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The Sample Proportion and the Central Limit Theorem
To demonstrate that the large sample Normal distribution of P̂ (and there-

fore the Normal approximation to the Binomial) is an example of the Central
Limit effect, we need only establish that P̂ is the mean (or average) of a
random sample from some distribution.

The Binomial(n, p) distribution is the distribution of Y , the number of
heads in n tosses of a biased coin, when the probability of getting a head on
a single toss is p. We begin by setting up a separate random variable for each
toss.

Let Xi =
{

1, if the ith toss is a head;
0, if the ith toss is a tail.

Now the total number of heads Y is given by Y = X1 + X2 + . . . + Xn (we
count one more each time we get a head. Moreover, the Xi’s are independent
(as tosses are independent), and each Xi has the same distribution namely

x 0 1

pr(X = x) 1− p p.

Thus, the Xi’s constitute a random sample from this distribution. The dis-
tribution has

E(X) = 0× (1− p) + 1× p = p.

E
[
(X − µ)2

]
= (0− p)2(1− p) + (1− p)2p = (1− p) [p2 + p (1− p)]Since

= p(1− p),

sd(X) =
√

E
[
(X − µ)2

]we have

=
√
p(1− p).

Hence
P̂ =

Y

n
=

ΣXi

n
= X,

so that P̂ is the sample mean from a distribution with mean µ = p and
standard deviation σ =

√
p(1− p). The Central Limit Theorem tells us,

therefore, that

P̂ is approximately Normal

(
µP̂ = p, σP̂ =

√
p(1− p)

n

)
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in large samples. Since the number of heads in n tosses is Y = nP̂ , it fol-
lows that Y is also approximately Normally distributed. Thus, the Normal
approximation to Binomial is a consequence of the Central Limit Theorem.

Since P̂ has been shown to be a sample mean you may think, “why not apply
the formula given for se(x) in Section 7.2.3 of the text to the Xi’s above to
get a formula for se(p̂ )?” If you do this, it can be shown that you get our
previous formula for se(p̂ ) apart from a factor1 of 1/

√
1− (1/n), which is

essentially 1 for all reasonable sample sizes.

Adjustment for Sampling Without Replacement

As in the case of estimating means, we need to make an adjustment to the
above theory when p̂ is obtained by sampling from a finite population without
replacement, as in polls. This time, however, we can derive an expression from
previous theory. When sampling without replacement, we should be using the
Hypergeometric distribution for Y instead of the Binomial. Using the formula
for sd(Y ) for the Hypergeometric discussed in Chapter 5 on this web site,

sd(P̂ ) = sd(
1
n
Y ) =

1
n

sd(Y ) =
1
n

√
np(1− p)N − n

N − 1

≈
√
p(1− p)

n
·
√

1− f.

where f = n/N is the sampling fraction. This is the usual formula apart
from a finite population correction

√
1− f . The standard error formula is

corrected in the same way. We can ignore the correction factor when f < 0.1.
There are very few practical situations in which finite population correc-

tions are called for, although we did come across one recently in which a
marketing research company polled 120 of New Zealand’s top 400 business
leaders (n/N = 0.3).

1Where each xi = 0 or 1, it is not hard to show that
∑

(xi−x)2 =
∑
x2
i −nx2 = np̂(1− p̂ )

and thus that sX√
n

=

√
p̂(1−p̂)
n

/
√

1− 1
n

.


