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Widespread sampling bias in atmospheric data
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Abstract
Air’s compressibility practically precludes unbiased atmospheric sampling because warmer air, occupying
more speci�c volume at equal pressure, is more likely to be measured. Weighted statistics are required to
compensate for the effects of sampling bias on statistical moments of state and �ow variables. These
effects occur from the microscale to the global scale, at which uncorrected sampling bias causes
underestimation of both global warming and its statistical certainty. 

Introduction
The Eulerian frame of reference is convenient for atmospheric observation and modelling but conceals
prevalent sampling bias in atmospheric data. This frame examines a control volume or “point” whose
mass varies with inward and outward air �uxes, accommodating immobile measurement stations and
model grid cells. By contrast, a Lagrangian frame that follows a particular �uid mass is preferable for
expressing physical conservation laws1, and therefore for recognizing sampling bias. It shows that in the
atmosphere it is practically impossible to practice “simple random sampling”, which requires an equal
sampling likelihood for every element of the population and is the key to avoiding bias and simplifying
analytic computations2.

Since Lagrangian measurement is an exceedingly di�cult challenge, it is demonstrative to specify a
simple, arti�cial dataset. Consider therefore a thermodynamic system composed of many dry air parcels,
each with identical mass and pressure but thermally divided into two categories, with half the parcels
warm (20 °C) and half cold (-20 °C). Clearly, the average temperature is 0 °C. However, because most of
the aggregate volume is warm (by Charles's Law), a thermometer deployed randomly within the system is
more likely to sample warm air than cold, despite their having equal masses. This exposes a universal
issue with atmospheric sampling and reveals bias that repeated measurement does not easily amend. 

Increasing the number of observations in this simple example, whether by random or gridded sampling,
would yield > 53% warm samples and an overestimation of the mean temperature from arithmetic
averaging by nearly 1.5 °C. Dividing the system into numerous equal-volume grid cells would produce
more warm cells than cold, denser cells. Such spatially de�ned measurement or modelling domains are
typical in atmospheric science and exemplify what statisticians call “cluster sampling”3. Critically, cluster
populations vary with atmospheric state (particularly temperature) but are unknown a priori. This
precludes unbiased sampling unless the instrument sample volume exceeds the scales of atmospheric
variability. 

Such bias affects the statistical moments of any state or �ow variable. If the parcels de�ned above were
moving vertically in a convective boundary layer, with warm/cold parcels rising/falling each at 10 cm s-1,
the average velocity would be zero. However, an anemometer deployed to a random point would sample
rising air with >53% probability. Arithmetic averaging of measurements from numerous such
anemometers within the system, or of a time series measured by a single instrument with “frozen
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turbulence” advecting past (employing Taylor’s hypothesis4), would then yield an upward average vertical
velocity of 7 mm s-1, again because sampling bias nudges the arithmetic average towards the
characteristics of warmer air. 

Failure to recognize this has confused the physical mechanisms of convective boundary-layer transport.
Long-standing theory in micrometeorology, reasoned from the Eulerian perspective, has it that turbulence
transports air downward against an upward heat �ux, since warm updrafts are less dense than cool
downdrafts5,6. This would imply an average velocity in the direction of the heat �ux (upward), and is the
basis of the "density corrections"6 that have underpinned decades of micrometeorological research7. But
the simple example speci�ed above illustrates its fault: with equal mass and opposing velocities of warm
and cold parcels, their momenta sum to zero, de�ning a null ensemble velocity. Cold Eulerian volumes are
denser but also fewer – the same mass occupies less volume. Neglecting this, random spatial sampling
and arithmetic averaging combine to produce an upward average velocity that is an artefact of sampling
bias. In fact, neither the turbulence nor the mean �ow transports air for the conditions speci�ed. Thus,
unrecognized sampling bias has led to the entangling of gas transport mechanisms, by turbulent
diffusion versus by the mean �ow8.

Systematic errors such as those derived from sampling bias should be quanti�ed when known and
corrected when not negligible. If sampling bias cannot be avoided, unbiased estimates of statistical
moments such as the average can be obtained via weighted calculation schemes. The Horvitz-Thompson
estimator9 was designed for this purpose, and for dry air can accurately approximate the average by
weighting each sample by the number of (moles of) air molecules that it represents.

However, atmospheric composition varies, and the leverage exerted by a sample on the aggregate is
determined not by its molecule count, but rather by conservation laws. For example, in thermodynamics
the determinant is the heat content: when we combine equal numbers of molecules of water vapour at
one temperature and dry air at another, the temperature of the mixture is closer to that of the water vapour
due to its high speci�c heat, inferior mass notwithstanding. Generally, any isolated system of air
molecules that mixes internally conserves its mass, linear momentum, and energy, yielding �nal values of
state and �ow variables that correspond to their ensemble averages, which remain constant in the
absence of external forcing. Therefore, weighting factors have been derived from mixing theory10 to
negate the systematic errors that sampling bias otherwise induces.

The effects of sampling bias span the full range of atmospheric scales. We have calculated the
magnitude of sampling-bias induced errors regarding global-scale warming, comparing trends in the
National Center for Environmental Prediction (NCEP)-National Center for Atmospheric Research (NCAR)
reanalysis11 temperatures averaged arithmetically (Ta) versus weighting (Tw) according to mixing theory
(Fig. 1). The artefacts of bias towards the characteristics of warm air on Ta include (a) the overestimation
of the global-average surface air temperature by ca. 0.4 °C; (b) the underestimation of the rate of
temperature increase by about 9%, since the tropics have warmed less rapidly than the poles12; and (c)
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the underestimation of the variance explained by the linear trend. The difference between trends in Tw

and Ta is of a magnitude similar to the differences between ensemble members of the HadCRUT4 data

set for the period 1979-201013. Thus, uncorrected sampling bias causes meaningful underestimation of
both the magnitude and certainty of global warming. (Similar conclusions were reached using the �fth
generation European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis data (ERA5)14,15;
see Supplementary Information.)

Unless unbiased sampling strategies can be devised, micro- to global-scale atmospheric science requires
weighted calculation of averages and other statistical moments, in order to avoid systematic error.

Methods

Averaging in space and time
Global data from NCEP-NCAR reanalysis for surface air temperature (T in Kelvin), surface pressure (p in
Pa), and relative humidity (U as a percentage) were downloaded with a time resolution of six hours. Data
are structured according to a 2.5° X 2.5° grid (144 X 73 grid points), selecting the years 1950–2021 that
coincide with available ERA5 data to enable comparison. Climate Data Operators (CDO) software was
used to facilitate calculations on grid points.

For each grid point i and time j, the saturation vapour pressure (es in Pa) was estimated as a function of T

using Eq. (10) of Bolton (1980)16, and the saturation mixing ratio (rs, dimensionless) calculated as

 

rsi,j = 0.622 
esi,j

pi,j −  esi,j

(1)

The mixing ratio (r, dimensionless) is then
 

ri,j =
Ui,j
100  rs i,j

(2)

and the vapour pressure (e in Pa)
 

ei,j = 
pi,j ri,j

ri,j + 0.622
(3)

Dry air (ρd) and water vapour (ρv) densities come from the ideal gas law as
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ρdi,j
 = 

pi,j −e i,j
Rd T i,j

  (4)

and
 

ρvi,j
=

e i,j
Rv T i,j

(5)

where Rd (287.05 J kg-1 K-1) and Rv (461.51 J kg-1 K-1) are the particular gas constants for dry air and
water vapour.

Sample masses of dry air (md) and water vapour (mv) were calculated as the product of density (ρd and
ρv for dry and water vapour, respectively) and volume (V), where grid cell V is the product of the height
(2m) and the area output by the CDO ‘gridarea’ command.

Then, yearly arithmetic averages were calculated by weighting each data point by the grid cell volume, as

 

Ta=
∑ n, m

i=1, j=1Vj T i,j

∑ n, m
i=1, j=1Vj 

(6)

with n being the total number of points in time in a year (1460, or 1464 for leap years) and m the total
number of grid points for the entire globe (144 x 73).

In the same way, annual mixing-theory weighted averages were calculated by weighting each data point
by the heat content, as

Tw=
∑n, m

i=1, j=1 cpd mdi,j
 + cpv mvi,j

 T i,j

∑n, m
i=1, j=1 cpd mdi,j

 + cpv mvi,j

 
(7)

where cpd (1005 J kg-1 K-1) and cpv (1850 J kg-1 K-1) are the speci�c heat at constant pressure for dry air
and water vapour, respectively.
Estimation of the global annual trends

Global annual trends from 1950 to 2021 were estimated using linear least-square regression.

Data Availability

Data related to the paper can be downloaded from following websites: 

NCEP database: 

https://www.psl.noaa.gov/data/gridded/data.ncep.reanalysis.surface.html

( )
( )
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ERA5 database:

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-preliminary-back-
extension?tab=form

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form

Code availability

MATLAB scripts for calculating averages are available on request from M.G-V.O.
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Figure 1

Annual surface air temperatures from NCEP-NCAR reanalysis, globally averaged, arithmetically (Ta)

versus using mixing-theory weighting (Tw). Corresponding regression lines have slopes (R2 values) of
0.139 °C per decade (0.78) for Ta, versus 0.153 °C per decade (0.81) for Tw.
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