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Abstract

Genomic epidemiology plays an ever-increasing role in our understanding of and

response to the spread of infectious pathogens. Phylogeography, the reconstruction of

the historical location and movement of pathogens from the evolutionary relationships

among sampled pathogen sequences, can inform policy decisions related to viral

movement among jurisdictions. However, phylogeographic reconstruction is impacted by

the fact that the sampling and virus sequencing policies differ among jurisdictions, and

these differences can cause bias in phylogeographic reconstructions. Here we assess the

potential impacts of geographic-based sampling bias on estimated viral locations in the

past, and on whether key viral movements can be detected. We quantify the effect of

bias using simulated phylogenies with known geographic histories, and determine the

impact of the biased sampling and of the underlying migration rate on the accuracy of

estimated past viral locations. We then apply these insights to the geographic spread of

Ebolavirus in the 2014-2016 West Africa epidemic. This work highlights how sampling

policy can both impact geographic inference and be optimized to best ensure the

accuracy of specific features of geographic spread.

Introduction 1

Genomic epidemiology refers to the use of pathogen genomes to understand how 2

infectious diseases are transmitted across a range of scales, from local outbreaks to 3

global geographic spread. Due to improvements in sequencing technology and 4

decreasing cost, genomic epidemiology has increased greatly in scale in many 5

jurisdictions and for many viruses to the extant that sequencing now plays an important 6

role in pathogen surveillance [1]. Sequencing allows us to identify new viruses, 7

understand their origins and natural reservoirs, to characterize their transmission 8

dynamics in human populations, and to understand their evolution [2, 3]. Interest in 9

genomic surveillance for viruses has grown, in the context of the high utility of genomic 10

data for these tasks and the increasing awareness of the severe threat that emerging 11
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viruses can represent for global public health. At the time of writing, the Global 12

initiative on sharing all influenza data (GISAID) repository [4, 5] has over 10 million 13

SARS-CoV-2 sequences and over 350,000 influenza virus sequences. Nearly 3000 Zaire 14

Ebolavirus sequences are accessible through ViruSurf along with over 12,000 Dengue 15

virus sequences and sequences of MERS, other Ebolaviruses and Severe Acute 16

Respiratory Syndrome coronavirus 1 (SARS-CoV-1). 17

Virus sequences are a rich potential source of information about the origins, past 18

population dynamics and geographic movements of viruses [6]. This is in part because 19

sequences reveal information about viral evolution and population dynamics at times 20

and in places where the viruses were not directly observed. Sequences are interpreted 21

with the aid of phylogenetic trees, which represent the evolutionary relationships 22

between a set of taxa. Here we focus on the fact that the geographic locations of the 23

virus’ ancestors in the past can be reconstructed by extrapolating the location of the 24

observed sequence back in time from the present day [7–11]. There are a number of 25

methods that perform this extrapolation. These treat the geographic location as either 26

a discrete or continuous trait evolving on the phylogenetic tree; some methods use 27

Bayesian approaches to simultaneously reconstruct the location and the phylogeny and 28

others reconstruct the geographic location on a fixed phylogeny [12,13]. 29

Indeed, phylogeography is one of the main applications of large-scale virus sequence 30

datasets. In 2007, phylogeographic analysis revealed Guangdong as a likely source of 31

Avian H5N1 influenza viruses, and Indonesia a likely sink [9]. Phylogeographic analysis 32

was used to understand transmission dynamics of Ebolavirus in space and time in the 33

Democratic Republic of Congo in 2018-2020, and was part of the genomic surveillance 34

system informing the response to Ebolavirus in real time [14]. In human influenza, 35

phylogeographic analysis is used to characterize the emergence and global spread of 36

human seasonal influenza viruses and compare their circulation patterns [15]. In the 37

SARS-CoV-2 pandemic, phylogeography has been used at a range of scales, to uncover 38

the virus’ early dissemination from Europe in 2020 [16], to demonstrate repeated 39

introductions and localized spread in Spain [17], Peru [18], Canada [19] and other 40

settings, and to visualize geographic movements (e.g. in nextstrain) [20]. 41

A number of authors have noted that phylogeographic reconstructions depend on the 42

fraction of infections that are sampled, sequenced and shared, and that phylogeographic 43

estimates can be biased as a result [15,21–24]. These authors have taken different 44

approaches to compensating for this bias. de Maio et al. [23] propose a method called 45

the BAyesian STructured coalescent Approximation (BASTA) to approximate the 46

structured coalescent, having found that discrete trait analysis (DTA), in which 47

migration among locations is treated in the same manner as mutation, gives biased 48

estimates of the migration rates if the locations are strongly non-representatively 49

sampled. Perhaps more fundamentally for viral phylogeography, they also point out 50

that the relative sampling intensities of the locations in DTA-based phylogeography are 51

treated as data and inform the migration estimates. This makes phylogeographic 52

estimates sensitive to sampling choices and can lead to erroneous inferences and 53
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erroneously small apparent uncertainties; the structured coalescent approach does not 54

have this issue, and parameter estimates in simulations were better than those from 55

DTA models [23]. Magee and Scotch characterize the impact of two sampling schemes 56

and a range of generalized linear models on the estimation of the root state (point of 57

origin) and on the variables (in the linear model) that are deemed to be important [25]. 58

Bias can occur both in estimates of the parameters of the process (e.g. migration or 59

dispersal rates) and in the reconstructed ancestral geographic locations themselves. 60

Approaches to adjust for bias are in development. In the context of the structured 61

coalescent model, De Maio et al. account for the effect of sampling bias on the 62

estimation of migration rates by integrating over all possible migration histories [23]. 63

Guindon and De Maio address non-uniform sampling in a diffusion model of movement 64

in continuous space by using a Bayesian approach to include the sampling process in the 65

posterior distribution, but this requires an exchange algorithm that introduces 66

substantial computational complexity [26]. Their correction leads to differences in the 67

inferred growth rate, effective population size, dispersal parameter and the time of the 68

most recent common ancestor (compared to not correcting for the sampling process). 69

Kalkauskas et al. explore adding “empty” viral sequences in a continuous-space 70

model [24], finding that this approach can bias in estimates of the root location, and 71

diffusion rate, but not eliminate it. Lemey et al. incorporate both “empty” viral 72

sequences and individual travel history in part to overcome sampling bias [8] in 73

phylogeography. Indeed, the role of travellers is of course important in shaping viral 74

geographic movements themselves, but also potentially important in reconstructing 75

them. In some jurisdictions, travellers’ samples are prioritized for sequencing as part of 76

monitoring viral diversity [27]. The information about which sequences are from 77

traveller samples is not typically shared to public databases such as GISAID, which 78

could additionally confound phylogeographic inferences. 79

Here we focus on maximum-likelihood phylogeographic inference with location 80

modeled as a discrete quantity. Discrete space is appropriate for many epidemiological 81

applications where data is both collected and policies implemented at a regional level. 82

While methods have primarily been developed with Bayesian tools, and so have 83

inherited the disadvantage that limited numbers of sequences can be included if the 84

analysis is to be computationally tractable. An additional challenge is that Bayesian 85

phylogenetic reconstruction produces multiple (posterior) phylogenies with distinct 86

internal nodes. Without comparable internal nodes from tree to tree, it would not be a 87

well-posed task to summarize the nodes’ locations, and thus to infer the phylogeographic 88

information. In practice, users of phylogeography who have thousands of sequences 89

often cannot use state-of-the-art Bayesian methods due to computational limitations of 90

these methods for large datasets, and instead use a simpler maximum-likelihood 91

approach [19]: construct a phylogeny, and then reconstruct the geographic locations of 92

the past nodes on that fixed phylogeny, both with maximum-likelihood methods [11]. 93

The impact of location-based sampling bias on the phylogeographic reconstructions 94

of the past locations of pathogens has not been thoroughly characterized, in either 95
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Bayesian or maximum likelihood methods. Yet this has important practical implications 96

for the users of phylogeography, particularly where large datasets are used to 97

reconstruct a virus’ global geographic movement. The implications of sampling bias for 98

the design of genomic surveillance and data sharing strategies are not well understood. 99

Here we characterize the impact of sampling bias on error in the maximum-likelihood 100

phylogeographic reconstruction of a virus’ location in the past. We begin by using 101

simulations of viral branching, cure (or host death), and migration to quantify the 102

impact of sampling bias on the overall reconstruction accuracy, on the types of errors 103

that result, and on the sources of variability in the quality of reconstruction. This 104

exploration includes the impact of sampling bias on location of individual ancestral 105

nodes, the inference of the root location (origin), and the impact of over/under 106

representing recent travelers. To illustrate the potential impact of sampling in a natural 107

context, we then perform phylogeographic analysis using Ebolavirus sequences from 108

West Africa. Throughout, we offer practical comments on when geographic sampling 109

bias is likely to impact maximum-likelihood phylogeographic reconstructions. 110

Materials and methods 111

Assumptions and tree simulation 112

We simulate pathogen diversification under the binary-state speciation and extinction 113

(BiSSE) model [28] implemented in the R package diversitree [29]. Here we will 114

consider the case where the two states represent distinct geographical locations. Each 115

node of the resulting rooted binary-state phylogenetic tree is in either location A or 116

location B. Without loss of generality, the diversification is simulated with the initial 117

lineage (the root of the tree) in location A. We assume that speciation and extinction 118

rates are independent of a lineage’s location (i.e. location is a neutral character), though 119

we relax this assumption in the Supplement. While this assumption is unlikely to be 120

true in natural systems, it allows us to focus on geographical differences in sampling 121

intensity in isolation. As with the speciation and extinction rate, we assume that 122

migration is symmetrical between the two locations. The resulting diversification model 123

has three parameters: the speciation rate λ, the extinction rate µ, and the migration 124

rate α between location A and location B. In the context of a pathogen phylogenetic 125

tree, “extinction” represents the end of the infectious period (which could be death, or 126

recovery, successful treatment, effective quarantine, etc). Similarly, “speciation” is 127

usually assumed to be coincident with pathogen transmission between hosts. 128

Observed at the present day, a phylogenetic tree generated by this model has two 129

types of tips: “extinct” tips associated with extinction events some of which, 130

importantly for us here, are assumed to be coincident with sampling and sequencing of 131

the pathogen lineage and “extant” tips representing lineages that exist and remain 132

unsequenced at the present day. As we assume that the sampling and sequencing of a 133

pathogen is coincident with treatment or quarantine the result is a heterochronous time 134
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tree consisting of a subset of the extinct tips. To obtain this tree, we drop all extant 135

(continuing past the present day, and not sampled, as sampling occurs through time in 136

the past) lineages of the simulated tree. We call the resulting tree consisting of only 137

“extinct” tips the “true tree”, because it has all of the tips that could possibly have been 138

sampled. The geographical location of the internal nodes of this (simulated) true tree 139

are known and will be used as the reference for quantifying the accuracy of ancestral 140

state reconstruction. We select n tips from the true tree, where n reflects sequencing 141

capacity. We call the resulting subtree with only the n selected tips a “downsampled 142

tree”. In order to ensure that all n sampled lineages may be in either location, the 143

initial simulation for a true tree is terminated only once it contains at least n tips in 144

location A and n tips in location B. 145

Downsampling schemes 146

To assess the impact of location-biased sampling on ancestral state reconstruction we 147

consider two sampling schemes. In the first scheme, we construct a downsampled tree 148

Sk with n tips from a true tree T . The fraction of tips in the downsampled tree that are 149

from location A is k (up to rounding, e.g. if k = 1/3 and n = 100 we have 33 location-A 150

tips in Sk. Mathematically: the tips in Sk are uniformly selected at random from the 151

extinct tips of T such that ⌊kn⌋ (rounded to the smaller integer of kn) tips are in 152

location A and n− ⌊kn⌋ tips are in location B. In our experiments with this 153

downsampling scheme, k ranges from 0.05 to 0.95 in increments of 0.05 (5− 95%). 154

To assess the impact of sampling travellers or those with recent travel-related 155

exposure on phylogeographic reconstruction, we implement a downsampling scheme in 156

which lineages with changes in location near the tips are over- or under- represented. 157

Specifically, we classify a tip in the true tree T as a “recent migrant” if the tip has a 158

different state from its parent node. Suppose T has mA recent migrants in location A 159

and mB recent migrants in location B. We construct a downsampled tree Sp with n tips, 160

for which we select tips from T , attempting to have a fraction p of the location-A tips 161

be “recent migrants”. For example, if n = 100, k = 0.4 and p = 0.8, we want 80% (or 162

32) of the 40 location-A tips in the downsampled tree to be recent migrant tips. There 163

may be fewer than 32 recent migrant tips in the true tree to begin with. In this case we 164

include all of them. If there are more than 32, we include 32 sampled at random. 165

Mathematically: we uniformly select ⌊kn⌋ location-A tips at random such that 166

min(mA, ⌊kpn⌋) of the tips are recent migrants, and uniformly select n− ⌊kn⌋ 167

location-B tips at random such that min(mB , ⌊kpn⌋) of the tips are recent migrants. In 168

our experiments with this downsampling scheme, we set k to be 25%, 50% or 75%, and 169

p ranges from 5% to 95% in increments of 5%. 170

Ancestral state reconstruction 171

To reconstruct the ancestral states at the internal nodes of the downsampled trees, we 172

use the maximum likelihood method first described by Pagel [30] and implemented in 173
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the ace function in the R package ape [31]. This method reconstructs the states of 174

internal nodes for a fixed unlabelled tree with known tip states, and gives the likelihood 175

that each internal node (including the root) was in each of the two states (locations). 176

This method also estimates the migration rates of the downsampled trees under the 177

assumption of equal migration rates between the two locations. 178

Reconstruction accuracy 179

We use two quantities to assess the quality of our phylogeographic reconstructions: 180

absolute accuracy and relative accuracy. The absolute accuracy is the fraction of 181

internal nodes for which the reconstructed location is correct. However, if most of the 182

tips and most of the internal nodes are from the same location, the absolute accuracy 183

can be high in a trivial way, as the reconstruction can simply estimate that all the nodes 184

were in that location. The relative accuracy accounts for this. It is the improvement in 185

the absolute accuracy, compared to a null model based only on the locations of the tips. 186

Mathematically, we define absolute accuracy and relative accuracy as follows. 187

Consider a true tree T and its downsampled tree S with an internal node i. Let ci 188

represents the location of internal node i in the true tree T , where ci = 1 if i is in 189

location A and ci = 0 if i is in location B, and c̃i be the corresponding likelihood of node 190

i being in location A as inferred by the ancestral state reconstruction method. We define 191

the absolute accuracy of node i as ai = 1− |c̃i − ci| and the absolute accuracy of the 192

downsampled tree S, aS , as the absolute accuracy averaged over all internal nodes in S. 193

To define the relative accuracy of the downsampled tree S, we compare the absolute 194

accuracy aS to a null expectation eS assuming that the probability that an internal 195

node is in a given state is proportional to the frequency of the two locations at the tips 196

and hence agnostic of phylogenetic structure. Suppose S has nA location-A tips and nB 197

location-B tips. We define the probability that an internal node of S is in location A to 198

be p = nA/(nA + nB) and the expected accuracy of node i as ei = 1− |c̃i − p|. The 199

expected accuracy of the downsampled tree S, eS is the expected accuracy averaged 200

over all internal nodes of S, and the relative mean reconstruction accuracy of the 201

downsampled tree S is then given by rS = aS − eS . 202

Key migration events 203

To understand the impact of sampling on the reconstruction of “key migration events”, 204

events that ultimately lead to large outbreaks following introduction, here we define a 205

procedure for selecting such events from a true tree and measures for quantifying the 206

accuracy of their reconstruction. Noting that the root of a true tree is always in 207

location A, we define a key migration event (KME) in a true tree T to be any edge 208

connecting a location-A internal (parent) node to a location-B internal (child) node 209

which subsequently has at least 15 location-B tips as its descendants. These location-B 210

tips are called the “tips of the KME”. 211

To quantify the different mechanisms resulting in inaccurate reconstruction of KMEs, 212
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we characterize the state of a KME in a downsampled tree with two measures: the 213

presence of the internal nodes (the parent node and the child node of the KME) and the 214

presence of sufficient (at least 5) tips of the KME. The presence of the internal nodes of 215

a KME indicates if we can correctly infer spatial-temporal information about the 216

introduction (migration) event, and the presence of sufficient tips of the KME 217

determines if we consider the there exists a large outbreak led by the introduction event. 218

The reconstructed KME characterized by these two measures is summarized in Table 1 219

and explained below. The presence of internal nodes has three states: if both parent 220

and child internal nodes of a KME appear in a downsampled tree, then we say the KME 221

is “observed via internal nodes” in the downsampled tree; if only the parent internal 222

node of a KME appears in a downsampled tree, then we say the KME is “erred via 223

internal nodes” in the downsampled tree, and we measure the error by the branch 224

length between the original child internal node of the KME and the apparent child 225

internal node in the downsampled tree; if the parent internal node of a KME is not 226

present in a downsampled tree, then we consider the spatial-temporal information of the 227

introduction event can not be correctly reconstructed, and we say the KME is 228

“obscured via internal nodes”. The presence of sufficient tips of the KME simply has two 229

states: if at least 5 tips of the KME appear in a downsampled tree, then we say the 230

KME is “observed via tips”; if fewer than 5 tips of the KME appear in a downsampled 231

tree, then we say the KME is “obscured via tips”. 232

State of a KME Parent node Child node ≥ 5 tips of the KME

Observed via internal nodes
Observed via tips

Present Present Present

Erred via internal nodes
Observed via tips

Present Absent Present

Obscured via internal nodes
Observed via tips

Absent Present
or absent

Present

Observed via internal nodes
Obscured via tips

Present Present Absent

Erred via internal nodes
Obscured via tips

Present Absent Absent

Obscured via internal nodes
Obscured via tips

Absent Present
or absent

Absent

Table 1. Definitions of key migration event (KME) states in a downsampled
tree.

To assess the KME reconstruction accuracy for a true tree, we construct 100 233

downsampled trees for each fraction k of location-A tips in downsampled trees; we count 234

the number of downsampled trees in which each KME from the true tree is observed, 235

erred and obscured via internal nodes and the number of downsampled trees in which 236

each KME from the true tree is observed and obscured via tips. 237
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2014-2015 Ebola Epidemic 238

We illustrate the impacts of sampling differences using data from an Ebolavirus 239

outbreak in Africa in 2014–2015 [32]. The data consists of 262 taxa collected from 4 240

countries: 152 from Guinea, 84 from Sierra Leone, 22 from Liberia, 2 from Mali, and 2 241

from unknown locations. The time-scaled tree is generated using BEAST with a 242

log-normal distributed relaxed molecular clock and a non-parametric coalescent prior. 243

More details can be found in the original paper [32]. 244

Naturally, the published data only include some of the infections that occurred, but 245

we can explore the impact of sampling by further downsampling, selecting among the 246

tips that are present. We consider the reconstructed phylogeny with 262 tips as the true 247

tree here; we reconstruct the location for the internal nodes of the tree with all 262 tips 248

using ace and consider the reconstructed location of the internal nodes as true ancestral 249

locations. Similarly, if a tip in the true tree has a different location as its parent node, 250

then we say the tip is a “recent migrant”. We apply two sampling schemes: randomly 251

downsampling tips in one location at a time and preferentially downsampling recent 252

migrants in the true tree. These tips are a proxy for travelers (and/or contacts of 253

travelers). For random downsampling, since Liberia and Mali have significantly fewer 254

tips than Guinea and Sierra Leone in the phylogeny, we only consider downsampling 255

Guinea and Sierra Leone tips. We downsample by dropping 80% of the tips in each of 256

the two locations randomly. In addition, for the second downsampling scheme we also 257

randomly downsample 80% recent migrants. Once we have a downsampled tree, we use 258

ace to reconstruct the ancestral location for internal nodes included in the 259

downsampled tree and compare reconstructed ancestral location to the true ancestral 260

location (reconstructed with all 262 tips). 261

Results 262

We consider the impact of the sampling scheme on the inference of two broad categories 263

of phylogeographic inference: geography (the inference of ancestral states/locations) and 264

migration (the inference of migration rates and key migration events). For each of these 265

categories, we explore the effect of geographically biased sampling and sampling of tips 266

for which there is recent migration in the true tree. 267

Geography 268

Absolute and relative reconstruction accuracy 269

We find that the overall absolute accuracy of phylogeographic reconstruction is often 270

high, particularly when the migration rate is low (Fig. 1 and Fig. S1). Under a low 271

migration rate, changing the fraction of the taxa that are from location A to half of 272

what would be representative (from approximately 0.68 to 0.35 in Fig. 1B) reduces the 273

accuracy from being consistently above 95% to being in the range of 90− 100%; while 274

most nodes are correct, biased sampling greatly increases the number of errors. Under a 275
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low-to-moderate migration rate (α = 0.3; Fig. 1), halving the number of location-A 276

samples in the tree reduces the average accuracy from above 90% to approximately 80%, 277

more than doubling the number of internal nodes with an incorrect location estimate. 278

Furthermore, the estimates are quite variable. Under higher migration rates, the 279

accuracy is lower, but it is less sensitive to sampling. 280

In contrast to our initial expectation that absolute accuracy would peak under 281

unbiased sampling (i.e. when the proportion of location-A tips in the downsampled tree 282

was the same as the proportion in the true tree), we found that the absolute accuracy 283

increased as the proportion of location-A tips in the downsampled tree increased (Fig. 284

1B,D and Fig. S1). This is a result of the starting point that the root node is in location 285

A, so that over half of the internal nodes are expected to be in location A (recall that 286

migration from A to B and back are equal in our simulations). Without directly 287

accounting for sampling bias in the ancestral state reconstruction, the absolute accuracy 288

will therefore be higher when location A is oversampled. The higher absolute accuracy 289

is simply because almost all of the tips and internal nodes of the downsampled tree are 290

in location A, making it easy for the reconstruction to obtain correct locations. This is 291

relevant particularly when the migration rate is relatively low. In this case, there are 292

few migration events, and the true tree consists of larger monomorphic (same location) 293

clades. This greatly improves the ancestral state reconstruction by increasing the 294

probability that internal nodes have the same location as all their immediate 295

descendants, and this raises the absolute accuracy. 296

In contrast to absolute accuracy, the relative accuracy (which takes this into account, 297

and captures the improvement over expected accuracy from a null model; see Methods) 298

peaks at a sampling proportion of 50% location-A tips, and the overall relative accuracy 299

depends on the geographic sampling bias (Fig. 1 and Fig. S1). When the migration rate 300

is higher, the accuracy of the phylogeographic reconstruction is lower, and the 301

dependence on sampling is less pronounced. Both the impact of sampling proportion 302

and migration rate hold across a large number of true trees (Fig. S2). 303

Figure S3 illustrates how the phylogenetic reconstructions are inaccurate. 304

Reconstruction of migration events, or the lack there of, between a parent and child 305

node is particularly sensitive to state of the parental node. If the parental state is 306

over(under)-sampled, we are likely to greatly over(under)-represent those types of edges 307

in the tree. In contrast, over- or under- sampling of the child state has a limited impact 308

on geographic inference. This result is most pronounced when the migration rate is high. 309

To interpret these results: suppose we are located in a region with comparatively high 310

sequencing (location B; left side of the panels in Figure S3). Sampling bias will impact 311

our understanding of both migration between jurisdictions and the extent of sustained 312

transmission within a jurisdiction. Specifically we will substantially underestimate the 313

migration rate from the under-sampled jurisdiction (A-B edges) but fairly accurately 314

capture migration to that jurisdiction from the highly sampled region (B-A edges). In 315

addition, we are likely to conclude there are long sustained transmission chains in the 316

over-sampled jurisdiction (B-B edges) and short transmission chains in the 317
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under-sampled jurisdiction (A-A edges). 318

We also explored how sensitive our results are to the assumption of equal ‘speciation’ 319

rates. For example, transmission may be occurring at a higher rate in location A or B 320

due to different public health measures or population contact rates. When transmission 321

(or speciation, in the language of our model) is location-dependent, the overall patterns 322

of bias are similar to what we have found in the neutral case. However, the maximum 323

relative accuracy is obtained by sampling the location with the lower speciation rate 324

more than would be representative of the locations’ frequencies in the true tree; see 325

Fig. S5. 326

Oversampling recent migrants 327

We find that both the absolute and the relative accuracy decrease as more recent 328

migrants (recall that recent migrants are tips in a true tree that have a different 329

location from its parent node) are sampled (Fig. 2A,B and Fig. S6). We use recent 330

migrants as models for either travelers or members of their contact networks. This 331

means if we sample more travel-associated infections, mark the corresponding taxa with 332

the location at which they were sampled, and use the taxa to infer ancestral states or 333

migration patterns, then the inference accuracy may be reduced. We note (Fig. 2C) 334

that there exist tips with migration in their very recent ancestry in a downsampled tree 335

that are not recent migrants in the true tree. We call such tips of the downsampled tree 336

the “apparent” recent migrants. Fig. 2D illustrates how the presence of recent migrants 337

affects the both the absolute accuracy of their ancestors, and that the apparent recent 338

migrants tips observed in downsampled trees also contribute to the inaccuracy in 339

ancestral state reconstruction. The error caused by recent migrants or apparent recent 340

migrants can cascade up the tree and affect the overall absolute and relative accuracy. 341

For example, in Fig. 2F on the right hand side, note the progression of error (red node) 342

due to incorrect inference of location B instead of A, following on from including two 343

tips with recent migration (rightmost tips in Fig. 2E). If recent migrants are heavily 344

sampled (Fig. 2E,F), then the absolute accuracy of internal nodes can be much reduced. 345

Migration 346

Migration rate inference 347

The maximum likelihood method that we use for ancestral state reconstruction gives 348

estimates of migration rates assuming that migration is symmetric between the two 349

locations. We find that at the least biased geographic sampling proportions, the 350

estimates of migration rates are close to the migration rates of the true trees, but the 351

best migration rate estimates do not always occur when the geographic sampling is least 352

biased (Fig. 3). Migration rates are on average overestimated when the true migration 353

rate is low (Fig. 3 top panels) whereas rate estimates are highly variable but on average 354

closer to the truth when the true migration rate is high (Fig 3 bottom panels). 355

Migration rate estimation is presumably less biased because higher migration provides 356
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Fig 1. Reconstruction accuracy depends on sampling bias and migration
rate. Panels A & C: True trees simulated with low or high migration rates, KMEs are
highlighted. Panels B & D: Absolute and relative accuracy of downsampled trees. Each
data point represents a downsampled tree from the true tree on the left. The vertical
lines indicate the proportion of location-A tips in the true trees. Parameters: λ = 4 and
µ = 1.

May 11, 2022 11/32

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 13, 2022. ; https://doi.org/10.1101/2022.05.12.22275024doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.12.22275024
http://creativecommons.org/licenses/by/4.0/


Fig 2. Reconstruction accuracy depends on the sampling of recent migrants.
Absolute (Panel A) and relative (Panel B) accuracy of downsampled trees with varying
p. The corresponding true tree is shown in Fig.1C with the vertical line showing the
proportion of recent migrants in this true tree. Panels C & E: Examples of
downsampled trees from the true tree in Fig. 1C with a low (Panel C: p = 0.05; recent
migrants highlighted) or high (Panel E: p = 0.95; non-migrants highlighted) proportion
of recent migrants tips. Panels D & F: The absolute accuracy of each internal node
(green fraction) of the downsampled trees in panels C and E respectively. Parameters:
λ = 4, µ = 1, α = 0.9, and k = 0.5.

May 11, 2022 12/32

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 13, 2022. ; https://doi.org/10.1101/2022.05.12.22275024doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.12.22275024
http://creativecommons.org/licenses/by/4.0/


more migration events on which to base the estimates. However, as the number of 357

migration events increases, so too does sensitivity to biases sampling (more migration 358

events are incorrectly inferred). Note that the y-axis in Fig. 3 is on a logarithmic scale, 359

the migration rate is often underestimated under extreme bias and overestimated when 360

sampling is unbiased, especially when the true migration rate is high. When sampling is 361

highly biased, the downsampled tree contains far fewer migration events than the true 362

tree (clades become more monomorphic) which results in an underestimate of the 363

migration rate. This is particularly true when the migration rate is high and there are 364

more migration events that can be excluded by biased sampling. In contrast, the 365

overestimation of migration rate when sampling is unbiased results from the fact that 366

downsampling makes clades less monomorphic than in the true tree. 367

Fig 3. Sampling bias affects the migration rate estimate. Estimated migration
rates from trees with varying migration rate. The true trees for each panel are shown in
Fig.1A (Panel A), Fig.1C (Panel B),Fig. 4A (Panel C), and Fig. 1C (Panel D). Vertical
lines indicate the true proportion of location-A tips and the horizontal lines indicate the
true migrations rates. Parameters: λ = 4 and µ = 1.

Key migration events 368

Here we assess how the reconstruction key migration events (KMEs) in downsampled 369

trees is impacted by sampling bias. Recall that a KME is an edge in the true tree with 370

a location-A parent internal node a location-B child internal node, and the subsequent 371

location-B tips of the child node of the KME are the tips of the KME. Whether the 372

edge can be reconstructed in a downsampled tree indicates whether we can learn about 373

the introduction event from the sample and whether we sample sufficient location-B tips 374

shows whether we can accurately infer that the introduction lead to onward 375

transmission in the destination. The number of KMEs that are “observed via tips” 376

decreases as the number of location-A tips in the downsampled tree increases (Fig. 4 377
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and Fig. S7) because, if we do not sample enough location-B tips, we will not know 378

there is ongoing transmission after an introduction. Note that there are always two 379

child lineages arising from the parental node of a KME, the focal child node which is in 380

location B and a sister clade which is, at least initially, in location A. For a KME to be 381

“observed via internal nodes” requires that the parental node is in the downsampled tree. 382

This in turn, depends on whether tips in the sister clade of the KME are sampled (Fig. 383

4 and Fig. S7). 384

The sampling policy most likely to reconstruct KMEs depends on the migration rate. 385

When the migration rate is high sampling more location-B tips helps reconstruct KMEs, 386

since the true tree has few monomorphic clades and the KMEs would rarely be “erred” 387

or “obscured via internal nodes”. When the migration rate is low, unbiased sampling 388

gives better results because the true tree has monomorphic clades and heavily biased 389

sampling can drop entire clades and cause the KMEs to be erred or obscured. Biased 390

sampling comes at an additional cost to reconstruction of KMEs. If sampling is biased 391

enough such that both parent and child internal nodes of a KME are reconstructed with 392

the same location, then we may not identify the KME even though both parent and 393

child internal nodes and the sufficient number of tips of the KME appear in the 394

downsampled tree(Fig. S5). 395

Application to the 2014-2015 Ebola Epidemic 396

We apply our analysis to the phylogenetic tree reconstructed from sequences of Ebola 397

virus. The sequences are sampled at five locations, but most of them are from two 398

locations, namely Guinea and Sierra Leone. The reconstructed maximum clade 399

credibility (MCC) phylogenetic tree from BEAST is used as the “true tree”, which has 400

an estimated migration rate of 0.40 per unit time, from ace under the assumption of 401

neutral migration rates between locations. 402

Relative to the simulations, the Ebolavirus tree has a relatively low migration rate 403

compared to the branching rates, resulting in large monomorphic clades. We would 404

therefore expect the absolute accuracy to be high overall, in keeping with Fig. 1, but 405

that the relative accuracy would depend on the geographic sampling bias. We examine 406

the absolute accuracy of the internal nodes in downsampled trees, especially the internal 407

nodes representing an introduction event in the true tree. Downsampling 80% of Sierra 408

Leone tips does not greatly reduce the absolute accuracy of the downsampled tree (Fig. 409

S9). This is because the Sierra Leone tips form a monomorphic clade. When 410

downsampling 80% of Guinea tips (less arranged in monomorphic clades), the overall 411

absolute accuracy of the internal nodes is also high (Fig. S10), but we observe a group of 412

internal nodes (red box in Fig. S10) that have inaccurate reconstructed locations. This 413

does not have a large impact on overall absolute accuracy, but it significantly affects our 414

inferences about the introduction event. Specifically, in this case we would infer that 415

Ebolavirus was introduced to Guinea via Liberia, which is not the case in the true tree. 416

When we downsample 80% of the “recent migrant” tips (reflecting more likely 417

recent-travel-related sequences) in addition to dropping 80% of tips independent of 418
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Fig 4. Reconstruction of KMEs depends on sampling bias and migration
rate. Panels A & C: True trees with intermediate migration rates with key migration
events highlighted. Panels B & D: The KME states (see Table 2) for 100 downsampled
trees with low-moderate. Number of downsampled trees in which a KME is erred
(coloured bars) or observed via internal nodes (left-hand transparent-grey bars) and
weather KMEs are observed via tips (solid-grey bars) or obscured via tips (right-hand
transparent-grey bars). Parameters: λ = 4 and µ = 1.

location, the ancestral state reconstruction is accurate except at the migration event in 419

the red box (Fig. 5). This is because the reconstructed MCC tree has relatively few 420

recent migrants (32/262), and removing most of these tips does not affect the absolute 421

accuracy. However, if we were particularly interested in the information in the red box 422

in Fig. 5, that is, whether the geographic spread is directly from Sierra Leone to Guinea 423

or from Sierra Leone to Liberia to Guinea, then the impact of sampling travelers (or 424

those with recent travel contact) would be of concern. Table 2 summaries how inference 425

of the likely source (parent location) and destination (child location) of introductions is 426

impacted by down-sampling of recent migrants. After downsampling, the introduction 427

event appears to be most likely from Sierra Leone to Guinea, whereas the introduction 428

event in the true tree is from Liberia to Guinea. 429
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Location Guinea Liberia Mali Sierra Leone Unknown

Parent node (before) 0.00 0.99 0.00 0.01 0.00
Child node (before) 0.99 0.01 0.00 0.00 0.00

Parent node (after) 0.08 0.29 0.01 0.61 0.01
Child node (after) 0.62 0.12 0.02 0.22 0.02

Table 2. Effect of downsampling on inferred introduction events. Likelihood of
the parent node and the child node of a migration event in the red box being at each
location before and after downsampling recent migrants.

Fig 5. Ancestral state reconstruction of Ebolavirus trees with recent
migrants downsampled. Panel A: The Maximum Clade Credibility (MCC) tree of
Ebolavirus sequences generated using BEAST, which is used as the true tree.
Downsampled trees obtained by dropping 80% recent migrants with either the true
ancestral locations (Panel A) or ancestral locations reconstructed after downsmapling
migrants (Panel C).
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Discussion 430

We performed a simulation study to characterize the impact of geographic sampling bias 431

on reconstructions of past viral locations, and to investigate how and why sampling bias 432

affects the ancestral state reconstruction. Downsampling – and sampling bias in 433

particular – can create two types of error in phylogeographic inference. First, the 434

proportion of tips in each location can affect the overall accuracy of reconstructed 435

ancestral locations. The error created near the tips can cascade up the tree, as node 436

locations are estimated using their descendants’ locations. Second, with biased 437

sampling, the reconstructed tree shape can omit nodes and edges related to key 438

migration events, making inference about important introduction events difficult. The 439

eventual accuracy depends on the underlying migration pattern, the migration rate, the 440

rate of sampling bias and the rate of sampling travelers. We found that the relative 441

accuracy is worsened with increased sampling bias and when travel-associated tips are 442

over-represented. If the underlying migration rate is higher , the relative accuracy of 443

phylogeographic reconstructions after sampling can be lower, but inferences about 444

migration rates and about key migration events can be more accurate than if the 445

underlying migration rate is lower. 446

We only simulated two locations in our model, and in the main text we used a 447

birth-death model without location-depending speciation rate or migration rate. We 448

showed in the supplementary material that location-dependant speciation rate can also 449

impact phylogeographic reconstruction, and in this case oversampling the location with 450

a lower speciation rate (compared to that location’s representation in the true tree) can 451

help to compensate. We did not vary the size of downsampled trees, and we assumed 452

that a true tree is large enough to contain both at least n location-A tips and at least n 453

location-B tips, which may be an unrealistic assumption. We chose to generate true 454

trees first and simulate geographic sampling by downsampling the true trees after they 455

are generated. However, we note that there are methods to simulate geographic 456

sampling along a birth-death process, for example in [33]. We compared these two 457

approaches to simulate geographic sampling and construct downsampled trees in the 458

supplementary material, and we found the two approaches provide similar results in 459

terms of absolute reconstruction accuracy, hence relative reconstruction accuracy. See 460

Fig. S11. 461

In the phylogenetic tree reconstructed from sequences of Ebolavirus, the true 462

locations of the virus in the past are not known, and we used the reconstructed 463

ancestral states from ace as the ‘true’ ancestral states. The reconstructed phylogenetic 464

tree has a relatively small migration rate and monomorphic clades. Dropping tips from 465

one location does not much affect the overall absolute accuracy, but can significantly 466

reduce the quality of inference about introduction events. Similarly, the phylogenetic 467

tree does not contain many recent migrants, and dropping most of the recent migrants 468

does not reduce the absolute accuracy by much but can heavily affect inference about 469

introduction events. 470
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Furthermore, we simulated trees and either downsampled those trees or simulated 471

birth, death and sampling through time; we did not simulate sequences evolving on the 472

trees, nor reconstruct trees from these simulated sequences. Accordingly, our results are 473

for the idealized circumstance where the reconstruction of the tree itself is essentially 474

perfect. In practice, tree uncertainty would add additional noise to phylogeographic 475

reconstruction, and the accuracy of reconstructions would be expected to be lower than 476

we have found here. 477

We have found that even under idealized circumstances, the portion of infections 478

from the different locations that are sequenced and represented in the data, and the 479

extent to which they are representative samples of the circulating infections in their 480

jurisdictions, can strongly shape the reliability of phylogeographic inferences. While this 481

was known in its impact on estimates of migration rates and the originating sequence 482

(root), the impact on the estimated virus locations themselves, or on the ability to 483

detect important viral movements, has not previously been characterized. Methods are 484

being developed to compensate for this bias, but currently, these are Bayesian methods 485

with high computational costs, and they are are not suitable for the analysis of the high 486

volumes of viral sequences that are being generated. Furthermore, while incorporating 487

past locations into Bayesian phylogenetic reconstruction is appealing, the fact that the 488

internal nodes in the posterior sample of phylogenetic trees are not the same from tree 489

to tree hinders interpretation of the reconstructed locations. This analysis is therefore 490

more suited to estimating rates than viral movements. One approach is to proceed as in 491

Lemey et al. [8], summarizing the posterior trees to capture viral movements without 492

focusing on individuals nodes (though this does not resolve the issue of computational 493

capacity for Bayesian tree reconstruction beyond hundreds of sequences). Another 494

would be to use the BASTA framework of de Maio et al. [23], but if there are too many 495

sequences for Bayesian phylogenetic estimation to be practical, fix the phylogenetic tree 496

(estimating it first by maximum likelihood), and take the structured coalescent approach 497

to the phylogeographic reconstruction. This may be limited by the assumptions of the 498

structured coalescent (like fixed effective population sizes for the locations, or demes). 499

Adjustment for sampling differences is likely to be feasible only when those 500

differences are known. Sharing data on the fraction of cases that are sampled and 501

sequenced, the fraction of infections that are reported as cases, and the strategy by 502

which samples are prioritized for sequencing, will help in making these adjustments. 503

Ultimately this will aid in correctly inferring pathogens’ geographic movements. Our 504

results suggest that pathogens are likely to be overly estimated to be in jurisdictions 505

that contribute more data (compared to the numbers of infections), and that 506

over-representation of travel-associated samples can drive inaccurate estimates of past 507

locations, incorrectly placing nodes in the location of sampling. If the reason for 508

sequencing (e.g. travel-associated case; dense sampling due to a large outbreak) were 509

known, this could be reduced. If the relative sampling fractions were known, a 510

representative sample could be obtained by downsampling taxa from the relevant 511

jurisdictions (though developing methods that can use all of the data is to be preferred). 512
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Meanwhile, we would caution that in real datasets from public databases, covering 513

multiple jurisdictions sequencing viruses at potentially very different rates and in 514

non-representative ways (due to targeting outbreaks, travellers, health-care workers, 515

specific variants and so on for prioritized sequencing but then not making the reason for 516

sequencing available), the results of phylogeographic reconstructions should be taken 517

with caution. 518

Implementation 519

Code and data for simulations and analyses conducted in this paper are available at 520

https://github.com/pliumath/sampling-bias 521
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Supplementary Material

Absolute and Relative Reconstruction Accuracy

Here we present complementary results and sensitivity analyses in which we choose

different values for fixed parameters and trees.

Fig. S1 shows the absolute and relative accuracy for the true trees displayed in Fig.

4A and Fig. 4C, in parallel with Fig. 1B and Fig.S1D.

Supp Fig S1. Reconstruction accuracy for intermediate migration rates.
Absolute and relative accuracy for intermediate migration rates. True trees are shown in
Fig. 4A (Panel A) and Fig. 4C (Panel B). The vertical lines indicate the true
proportions of location-A tips. Parameters: λ = 4 and µ = 1.

Whereas in the main text we downsampled many times from the same fixed true

tree, here in Fig. S2 we show the absolute reconstruction accuracy and how it varies

with sampling bias using 25 true trees for each choice of the migration rate; we

downsample 50 times for each tree.

Each edge in the true tree has two endpoints, that is, the parent node of the edge

near the root and the child node near the tips. For an edge in a downsampled tree of a

true tree, each node has a true location from simulation and a reconstructed location (a

likelihood of being location A) from the function ace. The state of the edge with the

true locations at the endpoints can be A-A, A-B, B-A or B-B. We count an edge with a

location-A parent node and a location-A child node as one edge in the state A-A and

analogously for the other states. Whereas the state of the edge with reconstructed

locations at the endpoints is computed by multiplying the likelihood of the parent node

being at location A (or B) and the the likelihood of the child node being at location A

(or B). For example, if the parent node has a likelihood 0.3 of being at location A and

the child node has a likelihood 0.1 of being at location A, then we count the edge as

0.03 edge in the state A-A, 0.27 edge in the state A-B, 0.07 edge in the state B-A and

0.63 edge in the state B-B. We compute the number of edges with true locations at

endpoints in each state in downsampled trees with different proportions of location-A
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Supp Fig S2. Reconstruction accuracy across true trees. Reconstruction
accuracy for each of 25 true trees calculated by averaging the absolute accuracy of 50
downsampled trees per true tree. Curve displays the mean accuracy across true trees,
shaded band represents the 95% confidence interval of the mean. The plus signs
indicates the true proportion of location-A tips of each of the 25 true trees and the
vertical lines represent the mean (solid) proportion of location-A tips in the 25 true
trees and the corresponding 95% confidence interval of the mean (dashed). Parameters:
λ = 4 and µ = 1.

tips for the true trees simulated with different migration rates. We also compute the

difference of subtracting the number of edges with true locations at endpoints from the

number of edges with reconstructed locations at endpoints in each state for the true

trees. The results are displayed in Fig. S3 and Fig. S4

Furthermore, in the main text, we used a neutral branching process in which the

branching and death rates did not depend on the location. Here, we simulate under

with non-neutral speciation rates. Fig. S5 displays the absolute and relative accuracy

for two true trees simulated with λA = 8, λB = 4 and λA = 4, λB = 8 respectively. We

find that the relative accuracy is highest when the location with a lower speciation rate

is oversampled compared to its representation in the true tree (few of the

higher-speciation-rate location-A tips in Fig. S5A, and more of the now

lower-speciation-rate location-A tips in Fig. S5B). In both cases the relative accuracy is

highest when the fraction of tips from the lower speciation rate location is 45-65%,

whereas due to having a lower speciation rate, that location has fewer tips in the true

tree.

Oversampling Recent Migrants

We demonstrate additional results regarding absolute and relative accuracy of

downsampled trees with different proportions or recent migrants, where the

downsampled trees have 25% and 75% location-A tips instead of 50%. Fig. S6 shows
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Supp Fig S3. Characterization of tree edges with low versus high migration
rates. Panel A & C: Difference between the number of edges with reconstructed versus
true parent and child locations. Panel B & D: The number of edges with a given parent
and child locations in the true tree.
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Supp Fig S4. Characterization of tree edges with intermediate migration
rates. Panel A & C: Difference between the number of edges with reconstructed versus
true parent and child locations. Panel B & D: The number of edges with a given parent
and child locations in the true tree.

Supp Fig S5. Reconstruction accuracy for with location-dependent
speciation. Absolute and relative accuracy of downsampled trees from true trees
simulated with non-neutral speciation rates, where each data point represents the
absolute or the relative accuracy of a downsampled tree from the true tree simulated
with λA = 8, λB = 4, µ = 1, α = 0.3 (Panel A) or the true tree simulated with
λA = 4, λB = 8, µ = 1, α = 0.3 (Panel B). The vertical lines indicate the proportions of
location-A tips in the true trees.

May 11, 2022 25/32

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 13, 2022. ; https://doi.org/10.1101/2022.05.12.22275024doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.12.22275024
http://creativecommons.org/licenses/by/4.0/


the results compared to Fig. 2A and Fig. 2B, and we observe the same pattern that the

accuracy decreases as the proportion of recent migrants increases.

Supp Fig S6. Effect of over/under-sampling recent migrants with different
proportions of location-A tips. Absolute and relative accuracy of downsampled trees
with different proportions of recent migrants p and either 25% location-A tips (Panel A:
k = 0.25) or 75% of location-A tips (Panel B: k = 0.75). Each data point represents the
absolute or the relative accuracy of a downsampled tree from the true tree displayed in
Fig. 1C. The vertical lines indicate the proportion of recent migrants in the true tree.

Key Migration Events

We show complementary results about key migration events (KMEs) to Fig. 4B and

Fig.4AD in Fig. S7, where we count the number of downsampled trees in which a KME

of the true tree is obscured, observed or erred for true trees displayed in Fig. 1A and

Fig. 1C respectively.

We perform additional experiments to investigate the absolute accuracy of the

parent and the child internal nodes of KMEs. Fig. S8 shows the absolute and relative

accuracy of the internal nodes of KMEs. We observe that if we sample more location-A

tips, then the child nodes of KMEs are more likely to be reconstructed with the wrong

location, and the KMEs are likely to be obscured via internal nodes. Similarly, if we

sample more location-B tips, then the parent nodes of KMEs are more likely to be

reconstructed with the wrong location, and the KMEs are also likely to be obscured via

internal nodes. Therefore, the unbiased geographic sampling performs better in

identifying key migration events.

Application to the 2014-2015 Ebola Epidemic

Fig. S9 and Fig. S10 shows the results of downsampled 80% of the Sierra Leone and

Guiena tips respectively. In both cases, thee overall absolute accuracy is high. We

obtained 10 downsampled trees for each location and calculate average absolute
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Supp Fig S7. The KME count for the true tree with migration rate 0.1 displayed in
Fig. 1A and the true tree with migration rate 0.9 displayed in Fig. 1C respectively,
where the left bars show the number of downsampled trees in which a KME of the true
tree is observed (zero-distance green bars), erred (non-zero-distance color bars) and
obscured (transparent grey bars) via internal nodes, and the right bars show the number
of downsampled trees in which a KME of the true tree is observed (solid grey bars) and
obscured (transparent grey bars) via tips.

accuracy. The average absolute accuracy is 99% when downsampling Sierra Leone tips

and 94% when downsampling Guinea tips.

Alternative Simulation

We show that the two approaches to simulating geographic sampling, generating true

trees then downsampling and downsampling along birth-death processes, give similar

results for the absolute accuracy. Fig. S11A shows the results of simulating geographic

sampling with the first approach. Specifically, we simulate a single true tree with

parameters λ = 4, µ = 1, α = 0.7, and we downsample 50 times from the true tree for

each proportion of location-A tips. Fig. S11B shows the results of the second approach,

where we run 50 birth-death processes with sampling using parameters λ = 4, µ = 1,

α = 0.7 for each proportion of location-A tips. The function sim.bdtypes.stt.taxa in the

R package TreeSim is used to realize the simulations, and the function produces a

downsampled tree for each birth-death process, so we have in total 50 downsampled

trees. We observe that the two approaches to simulating geographic sampling produce

similar results regarding absolute accuracy.

Epidemic Origin

We also explored how geographic sampling impacts the reconstruction of the location

and the time of the root (Fig. S12). We find that geographic sampling bias can have a

dramatic impact on the shows that the reconstructed state of the root depends on the

proportion of location-A tips in downsampled trees. Since we begin simulations with a
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Supp Fig S8. Reconstruction accuracy of KME. Absolute accuracy of the parent
and the child nodes over all observed (via internal nodes) KMEs in the true tree in Fig.
1A with migration rate 0.1 (Panel A), the true tree in Fig. 4A with migration rate 0.3
(Panel B), the true tree in Fig. 3C with migration rate 0.7 (Panel C), and the true tree
in Fig. 1C with migration rate 0.9 (Panel D).

root at location A, the more location-A tips are sampled, the more accurate (i.e.

location A) the root location is. Fig. S13 also shows that the absolute accuracy of the

root location is more accurate when the migration rate of the true tree is low,

presumably because more location A tips occur in more monomorphic clades. The

reconstructed time of the root also depends on whether there are extinction events or

small clades near the root. If there are extinction events (hence tips) or small clades

near the root and these are unsampled, then the reconstructed time of the root can be

inaccurate.
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Supp Fig S9. Ancestral state reconstruction of Ebolavirus trees with Sierra
Leone downsampled. The Maximum Clade Credibility (MCC) phylogenetic tree the
Ebolavirus outbreak generated using BEAST, which is used as a true tree (Panel A).
Downsampled tree obtained by dropping 80% Sierra Leone samples with true ancestral
location (Panel B). The downsampled tree with reconstructed ancestral location after
dropping Sierra Leone samples (Panel C).
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Supp Fig S10. Ancestral state reconstruction of Ebolavirus trees with
Guinea downsampled. The Maximum Clade Credibility (MCC) phylogenetic tree for
the Ebolavirus outbreak generated using BEAST, which is used as a true tree (Panel A).
Downsampled tree obtained by dropping 80% Guinea samples with true ancestral
location (Panel B). The downsampled tree with reconstructed ancestral location after
dropping Guinea samples (Panel C).
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Supp Fig S11. Reconstruction accuracy of trees of extinct lineages trees
versus trees simulated from a birth-death-sampling process. Absolute and
relative accuracy of trees with different proportions of location-A tips. Panel A: Each
data point in represents the absolute or the relative accuracy of a downsampled tree
from a single true tree simulated with λ = 4, µ = 1, α = 0.7. The downsampled trees
are obtained after the true tree is simulated, and the vertical lines indicate the
proportion of location-A tips in the true tree. Panel B: Each data point in represents
the absolute or the relative accuracy of tree obtained along a birth-death process with
λ = 4, µ = 1, α = 0.7.
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Supp Fig S12. Accuracy of root reconstruction depends on tree shape. True
trees with no tips near the root (Panel A) and with tips near the root (Panel B), where
possible reconstructed root nodes are highlighted with different colors. Both true trees
are simulated with λ = 4, µ = 1, α = 0.9. Reconstructed root node (color) and absolute
accuracy of the root node in downsampled trees from the true trees are displayed in
(Panel C) and (Panel D) respectively, where each data point represents the absolute
accuracy of the root in a downsampled tree. The vertical lines indicate the proportions
of location-A tips in the true trees.

Supp Fig S13. Accuracy of root reconstruction depends on migration rate.
Absolute accuracy of the root in downsampled trees with different proportions of
location-A tips. Each data point represents the absolute or the relative accuracy of a
downsampled tree from true trees simulated with λ = 4, µ = 1, α = 0.3 (Panel A) or
α = 0.7 (Panel B). The true trees have no tips near the roots, and the vertical lines
indicate the proportions of location-A tips in the true trees.
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