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Abstract

Information Theory enables the quantification of how much information a 

neuronal response carries about external stimuli, and is hence a natural analytic

framework for studying neural coding.  The main difficulty in its practical 

application to spike train analysis is that estimates of neuronal information from 

experimental data are prone to a systematic error (called “bias”).  This bias is an 

inevitable consequence of the limited number of stimulus-response samples that it 

is possible to record in a real experiment.  In this paper, we first explain the origin

and the implications of the bias problem in spike train analysis. We then review 

and evaluate some recent general-purpose methods to correct for sampling bias: 

the Panzeri-Treves, Quadratic Extrapolation, Best Universal Bound, Nemenman-

Shafee-Bialek procedures, and a recently proposed Shuffling bias reduction 

procedure. Finally, we make practical recommendations for the accurate 

computation of information from spike trains. Our main recommendation is to 

estimate information using the Shuffling bias reduction procedure in combination 

with one of the other four general purpose bias reduction procedures mentioned 

above. This provides information estimates with acceptable variance and which 

are unbiased even when the number of trials per stimulus is as small as the 

number of possible discrete neuronal responses. 
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Introduction

Almost all sensory messages are encoded as temporal patterns of action 

potentials (spikes), often distributed over populations of neurons.  A fundamental 

problem in neuroscience is to understand the nature of this neural population code.  

Ideally, as argued by Rieke et al (1996), we would like a dictionary that, given 

some snapshot of spiking activity, tells us what sensory signal has occurred.  As a 

first step, we need to know what kind of neural code we are dealing with (Optican 

and Richmond 1987).  For example, is the precise timing of each spike important, 

or is it just the number of spikes that matters?  As a second step, we need to know 

what specific stimulus features are being encoded. For example: do spike counts 

encode the amplitude or the frequency of a sinusoidal stimulus (Arabzadeh et al 

2004)? A widely used approach to neural coding is to treat the brain as a

communication channel, and to use information theory to quantify and compare 

the information about stimuli available in different candidate codes.  In recent 

years, this approach has led to significant new insight in our understanding of 

sensory encoding (Rieke et al 1996; Borst and Theunissen 1999; Hertz and 

Panzeri 2003; Averbeck et al 2006). 

However, estimating accurately the information that spike trains convey 

about external stimuli is fraught with a major practical difficulty: information 

theoretic measures suffer from a significant systematic error (or “bias”) due to the 

limited amount of stimulus-response data that can realistically be collected in an 

experimental session. Over the last few years, several advanced methods have 

been proposed to correct for the bias problem. In this report, we explain the origin 

of the bias, and review recent bias correction methods.  Finally, we present
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guidelines to help choose an appropriate procedure for computing information and 

to help understand the conditions under which it will produce accurate results. 

The information carried by neural responses

The aim of information theoretic analysis is to get insight into neural 

coding.  For example, we might want to know whether a particular neuron 

conveys information by millisecond precision spike timing or simply by the total 

number of emitted spikes (the “spike count”).  We assume that, if precise spike 

timing is important, a timing code will convey more “information” than a spike 

count code.  If, on the other hand, precise spike timing is not important, a timing 

code will convey no more information that a count code.  To carry out such an 

analysis, the first step is to “choose” the neural code. This in practice means to 

choose a way to quantify the neuronal response that reflects our assumption of 

what is most salient in it.  For example, if we think that only spike counts (not the 

precise temporal pattern of spikes) are important, we choose a spike count code:

we define a post-stimulus response interval and count the number of spikes it 

contains on each repetition (“trial”) of a stimulus. The second step is to compute 

how much information can be extracted from the chosen response quantification. 

This allows the assessment of how good is the candidate neural code. Whatever 

the neural system of interest, the problem of information quantification can be 

characterized in the following way.

Consider an experiment in which the animal is presented with a stimulus s

selected with probability P(s) from a stimulus set S consisting of S elements and 

the consequent response (either of a single neuron or an ensemble of neurons) is 

recorded and quantified in a certain post-stimulus time window. In most cases, the 
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neural response is quantified as a discrete, multi-dimensional array r = {r1,…,rL}

of dimension L. For example, to quantify the spike count response of a population 

of L cells, ri would be the number of spikes emitted by cell i on a given trial in the 

response window. Alternatively, to quantify the spike timing response of a single 

neuron, the response window is divided into L bins of width ∆t, so that ri is the 

number of spikes fired in the ith time bin (Strong et al 1998). Here ∆t is the 

assumed time precision of the code, and can be varied parametrically to 

characterize the temporal precision of the neural code. We denote by R the set of 

possible values taken by the response array. 

Having quantified the response, the next step is to characterize the 

relationship between stimulus and response and assign a number (the information) 

that quantifies how well different responses discriminate between different 

stimuli. The more the response of a neuron varies across stimuli, the greater is its 

ability to transmit information (de Ruyter van Steveninck et al 1997).  The first 

step in measuring information is thus to measure the response variability. The 

most general way to do so is through the concept of entropy (Shannon 1948). The 

response variability (across all possible stimuli and trials) is quantified by the 

response entropy:

2( ) log ( )
r

P r P r= −∑H(R)                     (1)

where P(r) is the probability of observing response r across all trials to any 

stimulus. However, neurons are typically “noisy”, in the sense that their responses 

to repetitions of an identical stimulus differ from trial to trial. H(R)  reflects both 

variation of responses to different stimuli and variation due to trial-to-trial noise. 

Thus, H(R)  is not a pure measure of the stimulus information actually transmitted 
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by the neuron.  We can quantify the variability specifically due to noise, by 

measuring the entropy at fixed stimulus (that is, conditional on s):

2( | ) ( ) ( | ) log ( | )
r s

P s P r s P r s= −∑∑H R S                 (2)

H(R | S)  is known as the noise entropy: P(r|s) is the probability of observing 

response r given presentation of stimulus s. The noisier is a neuron, the greater is 

H(R | S) . The information that the neuronal response transmits about the stimulus

is the difference between the response entropy and the noise entropy.  This is 

known as the mutual information I(S;R)  between stimuli and responses (in the 

following abbreviated to “information”):

2
,

( | )
( ) ( | ) log

( )r s

P r s
P s P r s

P r
≡ =∑I(S;R) H(R) - H(R | S)                                 (3)

I(S;R) quantifies how much of the information capacity provided by stimulus-

evoked differences in neural activity is robust to noise. An alternative but 

equivalent interpretation of I(S;R) is that it quantifies the reduction of uncertainty 

about the stimulus that can be gained from observation of a single trial of the 

neural response (Rieke et al 1996; Borst and Theunissen 1999). When base-two 

logarithms are used (as in Eqs. (1-3)), I(S;R)  is expressed in units of bits: 1 bit of 

information means that, on average, observation of the neuronal response on one 

trial reduces the observer’s stimulus uncertainty by a factor of two. I(S;R) is zero 

only when the stimulus-response relationship is completely random.

Calculation of information requires accurate estimation of the stimulus-

response probabilities P(r), P(r|s) and P(s) and thereby H(R) and H(R | S) . The 

problem is that these probabilities are not known but have to be measured 

experimentally from the available neurophysiological data. This is the key 
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practical issue for the accurate application of Information Theory to the study of 

neural codes.

Bias of the plug-in information estimator: what is it and where does it come 

from?

If we had an infinite amount of data, we could measure the true stimulus-

response probabilities precisely. However, any real experiment only yields a finite 

number of trials, from which these probabilities must be estimated. The estimated 

probabilities are subject to statistical error and necessarily fluctuate around their 

true values (Fig. 1). The significance of these finite sampling fluctuations is that 

they lead to both systematic error (bias) and statistical error (variance) in estimates 

of entropies and information. These errors, particularly the bias, constitute a 

significant practical problem. If not corrected, bias can lead to serious 

misinterpretations of neural coding data.  Fortunately, a number of useful 

techniques have recently been developed for addressing the issue – how to do so is 

the main topic of this review.

--- Figure 1 ---

The most direct way to compute information and entropies is to estimate the 

response probabilities as the experimental histogram of the frequency of each 

response across the available trials, and then plug these empirical probability 

estimates into Eqs. (1-3). We refer to this as the “plug-in” method. In the 

following, Ns denotes the number of trials recorded in response to stimulus s and 

N the total number of trials across all stimuli. Note that ss
N N=∑ . To build 

intuition on the implications of the plug-in estimation of probabilities, consider a 

hypothetical neuron that, on each trial, fires 1-10 spikes with equal probability, 
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regardless of which of two stimuli was presented.  In this case, the true conditional 

probability P(r|s) is 0.1 (Fig. 1A, black horizontal line in the left and central

panels) for all stimulus-response combinations, which means that P(r) is also 0.1; 

consequently, Eq. (3) tells us that the mutual information is precisely zero.  Fig 

1A (upper left and central panels) shows the probabilities estimated from a 

simulated experiment where Ns was 20.  Due to limited sampling, the estimated 

probabilities (grey line) differed markedly from 0.1 and from one another. In 

particular, since stimulus 2 happened to evoke more spikes than stimulus 1, it 

might naively appear that the neuron was selective for stimulus 2.  This was 

reflected in a non-zero value of the plug-in information estimate (0.2 bits).  The 

result varied from experiment to experiment (right panel): the information 

distribution was centred at the 0.202 bits – it was not centred at the true value of 0 

bits.  This shows that the plug-in information estimate was biased.  In general, 

sampling bias is defined as the difference between the expected value of the 

information computed from the probability distributions estimated with N trials

(here 0.202 bits), and its value computed from the true probability distributions

(here 0 bits). The bias is a systematic error that cannot be eliminated just by 

averaging over repeated experiments under similar conditions or on similar 

neurons.

In order to correct for the bias, we need to understand its properties.  The 

first of these is its dependence on the number of trials.  The greater the number of

trials, the smaller the fluctuations in the estimated probabilities, and consequently 

the smaller the bias. For example, with Ns=100 (Fig 1A, lower panels), the bias 

was 0.033 bits. 
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However, what makes it difficult to evaluate the bias is that it is not a fixed 

quantity whose magnitude only depends on the number of trials: even at fixed 

number of trials, the bias can be very different for different neurons. This is 

illustrated in Fig. 1B. A second hypothetical neuron fired 1-6 spikes for stimulus 1 

and 5-10 spikes for stimulus 2. The stimulus-response probabilities are now 

stimulus-modulated, and the neuron conveyed 0.666 bits of information (true 

value). With Ns=20, the distribution of empirical information values was centred 

at 0.703 bits (Fig. 2B top right), giving a bias of 0.036 bits.  Thus, although the

number of trials per stimulus was identical to that of the neuron of Fig. 1A, the 

bias was much less.

The bias of the information comes from the bias of the two entropies 

(response entropy and noise entropy) that constitute it (Miller, 1955). To go 

deeper into the nature of the sampling bias, it turns out to be useful to study the 

bias of the entropies directly. We illustrate this by computing both entropies on a 

set of simulated spike trains whose statistical properties were based on real spike 

trains (responses of neurons in rat somatosensory cortex to 13 different sinusoidal 

stimuli, differing in vibration energy; Arabzadeh et al (2004)). We simulated two 

types of responses (“single cell” and “population” respectively). In the “single 

cell” case, we simulated the response of a single neuron over a 0-40 ms post-

stimulus time window and digitized the spike train into L=8 bins of size ∆t=5 ms 

(0 or 1 spikes in each bin). In the second case, we simulated a population of L=8 

neurons simultaneously responding to a stimulus in a 10-15 ms post-stimulus 

window (each neuron firing 0 or 1 spikes in the window). In both cases, the neural 

response was a “binary” array consisting of L=8 elements, and the simulated 

responses matched the lower-order statistics (firing rates and pair-wise auto- or 
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cross-correlations between spikes) of the experimentally recorded neural 

responses (see Appendix for full details).

We performed a series of simulations, systematically varying the number 

of trials.  Fig. 2 shows the entropy estimates resulting from the plug-in method,

both for the single-cell simulated responses (left panels) and population responses

(right panels). In both cases, the estimates of H(R) and H(R | S) increased with 

the number of trials.  That is, in contrast to its effect on information estimates,

finite sampling makes plug-in entropy estimates biased downwards. This is the 

case for any stimulus-response probability distribution (Paninski 2003).

Intuitively, the reason is that entropy is a measure of variability.  The less the 

number of trials, the less likely we are to fully sample the full range of possible 

responses. Thus, finite sampling makes neuronal responses seem less variable than 

they really are.  Consequently, entropy estimates are lower than their true values, 

and the effect of finite sampling on entropies is a downwards bias.  H(R) is far 

less biased than H(R | S)  because the former depends on P(r) which, being 

computed from data collected across all stimuli, is better sampled than P(r|s). 

--- Figure 2 --

From Eq. (3), the bias of the information is the difference between the bias 

of H(R)  and that of H(R | S) . Since the latter is greater (and negative), the net 

result is that I(S;R)  is typically strongly biased upwards (Fig. 3A-B). Intuitively, 

this is because finite sampling can introduce spurious stimulus-dependent 

differences in the response probabilities, which make the stimuli seem more 

discriminable than they actually are (Fig.1), and hence the neuron more 

informative than it really is.
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To understand the sampling behaviour of information and entropy better, it 

is useful to find analytical approximations to the bias. This can be done in the so-

called “asymptotic sampling regime”.  Roughly speaking this is when the number 

of trials is “large”.  More rigorously, the asymptotic sampling regime is defined as 

N being large enough that every possible response occurs many times: that is, Ns

P(r|s) >> 1 for each stimulus-response pair s,r such that P(r|s) > 0.  In this regime, 

the bias of the entropies and information can be expanded in inverse powers of 

1/N and analytical approximations obtained (Miller 1955; Panzeri and Treves 

1996). The leading terms in the biases are respectively:
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                     (4)

where sR denotes the number of relevant responses for the stimulus conditional 

response probability distribution P(r|s) (i.e. the number of different responses r

with  non-zero probability of being observed when stimulus s is presented) and R

denotes the number of relevant responses for P(r) (i.e. the number of different 

responses r with  non-zero probability of being observed across all stimuli). In 

practice, R is usually going to be equal to the number of elements constituting the 

response space R (if a response never happens across all stimuli, it can be 

removed from the sum over r in Eqs (1-3) and thus removed from the response set 

R ). However, sR may be different from R . For example, take the neuron 

simulated in Fig. 1B, when stimulus 1 evokes a low-firing response with high 

probability and high-firing response with zero probability, and stimulus 2 elicits
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the opposite type of response. In this case we have sR =6 for both stimuli and 

R =10.

Although valid only in the asymptotic regime, Eq. (4) sheds valuable light 

on the key factors that control the bias.   First, Eq. (4) shows that the bias of 

H(R | S)  is approximately S times bigger than that of H(R) . This means that, in 

the presence of many stimuli, the bias of I(S;R)  is similar to that of H(R | S) . 

However, I(S;R)  is a difference of entropies, and its typical values are much 

smaller than those of H(R | S) . This implies that spike train analysis methods 

must be validated on the performance of information and not only on entropies, 

because, in many cases, the bias may be proportionally negligible for entropies but 

not the information (see Fig. 2-3 for an illustration). Second, Eq. (4) shows that 

the bias is small when the ratio Ns/ R  is big, i.e. more trials per stimulus than

possible responses. This is because, assuming that the number of trials per 

stimulus is approximately constant and sR is approximately equal to R , the bias of 

H(R | S)  is approximately – R /[2Nsln(2)]. Thus, Ns/ R is the crucial parameter for 

the sampling problem. For example, in the simulations of Fig. 2, with R =28 the 

bias of I(S;R)  became negligible for Ns ≥ 213 (i.e. Ns/ R ≥ 32).  Second, Eq. (4)

shows that, even if Ns is constant, the bias increases with the number of responses 

R . This has important implications for comparing neural codes. For example, a 

response consisting of a given number of spikes can arise from many different 

possible temporal patterns of spikes. Thus, R  is typically much greater for a spike 

timing code than for a spike count code, and it follows from Eq. (4) that the 

information conveyed by a spike count code is more biased than that measured for 
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the same neurons through a spike timing code.  If bias is not eliminated, there is 

therefore a danger of concluding that spike timing is important even when it is 

not.

A further important feature of Eq. (4) is that, although the bias is not the same for 

all probability distributions, in the asymptotic sampling regime it depends on 

some remarkably simple details of the response distribution (the number of trials 

and the number of relevant responses).  Thus Eq. (4) makes it is possible to derive 

simple rules of thumb for estimating the bias magnitude and compare the relative 

bias in different situations. For example, Eq. (4) can predict very effectively the 

two very different bias properties of the two simulated neurons in Fig. 1. Both 

neurons in Fig. 1 have R =10. However, sR =10 for the neuron in Fig 1A and

sR =6 for the neuron in Fig. 1B. As a consequence Eq. (4) predicts that the bias of 

the neuron in Fig. 1A is approx.  9/[2Nsln(2)] bits and the bias of the neuron in 

Fig. 1B is approx. 1/[2Nsln(2)] bits (i.e. 9 times smaller). As detailed in the next 

section, the simplicity of Eq. (4) can also be exploited in order to correct

effectively for the bias (Panzeri and Treves 1996). 

--- Figure 3 --

Comparing procedures to correct for the bias 

The plug-in estimate of information I(S;R) tends to require large numbers 

of trials (Ns larger than R  by at least a factor of 32 in Fig. 3A) to become 

unbiased and is therefore of limited experimental utility. Over the last 10 years, 

several bias-correction procedures have been developed to reduce the number of 

trials necessary. In the following, we review and compare four bias correction 

procedures that are applicable to any spike train (whatever its statistics), and to 
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any discrete quantification of the neural response. These methods, which are 

among those most widely used in the literature, were selected in this review 

because they are in our experience the most effective ones, and because they have 

the property that they are guaranteed to converge to the true value of information 

(or entropy) of a given quantification of the neuronal response as the number of 

trials N goes to infinity. We compare their performance, study the conditions in 

which they are accurate, and consider their relative advantages.

Panzeri-Treves (PT) Bayesian estimation of the number of relevant 

responses. Eq. (4) provides a simple asymptotic expression which can be used to 

estimate the bias, provided that one can evaluate the number of relevant responses 

sR . However, estimating sR is not straightforward. The simplest approach is to 

approximate sR  by the number of responses that are observed at least once – the 

“naïve” count.  This leads to the so-called Miller-Madow bias estimate (Miller 

1955). The naïve count is a lower bound on the actual number of relevant 

responses, since some relevant responses are likely to have been missed due to 

lack of data. Thus (taking into account that higher order terms in 1/N of the 

information bias are all positive (Treves and Panzeri 1995)), the Miller-Madow 

estimate is usually an underestimate of the bias. To alleviate this problem, Panzeri 

and Treves (1996) have developed a Bayesian procedure to estimate the number 

of relevant bins. This estimate can be inserted into Eq. (4) to compute the bias and 

then subtract it from the plug-in information value: we refer to this procedure as 

PT bias correction.  Fig. 3A-B shows that PT bias correction substantially 

improves the estimates of I(S;R) , which, in this simulation became accurate 

when Ns=210 trials per stimulus were available (that is, when Ns/ R ≥ 4, compared 

to Ns/ R ≥ 32 for pure plug-in). The advantages of the PT correction are that it 
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performs well, and is straightforward to implement (one Matlab routine which is 

available at http://stefano.panzeri.googlepages.com/informationbiascorrections).   

The disadvantage of PT correction is that, by design, it cannot work in the 

undersampled regime (Ns/ R < 1). 

Quadratic Extrapolation (QE). Like the PT method, this procedure 

(Strong et al 1998) assumes we are in the asymptotic sampling regime, so that the 

bias of the entropies and information can be accurately approximated as second 

order expansions in 1/N (Treves and Panzeri 1995).  That is: plug in−I (S;R) = 

trueI (S;R)  +a/N + b/N2, where a and b are free parameters that depend on the 

stimulus-response probabilities.  Unlike the PT procedure, the parameters a and b

are not given by analytic formulae but are estimated from the data.  This is done 

by re-computing the information from fractions (N/2 and N/4) of the data 

available, and then fitting (using e.g. a least-square-error procedure) the plug-in 

information values obtained with fractions of data to the above quadratic function 

of 1/N. This provides the best-fit estimates of the parameters a, b and 

consequently the estimate of trueI (S;R) . Fig.3A-B shows that the results of the QE

procedure were very similar to the PT procedure. This is because they both make 

the same asymptotic sampling assumption. 

Best Universal Bound (BUB). Unlike PT and QE, the recently introduced 

BUB procedure (Paninski 2003) does not rely on the assumption that there are 

enough data to be in the asymptotic sampling regime. Paninski’s (2003) idea is to 

rewrite the entropy estimation problem as a linear estimation problem in the so-

called “histogram order statistics”, and then use results from polynomial 

approximation theory to compute bounds on the entropy estimation errors. These

bounds permit the derivation of what Paninski (2003) termed “Best Universal 
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Bounds” (BUBs) on both bias and variance. The BUBs depend strongly on a 

“degrees of freedom” parameter kmax which gives the method theoretical 

flexibility. However, finding the optimal kmax for a given dataset may require a 

considerable effort and may be a practical complication in the empirical use of this 

method. A potential advantage of BUB is that it may outperform the asymptotic 

estimators described above in conditions when data is scarce but this bound is 

tight (Paninski 2003). In particular, theoretical considerations show that the BUB 

procedure is very competitive when both N and R  are very large (Paninski 2003). 

However, with our simulated data the BUB gave a rather similar performance to

PT and QE methods even using the optimal kmax (Fig. 3A-B). BUB was simple to 

implement (one Matlab routine available at

http://www.stat.columbia.edu/~liam/research/info_est.html). 

Nemenman-Shafee-Bialek (NSB) entropy estimation method. The NSB 

entropy estimation method (Nemenman et al 2003; Nemenman et al 2004) is 

rooted in the Bayesian inference approach to entropy estimation and (like BUB) 

does not rely on the assumption that there are enough data to be in the asymptotic 

sampling regime. The Bayesian approach makes some prior assumptions on the 

response probability distributions. The NSB method uses a novel type of prior 

assumption on the probabilities, which is designed to produce an approximately 

uniform distribution of the expectation of the entropy value before any stimulus-

response data is sampled (so that the entropy estimate is not too much biased by 

the prior assumptions). As data become available, the entropy estimation is 

updated by integrating over the hypothetical prior probability distributions 

weighted by their conditional probability given the data. The NSB procedure is 

essentially parameter-free (like PT and QE). We found that NSB generally gave 
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the least biased estimate of I(S;R)  in our simulations (Fig. 3A-B). Thus, NSB has 

a performance advantage. This result is consistent with simulations presented by 

Montani et al (2007). NSB was demanding to implement (it requires a substantial 

amount of numerical integration and function inversion). A code for NSB can be 

found at http://nsb-entropy.sourceforge.net/.

Compared to plug-in estimation, all four correction procedures were very 

useful and greatly reduced the information bias, although at the price of a 

moderate increase in variance (Fig. 3A-B). The moderate increase invariance is 

more than compensated by strong decrease of bias, making the bias correction 

worthwhile. The increase in variance is due to subtracting the correction term, 

which has its own variability. Rigorous studies of the trade-off between bias and 

variance are reported in Paninski (2003) and Nemenman et al (2004). 

In summary, even if some of the bias correction procedures (such as NSB 

or BUB) did not rely on the asymptotic sampling regime to be valid and thus 

might potentially work even in deeply undersampled conditions, in practice no 

bias correction procedure was sufficient to obtain unbiased information estimates 

in the undersampled regime (Ns ≤ R ). They all required Ns ≥ 2-4 R to work. This 

is consistent with a number of reported simulation studies (Pola et al 2003; Nelken 

et al 2005; Endres and Foldiak 2005).  Recently, however, it has been found that 

further improvements in bias performance are possible.

The role of correlations in the bias problem and the shuffling bias reduction 

procedure
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The fundamental problem with understanding the neural code is that it 

may be high-dimensional: many neurons, time bins, etc could contribute to the 

neuronal population code making the size of the response array L potentially very 

large. Importantly, the number of possible responses becomes exponentially large 

as L grows.  Thus (via Eq. (4)) the bias gets quickly out of control when 

considering a large response array. For example, 10 “spike count” neurons 

emitting up to 20 spike per stimulus presentation generate approximately 2010

(~1013) possible responses. 

The bias problem for large L is exacerbated by the fact that, in real 

neuronal recordings, the elements of the response array are often statistically 

correlated. For example, nearby cortical neurons often have correlated trial-to-trial 

response variability and a significant fraction of their spikes occurs synchronously

(see e.g. Averbeck et al 2006). Correlations may either increase or decrease the 

information (Panzeri et al 1999; Averbeck et al 2006) and thus cannot be 

neglected in the information computation. The implication is that the sampling of 

the full probability of a response array cannot be reduced to computing the 

probabilities of each individual array element (“marginal probabilities”) as would 

be legitimate if responses were uncorrelated. Thus, one has to deal with the full 

exponentially-large response array. However, fortunately there is a way to keep 

the sampling difficulties introduced by correlations under control, as follows 

(Montemurro et al 2007). 

Consider the noise entropy that would be obtained if the response in each 

element of the array was independent of the others at fixed stimulus: that is P(r|s)

equals Pind(r|s) = Πi P(ri|s). This noise entropy can be estimated in two ways.  
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First, by direct substitution of Pind(r|s) into Eq. (2).  The entropy of this 

“independent” distribution is called indH (R | S) :

2( ) ( | ) log ( | )ind ind ind
r s

P s P r s P r s= −∑∑H (R | S)     (5)

Because indH (R | S) depends only on the marginal probabilities of the response 

array, it typically has very small bias (Fig. 2). Second, correlations between 

response variables can be removed by “shuffling” the data at fixed stimulus by

constructing pseudo response arrays obtained by combining ri values each taken 

(randomly and without repetition) from different trials in which the stimulus s was 

presented, as follows. Take all responses in the first element of the response array 

to trials for a given stimulus and randomize their order across the Ns trials.  Repeat 

for the other elements, randomizing independently across trials each time.  This 

results in a pseudo response array, from which shuffled stimulus-response 

probabilities known as Psh(r|s) can be computed.  This results in the noise entropy 

shH (R | S) :

2( ) ( | ) log ( | )sh sh sh
r s

P s P r s P r s= −∑∑H (R | S)   (6)

shH (R | S)  has the same value of indH (R | S)  for infinite number of trials

N, but it has a much higher bias than indH (R | S)  for finite N. In fact, Fig. 2 shows 

that the bias of shH (R | S)  is approximately of the same of order of magnitude as 

the bias of H(R | S) . Intuitively, this is expected because Psh(r|s) is sampled with 

the same number of trials as P(r|s) from responses with the same dimensionality

(Montemurro et al 2007; Nirenberg et al 2001). This observation has led to the 

suggestion (Montemurro et al 2007) to compute information not directly though 

I(S;R) but through the following formula
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sh ind shI (S;R) = H(R) - H (R | S) + H (R | S) - H(R | S)    (7)

shI (S;R) has the same value of I(S;R)  for infinite number of trials, but has a 

much smaller bias for finite N due to the bias cancellation created by the entropy 

terms added to the r.h.s of Eq. (7). When the biases of shH (R | S) and H(R | S)

approximately cancel out, the bias of shI (S;R)  is dominated by the bias of H(R)

– indH (R | S) , which is much smaller than the bias of H(R | S)  (which in turn 

dictates the bias of I(S;R) ).  

Figure 3C-D confirms that, as a result of the bias cancellations in Eq. (7), when 

considering the plug-in estimates there a huge bias reduction of shI (S;R)  with 

respect to I(S;R) . Moreover, Fig. 3C-D shows that the bias of the plug-in 

estimate of shI (S;R) is negative.  This is a very typical finding (Montemurro et al 

2007). The reason why the plug-in shI (S;R)  tends to be often biased downward is 

that (as shown in Fig 2, and in more detail in Montemurro et al (2007)) shH (R | S)

is usually slightly more downward biased than H(R | S) . To understand why, 

Montemurro et al (2007) computed the bias of shH (R | S)  in the ``asymptotic

sampling'' regime. They found that the asymptotic bias of shH (R | S)  has the same 

expression as that H(R | S) in Eq. (4), after replacing sR with sh sR − , the number 

of bins relevant to Psh(r|s). Since Pind(r|s) =0 implies P(r|s)=0,  and since the 

shuffled responses are generated according to Pind(r|s), then it must be that sh sR − ≥

sR . Therefore, H(R | S)  is usually less downward biased than shH (R | S) .

In the previous section, the four bias correction techniques were applied to 

I(S;R) .  However, they can also be applied to shI (S;R) .  Fig 3 illustrates that, 

with all four bias correction procedures, there is a considerable bias reduction 
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when using shI (S;R) rather than I(S;R)  (compare Fig 3A to 3C and Fig 3B to 

3D). The result of using shuffling in combination with PT, QE or BUB is that the 

estimates of shI (S;R)  become unbiased even down to 28 trials per stimulus (i.e. 

for Ns/ R ≈  1).  This is a factor of four better than the best performing bias 

correction of I(S;R) . Shuffling in combination with NSB worked about as well 

as PT or QE in some cases (Fig 3C), but occasionally worked less well, as in Fig. 

3D.  This is probably because the shuffled and real probability distribution did not 

match the prior assumptions of the NSB method equally well in all cases.

A potential short-coming of the shuffling method is that, since the 

information estimate includes two extra terms, its variance might be higher. 

However, our simulations in Fig. 3C-D illustrate that the variance of shI (S;R)  is 

essentially equal to that of I(S;R) . This is because fluctuations in the values of 

the marginal probabilities of each element of the response array have a major 

impact on the fluctuations of both H(R | S)  and shH (R | S)  (the two most variable 

terms of shI (S;R) ) and are reflected with the same sign in both H(R | S)  and 

|shH R S( )  (Montemurro et al 2007). Thus, the statistical fluctuations of these 

entropies largely cancel out, and the resulting variance of shI (S;R)  remains under 

control. Thus, using shI (S;R) to estimate information is an efficient and simple 

way to reduce the bias without significantly increasing the variance. The code for 

the calculation of information I(S;R)  and shI (S;R) (Plug-in, PT and QE) can be 

found at http://stefano.panzeri.googlepages.com/informationbiascorrections.

Considerations on the neuronal statistics and experimental conditions
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The performance of bias corrections methods on the simulated data reported above 

is representative of their performance on the type of the cortical neural data that 

the simulation was designed to reproduce. However, the performance of the bias 

correction method does depend on the statistics of the neuronal data and the 

experimental design, and thus it is difficult to make completely general statements 

on the range of validity of each method. Despite this, using analytical 

considerations as well as our own experience on simulated and real data, we can 

give some rules of thumb on how the performance of the methods may vary.

Amount of correlation. The correlations in the simulated dataset were set 

to reproduce typical cortical within-cell and cross-cell correlations. What happens

if we consider datasets with different degrees of correlation? If we consider 

uncorrelated or weakly correlated data (such as a non-interacting population) the 

computation of shI (S;R)  becomes extremely accurate down to very small number 

of trials because in this case the bias of H(R | S)  and that of shH (R | S)  cancel out 

perfectly (Montemurro et al 2007). If we increase the strength of correlation 

significantly (e.g. introducing an absolute refractory period, or a very high degree 

of synchrony), then shI (S;R)  becomes more strongly downward biased. The 

simulations in Montemurro et al (2007) suggest that the bias of shI (S;R)  remains 

small for a wide range of typical correlations.   

Number of stimuli. As the number of stimuli S becomes larger, for fixed 

number of trials per stimulus Ns, the overall number of trials N across all stimuli 

gets larger, thus P(r) becomes better sampled and the bias of H(R)  decreases. 

However, Ns being fixed, there is no sampling change for P(r|s) and thus the bias 

of H(R | S) , indH (R | S)  and shH (R | S)  remain approximately the same.  (Due to 
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summing over more stimuli, their variance does reduce). Since the bias of I(S;R)

is dominated by that of H(R | S) , the sampling behaviour of I(S;R) therefore 

changes little when increasing the number of stimuli. However, since the bias of 

H(R)  is one of the main components to the bias of shI (S;R) , the latter becomes 

less biased (Montemurro et al 2007).

Reliability of neural responses. The above simulated data were generated 

to match the statistics and variability of cortical responses to simple stimuli. As is 

often the case with cortical responses to simple stimuli (Gershon et al 1998), the 

variance of the spike counts was approximately proportional to their mean. 

However, in some cases, and especially at the sensory periphery (e.g. Arabzadeh 

et al 2005), the response variance may be much less than the mean. In general, the 

more reliable the neural responses, the fewer the relevant responses to a stimulus, 

and consequently the less the bias. (See the example in Fig. 1). Thus, when

analyzing reliable neurons, the bias problem is typically less relevant than when 

analyzing unreliable neurons.

For all these reasons, it is valuable to test information estimation methods 

on simulated data with statistical properties as similar as possible to the actual 

experimental data of interest.  

Other procedures for information estimation

There are other approaches that either cannot be applied to general 

datasets, compute the bias of continuous (rather than discrete) neural responses or 

do not always converge to the true value of information when N becomes infinite. 

These methods are a useful complement to what presented above, and are briefly 
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mentioned in the following. Code for a number of information algorithms can be 

found at http://neuroanalysis.org/.

Analytical approximation. In certain cases, it may be possible to approximate the 

stimulus-response probabilities parametrically, for example with a Gaussian 

distribution (Abbot et al 1996; Gershon et al 1998).  Or it may be possible to make 

other assumptions that strongly restrict the complexity of the neural response and 

thus allow an estimation of information though a simplified analytical expression 

(e.g the power series expansion approach; Panzeri et al 1999). In such cases, the 

information depends on relatively few parameters and estimation is therefore 

simple and data robust. Such procedures can be very valuable, but are only 

applicable in specific situations.

Response compression by stimulus decoding. When the number of possible 

responses is high (e.g. a large neural population), a stimulus-decoding procedure

can be used to compress the response space into the “predicted stimulus" (see e.g. 

Rieke et al 1996; Victor and Purpura 1996; Rolls et al 1998), as follows. In each 

trial, a stimulus s is presented and a stimulus sp is predicted by a decoding 

algorithm, and the corresponding probability P(sp|s) (of predicting stimulus sp

when stimulus s is presented) is computed. The “decoded” information PI(S;S )  is 

then computed as follows:

,

( | )
( ) ( | ) log

( )p

p
p

p
s s

P s s
P s P s s

P s
=∑PI(S;S )   (8)

Information theoretic inequalities ensure that PI(S;S ) ≤ I(S;R)  (Shannon 1948). 

The decoding procedure may be based on a biologically plausible algorithm, or on 

a more abstract but statistically efficient procedure. If the number of stimuli is 

much smaller than the number of responses, stimulus-decoding can be an effective 
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and simple way to reduce the space of responses. However, the stimulus decoding 

algorithm may sometimes perform poorly (for example, the decoding algorithm 

may predict poorly when operating on a large response array containing many 

uninformative elements). In such circumstances, unless there is compelling 

evidence for the decoding algorithm’s biological plausibility, not much about the 

neural code can be learned from the decoded information estimation.

Binless strategies. An interesting and ambitious challenge is to quantify the 

information carried by a continuous representation of the neural responses, such as 

considering the spike times with infinite temporal precision rather than binning 

them (as explained above) into a “binary” word using bins of finite temporal 

precision. The approach of Victor (Victor and Purpura 1996; Victor 2002) allows 

an estimation of the information without relying on response discretization. This

“binless” approach can potentially address questions than cannot be tackled by 

discretization methods (e.g.: how much information could be extracted from 

spikes if we could measures their time with infinite precision?), but it will not 

work well for small number of trials (Nelken et al 2006) unless the underlying 

probability distribution are sufficiently smooth. 

Model selection techniques. As explained above, what makes it difficult to sample 

response probabilities is the presence of correlations between different neurons or 

spikes. A way to limit the sampling problems posed by correlations is to simplify 

the correlation structure by fitting it to a simple, low-dimensional model. For 

example, autocorrelations between spikes emitted by the same neurons could be 

simplified by assuming they are described by a Markov or suffix-tree model 

(Kennel et al 2006; Montemurro et al 2007).  When considering a neuronal 

population, one may concentrate on pair-wise correlations and ignore higher-order 
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interactions between neurons (Panzeri et al 1999; Schneidman et al 2006). This

procedure has the potential to lead to huge advantage in sampling properties. The 

potential disadvantage, analogous to that of the analytic approximation methods,

is that it can be difficult to make sure that the selected model is sufficient to 

describe the whole information content of the spike trains. Also, the sampling 

advantage is only realized if the structure of correlation is simple, which may not 

always be the case. 

Conclusions

In conclusion, using bias correction procedures is generally essential for obtaining 

accurate estimates of the information conveyed by spike trains. In the absence of 

knowledge about some specific feature of the neural response statistics that favour 

one specific procedure over another, our recommendation is to estimate 

information using shI (S;R) in combination with one of the general purpose bias 

correction procedures reviewed above. The use of shI (S;R)  makes the results 

largely independent of the specific bias correction method used; it allows the use 

of easy-to-implement asymptotic bias corrections such as QE or PT; it provides 

information estimates with acceptable variance and which are unbiased even when 

the number of trials per stimulus is as small as the number of possible discrete 

neuronal responses (i.e. Ns/ R ≈  1). By comparison, when using I(S;R) , even 

with very good bias correction, a factor of 4 more trials is typically required

(Ns/ R ≥ 4).  To better understand and evaluate any residual errors, we also 

recommend that simple simulations of neural responses with statistics similar to 

that of the actual neural data of interest are performed.
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Appendix: Simulation of cortical somatosensory neural responses

In this appendix we describe briefly the procedure used to create the simulated 

data that we used in the main text to test and validate the information analysis 

methods. 

We simulated two types of synthetic spike trains (“single-cell” and “population”) 

to 13 stimuli according to the simple processes described below. In both cases, we 

measured the parameters describing the simulated process from real simultaneous 

recordings obtained (Arabzadeh et al 2004) from a population of neurons located 

in the rat somatosensory cortex in response to 13 different stimuli consisting of 

sinusoidal whisker vibrations with different vibration energy (200 trials per 

stimulus were available). We refer to Arabzadeh et al (2004) for full details on the 

experimental procedures. The two types of responses were generated as follows:

Single-cell responses: We generated simulated single-neuron responses as binary 

words made of L=8 binary letters of 0 and 1s (silence/spike respectively) that 

represented the neural response over a 0-40 ms post-stimulus time window 

digitized using 5ms-long time bins. To obtain the simulated sequences, we 

assumed that the spikes were generated according to a Markov process of order 3 

(i.e. the spike in each time bin depended on the activity in the previous 3 time 

bins). This Markov model is defined in terms of the probability of emitting a spike 

in each bin and the transition probabilities relating the current response in each 

time bin to the responses in the previous three time bins. These probabilities were 

measured, over the corresponding post-stimulus window and independently for 

each stimulus, from the real somatosensory recordings described above (see 

Montemurro et al 2007 for more details).
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Population responses: we simulated a population of L=8 neurons simultaneously 

responding to the 13 stimuli in the 10-15 ms post-stimulus window. This time 

window was chosen because it was the most informative one in the experiments of 

Arabzadeh et al (2004). First, using the real spike trains from Arabzadeh et al 

(2004), we constructed the “typical” probability of a neuron to fire one spike in 

the 10-15 ms post-stimulus window by taking the mean probability across all 

recorded neurons and across all trials for each stimulus. Second, we assumed that 

all individual neurons in the simulated population had the same mean firing 

probability obtained above. This assumption was justified because all recorded 

neurons had similar response profiles to the stimuli considered (Arabzadeh et al 

2004). Third, using again real data, we measured the average level of Pearson 

correlation coefficient in the considered post-stimulus window. This average 

Pearson cross-correlation value was obtained averaging across all available 

simultaneously recorded pairs. Then, we used the procedure of Mikula and Niebur 

(2003) to generate correlated spike trains that matched exactly the average mean 

firing probability of a neuron and the average pair-wise Pearson cross-correlation 

value. This generated a binary array with L=8 elements (0/1 meaning silence/spike 

from each of the L neuron). 
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Figures legends

Figure 1: The effect of limited sampling. (A) Simulation of an uninformative 

neuron, responding on each trial with a uniform distribution of spike counts 

ranging from 1 to 10, regardless of which of two stimuli was presented. Examples 

of empirical response probability histograms (grey solid line) sampled from 20 

and 100 trials per stimulus (top and bottom row respectively) are shown in the 

Left and Central columns (responses to Stimulus 1 and 2 respectively). The black 

horizontal line is the true response distribution. The Right column shows the 

distribution (over 5000 simulations) of the plug-in information values obtained 

with 20 (top) and 100 (bottom) trials per stimulus respectively. As the number of 

trials increases, both the information bias and the standard deviation decrease. The

dashed vertical line in the Right columns indicates the true value of the 

information carried by the simulated neuron. (B) Simulation of an informative 

neuron, firing (with uniform probability) 1-6 spikes to stimulus 1 and 5-10 spikes 

to stimulus 2. Results are plotted as in Panel (A).

Figure 2: Sampling properties of plug-in estimation of entropies. The plug-in

estimators of entropies and information are plotted as a function of the available 

number of trials per stimulus. We plot the mean ± s.d. (over 50 simulations) of the 

plug-in estimators of H(R) , H(R | S) , indH (R | S)  and shH (R | S) . Panel (A) 

reports results obtained using realistically simulated single-cortical-cell spike 

trains (discretized into L=8 time bins each containing 0 or 1 spikes; see text). 

Panel (B) reports results obtained with realistically simulated cortical population 
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responses (L=8 correlated cells each emitting 0 or 1 spike). In both cases the 

responses were to 13 different simulated stimuli.

Figure 3: Comparison of the performance of different bias correction 

methods. The information estimates I(S;R)  and shI (S;R) are plotted as a 

function of the available number of trials per stimulus. Panels (A) and (B) show 

the mean ± s.d. (over 50 simulations) of I(S;R) . Panels (C) and (D) show the 

mean ± s.d. (over 50 simulations) of shI (S;R) . Various methods were used to 

correct for the bias: Pug-in estimation (i.e. no bias correction), PT, QE, BUB and 

NSB (see text). Panels (A, C) and the panels (B, D) report results using 

realistically simulated single-cell and population cortical spike trains respectively

(see main text). 
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