for paramet-
ric or semi-parametric models, where the number k of available estimators is
small compared to the sample size n and does not vary with n. The proce-
dure works well in these situations because the estimation of Σ can be carried
out efficiently by standard methods (e.g. plug-in or Monte-Carlo), and does
not require the tuning of extra parameters. While it recovers some results
of [11, 12, 20] and more recently [18] on estimator averaging for the mean in
a Gaussian model, the method applies to a wide range of statistical models.
It is implemented in Section 4 on four other examples. In the first one, θ
represents the position of an unknown distribution, which can be estimated
by both the empirical mean and median, as initially addressed by P. S. de
Laplace in [19]. In the second example, θ is the two-dimensional parameter
of a Weibull distribution, for which several competing estimators exist. In
the third one, we consider a stochastic process, namely the Boolean model,
that also depends on a two-dimensional parameter and we apply averaging
to get a better estimate. The fourth example deals with estimation of a
quantile from the combination of a non-parametric estimator and possibly
misspecified parametric estimators.

An important contribution of our approach is to include the case where
several parameters θ1, . . . , θd have to be estimated, and a collection of esti-
mators is available for each of them. In order to fully exploit the available
information to estimate say θ1, it may be profitable to average all estimators,
including those designed for θj , j 6= 1. We show that a minimal requirement
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is that the weights associated to the latter estimators sum to 0, while the
weights associated to the estimators of θ1 sum to one (additional constraints
on the weights can also be added as discussed in Section 2.3). To our knowl-
edge, estimator averaging including estimators of other parameters is a new
idea. Our simulations study shows that it can produce spectacular results
in some specific situations such as the Boolean model treated in the third
example of Section 4.

From a theoretical point of view, we provide an upper bound on the devi-
ation of the averaging estimator to the oracle. Our result is non-asymptotic
and involves the error to the oracle for the actual event, in contrast with
usual criteria based on expected loss functions. In particular, our result
strongly differs from classical oracle inequalities derived in the literature on
aggregation for non-parametric regression [4, 9, 17, 35] or density estima-
tion [5, 6, 27, 34]. Moreover, we deduce that under mild assumptions, our
averaging estimator behaves asymptotically as the oracle, generalizing the
asymptotic optimality result proved by Hansen and Racine [14] in the frame
of model averaging where Σ is estimated by jackknife. Our result applies in
particular if

√
n(T − θ) converges in mean square to a Gaussian law and a

consistent estimator of the asymptotic covariance matrix is available, though
these conditions are far from being necessary. This situation makes it possible
to construct an asymptotic confidence interval based on the averaging esti-
mator, the length of which is necessarily smaller than all confidence intervals
based on the initial estimators.

The remainder of the paper is organized as follows. The averaging pro-
cedure is detailed in Section 2, where we give some examples for the choice
of the set of weights Λ, or equivalently of the constraints followed by the
weights, and we detail some natural methods for the estimation of Σ. In Sec-
tion 3 we prove a non-asymptotic bound on the error to the oracle and discuss
the asymptotic optimality of the averaging estimator. Section 4 is devoted
to some numerical applications of the method to four examples: estimation
of the position of a symmetric distribution, estimation in a Weibull model, a
Boolean model and quantile estimation. We show that the method performs
almost always better than the best estimator in the initial collection T when
the model is well-specified, and is quite robust to misspecification problems.
Proofs of our results are postponed to the Appendix.
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2. The averaging procedure

The method is different whether it is applied to one parameter or several.
For ease of comprehension, we first present the averaging procedure for one
parameter, which follows the idea introduced in [2] for forecast averaging,
though our choice of the set of weights Λ may be different. We then in-
troduce a generalization of the procedure for averaging several parameters
simultaneously. Finally, we discuss in Sections 2.3 and 2.4 the choice of Λ
and the construction of Σ̂.

2.1. Averaging for one parameter

Let T = (T1, ..., Tk)
⊤ be a collection of estimators of a real parameter θ.

We search for a decision rule that combines suitably the Ti’s to provide a
unique estimate of θ. A natural and widely spread idea is to consider linear
transformations

θ̂λ = λ⊤T, λ ∈ Λ,

where λ⊤ denotes the transpose of λ and Λ is a given subset of R
k. In

this linear setting, a convenient way to measure the performance of θ̂λ is
to compare it to the oracle θ̂∗, defined as the best linear combination θ̂λ
obtained for a non-random vector λ ∈ Λ. Specifically, the oracle is the linear
combination θ̂∗ = λ∗⊤T minimizing the mean square error (MSE), i.e.

λ∗ = argmin
λ∈Λ

E(λ⊤T− θ)2.

Of course, λ∗ is unknown in practice and needs to be approximated by an
estimator, say λ̂.

The performance of the averaging procedure highly relies on the choice
of the set Λ. Indeed, choosing a too large set Λ might increase the accuracy
of the oracle but make it difficult to estimate λ∗. On the contrary, a too
small set Λ might lead to a poorly efficient oracle but easy to approximate.
Therefore, a good balance must be found for the oracle to be both accurate
and reachable. In this purpose, a choice proposed in [2] and widely used in
the averaging literature is to impose the condition λ⊤1 = 1 on the weights,
where 1 denotes the unit vector 1 = (1, ..., 1)⊤. We explain in Section 2.3
why this condition is minimal for the efficiency of the averaging procedure
when θ ∈ R. Moreover, if one wants to impose additional constraints on the
weights, such as positivity for instance, the method proposed in this paper
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allows one to consider as the constraint set Λ, any non-empty closed subset
of

Λmax := {λ ∈ R
k : λ⊤1 = 1}.

Some examples of constraint sets Λ are discussed in Section 2.3.
We assume that the initial estimators have finite order-two moments and

1, T1, ..., Tk are linearly independent so that the Gram matrix

Σ = E
[

(T− θ1)(T− θ1)⊤
]

is well defined and non-singular. From the identity λ⊤1 = 1, we see that the
optimal weight λ∗ defining the oracle θ̂∗ = λ∗⊤T writes

λ∗ = argmin
λ∈Λ

E(λ⊤T− θ)2 = argmin
λ∈Λ

λ⊤Σλ.

Remark that the assumptions made on Λ ensure the existence of a minimizer.
If Λ is convex, the solution is unique, otherwise we agree that λ∗ refers to
one of the minimizers. In the particular important example where Λ = Λmax,
we get the explicit solution

λ∗
max =

Σ−11

1⊤Σ−11
,

considered for instance in [2], [10] or [14]. In practice, the MSE matrix Σ
is unknown and has to be approximated by some estimator Σ̂ to yield the
averaging estimator θ̂ = λ̂⊤T, where

λ̂ = argmin
λ∈Λ

λ⊤Σ̂λ.

Natural methods to construct Σ̂ are discussed in Section 2.4. While it may
seem paradoxical to shift our attention from θ to the less accessible Σ, the
effectiveness of the averaging process can be explained by a lesser sensibility
to the errors on Σ̂. As a result, the averaging estimator improves on the
original collection as soon as we are able to build Σ̂ sufficiently close from
the true value, without stronger requirement such as consistency. On the
contrary, the chances of considerably deteriorating the estimation of θ are
expected to be small due to the smoothing effect of averaging.
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2.2. Averaging for several parameters

We now discuss a generalization of the method that deals with several
parameters simultaneously. Let θ = (θ1, . . . , θd)

⊤ ∈ R
d and assume we have

access to a collection of estimators Tj for each component θj . For sake of
generality we allow the collections T1, . . . ,Td to have different sizes k1, . . . , kd
with kj ≥ 1. So, let T1 ∈ R

k1, . . . ,Td ∈ R
kd and set T = (T⊤

1 , . . . ,T
⊤
d )

⊤ ∈
R

k, with k =
∑d

j=1 kj ≥ d. We consider averaging estimators of θ of the form

θ̂λ = λ⊤T ∈ R
d,

where here, λ is a k× d matrix. In order to make the oracle more accessible,
we impose some restrictions on the set of authorized values for λ. In this
purpose, define the matrix

J =











1k1 0 . . . 0

0 1k2
. . .

...
...

. . .
. . . 0

0 . . . 0 1kd











∈ R
k×d,

where 1kj is the vector composed of kj ones (we simply denote it 1 in the
sequel to ease notation). We consider the maximal constraint set

Λmax = {λ ∈ R
k×d : λ⊤ J = I}, (2)

with I the identity matrix. Let λj ∈ R
k denote the j-th column of λ ∈ R

k×d.
For each component θj , the average is given by

θ̂λ,j = λ⊤
j T = λ⊤

j,1T1 + · · ·+ λ⊤
j,dTd,

where λj = (λ⊤
j,1, . . . , λ

⊤
j,d)

⊤ with λj,ℓ ∈ R
kℓ , ℓ = 1, . . . , d. Imposing that

λ ∈ Λmax means that for any j = 1, . . . , d

λ⊤
j,ℓ1 =

{

0 if ℓ 6= j
1 if ℓ = j.

(3)

In particular, this condition does not rule out using the entire collection T to
estimate each component θj , although the weights λj,ℓ do not satisfy the same
constraints depending on the relevance of Tℓ. While it may seem more nat-
ural to impose that only Tj is involved in the estimation of θj (and this can
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be made easily through an appropriate choice of Λ ⊂ Λmax, letting λj,ℓ = 0
for ℓ 6= j), allowing one to use the whole set T to estimate each component
enables to take into account possible dependencies, which may improve the
results. Finally, remark that if the collections Tj are uncorrelated, the two
frameworks are identical.

From a technical point of view, the condition λ⊤ J = I is imposed to have
the equality λ⊤T− θ = λ⊤(T− J θ), which is used to derive the optimality
result of Theorem 3.1 in Section 3.1. Letting ‖.‖ denote the usual Euclidean
norm on R

d, the mean square error then becomes, using the classical trick of
switching trace and expectation,

E‖λ⊤T− θ‖2 = E
[

tr
[

(T− J θ)⊤λλ⊤(T− J θ)
]]

= tr(λ⊤Σλ), (4)

where Σ = E
[

(T − J θ)(T − J θ)⊤
]

∈ R
k×k. Here again, we assume that Σ

exists and is non-singular.

Ideally, one would want to minimize the matrix mean square error E
[

(λ⊤T−
θ)(λ⊤T− θ)⊤

]

= λ⊤Σλ, and not only its trace, for λ∗ to satisfy the stronger
property

∀λ ∈ Λ, λ⊤Σλ− λ∗⊤Σλ∗ is non-negative definite. (5)

Notice however that comparing λ and λ∗ according to this criterion is not
always possible since it involves a partial order relation over the matrices and
a solution to (5) might not exist. By considering its trace, we are guaranteed
to reach an admissible solution, that is, a solution for which no other value
is objectively better in this sense. In particular, minimizing λ 7→ tr(λ⊤Σλ)
reaches the unique solution λ∗ of (5) whenever one exists. This occurs for
instance for Λ = Λmax, as we point out in Section 2.3.

The simultaneous averaging process for several parameters generalizes the
procedure presented in Section 2.1. In fact, averaging for one parameter just
becomes the particular case with d = 1. Given a subset Λ ⊆ Λmax, we define
the oracle as the linear transformation θ̂∗ = λ∗⊤T with

λ∗ = argmin
λ∈Λ

E‖λ⊤T− θ‖2 = argmin
λ∈Λ

tr(λ⊤Σλ). (6)

Finally, assuming we have access to an estimator Σ̂ of Σ, see Section 2.4, we

8



define the averaging estimator as θ̂ = λ̂⊤T where

λ̂ = argmin
λ∈Λ

tr(λ⊤Σ̂λ). (7)

If λ⊤Σλ is well approximated by λ⊤Σ̂λ for λ ∈ Λ, we can reasonably ex-
pect the average θ̂ to be close to the oracle θ̂∗, regardless of the possible
dependency between Σ̂ and T.

2.3. Choice of the constraint set

The constraint set plays crucial part in the averaging procedure. As
discussed in the previous sections, an appropriate choice of Λ must take
into account both the accuracy of the oracle and the ability to estimate λ∗.
Writing the estimation error as

θ̂ − θ = θ̂∗ − θ + (λ̂− λ∗)⊤T, (8)

a good rule of thumb is to choose a set Λ as large as possible, but for which the
residual term (λ̂−λ∗)⊤T can be made negligible compared to the error of the
oracle θ̂∗−θ. Without restrictions on λ, Equation (8) suggests that we would
have to estimate the optimal combination λ∗ more efficiently than we can
estimate θ. This condition can be reasonably expected for high-dimensional
parameters θ, e.g. for non-parametric regression or density estimation, and
linear aggregation has indeed been shown to be particularly well adapted
to these frameworks, see for instance [4, 5, 9, 24, 27, 31, 34]. Nevertheless,
hoping for λ̂−λ∗ to be negligible compared to θ̂∗−θ seems rather unrealistic
when θ is vector-valued, especially given that the optimal combination needs
to be estimated for every component θj . Even in the simple case d = 1, the
oracle obtained over Λ = R

k can be written as

θ̂∗ = θ E(T⊤)
[

E(TT⊤)
]−1

T,

where the term E(T⊤)
[

E(TT⊤)
]−1

T appears as an inadequate estimate of
1. One can argue that aiming for the oracle in this case may divert from the
primary objective to estimate θ.

Besides the reasons to rule out linear averaging in this framework, one can
provide some additional arguments in favor of the affine constraint λ⊤ J = I
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as a minimal requirement on λ. For instance, remark that if λ̂ and λ∗ satisfy
this condition, the error term can be written as

(λ̂− λ∗)⊤T = (λ̂− λ∗)⊤(T− J θ),

where both (λ̂−λ∗) and (T−J θ) can contribute to make the error term neg-
ligible. Moreover, this restriction leads to an expression of the mean square
error matrix that only involves Σ, as pointed out in (4). Thus, building an
approximation λ̂ of the optimal combination only requires to estimate Σ,
which can be made by natural and well-known methods (the estimation of Σ
is discussed in further details in Section 2.4). Finally, the error bound proved
in Theorem 3.1 only holds if Λ is a subset of Λmax which tends to confirm
the necessity of this constraint in this framework.

We now discuss four examples of natural constraint sets. The examples
are given in decreasing order of the performance of the oracle, starting from
the maximal constraint set Λmax = {λ ∈ R

k×d : λ⊤ J = I} and ending with
estimator selection. Apart from the last example, the other constraints sets
are convex, thus guaranteeing a unique solution both for the oracle and the
averaging estimator.

• When a good estimation of Σ can be provided, it is natural to consider
the maximal constraint set Λ = Λmax, thus aiming for the best possible
oracle. This set is actually an affine subspace of Rk×d and as such, it
is convex. The oracle, obtained by minimizing the convex map λ 7→
tr(λ⊤Σλ) subject to the constraint λ⊤ J = I is given by θ̂∗max = λ∗⊤

maxT

where
λ∗
max = Σ−1 J(J⊤ Σ−1 J)−1, (9)

generalizing the formula given in Section 2.1. Its mean-square error
can be calculated directly

E
[

(θ̂∗max − θ)(θ̂∗max − θ)⊤
]

= (J⊤ Σ−1 J)−1.

This solution is a direct consequence of the equality

λ⊤Σλ− (J⊤Σ−1 J)−1 = λ⊤Σλ− λ∗⊤
maxΣλ

∗
max = (λ− λ∗

max)
⊤Σ(λ− λ∗

max)
(10)

which holds for all λ ∈ Λmax due to the condition λ⊤ J = I, and where
the last matrix is positive definite.
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Moreover, (10) shows that the oracle is not only the solution of our
optimization problem (6), but it also fulfills the stronger requirement
(5). In particular each component θ̂∗max,j of the oracle is the best lin-
ear transformation λ⊤T, λ ∈ Λmax, that one can get to estimate θj .
Another desirable property of the choice Λ = Λmax is that due to the
closed expression (9), the averaging estimator θ̂max obtained by replac-
ing Σ by its estimation Σ̂ has also a closed expression which makes it
easily computable, namely

θ̂max = (J⊤ Σ̂−1 J)−1 J⊤ Σ̂−1T. (11)

As mentioned earlier, the maximal constraint set allows one to use the
information contained in external collections to estimate each param-
eter. This requires to estimate the whole MSE matrix, including the
cross correlations between different collections Ti. While this can pro-
duce surprisingly good results in some cases (see Section 4), it may
deteriorate the estimator if the external collections do not contain sig-
nificant additional information on the parameter.

• A natural and simpler framework is to consider component-wise aver-
aging, for which only the collection Tj is involved in the estimation of
θj . The associated set of weights is the set of matrices λ whose support
is included in the support of J, that is

Λ = {λ ∈ Λmax : supp(λ) ⊆ supp(J)},

where for a matrix A = (Ai,j) ∈ R
k×d, supp(A) := {(i, j), Ai,j 6= 0}.

In this particular framework, the covariance of two initial estimators in
different collection Ti,Tj, i 6= j is not involved in the computation of
the oracle, so that the corresponding entries of Σ need not be estimated.
Consequently, each component of θ is combined regardless of the others
and as a result, the oracle is given by

θ̂∗j =
1⊤Σ−1

j Tj

1⊤Σ−1
j 1

, j = 1, ..., d,

where

Σj = E
[

(Tj − θj1)(Tj − θj1)
⊤
]

∈ R
kj×kj , j = 1, ..., d.
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In order to build the averaging estimator, it is sufficient to plug an
estimate of Σj , j = 1, ..., d, in the above expression, which makes it
easily computable. See Section 4.2 for further discussion.

• Convex averaging corresponds to the choice

Λ = {λ ∈ Λmax : λi,j ≥ 0, i = 1, ..., k, j = 1, ..., d}. (12)

Observe that the positivity restriction combined with the condition
λ⊤ J = I results in λ having its support included in that of J, making
convex averaging a particular case of component-wise averaging. This
means that each component of θ can be dealt with separately. So, for
sake of simplicity in this example, we only consider the case d = 1.

Convex combination of estimators is a natural choice that has been
widely studied in the literature. An advantage lies in the increased
stability of the solution, due to the restriction of λ to a compact set,
though the oracle may of course be less efficient than in the maximal
case Λ = Λmax. The use of convex combinations is also particularly
convenient to preserve some properties of the initial estimators, such
as positivity or boundedness. Moreover, imposing non-negativity often
leads to sparse solutions.

In this convex constrained optimization problem, the minimizer λ̂ =
argminλ∈Λ λ⊤Σ̂λ can either lie in the interior of the domain, in which
case λ̂ = Σ̂−11/1⊤Σ̂−11 corresponds to the global minimizer over Λmax,
or on the edge, meaning that it has at least one zero coordinate. Letting
m̂ ⊆ {1, ..., k} denote the support of λ̂, it follows that the averaging
procedure obtained with the estimators Tm̂ := (Ti)i∈m̂ leads to a solu-
tion λ̂m̂ with full support. As a result, it can be expressed as the global
minimizer for the collection Tm̂,

λ̂m̂ =
Σ̂−1

m̂ 1

1⊤Σ̂−1
m̂ 1

,

where Σ̂m̂ is the submatrix composed of the entries Σ̂i,j for (i, j) ∈ m̂2.

Since we have by construction λ̂⊤
m̂Tm̂ = λ̂⊤T = θ̂, we deduce the

following characterization of the convex averaging solution:

θ̂ =
1⊤Σ̂−1

m̂ Tm̂

1⊤Σ̂−1
m̂ 1

,
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where m̂ must be the support which is both admissible and provides
the minimal mean-square error, i.e. m̂ = argmaxm⊆{1,...,k} 1⊤Σ̂−1

m 1

subject to the constraint that Σ̂−1
m 1 has all its coordinates positive. This

provides an easy method to implement convex averaging in practice.
Remark that this method is only efficient if k is not too large, otherwise
we recommend to use a standard quadratic programming solver to get
λ̂, see for instance [25].

• The last example deals with estimator selection viewed as a particular
case of averaging. Performing estimator selection based on an estima-
tion of the MSE is a very natural approach, used in numerous practical
cases. In the univariate case, estimator selection corresponds to the
constraint set

Λ =
{

(1, 0, ..., 0)⊤, (0, 1, 0, ..., 0)⊤, ..., (0, ..., 0, 1)⊤
}

.

The main advantage of this framework is that it only requires to es-
timate the mean square error of each estimator Tj , i.e., the diagonal
entries of Σ. Applying the procedure in this case simply consists in
selecting the Tj with minimal estimated mean square error.

While the oracle is easier to approach in this framework, estimator
selection may suffer from the poor efficiency of the oracle, compared
to the previous examples. For this reason, we do not recommend to
settle for estimator selection if one can provide a reasonable estimation
of Σ, as the oracle under larger constraint sets can be much more
efficient while remaining reachable. This observation is confirmed by
the numerical study of Section 4 where the average estimator appears
to be better than the best estimator in the initial collection in most
cases. Finally, remark that the theoretical performance of estimator
selection is not covered by Theorem 3.1, due to the non-convexity of
the constraint set.

2.4. Estimation of the MSE matrix

The accuracy of Σ̂ is clearly a main factor to the performance of the av-
eraging method. There are natural methods to construct Σ̂ that essentially
differ whether the model is parametric or not. In all cases, the estimation of
Σ can be carried out from the same data as those used to produce the initial
estimators Ti and no sample splitting is needed.
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In a fully specified parametric model, the MSE matrix Σ can be estimated
by plugging an initial estimate of θ. Precisely, assuming that the MSE matrix
can be expressed as the image of θ through a known map Σ(.) : Rd → R

k×k,
one can choose Σ̂ = Σ(θ̂0), where θ̂0 is a consistent estimate of θ. A natu-
ral choice for θ̂0 is to take one of the initial estimators if it is known to be
consistent, or the average 1

k

∑k
i=1 Ti provided all initial estimators are consis-

tent. If the map Σ(.) is not explicitly known, Σ(θ̂0) may be approximated by
Monte-Carlo simulations of the model using the estimated parameter θ̂0, a
procedure sometimes called parametric bootstrap. This method is illustrated
in our examples in Sections 4.2 and 4.3. Remark that in this parametric sit-
uation, the averaging procedure does not require any information other than
the initial collection T.

In some cases, Σ may also depend on a nuisance parameter η. In this sit-
uation, Σ̂ can be built similarly by plugging or Monte-Carlo, provided η can
be estimated from the observations. This situation requires that the sample
X1, ..., Xn used to built the initial estimators Ti is available to the user.

In a semi and non-parametric setting, a parametric closed-form expression
for Σ may be available asymptotically, i.e. when the sample size on which
T is built tends to infinity, and the above plugging method then becomes
possible, see also (i)-(iii) in Section 3.2. Alternatively, Σ can be estimated by
standard bootstrap if no extra information is available. These two methods
are implemented in the first example of Section 4.

3. Theoretical results

3.1. Non-asymptotic error bound
The performance of the averaging estimator relies on the accuracy of Σ̂,

but more specifically, on the ability to evaluate tr(λ⊤Σλ) as λ ranges over
Λ. As a result, it is not crucial that Σ̂ be a perfect estimate of Σ as long
as the error | tr(λ⊤Σ̂λ)− tr(λ⊤Σλ)| is small for λ ∈ Λ, which can hopefully
be achieved by a suitable choice of the constraint set. In order to measure
the accuracy of Σ̂ for this particular purpose, we introduce the following
criterion. For two symmetric positive definite matrices A and B and for any
non-empty set Λ that does not contain 0, let δΛ(A|B) denote the maximal
divergence of the ratio tr(λ⊤Aλ)/ tr(λ⊤Bλ) over Λ,

δΛ(A|B) = sup
λ∈Λ

∣

∣

∣

∣

1− tr(λ⊤Aλ)

tr(λ⊤Bλ)

∣

∣

∣

∣

,
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and δΛ(A,B) = max{δΛ(A|B), δΛ(B|A)}. We are now in position to state
our main result.

Theorem 3.1. Let Λ be a non-empty closed convex subset of Λmax with as-
sociated oracle θ̂∗ defined through (6), and Σ̂ a symmetric positive definite
k× k matrix. The averaging estimator θ̂ = λ̂⊤T defined through (7) satisfies

‖θ̂ − θ̂∗‖2 ≤ δ̃Λ(Σ̂,Σ) ‖S‖2 E‖θ̂∗ − θ‖2 (13)

where δ̃Λ(Σ̂,Σ) = 2δΛ(Σ̂,Σ) + δΛ(Σ̂,Σ)
2 and S = Σ− 1

2 (T− J θ).

In this theorem, we provide an upper bound on the distance of the aver-
aging estimator to the oracle. We emphasize that this result holds without
requiring any condition on the joint behavior of T and Σ̂ (in particular, they
may be strongly dependent). Moreover, we point out that the upper bound
applies to the actual error to the oracle (for the current event ω), contrary to
classical oracle inequalities which generally involve an expected loss of some
kind. Nonetheless, the following corollary compares the mean square errors
of the averaging estimator and the oracle.

Corollary 3.2. Under the assumptions of Theorem 3.1, for all ǫ > 0,

E‖θ̂ − θ‖2 ≤ (1 + ǫ) E‖θ̂∗ − θ‖2
[

1 + ǫ−1
E
(

δ̃Λ(Σ̂,Σ) ‖S‖2
)

]

. (14)

Some comments on Theorem 3.1 and its corollary are in order.

• Recall that a main concern when selecting the constraint set Λ is to be
able to make the distance to the oracle ‖θ̂ − θ̂∗‖ negligible compared
to the error of the oracle ‖θ̂∗− θ‖. This objective is achieved whenever
the term δ̃Λ(Σ̂,Σ)‖S‖2 in (13) can be shown to be negligible. Corol-
lary 3.2 makes this remark more specific in the L2 sense: by choosing ǫ
tending to 0 not too fast, the mean square errors of the averaging esti-
mator and the oracle are seen to be asymptotically equivalent whenever
E
(

δ̃Λ(Σ̂,Σ)‖S‖2
)

tends to 0. Section 3.2 details more consequences of
Theorem 3.1 from an asymptotic point of view.

• The factor δ̃Λ(Σ̂,Σ), which only involves the divergence δΛ(Σ̂,Σ), em-
phasizes the influence of the constraint set Λ and the accuracy of Σ̂ to
estimate Σ. It appears that while the efficiency of the oracle is increased
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for large sets Λ, one must settle for combinations λ for which tr(λ⊤Σλ)
can be well evaluated, in order to get a small value of δΛ(Σ̂,Σ). Actu-
ally, as stated in Lemma 5.1 of the Appendix, we have

δΛ(Σ̂,Σ) ≤ ‖|Σ̂Σ−1 − ΣΣ̂−1‖|, (15)

where ‖|.‖| denotes the operator norm. This shows that the efficiency
of the averaging procedure can be measured by how well Σ̂Σ−1 approx-
imates the identity matrix.

It is difficult to study the behavior of δΛ(Σ̂,Σ) or even Σ̂Σ−1 without
more information on the statistical model from which T is computed.
In particular, we are not able to derive oracle-like inequalities involv-
ing minimax rates of convergence without further specification. For in-
stance, δΛ(Σ̂,Σ) can be expected to converge in probability to zero at a
typical rate of

√
n in a well specified parametric sampling model, while

similar properties should be seldom verified in semi or non-parametric
models.

• Finally, the term ‖S‖2 in (13) shows the price to pay for averaging too
many estimators, in view of the equality

E‖S‖2 = E‖Σ− 1

2 (T− J θ)‖2 = k.

This suggests that the averaging procedure might be improved by per-
forming a preliminary selection to keep only the relevant estimators.
Moreover, including too many estimators to the initial collection in-
creases the possibilities of strong correlations, which may lead to a
near singular matrix Σ and result in amplified errors when computing
Σ̂−1 and a larger value of δΛ(Σ̂,Σ).

3.2. Asymptotic study

The properties of the averaging estimator established in Theorem 3.1 do
not rely on any assumption on the construction of T or Σ̂. In this section, we
investigate the asymptotic properties of the averaging estimator in a situation
where both T and Σ̂ are computed from a set of observations X1, . . . , Xn of
size n growing to infinity. From now on, we modify our notations to Tn, Σ̂n,
Σn, λ

∗
n, λ̂n, θ̂n and θ̂∗n to emphasize the dependency on n.

In practice, we expect the oracle θ̂∗n to satisfy good properties such as
consistency or asymptotic normality. Theorem 3.1 suggests that θ̂n should
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inherit these asymptotic properties if Σn can be sufficiently well estimated.
Remark that if the initial estimators Ti are consistent in quadratic mean, Σn

converges to the null matrix as n → ∞. In this case, providing an estimator
Σ̂n such that Σ̂n − Σn

p−→ 0 is clearly not sufficient for θ̂n to achieve the
asymptotic performance of the oracle (here p stands for the convergence in
probability while d is used for distribution). On the contrary, requiring that

Σ̂−1
n −Σ−1

n

p−→ 0 is unnecessarily too strong and would be nearly impossible
to achieve. In fact, we show in Proposition 3.3 below that the condition

Σ̂nΣ
−1
n

p−→ I (16)

appears as a simple compromise, both sufficient for asymptotic optimality
and reasonable enough to be verified in numerous situations with regular
estimators of Σn. We briefly discuss a few examples.

(i) If
√
n(Tn − J θ) converges in L

2 to a Gaussian vector N (0,W ) with
W a non-singular matrix, providing a consistent estimator, say Ŵn, of
W is sufficient to verify (16), taking Σ̂n = Ŵn. The situation becomes
particularly convenient if the limit matrix W follows a known para-
metric expression W = W (η, θ), with η a nuisance parameter (see the
first example in Section 4). If the map W (., .) is continuous, plugging
consistent estimators η̂0, θ̂0 yields an estimator Ŵn = W (η̂0, θ̂0) that
fulfills (16). Observe that knowing the rate

√
n in this example is not

necessary as it simplifies in the expression of θ̂n. In fact, a different rate
of convergence, even unknown, would lead to the exact same result. In
this case, the asymptotic normality can make it possible to construct
asymptotic confidence intervals of minimal length for the parameter,
as shown in Proposition 3.3 below.

(ii) More generally, if Σn satisfies

Σn = anW + o(an), (17)

for some vanishing sequence an, building a consistent estimator of W
is sufficient to achieve (16). Here again, the rate of convergence needs
not be known.

(iii) If we have different rates of convergence within the collection Tn, the
condition (16) can be verified if the normed eigenvectors of Σn converge
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as n → ∞. Precisely, if there exist an orthogonal matrix P (i.e. with
P⊤P = I) and a known deterministic sequence (An)n∈N of diagonal
invertible matrices such that

lim
n→∞

AnPΣnP
⊤ = D,

for some non-singular diagonal matrix D, producing consistent esti-
mators P̂n and D̂n of P and D respectively enables to verify (16) by
Σ̂n = P̂⊤

n A−1
n D̂nP̂n. Here, the limit of the normed eigenvectors of Σn

are given by the rows of P and the estimator Σ̂n is constructed from
the asymptotic expansion of Σn. This example allows to have differ-
ent rates of convergence within the collection Tn but also covers the
previously mentioned examples where all constant combinations λ⊤Tn

converge to θ at the same rate.

Let us introduce some additional definitions and notation. For each com-
ponent θj , j = 1, ..., d, we define

αn,j := E‖θ̂∗n,j − θj‖2 = λ∗⊤
n,j Σn λ∗

n,j,

where we recall that λ∗
n,j is the j-th column of λ∗

n. Similarly, let α̂n,j =

λ̂
⊤

n,jΣ̂nλ̂n,j. We assume that the quadratic error of the oracle, given by

αn := E‖θ̂∗n − θ‖2 = tr(λ∗⊤
n Σnλ

∗
n) =

d
∑

j=1

αn,j,

converges to zero as n → ∞. For a given constraint set Λ ⊂ R
k×d, we denote

by Λj = {λj : λ ∈ Λ} ⊂ R
k its marginal set. We say that Λ is a cylinder

if Λ = {λ : λ1 ∈ Λ1, ..., λd ∈ Λd}, i.e., if Λ is the Cartesian product of its
marginal sets Λj. We point out that choosing a constraint set Λ that satisfies
this property is very natural, as it simply states that each vector of weights
λj used to estimate θj can be computed independently of the others. In
particular, all the constraint sets discussed in Section 2.3 are cylinders.

Proposition 3.3. If (16) holds, then

‖θ̂n − θ‖2 = ‖θ̂∗n − θ‖2 + op(αn). (18)

Moreover, if Λ is a cylinder and α
− 1

2

n,j (θ̂
∗
n,j − θj)

d−→ Z for some j = 1, ..., d,
where Z is a random variable, then

α̂
− 1

2

n,j (θ̂n,j − θj)
d−→ Z. (19)
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This proposition establishes that building an estimate Σ̂n for which (16)
holds ensures that the error of the average θ̂n is asymptotically comparable to
that of the oracle, up to op(αn). In addition, under the mild assumption that
Λ is a cylinder, it is possible to provide an asymptotic confidence interval for
each θj when the limit distribution Z is known. In most applications, this
distribution is a standard Gaussian, as for instance under the assumptions
in (i), but other more complicated situations may be handled as discussed
in the following remark. From (7), we know these confidence intervals are
of minimal length amongst all possible confidence intervals based on a linear
combination of Tn. Note that no extra estimation is needed to compute α̂n,j,

as it is entirely determined by λ̂n and Σ̂n.

Remark 3.4. As noticed above, Z can be expected to follow a standard
Gaussian distribution in numerous situations. For instance, this happens
under the setting of (i), with a possibly different normalization than

√
n, or

under the setting of (iii) provided Tn is asymptotically normal with vanish-
ing bias. We refer to Section 4 for actual examples. However, in presence of
misspecified initial estimators, the distribution of Z can be different. In [15],
the authors study a specific local misspecification framework where the asymp-
totic law of the oracle is not Gaussian, neither centered (see their Theorem
4.1 and Section 5.4 for an averaging procedure based on the mean square
error). In these cases, the quantiles of Z may depend on some unknown
extra parameters that have to be estimated to provide asymptotic confidence
intervals. In such a misspecified framework though, the challenge is to es-
timate accurately Σ. Conditions implying (16) in a misspecified framework
are difficult to establish and are beyond the scope of the present paper.

In Proposition 3.3, the asymptotic optimality of θ̂n is stated in probability.
In view of Corollary 3.2, it is not difficult to strengthen this result to get the
asymptotic optimality in quadratic loss, i.e.

E‖θ̂n − θ‖2 = E‖θ̂∗n − θ‖2(1 + o(1)), (20)

provided additional assumptions. If for instance Σ̂n and Tn are computed
from independent samples (which may be achieved by sample splitting), then
(20) holds as soon as E[δ̃Λ(Σ̂n,Σn)] tends to 0, which is achieved if Σ̂nΣ

−1
n

tends to the identity matrix in L
2. We emphasize however that the use of

sample splitting may reduce the performance of the oracle, as it would be
computed from fewer data. One can argue that this is a high price to pay
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to obtain asymptotic optimality in L
2 and is not to be recommended in this

framework. Asymptotic optimality in L
2 can also be achieved if one can show

there exists p > 1 such that

sup
n∈N

E‖Σ− 1

2
n (Tn − J θ)‖

2p

p−1 < ∞ and lim
n→∞

E[δ̃Λ(Σ̂n,Σn)
p] = 0,

which is a direct consequence of Corollary 3.2 by applying Hölder’s inequality.
These conditions ensure the asymptotic optimality in L

2 of the averaging
estimator without sample splitting, but they remain nonetheless extremely
difficult to check in practice.

4. Applications

This section gathers four examples of models where we apply our averag-
ing procedure: Section 4.1 considers the combination of the mean and the me-
dian to estimate the position of a symmetric distribution; Section 4.2 adresses
the problem of fitting a parametric model, namely the Weibull model, by
combining several competing estimators; Section 4.3 deals with inference for
the main model used in stochastic geometry, namely the Boolean model; Sec-
tion 4.4 considers the estimation of an extreme quantile based on possibly
misspecified models. Depending on the situation, we combine parametric,
semi-parametric or non-parametric estimators. The examples in Section 4.2
and 4.3 involve a bivariate parameter which allows us to assess the multi-
variate procedure introduced in Section 2.2. For the estimation of the MSE
matrix Σn, we use either parametric bootstrap or (non-parametric) bootstrap
or the asymptotic expression Σ∞ when it has a parametric form. All settings
are summarized in Table 1. From a theoretical point of view, all our exam-
ples satisfy the main condition (16) implying the asymptotic optimality of
the average estimator in the sense of Proposition 3.3, since they fit either (i)
or (ii) in Section 3.2, except when non parametric bootstrap or misspecified
models are used. The two last settings are natural situations to investigate
and this is the reason why we include them in our simulation study, however
they are out of the scope of the theoretical study of this paper and will be
the subject of future investigations.

4.1. Estimating the position of a symmetric distribution

Let us consider a continuous real distribution with density f , symmetric
around some parameter θ. To estimate θ from a sample of n realisations
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Section Type of estimators Estimation of Σ Multivariate Optimality ensured
4.1 semi-p Σ∞ No Yes

semi-p bootstrap No Unknown
4.2 p param. bootstrap Yes Yes
4.3 p + semi-p param. bootstrap Yes Yes
4.4 p + misspec. p + non-p bootstrap No Unknown

Table 1: Summary of the setting for the examples of Sections 4.1-4.4 in terms of: The
initial estimators used for averaging (p: parametric, semi-p: semi-parametric, non-p: non-
parametric, misspec. p: misspecified parametric); the method used for the estimation
of the MSE matrix Σ (Σ∞: based on an asymptotic parametric form, bootstrap : non-
parametric bootstrap, param. bootstrap: parametric bootstrap); the use of the procedure
of Section 2.2 to combine multivariate estimators (yes or no); whether the asymptotic
optimality of the average estimator as stated in Proposition 3.3 is ensured or not.

x1, . . . , xn, a natural choice is to use the mean xn or the median x(n/2). Both
estimators are consistent whenever σ2 =

∫

(x− θ)2f(x)dx is finite.

As noticed in Section 1, the idea of combining the mean and the median
to construct a better estimator goes back to Pierre Simon de Laplace [19].
P. S. de Laplace obtains the expression of the weights in Λmax that ensure a
minimal asymptotic variance for the averaging estimator. In particular, he
deduced that for a Gaussian distribution, the better combination is to take
the mean only, showing for the first time the efficiency of the latter. For
other distributions, he noticed that the best combination is not available in
practice because it depends on the unknown distribution.

Similarly, we consider the averaging of the mean and the median over
Λmax. We have two initial estimators T1 = xn, T2 = x(n/2) and the averaging
estimator is given by (11) where J is just in this case the vector (1, 1)⊤. The
MSE matrix between the two estimators is denoted by Σn. We assume that
the n realisations are independent and we propose two ways to estimate Σn:

1. Based on the asymptotic equivalent of Σn. The latter, obtained in P.
S. de Laplace’s work and recalled in [29], is n−1W where

W =

(

σ2 E|X−θ|
2f(θ)

E|X−θ|
2f(θ)

1
4f(θ)2

)

.

Each entry of W may be naturally estimated from an initial consistent
estimate θ̂0 of θ as follows: σ2 by the empirical variance s2n; E|X − θ|
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by m̂ = 1/n
∑n

i=1 |xi − θ̂0|; and f(θ) by the kernel estimator f̂(θ̂0) =

1/(nh)
∑n

i=1 exp(−(xi − θ̂0)
2/(2h2)), where h is chosen, e.g., by the so-

called Silverman’s rule of thumb (see [28]). With this estimation of Σn,
we get the following averaging estimator:

θ̂AV =
p1

p1 + p2
xn +

p2
p1 + p2

x(n/2) (21)

where p1 = 1/(4f̂(θ̂0))− m̂/2 and p2 = s2nf̂(θ̂0)− m̂/2. This estimator
corresponds to an empirical version of the best combination obtained
by P. S. de Laplace.

2. Based on bootstrap. We draw with replacement B samples of size n
from the original dataset. We compute the mean and the median of
each sample, respectively denoted x(b)

n and x
(b)
(n/2) for b = 1, . . . , B. The

MSE matrix Σn is then estimated by

1

B

(

∑B
b=1(x

(b)
n − xn)

2
∑B

b=1(x
(b)
n − xn)(x

(b)
(n/2) − x(n/2))

∑B
b=1(x

(b)
n − xn)(x

(b)
(n/2) − x(n/2))

∑B
b=1(x

(b)
(n/2) − x(n/2))

2

)

.

This leads to another averaging estimator, denoted by θ̂AV B.

Let us note that the first procedure above fits the asymptotic justification
presented in example (i) of Section 3.2. For this reason, θ̂AV is asymptoti-
cally as efficient as the oracle, provided θ̂0 is consistent. Moreover, the oracle
is asymptotically Gaussian and an asymptotic confidence interval for θ can
be provided without further estimation, see Section 3.2 and particularly Re-
mark 3.4. For the second procedure, theory is lacking to study the behaviour
of δ̃ in (13) when Σ̂n is estimated by bootstrap, so no consistency can be
claimed at this point. However the latter is a very natural procedure, easy
to implement in practice, so it is natural to assess its performances in our
simulation study.

Table 2 summarizes the estimated MSE of xn, x(n/2), θ̂AV and θ̂AV B,
for n = 30, 50, 100, and for different distributions, namely: Cauchy, Stu-
dent with 5 degrees of freedom, Student with 7 degrees of freedom, Logistic,
standard Gaussian, and an equal mixture distribution of a N (−2, 1) and a
N (2, 1). For all distributions, θ = 0. For the initial estimate θ̂0 in (21),
we take the median x(n/2), because it is well defined and consistent for any
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n = 30 n = 50 n = 100
MEAN MED AV AVB MEAN MED AV AVB MEAN MED AV AVB

Cauchy 2.106 9 8.95 8.99 4.107 5.07 4.92 4.9 2.107 2.56 2.49 2.49
(1.106) (0.14) (0.15) (0.15) (4.107) (0.08) (0.08) (0.08) (2.107) (0.04) (0.04) (0.04)

St(4) 6.68 5.71 5.4 5.43 4.12 3.53 3.33 3.34 1.99 1.74 1.61 1.62
(0.1) (0.08) (0.08) (0.08) (0.06) (0.05) (0.05) (0.05) (0.03) (0.02) (0.02) (0.02)

St(7) 4.8 5.51 4.6 4.64 2.82 3.32 2.74 2.8 1.42 1.67 1.37 1.38
(0.07) (0.08) (0.07) (0.07) (0.04) (0.05) (0.04) (0.04) (0.02) (0.02) (0.02) (0.02)

Logistic 10.89 12.7 10.76 10.87 6.64 7.93 6.52 6.6 3.3 4 3.2 3.26
(0.16) (0.18) (0.16) (0.16) (0.09) (0.11) (0.09) (0.09) (0.05) (0.06) (0.05) (0.05)

Gauss 3.39 5.11 3.53 3.61 2.04 3.1 2.1 2.15 1 1.51 1.02 1.06
(0.05) (0.07) (0.05) (0.05) (0.03) (0.04) (0.03) (0.03) (0.01) (0.02) (0.01) (0.01)

Mix 16.79 87 15.03 13.41 10.08 66.53 7.57 6.68 5.05 42.35 3.09 2.36
(0.23) (0.82) (0.29) (0.3) (0.14) (0.64) (0.15) (0.18) (0.07) (0.43) (0.06) (0.07)

Table 2: Monte Carlo estimation of the MSE of xn (MEAN), x(n/2) (MED), θ̂AV (AV) and

θ̂AVB (AVB) in the estimation of the position of a symmetric distribution, depending on
the distribution and the sample size. The number of replications is 104 and the standard
deviation of the MSE estimations is given in parenthesis. Each entry has been multiplied
by 100 for ease of presentation.

continuous distribution. The number of bootstrap samples taken for θ̂AV B is
B = 1000.

While the best estimator between xn and x(n/2) depends on the underlying

distribution, the averaging estimators θ̂AV and θ̂AV B perform better than
both xn and x(n/2), for all distributions considered in Table 2 except the
Gaussian law. For the latter distribution, we know that the oracle is the
mean, so the averaging estimator cannot improve on xn. However the MSE
of θ̂AV and θ̂AV B are very close to that of xn in this case, proving that the
optimal weights (1, 0) are fairly well estimated. Moreover, note that the
Cauchy distribution does not belong to our theoretical setting because it has
no finite moments and xn should not be used. But it turns out that the
averaging estimators are very robust in this case, as they manage to highly
favor x(n/2). Choosing the median x(n/2) as the initial estimator θ̂0 is of course
crucial in this case.

Since we are in the setting of (i) in Section 3.2, the oracle is asymptotically
normal and Proposition 3.3 yields an asymptotic confidence interval without
any further estimation. By construction, the length of these intervals is
smaller than the length of any similar confidence interval based on xn or
x(n/2). Further, the empirical rate of coverage of these intervals is reported in
Table 3 for the previous simulations, and turns out to be close to the nominal
level 95%.

23



n = 30 n = 50 n = 100
AV AVB AV AVB AV AVB

Cauchy 98.08 96.18 98.21 95.55 97.75 95.22
St(4) 93.59 91.45 94.38 92.71 94.71 92.55
St(7) 93.34 91.25 93.93 91.77 94.27 92.73
Logistic 92.48 90.33 93.96 92.05 93.91 92.21
Gauss 92.97 91.13 93.54 91.94 94.09 92.59
Mix 93.19 93.83 94.77 95.97 94.94 97.91

Table 3: Empirical rate of coverage (in %) of the asymptotic 95% confidence intervals

based on θ̂AV and θ̂AVB in the estimation of the position of a symmetric distribution,
deduced from the same simulations as in Table 2.

Finally, while θ̂AV B suffers from a lack of theoretical justification, it be-
haves pretty much like θ̂AV , except for the mixture distribution where it
performs slightly better than θ̂AV . This may be explained by the fact that
θ̂AV is more sensitive than θ̂AV B to the initial estimate θ̂0, the variance of
which is large for the mixture distribution because f(0) is close to 0. Never-
theless, θ̂AV demonstrates very good performance in this case, for the sample
sizes considered in Tables 2 and 3.

4.2. Estimating the parameters of a Weibull distribution

We consider estimators averaging in a parametric setting, namely the
Weibull distribution with shape parameter β > 0 and scale parameter η > 0,
the density function of which is

f(x) =
β

ηβ
xβ−1e−(x/η)β , x > 0.

Based on a sample of n independent realisations, many estimators of β and
η are available (see [16]). We consider the following three standard methods:

• the maximum likelihood estimator (ML) is the solution of the system

n

β
+

n
∑

i=1

log(xi)− n

∑n
i=1 x

β
i log(xi)

∑n
i=1 x

β
i

= 0, η =

(

1

n

n
∑

i=1

xβ
i

)1/β

.

24



• the method of moments (MM), based on the two first moments, reduces
to solve:

s2n
x2
n

=
Γ(1 + 2/β)

Γ(1 + 1/β)2
− 1, η =

xn

Γ(1 + 1/β)
,

where xn and sn denote the empirical sample mean and the unbiased
sample variance.

• the ordinary least squares method (OLS) is based on the fact that for
any x > 0, log(− log(1 − F (x)) = β log(x) − β log η, where F denotes
the cumulative distribution function of the Weibull distribution. More
precisely, denoting x(1), . . . , x(n) the ordered sample, an estimation of
β and η is deduced from the simple linear regression of (log(− log(1−
F (x(i))))i=1...n on (log x(i))i=1...n, where according to the ”mean rank”
method F (x(i)) may be estimated by i/(n+ 1). This fitting method is
very popular in the engineer community (see [1]): the estimation of β
simply corresponds to the slope in a ”Weibull plot”.

The performances of these three estimators are variable, depending on
the value of the parameters and the sample size. In particular, no one is
uniformly better than the others, see Figure 1 for an illustration.

Let us now consider the averaging of these estimators. In the setting of
the previous sections, we have d = 2 parameters to estimate and k1 = 3,
k2 = 3 initial estimators of each are available. The averaging over the maxi-
mal constraint set Λmax demands to estimate the 6× 6 MSE matrix Σ, that
involves 21 unknown values. The Weibull distribution is often used to model
lifetimes, and typically only a low number of observations are available to
estimate the parameters. As a consequence averaging over Λmax of the 6
initial estimators above could be too demanding. Moreover, between the two
parameters β and η, the shape parameter β is often the most important to
identify, as it characterizes for instance the type of failure rate in reliability
engineering. For these reasons, we choose to average the three estimators of
β presented above, β̂ML, β̂MM and β̂OLS, and to consider only one estimator
of η: η̂ML (where β̂ML is used for its computation). The averaging over Λmax

of these 4 estimators has three consequences: First, the number of unknown
values in the MSE matrix is reduced to 10. Second, the averaging estimator
of β depends only on β̂ML, β̂MM and β̂OLS, because η̂ML has a zero weight
from (3). This means that we actually implement a component-wise averag-
ing for β. Third, the averaging estimator of η equals η̂ML plus some linear
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combination of β̂ML, β̂MM and β̂OLS where the weights sum to zero. This
particular situation will allow us to see if η̂ML can be improved by exploiting
the correlation with the estimators of β, or if it is deteriorated.

So we have d = 2, k1 = 3, k2 = 1, T1 = (β̂ML, β̂MM , β̂OLS)
⊤, T2 =

η̂ML and the averaging estimator over Λmax is given by (11), denoted by
(β̂AV , η̂AV )

⊤. The matrix Σ is estimated by Monte Carlo simulations: Start-
ing from initial estimates β̂0, η̂0, we simulate B samples of size n of a Weibull
distribution with parameters β̂0, η̂0. Then the four estimators are computed,
which gives β̂

(b)
ML, β̂

(b)
MM , β̂

(b)
OLS and η̂

(b)
ML, for b = 1, . . . , B, and each entry of

Σ is estimated by its empirical counterpart. For instance the estimation of
E(β̂ML − β)(β̂MM − β) is (1/B)

∑B
b=1(β̂

(b)
ML − β̂0)(β̂

(b)
MM − β̂0). In our simu-

lations, we chose β̂0 as the mean of T1 and η̂0 = η̂ML. Note that Σ having
a parametric form ensures that (β̂AV , η̂AV )

⊤ is asymptotically as efficient as
the oracle, as explained in Section 3.2.

Table 4 gives the MSE, estimated from 104 replications, of each estimator
of β, for n = 10, 20, 50, and for β = 0.5, 1, 2, 3, η = 10, where for each
replication B = 1000. The averaging estimator has by far the lowest MSE,
even for small samples. As an illustration, the repartition of each estimator,
for n = 20 and β = 0.5, 3, is represented in Figure 1.

Table 5 shows the MSE for η̂ML and η̂AV where only estimators of β were
used in attempt to improve η̂ML by averaging. The performances of both
estimators are similar, showing that the information coming from T1 did
not help significantly improving η̂ML. On the other hand, the estimation of
these (almost zero) weights might have deteriorated η̂ML, especially for small
sample sizes. This did not happen.

Finally, the empirical rate of coverage of the asymptotic confidence in-
tervals based on β̂AV and η̂AV is given in Table 6, showing that it is not
far from the nominal level 95%, even for the small sample sizes considered
in this simulation. On the other hand, the length of these intervals are by
construction smaller than the length of similar confidence intervals based on
the initial estimators.
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n = 10 n = 20 n = 50
ML MM OLS AV ML MM OLS AV ML MM OLS AV

β = 0.5
35.53 76.95 24.41 25.27 12.06 35.57 13.74 10.5 3.7 14.19 6.04 3.52
(0.91) (1.27) (0.40) (0.64) (0.26) (0.52) (0.19) (0.19) (0.07) (0.20) (0.08) (0.06)

β = 1
152.4 131.6 98.1 85.5 49.2 53.6 54.2 36.9 14.4 19.3 23.9 12.8
(3.8) (3.1) (1.5) (1.7) (1.1) (1.1) (0.7) (0.7) (0.2) (0.3) (0.3) (0.2)

β = 2
596.4 444.6 399.4 355.5 194.5 164.5 218 163.3 57.9 53.9 94.8 54.3
(14.4) (11.9) (6.3) (6.7) (3.8) (3.3) (2.8) (2.7) (1.0) (0.9) (1.3) (0.9)

β = 3
1369 1080 905 770 452 394 486 343 128 122 211 120
(34.6) (29.7) (14.6) (18.1) (9.8) (8.9) (6.7) (6.2) (2.2) (2.0) (2.7) (1.9)

Table 4: Monte Carlo estimation of the MSE of β̂ML, β̂MM , β̂OLS and β̂AV , based on 104

replications of a sample of size n = 10, 20, 50 from a Weibull distribution with parameters
β = 0.5, 1, 2, 3 and η = 10. The standard deviation of the MSE estimations are given in
parenthesis. Each entry has been multiplied by 100 for ease of presentation.

n = 10 n = 20 n = 50
ML AV ML AV ML AV

β = 0.5
60.59 55.61 25.96 24.56 9.57 9.38
(1.60) (1.48) (0.53) (0.5) (0.17) (0.17)

β = 1
11.15 10.88 5.53 5.43 2.23 2.22
(0.18) (0.17) (0.08) (0.08) (0.03) (0.03)

β = 2
2.71 2.74 1.36 1.37 0.55 0.56
(0.04) (0.04) (0.02) (0.02) (0.01) (0.01)

β = 3
1.21 1.23 0.61 0.61 0.247 0.248
(0.02) (0.02) (0.01) (0.01) (0.003) (0.004)

Table 5: Monte Carlo estimation of the MSE of η̂ML and η̂AV , based on 104 replications of
a sample of size n = 10, 20, 50 from a Weibull distribution with parameters β = 0.5, 1, 2, 3
and η = 10. The standard deviation of the MSE estimations are given in parenthesis. Each
entry has been multiplied by 100 for ease of presentation.
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Figure 1: Repartition of β̂ML, β̂MM , β̂OLS and β̂AV (from left to right) based on 104

replications of a sample of size n = 20 from a Weibull distribution with β = 0.5 (left),
β = 3 (right) and η = 10.

n = 10 n = 20 n = 50

β̂AV η̂AV β̂AV η̂AV β̂AV η̂AV

β = 0.5 89.84 87.48 93.43 90.01 95.41 93.07
β = 1 87.25 89.24 90.98 91.61 93.81 93.62
β = 2 89.96 91.36 91.77 93.39 93.09 94.20
β = 3 92.19 92.38 92.86 93.83 94.25 94.77

Table 6: Empirical rate of coverage (in %) of the asymptotic 95% confidence intervals

based on β̂AV and η̂AV for the parameters of a Weibull distribution, deduced from the
same simulations as in Tables 4 and 5.
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4.3. Estimation in a Boolean model

The Boolean model is the main model of random sets used in spatial
statistics and stochastic geometry, see [8]. It is a germ-grain model where, in
the planar and stationary case, the germs come from a homogeneous Poisson
point process on R

2 with intensity ρ and the grains are independent ran-
dom discs, the radii of which are distributed according to a probability law
µ. Figure 2 contains four realisations of a Boolean model on [0, 1]2 where
ρ = 25, 50, 100, 150 respectively and the law of the radii µ is the uniform
distribution over [0, 0.1]. We assume in the following that µ is the beta dis-
tribution over [0, 0.1] with parameter (1, α), α > 0, denoted by B(1, α), i.e.
µ has density 10α (1 − 10x)α−1 on [0, 0.1]. The simulations of Figure 2 cor-
respond to α = 1.

Figure 2: Samples from a Boolean model on [0, 1]2 with intensity, from left to right,
ρ = 25, 50, 100, 150 and law of radii B(1, α) where α = 1.

The estimation of parameters ρ and α from the observation of random sets
as in Figure 2 is challenging, since the individual grains cannot be identified
and likelihood-based inference becomes impossible. The standard method of
inference, see [22], is based on the following equations proved in [33]. They
relate the expected area per unit area A and the expected perimeter per unit
area P of the random set to the intensity ρ and the two first moments of µ,
namely

A = 1− exp(−πρEµ(R
2)), P = 2πρEµ(R) exp(−πρEµ(R

2)),

where R denotes a random variable with distribution µ. Developing Eµ(R)
and Eµ(R

2) in terms of α, we obtain the following estimates of α and ρ :

α̂1 =
Pobs

10(Aobs − 1) log(1−Aobs)
− 2, ρ̂1 =

5 (α̂1 + 1)Pobs

π(1−Aobs)
,
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where Aobs and Pobs denote the observed area and perimeter per unit area of
the set.

An alternative procedure to estimate the intensity ρ is based on the num-
ber of tangent points to the random set in a given direction. Let u be a vector
in R

2. We denote by N(u) the number of tangent points to the random set
such that the associated tangent line is orthogonal to u and the boundary of
the set is convex in direction u. Considering k distinct vectors u1, . . . , uk, an
estimator of ρ, studied in [21], is

ρ̂2 =
1
k

∑k
i=1N(ui)

|W |(1−Aobs)
,

where |W | denotes the area of the observation window. Although this esti-
mator is consistent and asymptotically normal for k = 1, it becomes more
efficient as k increases, see [21]. In the following, we consider k = 100 and
the directions of u1, . . . , uk are randomly drawn from an uniform distribution
over [0, 2π].

Let us now consider the combination of the above estimators. In connec-
tion with the previous sections, we have d = 2, k1 = 2, k2 = 1, T1 = (ρ̂1, ρ̂2)
and T2 = α̂1. The averaging estimator over Λmax is denoted by (ρ̂AV , α̂AV ).
In this setting, we recall that ρ̂AV is a linear combination of ρ̂1 and ρ̂2 where
the weights sum to one, whereas α̂AV equals α̂1 plus a linear combination of
ρ̂1 and ρ̂2 where the weights sum to zero. The weights are estimated accord-
ing to (9), where Σ is obtained from Monte-Carlo simulations of the model
with parameters 0.5(ρ̂1+ρ̂2) and α̂1 (see the previous section for more details).

Table 7 reports the MSE of each estimator, estimated from 104 replica-
tions from a Boolean model with parameters ρ = 25, 50, 100, 150 and α = 1.
For each replication, 100 Monte-Carlo samples were used. The averaging
estimators have better performances than the initial estimators. It is worth
noticing the improvement of α̂1 when it is corrected by ρ̂1 and ρ̂2 through
α̂AV . Though this procedure might seem unnatural, the result is astonishing
for this model. More simulations with other values of α (not reported in this
paper) gave similar results.

As explained in Section 3.2, we can deduce from ρ̂AV and α̂AV an asymp-
totic confidence interval without any further estimation. The length of this
interval is smaller than the length of any similar confidence interval based
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ρ̂1 ρ̂2 ρ̂AV α̂1 α̂AV

ρ = 25
34.15 14.63 14.60 8.09 6.70
(0.55) (0.22) (0.22) (0.15) (0.13)

ρ = 50
131.63 47.41 45.65 4.69 3.24
(2.26) (0.72) (0.67) (0.067) (0.048)

ρ = 100
949 272 223 5.70 2.29

(21.8) (4.9) (3.6) (0.086) (0.034)

ρ = 150
7606 1656 1005 14.7 4.1
(341) (46.5) (24.4) (0.34) (0.11)

Table 7: Monte Carlo estimation of the MSE of ρ̂1, ρ̂2, ρ̂AV and α̂1, α̂AV based on 104

replications of a Boolean model with parameters ρ = 25, 50, 100, 200 and µ ∼ B(1, α)
with α = 1. The standard deviation of the MSE estimations are given in parenthesis. The
two last columns have been multiplied by 100 for ease of presentation.

on the initial estimators and Table 8 reports the empirical rate of coverage
of these intervals, showing that it is close to the nominal level 95%.

ρ = 25 ρ = 50 ρ = 100 ρ = 150
ρ̂AV 98.3 % 97.6 % 96.5 % 93.4 %
α̂AV 95.9 % 94.3 % 93.9 % 94.9 %

Table 8: Empirical rate of coverage (in %) of the asymptotic 95% confidence intervals
based on ρ̂AV and α̂AV for the parameters of the Boolean model, deduced from the same
simulations as in Table 7.

4.4. Estimation of a quantile under misspecification

In this section we consider a situation where we combine a non-parametric
estimator with several parametric estimators coming from possibly misspeci-
fied models. In this setting, our main condition (16) implying the asymptotic
optimality of the average estimator is unlikely to hold and further investi-
gations would be necessary to well understand the implications of a model
misspecification. The following simulations nonetheless give an idea of the
robustness of the averaging procedure.

Specifically, given an iid sample x1, . . . , xn, we estimate the p-th quantile
of the unknown underlying distribution by:
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• the non parametric estimator q̂NP = x(⌊np⌋);

• the parametric estimator associated to the Weibull distribution, i.e.
q̂W = F−1

α̂,β̂
(p) where Fα,β denotes the cdf of the Weibull distribution

with parameter (α, β) and (α̂, β̂) is the MLE estimator;

• the parametric estimator associated to the Gamma distribution;

• the parametric estimator associated to the Burr distribution.

The three parametric models above have a different right-tail behavior: The
Weibull distribution is not heavy-tailed when β > 1, while the Gamma dis-
tribution is heavy-tailed but not fat-tailed and the Burr distribution is fat-
tailed.

In this misspecified framework, we choose to use convex averaging, i.e. the
set of weights is given by (12), and we denote by q̂AV the average estimator.
The MSE matrix is estimated by bootstrap where for the initial estimator
we take q̂NP .

Table 9 reports the mean square error of each estimator when the ground
truth distribution is either a Weibull distribution with parameter (3, 2), or
the Gamma distribution with parameter (3, 2), or the Burr distribution with
parameter (2, 1), or the standard lognormal distribution. Note that in the
three first cases, one of the parametric estimators is well specified while
the other parametric estimators are misspecified, and in the last situation
all parametric estimators are misspecified. The table is concerned with the
estimation of the p-th quantile with p = 0.99, based on n = 100 and n = 1000
observations. The mean square errors are estimated from 104 replications and
the standard deviation of these estimations are given in parenthesis. Further
simulations have been conducted for other values of p, leading to the same
conclusions as below, so we do not report them in this article.

The average estimator outperforms the non-parametric estimator as soon
as there is one well-specified parametric estimator in the initial collection,
that is for the three first rows of Table 9. When none parametric model is
well-specified, as this is the case for the last row of Table 9, then the average
estimator has a similar mean square error as q̂NP .
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n = 100 n = 1000
q̂W q̂G q̂B q̂NP q̂AV q̂W q̂G q̂B q̂NP q̂AV

Weibull
22 255 1.105 52 42 2.1 234 1.105 5.7 4.7

(0.30) (2.0) (405) (0.7) (0.6) (0.03) (0.61) (1.102) (0.08) (0.07)

Gamma
3.6 1.8 3.106 5.3 4.2 1.7 0.18 3.106 0.62 0.60

(0.04) (0.02) (2.104) (0.07) (0.06) (0.01) (0.003) (5.104) (0.008) (0.008)

Burr
15 18 7 24 16 8.9 12.7 0.6 2.4 1.8

(0.14) (0.35) (0.17) (1.46) (0.82) (0.04) (0.06) (0.01) (0.04) (0.03)

Lognormal
9.9 11.6 30.2 10.9 9.2 7.29 9.87 13.39 1.38 1.38

(0.08) (0.07) (0.51) (0.24) (0.13) (0.03) (0.03) (0.09) (0.02) (0.02)

Table 9: Monte Carlo estimation of the MSE of q̂W , q̂G, q̂B , q̂NP and q̂AV when p = 0.99,
n = 100 (left) and n = 1000 (right), based on 104 replications of a Weibull distribution
(first row), a Gamma distribution (second row), a Burr distribution (third row) and a
lognormal distribution (last row). The standard deviation of the MSE estimations are
given in parenthesis. The first row has been multiplied by 1000 for ease of presentation.

5. Appendix

Proof of Theorem 3.1.

Since Λ ⊆ Λmax, we know that λ⊤ J = I for all λ ∈ Λ. Let S = Σ− 1

2 (T− J θ),
we have

‖θ̂−θ̂∗‖2 = ‖(λ̂−λ∗)⊤(T−J θ)‖2 = ‖(λ̂−λ∗)⊤Σ
1

2S‖2 ≤ ‖(λ̂−λ∗)⊤Σ
1

2‖2F ‖S‖2,
(22)

where ‖A‖F =
√

tr(A⊤A) denotes the Frobenius norm of A. The map φ :
λ 7→ tr(λ⊤Σλ) is coercive, and strictly convex by assumption. So, since Λ
is closed and convex, the minimum of φ on Λ is reached at a unique point
λ∗ ∈ Λ. Moreover, we know that for λ ∈ Λ, λ∗ + t(λ − λ∗) lies in Λ for all
t ∈ [0, 1], to which we deduce the optimality condition

lim
t→0+

φ(λ∗ + t(λ− λ∗))− φ(λ∗)

t
= tr

[

∇φ(λ∗)⊤(λ−λ∗)
]

= 2 tr
[

λ∗⊤Σ(λ−λ∗)
]

≥ 0,

for all λ ∈ Λ. It follows that

‖(λ̂− λ∗)Σ
1

2‖2F = tr(λ̂⊤Σλ̂)− tr(λ∗⊤Σλ∗)− 2 tr
[

λ∗⊤Σ(λ̂− λ∗)
]

≤ tr(λ̂⊤Σλ̂)− tr(λ∗⊤Σλ∗). (23)

By construction of λ̂, we know that tr(λ̂⊤Σ̂λ̂) ≤ tr(λ∗⊤Σ̂λ∗), yielding

tr(λ̂⊤Σλ̂)− tr(λ∗⊤Σλ∗) ≤ tr(λ̂⊤Σλ̂)− tr(λ̂⊤Σ̂λ̂) + tr(λ∗⊤Σ̂λ∗)− tr(λ∗⊤Σλ∗)

≤ tr(λ̂⊤Σ̂λ̂) δΛ(Σ|Σ̂) + tr(λ∗⊤Σλ∗) δΛ(Σ̂|Σ)
≤

[

tr(λ̂⊤Σ̂λ̂) + tr(λ∗⊤Σλ∗)
]

δΛ(Σ̂,Σ)
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where δΛ(A|B) and δΛ(A,B) are defined in Section 3.1. Now using that
tr(λ̂⊤Σ̂λ̂) ≤ tr(λ∗⊤Σ̂λ∗) and

tr(λ∗⊤Σ̂λ∗) = tr(λ∗⊤Σλ∗) +
[

tr(λ∗⊤Σ̂λ∗)− tr(λ∗⊤Σλ∗)
]

≤ tr(λ∗⊤Σλ∗)
[

1 + δΛ(Σ̂,Σ)
]

,

we obtain

tr(λ̂⊤Σλ̂)− tr(λ∗⊤Σλ∗) ≤ tr(λ∗⊤Σλ∗)
[

2δΛ(Σ̂,Σ) + δΛ(Σ̂,Σ)
2
]

. (24)

Recall that tr(λ∗⊤Σλ∗) = infλ∈Λ E‖λ⊤T − θ‖2 = E‖θ̂∗ − θ‖2, the result
follows from (22), (23) and (24). �

Proof of Corollary 3.2.

Write for ǫ > 0,

‖θ̂ − θ‖2 ≤ (1 + ǫ)‖θ̂∗ − θ‖2 + (1 + ǫ−1)‖θ̂ − θ̂∗‖2.

Applying Theorem 3.1, we get

‖θ̂ − θ‖2 ≤ (1 + ǫ)‖θ̂∗ − θ‖2 + (1 + ǫ−1)E‖θ̂∗ − θ‖2
(

δ̃Λ(Σ̂,Σ) ‖S‖2
)

, (25)

and the result follows by taking the expectation. �

Lemma 5.1. Let A, B be two positive definite matrices of order k. For any
non-empty set Λ that does not contain 0,

δΛ(A,B) ≤ ‖|AB−1 − BA−1‖|,

where ‖|A‖| = sup‖x‖F=1 ‖Ax‖F stands for the operator norm.

Proof. By symmetry, it is sufficient to show that the result holds for δΛ(A|B).
We have

δΛ(A|B) = sup
λ∈Λ

| tr[λ⊤(B − A)λ]|
tr(λ⊤Bλ)

≤ sup
λ6=0

| tr[λ⊤(B −A)λ]|
tr(λ⊤Bλ)

.

By Cauchy-Schwarz inequality,

| tr[λ⊤(B −A)λ]| =
∣

∣ tr
[

λ⊤B
1

2 (I−B− 1

2AB− 1

2 ) B
1

2λ
]∣

∣

≤ ‖B 1

2λ‖F‖(I−B− 1

2AB− 1

2 ) B
1

2λ‖F
≤ ‖|I− B− 1

2AB− 1

2‖|‖B 1

2λ‖2F . (26)
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Recall that ‖B 1

2λ‖2F = tr(λ⊤Bλ), it follows

δΛ(A|B) ≤ ‖|I− B− 1

2AB− 1

2‖|.

Since the matrix C = I − B− 1

2AB− 1

2 is symmetric, it is diagonalizable in
an orthogonal basis. In particular, denoting sp(.) the spectrum, ‖|C‖| =

supt∈sp(C) |t|. Finally, observe that sp(C) = 1 − sp(B− 1

2AB− 1

2 ) = 1 −
sp(AB−1), so that AB−1 has positive eigenvalues and

‖|I−B− 1

2AB− 1

2‖| = sup
t∈sp(AB−1)

|1− t| ≤ sup
t∈sp(AB−1)

|t− 1

t
| ≤ ‖|AB−1−BA−1‖|,

ending the proof. �

Proof of Proposition 3.3.

By Lemma 5.1, we know that

δΛ(Σ̂n,Σn) ≤ ‖|Σ̂nΣ
−1
n − ΣnΣ̂

−1
n ‖|. (27)

In particular, δΛ(Σ̂n,Σn) = op(1) by the assumption Σ̂nΣ
−1
n

p−→ I. Moreover,

denoting Sn = Σ
− 1

2
n (Tn − J θ), we have E‖Sn‖2 = k which implies that

‖Sn‖2 = Op(1). Equation (25) holds for all ǫ > 0 so we can take ǫ = ǫn such

that ǫn → 0 and δΛ(Σ̂n,Σn)/ǫn
p−→ 0 as n → ∞, yielding

‖θ̂n − θ‖2 ≤ ‖θ̂∗n − θ‖2 + ǫn‖θ̂∗n − θ‖2 + op(αn) = ‖θ̂∗n − θ‖2 + op(αn).

We shall now prove the second part of the proposition. Write,

α̂
− 1

2

n,j (θ̂n,j − θj) =

√

αn,j

α̂n,j
α
− 1

2

n,j

[

(θ̂∗n,j − θj) + (θ̂n,j − θ̂∗n,j)
]

.

To prove the result, it suffices to show that α
− 1

2

n,j ‖θ̂n,j − θ̂∗n,j‖ = op(1) and

αn,j/α̂n,j
p−→ 1. When Λ is a cylinder, it is easy to see that the following

holds
λ̂n,j = arg min

λ∈Λj

λ⊤Σ̂nλ and λ∗
n,j = arg min

λ∈Λj

λ⊤Σnλ,

where we recall Λj = {λj : λ ∈ Λ}. Moreover, we easily adapt the proof of
Theorem 3.1 to get

‖θ̂n,j − θ̂∗n,j‖2 ≤ αn,j

(

2δΛj
(Σ̂n,Σn) + δΛj

(Σ̂n,Σn)
2
)

‖Σ− 1

2
n (Tn − J θ)‖2.
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We deduce that α
− 1

2

n,j (θ̂n,j − θ̂∗n,j) = op(1) in view of (16) and Lemma 5.1.
Now, remark that

αn,j

α̂n,j

=
λ∗⊤
n,jΣnλ

∗
n,j

λ̂
⊤

n,jΣ̂nλ̂n,j

≤ λ̂
⊤

n,jΣnλ̂n,j

λ̂
⊤

n,jΣ̂nλ̂n,j

− 1 + 1 ≤ δΛj
(Σ̂n,Σn) + 1.

Similarly,
α̂n,j

αn,j
≤ δΛj

(Σ̂n,Σn) + 1.

So, we get
1

1 + δΛj
(Σ̂n,Σn)

≤ αn,j

α̂n,j

≤ 1 + δΛj
(Σ̂n,Σn),

proving that αn,j/α̂n,j
p−→ 1. �

Acknowledgments

The authors are grateful to Gerda Claeskens for fruitful discussion and
to anonymous referees for numerous suggestions and comments which helped
improve this paper.

36


