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1 Introduction

An increasingly important aspect of survey-based inference involves recognizing and adjusting

for discrepancies between respondents and the target population. For one, a general trend of

decreasing response rates has magnified the influence of differential nonresponse, so that those

who participate are inherently different from those who choose not to (Cornesse and Bosnjak

2018; Curtin et al. 2005; Tourangeau and Plewes 2013). In addition, the relative ease and low

cost of data collection has led to the rising popularity of nonprobability samples, in which

recruitment is based on convenience (Groves 2006). Such samples risk misrepresentation due to

selection bias, if those targeted in recruiting are not representative of the intended population.

A 2012 Task Force Report by The Journal of Survey Statistics and Methodology stressed the

need to develop methodologies to use nonprobability samples for population inference (Baker

et al. 2013).

Population mean inference inherently requires assumptions about the nature of sample

representation. When sampling weights are available, the Horvitz-Thompson estimator of the

population mean is unbiased (Horvitz and Thompson 1952), but only under a perfect response

rate. In practice, analysis is often based on an assumption of ignorability, or that certain

conditional distributions in the population are preserved in the sample (Gelman et al. 2004;

Rubin 1987). The direct implication is that within strata defined by auxiliary information, the

observed sample is effectively a random selection from the population and the observation

mechanism need not be modeled explicitly. Then, design weights can be generated by

calibrating for nonresponse (Deville and Sarndal 1992; Lundstrom and Sarndal 1999) or

through response propensity adjustments (Seaman and White 2011; Little 1986; Valliant and

Dever 2011). For nonprobability samples especially, poststratification (Little 1993; Gelman and

Carlin 2002; Gelman 2007) or raking (Deming and Stephan 1940; Lohr 1999) use population

information to generate strata weights, with strata means estimated through the data, often

through modeling approaches (Wang et al. 2009; Park et al. 2004). Extensions of these methods

that allow for nonignorable nonrespone also rely on the inclusion of auxiliary information (Kott

and Chang 2010; Pfeffermann and Sikov 2011; Qin et al. 2002).

Research suggests that auxiliary variables relating to observation propensity and to behavior of
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interest work best for reducing estimate bias (Kott and Chang 2010; Gelman 2007; Qin et al.

2002; Little and Vartivarian 2005). Out of practical considerations, sample realignment in

general population studies is usually limited to a few demographic variables, such as age,

gender, or income. Potential biases across less standard dimensions are overlooked.

In this work, we bring attention to sample misrepresentation with respect to individuals’

household roles, specifically the degree of responsibility for household finances. To our

knowledge, there is no existent literature on this topic. Our analysis is based on a case study of

the 2017 Survey of Consumer Payment Choice (SCPC). The SCPC recruits respondents through

a nonprobability version of address-based sampling, in which addresses and subsequently

individuals living at those addresses are invited to participate (AAPOR 2016). As such, it serves

as a natural backdrop for examining observation disparity within households. Understanding

the key features and limitations of address-based sampling is particularly important in light of

its increased use, fueled by the development of extensive databases and improved coverage

relative to random digit dialing (AAPOR 2016). Our analysis relies on a unique aspect of the

SCPC sample, namely that some households feature multiple members who completed the

survey.

The paper proceeds as follows. Section 2 and 3 introduce the framework of analysis and the

SCPC data, respectively. Section 4 uses a Bayesian model to estimate household roles in the

SCPC sample and compare their distribution to hypothetical samples that preserve desirable

recruitment qualities when sampling at random from within households. Section 5, provides a

statistical methodology, based on resampling the observed data, to estimate and adjust for bias

introduced by household misrepresentation for poststratified estimates of mean number of

payment instrument uses within the general population. A discussion of the findings and

future directions for research is provided in Section 6.

2 Framework and Notation

Consider a finite population of individuals clustered within households, which are indexed by

the subscript h. Household h has nh individuals, enumerated by i = 1, . . . , nh, so that the pair

(h, i) uniquely identifies each member of the population. Each individual is associated with a
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measurement, yhi, which has a population mean µ, the parameter of interest. For the purposes

of consumer research, nh counts only the adults, those who are at least 18 years old.

2.1 Household Dynamics

A key part of our analysis involves quantifying individuals’ roles within their households. To

do so, we adopt a general construct in which each individual is assigned a share, λhi, so that∑nh

i=1 λhi = 1. As seen in more detail in Section 4, the natural limitation on household sums

imposed by the shares serves as a key mechanism in estimating sample and population

distributions of λhi. The particular interest of this work leads to λhi being defined as an

individual’s average level of responsibility for four household financial activities featured in a

particular SCPC question. However, the adopted framework can be used to define household

role with respect to other metrics, such as time use or health outcomes.

2.2 Sampling

Inference about µ is derived by sampling the population. The set of individuals for whom yhi is

observed in any particular sampling effort is denoted by I = {Ihi}, where a value of Ihi = 0

indicates that yhi is unobserved, and Ihi = 1, . . . , nh corresponds to the order within the

household with which that individual was recruited, if such a distinction exists. Most

recruiting strategies select only one member from any household, reducing Ihi to a binary

variable, but the SCPC sample requires the extension to sampling of multiple household

members. The adopted notation does not distinguish why yhi is unobserved; nonresponse and

nonselection are both coded with Ihi = 0.

The sampling distribution of any estimating statistic depends on the stochastic nature of the

particular process used to determine which individuals are observed. Therefore, it can be useful

to distinguish samples that arise through different recruitment strategies. In this work, we let Io

denote the sampling strategy used in the SCPC, and Ĩ denote a hypothetical strategy in which

each member of a randomly selected household has an equal chance of being observed.
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2.3 Sample Bias and Population Inference

To facilitate discussion, we adopt a super-population framework and let P(·) denote the

distribution of its arguments. We define a sample bias with respect to λhi as occurring when

household responsibility shares for a given household size have a different distribution in the

sample than in the population:

P(λhi | Ihi > 0, nh = n) 6= P(λhi | nh = n). (1)

This can occur if P (Ihi | λhi, nh = n) varies with λhi, so that certain types of household members

are more likely than others to be sampled or respond.

A sample bias with respect to λhi can lead to nonignorable sampling (see Gelman et al. (2004);

Rubin (1987) for background on ignorable and nonignorable sampling). For the purposes of

illustration, we consider the case where no variables other than nh and yhi are observed. Then,

ignorability corresponds to a lack of sample bias with respect to yhi, as defined in (1). Under

ignorable sampling, estimates are well-behaved. For example, sample averages for each

household size are unbiased, and a weighted average according to population prevalence of

each household size is an unbiased estimated for the population mean. The sample distribution

can be expressed as

P(yhi | Ihi > 0, nh = n) =

∫
P(yhi | λhi, Ihi > 0, nh = n)P(λhi | Ihi > 0, nh = n)dλhi

=

∫
P(yhi | λhi, nh = n)P(λhi | Ihi > 0, nh = n)dλhi, (2)

where the simplification in the second line assumes only that the relationship between λhi and

yhi is preserved in the sample. The identity in (2) reveals that if a sample bias with respect to λhi

exists, ignorability generally occurs only if P(yhi | λhi, nh = n) = P(yhi | nh = n). Within the

schema of missing data, this last condition corresponds to missing at random, since observation

mechanisms within each household size do not relate to the behavior of interest (Rubin 1987). If

sampling is not ignorable, analysis based on a greater set of demographic variables may

compensate for the sample bias, but only if the sample distribution of λhi conditional on the

additional variables well-represents that in the population.

4



3 Data

The data considered in this paper come from the 2017 Survey of Consumer Payment Choice, a

survey fielded annually by researchers in the Federal Reserve. SCPC respondents are

individuals aged 18 or older from the Understanding America Survey (UAS Various Years), a

panel of individuals recruited by the Center for Economic and Social Research (CESR) to

participate in a variety of surveys. The SCPC is a 30-minute survey that collects information on

payment instrument adoption and use, with the goal of tracking national trends. Data from

every SCPC is publicly available at the SCPC website (SCPC Various Years). In the following

sections, we introduce the financial responsibility questions and provide a brief overview of the

2017 SCPC sample.

3.1 Financial Responsibility Questions

Included in the SCPC is a set of questions that characterize each respondent’s level of

responsibility for four activities related to household finances. Insight into an individual’s role

within the household is provided by a set of four financial responsibility questions, asking each

respondent to rank his or her responsibility for “paying bills,” “household shopping,” “making

decisions about saving and investments,” and “making decisions about other household

financial matters” on a 5-point Likert scale ranging from “no or almost no responsibility” to “all

or almost all responsibility.” A replica of the survey questions is shown in Figure 1.

3.2 SCPC Sampling

3.2.1 SCPC Recruitment

Although the annual SCPC samples have a longitudinal component, recruitment is done anew

every year. In 2017, an invitation for the SCPC survey, along with an offer of a $20 incentive,

was emailed to every member of the “Nationally Representative” UAS panel. This panel was

generated through nine waves of address-based sampling, starting in 2014, with the goal of

recruiting a set of individuals that well-represent those aged 18 and older living in the United

States. The address-based sampling protocol employed by CESR follows best practices
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UnderStandingAmericaStudy 

None or 
almost 
none 

0 

0 

0 

0 

Paying monthly bills (rent or 
mortgage, utilities, cell phone, etc.) 

Doing regular shopping for the 
household (groceries, household 
supplies, pharmacy, etc.) 

Making decisions about saving and 
investments (whether to save, how 
much to save, where to invest, how 
much to borrow) 

Making decisions about other 
household financial matters 
(where to bank, what payment 
methods to use, setting up online bill 
payments, filing taxes) 

I 

Some 

0 

0 

0 

0 

Most All or almost all 

0 0 

0 0 

0 0 

Shared equally 
with other 
household 
members 

0 

0 

0 

0 0 0 

Financial Responsibility

Help us to understand your role in the financial activity of your household.

In your household, how much responsibility do you have for these tasks?

• Check one per row only.

<< Back   Next >>

Figure 1: A replica of the financial responsibility questions from the 2017 SCPC.

established by Dillman et al. (2014) and is detailed on the UAS webpage (UAS Various Years).

Briefly, addresses are drawn at random from purchased post office delivery sequence files. If a

name is not linked with the address, mail is sent to “Current Resident.” An introductory

postcard is followed by a package that includes a cover letter, a $5 cash reward, and a promise

of $15 for the completion of an “intake” survey. Those who complete this survey and agree to

more surveys are asked to provide demographic information about their household, which

comes with a $20 incentive. CESR offers to provide internet-connected tablets for those without

internet access. Everyone who completes the household survey is an official panelist, until the

individual either opts out or has not responded to any contact for 10 months.

If an individual declines an invitation, an offer for other household members to join the panel is

extended. Across all recruitment waves, around 11 percent of mailings yield a primary contact

in the panel. Once a primary contact is established, CESR makes an effort to recruit additional

members from each household. In general, about 20 percent of households featured in the UAS

include more than one household member.
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3.2.2 2017 SCPC Sample

At the time of recruitment for the 2017 SCPC, the UAS panel consisted of 4,759 individuals. The

2017 SCPC was completed by 3,099 individuals, corresponding to a participation rate of about

65 percent. The 2017 SCPC cohort represents 2,688 unique households. Table 1 shows the

breakdown of these households according to household size, nh, and number of members

featured in the 2017 SCPC, soh. While most households are represented by one individual, 349

multi-person households are represented by at least two individuals, and 267 multi-person

households had all adult members participate in the survey.

The subset of primary respondents, identified by Iohi = 1, most closely resembles typical

samples, in which only one household member is selected. Thus, to better generalize, analysis

is often restricted to the primary respondents.

Household Size (# Adults)
# Adults in Sample 1 2 3 4 5 6 7 8

1 457 1,385 313 132 34 11 2 1
2 229 38 29 3 4 0 0
3 36 6 2 0 0 0
4 2 0 0 0 0

Table 1: Number of households in the 2017 SCPC by the total number of adults (nh) and number of sam-
pled adults (soh).

3.3 Raw Data Estimates of λhi

The financial responsibility questions in the survey suggest a particular measure of household

responsibility share, λhi. We define the sample statistic Fhi as the sum of all four responses

coded from 0 (“None or almost none”) to 4 (“All or almost all”). This statistic takes on integer

values in [0, 16], and Fhi

16
∈ [0, 1] serves as an estimate of λhi, defined as an individual’s average

share of household responsibility across the four featured activities. Although somewhat

arbitrary, this definition of λhi undoubtedly gives some insight into household financial

dynamics.

Ideally, Fhi = [16λhi], where the brackets denote rounding to the nearest integer. Subject to this

rounding, the sum of reported household scores should be 16 if responses represent true
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dynamics. Figure 2 shows the reported values of Fhi for individuals from the same household.

Although there are clear intra-household inconsistencies, the general trend suggests that the

reported scores relate to true household dynamics. Among two-adult households, the

correlation of reported scores is −0.40, and the mode total score is 16, with about two-thirds of

households yielding a total between 13 and 19.

Discrepancies of the kind observed in Figure 2 are to be expected and have many potential

sources. Reasonable differences in interpretations of the four activities, the use of different

metrics to define responsibility share, and disagreements on the difference between “almost

none” and “some” among members of the same household may skew household scores as well.

More traditional sources of response error such as straightlining and misunderstanding the

question completely also contribute to response variation (Schaeffer and Presser 2003). Finally,

the fact that 64 percent of two-adult households and 88 percent of larger households have total

scores greater than 16 suggests the presence of the well-studied “overconfidence effect,” in

which respondents tend to overstate their contribution (Svenson 1981).
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Figure 2: Financial responsibility scores, Fhi, in the 2017 SCPC for primary contacts and all other sampled
household members.

4 Estimating Sample Bias

In the following section, we detail a Bayesian methodology to estimate the distributions of

responsibility shares, as measured by λhi, in the SCPC sample as well as the general population.
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For single-member households, prior assumptions require that λhi = 1 with probability 1.

However, for multi-member households, a model relating Fhi to λhi, as well as priors for λhi

and any hyper-parameters, are required.

Sections 4.1-4.5 define the model components, Section 4.6 describes estimation, and Section 4.7

discusses posterior results. Finally, in Section 4.8, we use posterior estimates to compare λhi in

the observed sample to what would be expected in hypothetical samples that draw uniformly

from within households.

4.1 Modeling λhi

As a set of shares, a flexible class of models for λh = {λh1, . . . , λhnh
} is,

λh | τh ∼ Dirichlet ({τh, . . . , τh}) , (3)

a Dirichlet distribution for a vector of length nh with the concentration parameter for each

component τh. Therefore, λhi are exchangeable and follow a Beta (τh, τh(nh − 1)) distribution.

Exchangeability follows from the fact that intra-household indices, i, are assigned arbitrarily.

The parameter τh defines the degree of dispersion of the λhi within a household. Larger values

of τh condense the probability mass of λhi around E[λhi] = 1
nh

for each i.

4.2 Modeling Responses

The reported scores, Fhi, are modeled as independent, both across households and within

households, with

P(Fhi = f | λhi, φh`, φhu) ∝

 exp
(
−φh`

∣∣bλhie − f
16

∣∣) , if λhi ≥ f
16

exp
(
−φhu

∣∣bλhie − f
16

∣∣) , if λhi < f
16
,

(4)

where bλe is the value of 0
16
, 1

16
, . . . , 16

16
that minimizes distance to λhi.

The probability distribution on integers from 0 to 16 in (4) has several attractive features. First,

restricting φhu, φh` ≥ 0, Fhi = [16λhi] is at least as likely as any other response. In fact, if

φhu, φh` > 0, [16λhi] will be the mode. Second, by virtue of using two parameters, the model
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allows for different likelihoods of over- and under-estimation of one’s household responsibility.

This is important as the data shown in Figure 2 suggest respondents are more likely to

overestimate their share of financial responsibility.

4.3 Model Specification

In this work, we distinguish households with two adults and those with three or more adults.

Specifically, we define

τh =

 τ1, nh = 2

τ2, nh ≥ 3,
φh` =

 φ1`, nh = 2

φ2`, nh ≥ 3,
φhu =

 φ1u, nh = 2

φ2u, nh ≥ 3.

Such a delineation is partly motivated by economic intuitions. The set of households with two

adults is primarily composed of life partners for whom cooperation and the sharing of

household decisions is a major component of the relationship. Households with three or more

adults will feature a wider array of family arrangements and, as a result, might show a higher

level of variation in responsibility levels within the household. Individuals in smaller

households may also be able to better assess their share of contribution. While it would be

interesting to make finer distinctions along household size, we are limited by having only 36

fully-sampled three-adult households and 2 fully-sampled four-adult households.

4.4 Model Identifiability

As a matter of notation, we let λoh = {λhi | Iohi > 0} and F o
h = {Fhi | Iohi > 0} represent the

household responsibility shares and reported statistics of the observed sample from household

h, respectively. The subscript h is dropped to indicate observed data for all households, so the

posterior distribution of interest is

P (λo, τ, φ | F o) ∝ P (F o | λ, φ) P(λo | τ)P(τ, φ). (5)

However, certain identifiability issues arise in (5) when not all household members are

observed. Then, it is impossible to determine to what extent observed patterns in Fhi reflect
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patterns in the sampled λhi, defined by τ and any selection effects, or response error, defined by

φ. For example, with only one observation per household, the observed tendency for higher

values of Fhi in the 2017 sample could result from a recruitment methodology that favors those

with greater responsibility or systematic over-estimation of contribution by respondents. With

fully-sampled households, there is no need to model selection, implicit in P(λo | τ) of (5). In

addition, the additive constraint on λhi limits how λhi relates to Fhi, significantly restricting the

parameter space.

In this work, we address identifiability issues in two ways. The first is through data

augmentation, discussed in van Dyk and Meng (2012), in which a model for Fhi of unobserved

household members is supplemented into analysis. Specifically, if F ø
h = {Fhi | Ihi = 0}

represents data from unobserved household members, we model F ø
h | F o

h and make inferences

about τ and φ conditional on data from the full household. A second option is to estimate τ and

φ using only the fully-sampled households. Such a restriction is suitable if the set of

partially-observed households is a random selection of all households. Data augmentation does

not require such an assumption and will improve inference to the extent that differences

between fully- and partially-sampled households are reflected in differences in the distributions

of the observed Fhi for both sets of households. However, if the data augmentation model is

misspecified, inference quality can suffer, especially with such a large share of households

being partially-observed. Posterior estimates for both approaches are compared in Section 4.6.

4.4.1 Modeling F ø
h

Letting Iø
h represent the ordered set of household indices for those not sampled, the general

data augmentation model relies on decomposing

P (F ø
h | F

o
h) =

∏
i∈Iø

h

P (Fhi | F o
h ∪ {Fhj | j < i}) . (6)

For each item on the right-hand side of (6), we use ordered probit regression (Agresti 2002; Hoff

2009).
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In the case of two-adult households, we let

P(Fhi ≤ fø | Fhj = fo) = Prob(Zh ≤ gk[fo],fø),

Zh ∼ Normal(βk[fø] × fo).

By fitting separate models for groupings of observed Fhi values, we have more flexibility to

adequately capture dynamics between the primary and secondary observations. The

groupings, k[f ], are chosen so that observed and simulated distributions of household totals,

Fh1 + Fh2 matched in key ways, most notably by a high and roughly uniform concentration

between 14 and 20. Appendix A provides specifics of k[f ].

For larger households, we assume that the distribution of Fhi depends on the number of

observed household members, nohi, the sum of their scores, Thi, and the household size, nh. The

full model is

P (Fhi = f | F o
h ∪ {Fhj | j < i}) = P (Zhi ≤ gf ) ,

Zhi ∼ Normal
(
β1nh + β2nhi + β3thi + β4t

2
hi, 1

)
.

Again, the exact model specification is chosen so that observed and simulated distributions of

household totals shared key traits.

4.5 Priors

For τ and φ, our primary choice for priors guides the posterior distribution by reflecting a

general intuition for plausible values. The assumed priors are

Prior A: φ1`, φ2`, φ1u, φ2u
iid∼ Gamma(24, 9.8) and τ1, τ2

iid∼ Gamma(2, 1.4), (7)

with the Gamma distribution parameterized by its mean and standard deviation, respectively.

By having the prior likelihood of φ` and φu monotonically increasing away from 0, the prior

favors models in which there is greater correspondence between λhi and Fhi. The prior mode of

20 in (7), though somewhat arbitrary, represents a value safely greater than one consistent with
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the observed data.

The parameter τ defines the heterogeneity in how households share financial responsibility

among adult members. The chosen prior effectively precludes extreme cases, in which

responsibility is allotted similarly across households, but is relatively unassuming among more

realistic choices. Within two-adult households, the central 95 percent of prior mass falls

roughly on the range τ1 ∈ [0.25, 5.5]. A value of τ1 = 0.25 assumes that about 25 percent of

two-adult households entrust one person with almost all financial responsibility (λhi > 0.95)

and about 8 percent of households split responsibility more or less evenly (λhi ∈ [0.4, 0.6]). If

τ1 = 5.5, these quantities are less than 1 percent and almost 50 percent respectively. Our

intuition, as reflected by the prior, is that τ likely falls between these value, corresponding to

greater variability in household patterns.

To test the influence of prior assumptions, we also generate posterior estimates based on

Prior B: φ1`, φ2`, φ1u, φ2u
iid∼ Gamma(24, 9.8) and τ1, τ2

iid∼ Gamma(6, 2.4)

Prior C: φ1`, φ2`, φ1u, φ2u
iid∼ Gamma(1, 1) and τ1, τ2

iid∼ Gamma(2, 1.4). (8)

Prior B in (8) puts greater mass on larger values of τ , which translates to more equal sharing of

responsibility within households. Prior C is characterized by favoring values of φ closer to 0,

thus minimizing the correspondence between the reported Fhi and the true responsibility

shares, λhi. The impact of the priors on posterior estimates is discussed in Section 4.6.

Prior distributions for the data augmentation variables, β and g, are uninformative, consistent

with defaults used by the R package bayespolr. Specifically, β are assumed to arise from a

generalized t-distribution with 1 degree of freedom and a scale parameter of 4. Priors for the

cutpoints, g, are characterized by prior counts at each response value, which we set to 1
17

.

4.6 Model Estimation

For the data augmentation model, we run an MCMC based on the prior distributions in (7).

The MCMC algorithm iterates as follows:

1. Sample β, g | F o ∼ P(F o | β, g)P(β, g).

2. For each partially-sample household, sample F ø
h | β, g, F o

h .
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3. Sample φ | λo, F o ∼ P(F o | λo, φ)P(φ).

4. Sample τ | λ ∼ P(λ | τ)P(τ).

5. For each h, sample λh | Fh, τ, φ ∼ P(Fh | λh, φ)P(λ | τ).

Sampling is done using a combination of Gibbs and Metropolis-Hasting sampling. Four

distinct chains are run for 16,000 iterations in R, with every 10th draw stored. Figure 3 shows the

running averages of τ and φ at each stored iteration for each chain.

Using the last 500 draws from each chain, we calculate R̂, a measure of convergence based on

the ratio of average within-chain variance to the inter-chain variance of means (Gelman et al.

2004). Values of R̂ are shown in Figure 3. For two-adult households, R̂ is essentially 1,

suggesting almost perfect convergence. For bigger households, R̂ is larger, though still suitably

close to 1 to accept the sample. We thus combine the last 500 iterations from each of the four

runs as our posterior sample.
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Figure 3: Running average of posterior draws of τ and φ from the MCMC algorithm for all four chains.
Values of R̂ are calculated using the last 500 draws of each chain.

We also estimate posterior distributions of τ and φ using only the fully-sampled households. To

ease computation, we evaluate probabilities on a grid, taking advantage of the fact that

14



Prob(Fhi | λhi, φ) is a step function. Along with the priors in (7), posterior distributions are

estimated with the prior combinations given in (8).

Figure 4 shows prior and posterior credible intervals for τ and φ based on all four estimation

methods. In general, point estimates for τ are similar, though the interval is much shorter when

using data augmentation, presumably due to additional information provided by the

partially-sampled households. In the case of φ, there is greater variability in point estimates.

Interestingly, the inclusion of partially-sampled households via data augmentation does not

significantly reduce uncertainty about φ, as measured by credible interval lengths. The most

noticeable difference in estimates of φ occurs when a Gamma(1, 1) distribution is assumed.

However, a prior that so strongly favors less correspondence between Fhi and λhi is fairly

nonsensical. Perhaps most importantly, the posterior distributions, and especially posterior

means, of the observed λhi are not fundamentally different across models. Overall, the

posterior results suggest a fair degree of robustness to reasonable prior choices and estimation

methods. All following results are based on the data augmentation approach.
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Figure 4: 95% credible intervals for τ, φ based on priors and various posterior estimates. Prior ‘A’ corre-
sponds to (7), and Priors ‘B’ and ‘C’ are given in (8), respectively.

4.7 Posterior Distributions

Below, we discuss posterior estimates of τ, φ, and λhi based on the data augmentation model.

Posterior distributions for the parameters in the data augmentation model itself, β and g, are

summarized in Appendix A.

Posterior intervals of τ , included in Figure 4, show τ1 around 1.5 and τ2 around 0.7. Therefore,
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two-adult households tend to share financial responsibility more evenly (higher concentration

around 1
nh

) than larger households. This is perhaps due to the fact that larger households

include life partners housing adult children or elderly relatives, who might have less say in

financial decisions of the household.

The fact that φ` > φu, as Figure 4 makes clear, confirms that individuals are much more likely to

overstate their share of household responsibility than understate it. The finding that φ1 > φ2

suggests that the Fhi more closely correspond to λhi in two-adult households than in larger

households.

Figure 5, depicting posterior draws of λhi for five households, illustrates how posterior

distributions of λhi relate to the observed data, Fhi

16
. In cases where all household members are

observed, the posterior mean is similar to Fhi∑nh
i=1 Fhi

, a natural estimate, and posterior uncertainty

relates to the degree of intra-household consistency (determined by how close the sum of the

scores is to 16). The first three panels illustrate this by showing two fully-sampled households

in which members’ financial responsibility scores show a fair amount of internal consistency

and one fully-sampled two-adult household with clearly inconsistent scores, Fh = {15, 12}. The

lack of internal consistency in the third household results in much more uncertainty about the

true values of λhi than for the first two households. Nevertheless, individuals with higher

values of Fhi have higher posterior means. Finally, the last two panels feature partially-sampled

households, in which only one representative completed the survey. In both cases, Fhi = 16, but

evidence of greater reporting error among larger households results in more uncertainty and a

lower posterior mean for the individual from the three-person household (panel 5) than for the

individual from the two-person household (panel 4).

4.8 Sample Bias in the SCPC

To assess sample bias among the primary respondents of the SCPC, we compare posterior

statistics of the observed λhi | Iohi = 1 to those for hypothetical samples in which household

members are selected without bias. For any given sample I , with mn(I) primary contacts

16
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Figure 5: Posterior estimates of λoh for five different households. ’X’ represents the value Fhi
16 , and ‘O’

represents the posterior mean under the data augmentation model.

among households of size n,

λ̄n(I) =
1

mn(I)

∑
{h,i}

λhi1 [Ihi = 1 and nh = n] .

is the average financial responsibility share among observed primary respondents.

Fundamentally, we want to compare λ̄on = λ̄n(Io) | F o, Io to the distribution of
˜̄λn = λ̄n(Ĩ) | F o, Io, in which Ĩ is defined by selecting one member with uniform probability

from each of mo
n = mn(Io) households of size n.

Based on the assumed population model introduced in Section 4.1, the sample average of

randomly selected household members follows the same distribution as the average of mo
n

independent draws from Beta(τ, (n− 1)τ). Thus, a posterior estimates of ˜̄λn are easily

generated for each posterior draw of τ . Similarly, for λ̄on, the estimate is easily calculated

through posterior draws of λhi | Iohi = 1.

Figure 6 compares 2,000 posterior draws for λ̄on and ˜̄λn for households of size n = 2, 3, 4. As

expected, samples based on unbiased draws have expectation 1
n

. For all three household sizes,

the sample average λhi in the SCPC falls above the expected range, even when uncertainty
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about the observed λhi is accounted for. Despite the fact that our model did not assume

intra-household selection bias a priori, posterior results suggest that the SCPC is oversampling

household members with higher financial responsibility. Similar results are found when

theoretical samples are derived by randomly sampling one individual, and thus a λhi, from

each of the households observed in the 2017 SCPC.
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Figure 6: Histograms of 2,000 posterior draws of λ̄on (“Observed”), the observed average of λhi among
primary respondents in the 2017 SCPC sample, and ¯̃

λn (“Hypothetical”), the expected average
based on uniform sampling within households, for household sizes n = 2, 3,and 4. Exact defi-
nitions of these statistics are given in Section 4.8.

While it is impossible to know the extent that this result generalizes to other samples, it does
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serve as some evidence that address-based sampling can yield a skewed sample with respect to

household role. Perhaps, this is not surprising. Beyond the relatively low response rate (less

than 10 percent), there is a legitimate concern that names linked with addresses or those

replying to “Current Resident” are not a random sample of household members. Although a

probability-based version of address-based sampling, in which, for example, the individual

with the next birthday is selected, might fare better, Battaglia et al. (2008) show that surveys are

often completed by the wrong person.

5 Effect of Sample Bias on Population Estimates

Below, we estimate the effect of the observed sample bias on population estimates for the mean

number of monthly payments. We consider four types of payment instruments: checks, cash,

electronic payments, and card payments. The electronic payments category includes online

banking and bank account number payments, while card payments combines credit, debit, and

prepaid card payments.

We let yhi represent the number of monthly payments that individual i in household h makes

using a generic payment instrument, as reported in the SCPC. We opt against a model-based

approach, which requires estimating the joint distribution of demographics, yhi, and λhi.

Instead, we compare a poststratified estimate based on the primary responders in the SCPC

data to hypothetical samples that preserve certain distributional aspects of population λhi.

While the focus on primary responders is intended to highlight the impact of the household

bias in a sample more representative of typical recruiting efforts, inherently housed in the

analysis is a methodology for generating estimates that account for sample bias with respect to

λhi.

5.1 Generating Samples

We again take Ĩ to be a recruitment strategy that selects individuals from each household with

equal probability. It is assumed that Ĩ preserves the number of respondents from households of

size n, mo
n. By conditioning in this way, differences in calculated statistics better reflect

discrepancies in who is selected from within households rather than in the types of households.
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The desired sampling distribution can be expressed as

P(yhi | Ĩhi = 1) ∝
∫

P(yhi | λhi, Ĩhi = 1)P(λhi | Ĩhi = 1)dλhi, (9)

which suggests samples can be generated by first drawing λhi from its target distribution and

then conditionally drawing yhi.

Assuming an infinite population, one way to generate the desired sample for households of

size n is to determine the number of sampled individuals with λhi ∈ bnj , mnj , for some disjoint

partition of [0, 1], {bnj}j . These counts have distribution

{mnj} ∼ Multinomial(mo
n, {pnj}), (10)

where pnj = Prob(λhi ∈ bnj | nh = n, τ), a function of τ . Given mnj , one can then draw

independent samples from P(yhi, λhi | λhi ∈ bnj, nh = n). We approximate this step via a

bootstrap, sampling with replacement from the observed individuals in the 2017 SCPC sample.

For the bootstrap to represent the desired distribution of household roles, it is necessary that

P(λhi | λhi ∈ bnj, nh = n, Iohi = 1) = P(λhi | λhi ∈ bnj, nh = n, Ĩhi = 1),

for all n and bnj (Efron and Tibshirani 1993).

We use subscript k to denote ỹk, a hypothetical sample from y(Ĩ) | F o, Io, yo, based on

parameters from the kth posterior draw. Sample k is generated as follows:

Step 1: Sample for n = 1. Bootstrap mo
1 pairs of (λhi, yhi) from all observed individuals for

whom nh = 1.

Step 2: Sample for n = 2,3,4. We define bnj , shown in Table 2, such that the number of

individuals in the SCPC sample with estimated posterior means of λhi | Iohi > 0 in each

interval is at least 75. For the kth sample:

I. For each j, determine pknj = Prob(λhi ∈ bnj | nh = n, τ k). Values of pnj based on

posterior means of τ are also shown in Table 2.
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II. Sample
{
mk
nj

}
according to (10).

III. For each j, bootstrap mk
nj pairs (λhi, yhi) from the relevant subset of the kth posterior

draw of λkhi in the 2017 SCPC sample: {λkhi ∈ bnj | nh = n, 1ohi > 0}.

Step 3: Sample for n ≥ 5. Households of size n ≥ 5 are bootstrapped without consideration of

sampled λhi. However, because only 3 percent of consumers belong to such households,

doing so will have virtually no effect on population estimates.

HH Size Partition
(n) j = 1 j = 2 j = 3 j = 4
2 bnj =[0,0.25) bnj =[0.25,0.5) bnj =[0.5,0.75) bnj =[0.75,1]

pnj =0.18 pnj =0.32 pnj =0.32 pnj =0.18
3 bnj =[0,0.2) bnj =[0.2,0.5) bnj =[0.5,1]

pnj =0.41 pnj =0.31 pnj =0.28
4 bnj =[0,0.2) bnj =[0.2,0.4) bnj =[0.4,1]

pnj =0.53 pnj =0.23 pnj =0.24

Table 2: Partitions of [0, 1], bnj , and the population proportion of λhi in each, pnj , based on posterior
means of τ for households of size n = 2, 3, 4.

5.2 Generating Estimates

For each dataset, y, we estimate the mean number of monthly payments among U.S.

consumers, µ, via poststratification (Little 1993; Gelman and Carlin 2002; Gelman 2007). Most

generally, an estimate of µ based on a partition of the population into D disjoint strata with

known population proportions, wd, takes the form

µ̂(y) =
D∑
d=1

wdµ̂d(y), (11)

where µ̂d(y) is an estimate of µd, the stratum-specific population mean. Using household size,

household income, gender, and age to stratify, we generate two estimates of µ, described below.

Estimate A: Based on a 31-strata, we estimate µd with the observed stratum average, ȳd. The

population mean estimates are designated by µ̂A(y) and represent simple poststratification

estimates.
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Estimate B: Based on a 75-strata, we use a hierarchical model of the observed stratum means,

ȳd and standard errors,
√
vd:

ȳd ∼ Normal(µd,
√
vd) and µd ∼ Normal(µ, σ).

Posterior means of µd are generated through RSTAN. Assumed priors are µ ∼ Normal(20, 7), a

diffuse distribution over the general range of population means estimated from previous years’

data, and σ ∼ half-Cauchy(0, 2.5), a weakly-informative prior for between group variance

(Gelman 2006; McElreath 2016). The hierarchical approach benefits from “partial pooling,” so

that estimates for strata with few or no observations are stabilized by incorporating

information from other strata (Elliott and Little 2000). The resulting population mean estimate

is given by µ̂B(y).

The choice of demographic variables on which to stratify is important. It is possible that the

observed sample bias with respect to λhi only relates to the distribution of sampled

demographics, so that sample bias exists only because P(dhi | Iohi = 1) 6= P(dhi). In this case,

poststratification on the appropriate set of demographics, dhi, should adjust for bias.

Particularly important candidates are those demographic variables that vary sufficiently within

household and have a non-trivial disparity between the sample and population distribution.

An interesting aspect of intra-household sampling is that in households featuring life partners

many of the traditional demographic variables used in poststratification, such as age,

education, and household income, tend to be similar, and thus are unlikely to adequately

distinguish household members. The obvious exception is gender, and since 58 percent of 2017

SCPC respondents are female, it is a potentially vital stratification variable.

5.3 Results

For the kth bootstrapped sample, a useful way of comparing the SCPC-based estimate,

calculated using the first responders, yop = {yhi | Iohi = 1}, to bootstrapped estimates is through

the percent deviation:

Ψk
A = 100× µ̂A(ỹk)− µ̂A(yop)

µ̂A(ỹk)
and Ψk

B = 100× µ̂B(ỹk)− µ̂B(yop)

µ̂B(ỹk)
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Histograms of the Ψk are shown in Figure 7 for both stratifications. Overall, the simulated

estimates, which do not oversample high values of λhi, are generally lower than those based on

the observed sample for all instruments except cash. Electronic payments shows the most

evidence of overestimation, with estimated deviations centered around −14 percent. Checks

and card payments show respective percent errors of about −8.5 and −5 percent respectively.

For cash, the estimated percent deviations average to about 3 percent. Unlike for the other three

payment instruments, there is little evidence that the sample bias observed in the 2017 SCPC

sample significantly affects estimates of cash use. Results are robust to prior choices for µ and σ

in Estimate B.

A simple explanation for these findings is that electronic payments, checks, and, to a lesser

extent, cards are commonly used for bills and large-ticket items, which are more likely to be

household purchases, such as cars, appliances, or services. In accordance with the theories of

household economics, most notably those outlined by Becker (1991), efficiency dictates that

household tasks often be concentrated among a subset of household members. As such, we

hypothesize that it is natural for households to designate particular members, likely those with

higher levels of responsibility and who are more involved in decision-making, to make these

types of payments. Cash, on the other hand, is associated with daily, small-value purchases,

which are less related to household needs and more to individual ones. As a result, greater

responsibility within a household does not necessarily translate to more cash purchases.

5.4 Supplementary Analysis

Below, we briefly describe a supplementary analysis, detailed in Appendix B, that links

posterior estimates of λohi to the share of household payments reported by each household

member. We assume the reported number of payments {yhi} in each household follow a

Multinomial distribution conditional on their sum with probabilities, {γhi}, representing the

average share of household payments made by individual i. The share of payments made are

linked to household roles through

γh ∼ Dirichlet({aλh + b}), (12)
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Figure 7: Estimated distributions of Ψ, the percent difference between mean estimates based on the pri-
mary respondents in the 2017 SCPC sample and those based on a hypothetical sample that
draws individuals at random from within households, for each of the four payment instruments
and based on two different postratification estimates (A and B).

where {aλh + b} is the vector of Dirichlet concentration parameters that define the strength of

the relationship between λhi and γhi. Large values of a, relative to b, suggest a strong

correspondence between λhi and γhi. Alternatively if a = 0, λhi does not relate to the share of

payments at all.

A useful measure of the relationship between λhi and the average share of payments made is
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the proportion of variation in γhi explained by λhi:

VarExp = 1− E[Var[γhi | λhi]]
Var[γhi]

. (13)

Akin in spirit to R-squared, VarExp ∈ [0, 1], with higher values indicating a stronger

relationship between λhi and γhi. On one end of the extreme, if knowledge of λhi predicts γhi

with absolute certainty then Var[γhi | λhi] = 0 and VarExp = 1. On the other end, if λhi does not

relate to γhi at all then Var[γhi | λhi] = Var[γhi] and VarExp = 0.

For a given set of estimates of λhi in the sample and τ , we generate maximum likelihood

estimates of a, b, and, in turn VarExp. This is done separately for each payment instrument and

for household sizes of n = 2, 3, 4. In doing so, posterior draws of λoh are ranked by the total

absolute deviation of the λhi from their respective posterior means, thus arranging posterior

draws roughly according to perceived likelihood. The kth estimation is based on the set of

household draws of λoh whose total absolute deviation from posterior means is kth largest.

Figure 8 shows the estimates of VarExp as a function of distance to posterior mean as well as an

estimate based on posterior means of λoh. Most generally, these results lend validity to our

above results. First, the relationships between household role and use of a payment instrument

are confirmed. In addition, the fact that these relationships strengthen as one assumes values of

λhi closer to their posterior mean supports our methodology for estimating household

responsibility shares. Interestingly, λhi and γhi have a weaker relationship in two-adult

households than in larger ones. This may be partly due to more equal distribution of

responsibility in two-adult households or the fact that easier intra-household communication

and more fluid dynamics make sharing of tasks easier. By contrast, in larger households, clear

and efficient delegation of tasks is more important to efficient household management.

6 Discussion

In our view, the most meaningful contribution of this work is the recognition of a potential

source of sample bias that, as far as we are aware, is generally ignored. Researchers who rely on

surveys should be generally aware of intra-household variability in behavior and the
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Figure 8: Estimated proportion of variation in Fhi explained by λhi for each of the four payment instru-
ment groups. The ∗ represent calculations using posterior means of the observed λhi, λ̄hi.

possibility of introducing bias by over- or under-sampling individuals with certain types of

roles. It is possible that many sampling schemes, not just those based on address-based

sampling, are affected by such a bias. In fact, all patterns observed in the 2017 SCPC sample are

also found in the 2016 SCPC sample and the 2012 SCPC sample, the latter of which was fielded

to a set of respondents recruited via an entirely different methodology than CESR uses (ALP

Various Years).

The need to address the issue depends on how closely the variable of interest relates to

household role, but it seems likely that many social and economic variables will be affected. A

simple consideration for researchers studying variables that are potentially related to

household role is to consider the relative values of individual-based questions and

household-based ones. Interviewing the head of the household to determine economic

variables for the entire household is an approach already used by the Consumer Expenditure

Survey (CES Various Years) or the Survey of Consumer Finance (SCF Various Years). Of course,

the quality of such estimates depends on the information available to the respondent. While it

seems reasonable for the head of a household to be able to generate estimates for the number of

bills paid, it seems harder to tally everyone’s cash spending.

Alternatively, this paper identifies a methodology to identify and adjust for the effects of
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sample bias related to household role. This process not only requires a particular question

format, but also relies on a unique data structure in which a non-trivial fraction of households

feature several respondents. As such, it is impractical to implement in most surveys.

Improvement in the process depends on simultaneously devising survey variables that are less

prone to measurement error and developing a better statistical framework for incorporating

household role information into inference. In particular, adjustments based on choices of λhi

that more closely relate to the outcome of interest will yield less uncertainty about the true

value.
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A Appendix A:

Table 3 shows posterior means and standard errors for all parameters in the data augmentation

models. The partitions k[f ] for the two-adult household model are

1. k[f ] = 1 for f ∈ {0− 3}
2. k[f ] = 2 for f ∈ {4− 7}
3. k[f ] = 3 for f ∈ {8− 10}
4. k[f ] = 4 for f ∈ {11− 13}
5. k[f ] = 5 for f ∈ {14− 16}.

nh = 2 nh > 2
k = 1 k = 2 k = 3 k = 4 k = 5 β1 0.07 (0.2)

βk 0.74 (0.3) -0.23 (0.1) -0.37 (0.1) -0.26 (0.2) -0.14 (0.2) β2 0.23 (0.2)
gk1 -0.09 (0.6) -3.00 (0.8) -5.58 (1.3) -6.17 (2.7) -3.23 (3.1) β3 -0.14 (0.04)
gk2 0.40 (0.7) -2.99 (0.8) -5.06 (1.3) -4.70 (2.4) -2.88 (3.1) β4 0.003 (0.0)
gk3 0.42 (0.7) -2.79 (0.8) -4.78 (1.3) -4.24 (2.4) -2.61 (3.1) g1 -2.34 (0.7)
gk4 0.45 (0.7) -2.78 (0.8) -4.67 (1.3) -4.16 (2.4) -2.54 (3.1) g2 -1.98 (0.7)
gk5 0.47 (0.7) -2.77 (0.8) -4.42 (1.3) -3.64 (2.4) -2.30 (3.1) g3 -1.57 (0.7)
gk6 0.49 (0.7) -2.76 (0.8) -4.23 (1.3) -3.53 (2.4) -2.08 (3.1) g4 -1.24 (0.7)
gk7 0.52 (0.7) -2.75 (0.8) -3.93 (1.3) -2.83 (2.4) -1.96 (3.1) g5 -0.99 (0.7)
gk8 0.54 (0.7) -2.40 (0.8) -3.59 (1.3) -2.57 (2.4) -1.95 (3.1) g6 -0.85 (0.7)
gk9 0.56 (0.7) -2.22 (0.8) -3.08 (1.3) -2.20 (2.4) -1.73 (3.1) g7 -0.69 (0.7)
gk,10 0.58 (0.7) -2.01 (0.8) -2.80 (1.3) -2.05 (2.4) -1.54 (3.1) g8 -0.54 (0.7)
gk,11 0.88 (0.7) -1.54 (0.8) -2.55 (1.3) -1.87 (2.4) -1.26 (3.1) g9 -0.16 (0.7)
gk,12 0.89 (0.7) -1.27 (0.8) -2.11 (1.3) -1.86 (2.4) -1.25 (3.1) g10 -0.00 (0.7)
gk,13 1.12 (0.7) -0.58 (0.8) -1.77 (1.3) -1.76 (2.4) -1.08 (3.1) g11 0.25 (0.7)
gk,14 1.33 (0.7) -0.27 (0.8) -1.50 (1.3) -1.75 (2.4) -0.99 (3.1) g12 0.34 (0.7)
gk,15 1.54 (0.7) 0.05 (0.8) -1.30 (1.3) -1.74 (2.4) -0.98 (3.1) g13 0.55 (0.7)
gk,16 2.19 (0.8) 0.35 (0.8) -0.98 (1.3) -1.61 (2.4) -0.97 (3.1) g14 0.67 (0.7)

g15 0.90 (0.7)
g16 1.09 (0.7)

Table 3: Estimated means and standard errors of β, g from the data augmentation models.
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B Appendix B: Linking λhi to Average Share of Household Pay-

ments

Let th =
∑nh

i=1 yhi represent the total number of household payments that would be reported if

all members participated in the survey. Additionally, γh = {γhi} represents the share of

household payments made by each individual. The parameters and data can be linked by the

model

yh | th, γh ∼ Multinomial(th, γh). (14)

By adopting the model in (12), we assume an approach based on Dirichlet regression (Campbell

and Mosimann 1987; Hijazi and Jernigan 2009). We impose the restrictions that b > 0 and

a+ b > 0 to ensure well-defined Dirichlet distributions.

In the case where data for only a subset of household members are observed, we define

toh =
∑

{i|Iohi>0} y
o
hi as the total number of payments reported by sampled members of household

h. Then, the assumed multinomial model in (14) further implies that

yoh | toh, γoh ∼ Multinomial(toh, γ
′o
h), (15)

where γ′ohi =
γohi∑so
h

i=1 γ
o
hi

. By the aggregation properties of the Dirichlet distribution,

γ′
o
h ∼ Dirichlet({aλoh + b}). (16)

Combining (15) and (16), the likelihood function for (a, b) for household h can be expressed as

Lh(a, b) =

∫
P(yoh | toh, γ′

o
h)P(γ′

o
h | a, b, λoh, yoh)dγ′

o
h, (17)

and integration of (17) leads to the closed-form likelihood

Lh(a, b) =
Γ(a

∑
i|Iohi>0 λhi + sohb)

∏
i|Iohi>0 Γ(yhi + aλhi + b)

Γ(a
∑

i|Iohi>0 λhi + sohb+ toh)
∏

i|Iohi>0 Γ(aλhi + b)
. (18)
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If only one household member is sampled (soh = 1), the likelihood in (18) reduces to 1 for all a

and b.

The form for VarExp in (13) depends on the first two moments of λhi through the form

VarExp(a, b, τh) =
κ1Var[λhi]

κ1Var[λhi] + κ2(E[λhi]2 + Var[λhi]) + κ3E[λhi] + κ4

,

where

κ1 =
a2

(a+ bnh)2
and κ2 =

−a2

(a+ bnh)2(a+ bnh + 1)

κ3 =
a2 + abnh − 2ab

(a+ bnh)2(a+ bnh + 1)
and κ4 =

ab+ (nh − 1)b2

(a+ bnh)2(a+ bnh + 1)
.

The assumption that λh ∼ Dirichlet(τh, . . . , τh), implies

E[λhi] =
1

nh
and Var[λhi] =

nh − 1

n2
h(τhnh + 1)

.

We use the posterior means of the observed λhi to generate maximum likelihood estimates for

a, b and then VarExp. Rather than treating the draws of λohi from each iteration of the MCMC

together, we order the posterior draws for each household according to the distances from the

posterior means. To simplify notation, we relabel the observed members of household h

according to j = 1, . . . , soh so that the jth observed member of household h is that for which

Iohi = j. Then, λoh[j, k] represents the kth posterior draw of for observed member j, and λ̄oh[j]

represents the posterior mean based on the 500 draws. For the kth posterior draw, the absolute

deviation from the posterior means for household h is defined as

∆k
h =

soh∑
j=1

∣∣λoh[j, k]− λ̄oh[j]
∣∣.

Households are then ordered according to the values of ∆k
h, to yield the order statistics ∆

(k)
h for

which ∆
(k)
h < ∆

(k+1)
h . The kth estimate of a, b, and VarExp are based on ∆

(k)
h for each household,

with τh taken as its posterior mean.
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