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Summary

In analysing big data for finite population inference, it is critical to adjust for the selection bias
in the big data. In this paper, we propose two methods of reducing the selection bias associated with
the big data sample. The first method uses a version of inverse sampling by incorporating auxiliary
information from external sources, and the second one borrows the idea of data integration by
combining the big data sample with an independent probability sample. Two simulation studies
show that the proposed methods are unbiased and have better coverage rates than their alternatives.
In addition, the proposed methods are easy to implement in practice.
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1 Introduction

Probability sampling is a scientific tool for obtaining a representative sample from a target
finite population. Formally, a probability sample has the property that every element in the finite
population has a known and non-zero probability of being selected. Probability sampling can be
used to construct valid statistical inferences for finite population parameters. Survey sampling
is an area of statistics that deals with constructing efficient probability sampling designs and
corresponding estimators. Classical approaches in survey sampling are discussed in Cochran
(1977), Särndal et al. (1992) and Fuller (2009).

Despite the merits of probability samples, Baker et al. (2013) argue that it becomes com-
mon to obtain non-probability samples, which may not represent the target population properly.
Besides, collecting a strict probability sample is almost impossible in certain areas due to
unavoidable issues such as frame undercoverage and non-response. The increasing prevalence
of non-probability samples, such as web panels, makes methods for non-probability samples
even more important. Keiding & Louis (2016) address the challenges in using non-probability
samples for making inferences. Elliott & Valliant (2017) review the weighting methods for
reducing the selection bias in non-probability samples. Rivers (2007) proposes nearest neigh-
bour imputation matching for combining information from survey data and big data. Bethlehem
(2016) discusses sample matching methods for handling non-probability samples.

Big data is one example of such non-probability sample. The four Vs (volume, velocity, vari-
ety and veracity) of big data and its implication to statistical inference are nicely discussed in
Franke et al. (2016). While the use of big data for predictive analysis is a hot area of research
(Efron & Hastie, 2016), its use for finite population inference is not well investigated in the
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literature. Tam (2015) discusses a statistical framework for analysing big data for official statis-
tics, particularly in agricultural statistics. Rao & Molina (2015) discuss using the area-level
summary of big data as one of the covariates in the linking model for small area estimation. Tam
& Kim (2018) cover some ethical challenges of big data for official statisticians and discuss
some preliminary methods of correcting for selection bias in big data.

One of the benefits of using big data is, as pointed out by Tam & Clarke (2015), in the cost
effectiveness in the production of official statistics. However, there are still great challenges
when using big data for finite population inference. The most critical issue is how to handle
selection bias in the big data sample (Meng, 2018). Adjusting for the selection bias in big data
is an important practical problem in survey sampling.

In this paper, we discuss how some of the sampling techniques can be applied in harnessing
big data for finite population inference. By treating the selection bias in the big data sample as
a missing data problem, we propose two approaches of handling big data in survey sampling.
The first approach is based on inverse sampling, which is a special case of two-phase sampling,
and a novel inverse sampling method is proposed to obtain a representative sample from the big
data. The second approach is based on the weighting method using the auxiliary information
obtained from another independent probability sample. Combining information from the two
data sources, often called data integration, is also a hot area of research in survey sampling. In
the proposed method, an independent probability sample is used to estimate the parameters of
the propensity score (PS) model for the big data sample.

The paper is organised as follows. In Section 2, the basic setup is introduced, and the selection
bias of big data is discussed. In Section 3, an inverse sampling method is proposed. In Section
4, a PS weighting approach using data integration is discussed. The results from two limited
simulation studies are presented in Section 5. Some concluding remarks are made in Section 6.

2 Basic Setup

Consider a finite population ¹yi W i 2 U º, where yi is the i -th observation of the study
variable Y and U D ¹1; : : : ; N º is the corresponding index set with known size N . A big data
sample ¹yi W i 2 Bº is available with B � U . Specifically, ıi D 1 if i 2 B and ıi D 0
otherwise, and assume that yi is observed only when ıi D 1. We are interested in estimating
the population mean NYN D N�1

PN
iD1 yi .

From the big data sample B , we can estimate NYN by NYB D N�1
B

PN
iD1 ıiyi , where NB DPN

iD1 ıi is the known size of B . Given ¹ıi W i 2 U º, the error of NYB can be written as

NYB � NYN D 1

fB

Cov.ı; Y /;

where fB D NB=N and

Cov.ı; Y / D 1

N

NX
iD1

.ıi � NıN /.yi � NYN /

with NıN D N�1
PN

iD1 ıi . Thus, we have

Eı¹. NYB � NYN /2º D 1

f 2
B

Eı

®
Cov.ı; Y /2

¯
; (1)

where Eı.�/ denotes the expectation with respect to the random mechanism for ıi .
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If the random mechanism for ıi is based on Bernoulli sampling, where the inclusion indi-
cators follow a Bernoulli distribution with success probability fB independently, we can
obtain

Eı

®
Cov.ı; Y /2

¯ D ŒEı ¹Cov.ı; Y /º�2 C Varı¹Cov.ı; Y /º

D 0C 1

N 2

NX
iD1

.yi � NYN /2fB.1 � fB/ D 1

N
fB.1 � fB/�2

with �2 D N�1
PN

iD1.yi � NYN /2. Thus, under Bernoulli sampling, (1) reduces to

Eı¹. NYB � NYN /2º D 1

NB

.1 � fB/�2;

which is consistent with the classical theory for Bernoulli sampling with sample size n D NB .
For general cases, (1) can be expressed as

Eı¹. NYB � NYN /2º D 1

f 2
B

Eı

®
Corr.ı; Y /2Var.ı/Var.Y /

¯
D Eı

®
Corr.ı; Y /2

¯ � � 1

fB

� 1

�
� �2;

(2)

where the second equality follows from

Var.ı/ D 1

N

NX
iD1

.ıi � NıN /2 D fB.1 � fB/:

Equality (2) is also presented in Meng (2018). Although there are three terms in (2) deter-
mining the selection bias of NYB , the first term, Eı

®
Corr.ı; Y /2

¯
, is the most critical one. Meng

(2018) calls the term data defect index (DDI), which determines the level of departure from
simple random sampling. Under equal probability sampling designs such that Eı.ıi / D fB ,
we have Eı¹Corr.ı; Y /º D 0 and DDI is of order O.1=N /, which implies Eı¹. NYB � NYN /2º D
O.N�1

B /. For other sampling designs with Eı¹Corr.ı; Y /º ¤ 0, the DDI becomes significant
with order O.1/, which implies Eı¹. NYB� NYN /2º D O.N�1

B N�1/. Therefore, a non-probability
sampling design with Eı¹Corr.ı; Y /º ¤ 0 makes the analysis results subject to selection bias.

In this paper, we show how to use some of the existing sampling techniques to reduce the
selection bias of the big data sample and make the resulting analysis valid. We consider two
techniques, one is inverse sampling and the other is survey data integration.

3 Inverse Sampling

When the distribution of the study variable for the big data sample differs systematically
from that for the target population, the big data sample does not necessarily represent the target
population. An important question in this respect is whether we can use auxiliary variables,
external to the big data sample, to correct for the selection bias. In this section, we consider a
novel inverse sampling approach to address this problem. The proposed inverse sampling can
be viewed as a special case of two-phase sampling (e.g. Breidt & Fuller, 1993; Rao & Sitter,
1995; Hidiroglou, 2001; Kim et al., 2006; Stukel & Kott, 1996). The first-phase sample is the
big data sample, which is subject to selection bias. The second-phase sample is a subsample
of the first-phase sample to correct the selection bias of the big data sample. Inverse sampling
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is originally proposed as a way of obtaining a simple random sample from a sample obtained
from a complex sampling design. For some classical designs, such as stratified sampling, the
inverse sampling algorithm is presented by Hinkins et al. (1997) and Rao et al. (2003). Tillé
(2016) applies the inverse sampling concept to a quota sample. We address the application of
inverse sampling to big data subject to selection bias.

Unlike the classical two-phase sampling, the first-phase sample in our setup is the big data
itself, and we have no control over it. Thus, we first use some external source to determine the
level of selection bias in the big data. This step can be called weighting step, as the importance
weights are computed for each element in the big data sample. The second step is to select
the second-phase sample from the big data with the selection probability proportional to the
importance weights.

To correct for selection bias using the proposed inverse sampling approach, we need external
information about the target population, either from a census or from a probability sample, for
some auxiliary variable x. To formally present the idea, let .xi ; yi / be available in the big data
sample (B) and f .x/ be the density for the marginal distribution of x that is obtained from
an external source. We assume that the auxiliary variable x has a finite second moment. We
are interested in estimating � D E.Y / from the big data sample B . The first-order inclusion
probability for the big data sample B is unknown.

Using the idea of importance sampling (Goffinet & Wallach, 1996; Henmi et al., 2007), it
can be shown that

O�B1 D
P

i2B
f .xi /

f .xi jıiD1/
f .yi jxi /

f .yi jxi ;ıiD1/
yiP

i2B
f .xi /

f .xi jıiD1/
f .yi jxi /

f .yi jxi ;ıiD1/

(3)

is asymptotically unbiased for � D E.Y / by assuming that f .ıi D 1 j xi / > 0 for i 2 U
almost surely. If the sampling mechanism for B is ignorable after controlling on x, that is,
P.ıi D 1 j xi ; yi / D P.ıi D 1 j xi /; then (3) reduces to

O�B1 D
P

i2B
f .xi /

f .xi jıiD1/
yiP

i2B
f .xi /

f .xi jıiD1/

WD
X
i2B

wi1yi : (4)

The weight wi1 can be called importance weight, following the idea of importance sam-
pling. If xi is a vector of stratum indicator variables, then f .xi /=f .xi j ıi D 1/ equals
to .Nh=N /=.nh=n/ for i in stratum h, which leads to unbiased estimation under stratified
sampling.

If only NXN D N�1
PN

iD1 xi is available, we can approximate f .x/ by f0.x/, which
minimises the Kullback–Leibler distance

minf02P0

Z
f0 .x/ ln

²
f0 .x/

f .x j ı D 1/

³
dx; (5)

where P0 D ¹f .x/I R xf .x/dx D NXN º. The solution to (5) is

f0 .x/ D f .x j ı D 1/
exp

�
xT�

�
E
®
exp

�
XT�

� j ı D 1
¯ ; (6)

where � satisfies
R

xf0 .x/ dx D NXN and DT is the transpose of D. Thus, the selection
probability for the second-phase selection is proportional to exp

�
xT�

�
, which is very close to
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the exponential tilting calibration discussed in Kim (2010). Using (6), the weighted estimator
in (4) reduces to

O�B1 D
P

i2B exp.xT
i
O�/yiP

i2B exp.xT
i
O�/

; (7)

where O� satisfies P
i2B exp.xT

i
O�/xiP

i2B exp.xT
i
O�/

D NXN : (8)

Here, Equation (8) can be called calibration equation (Wu & Sitter, 2001). Unlike the usual
calibration estimation, we may ignore the sampling variability in estimating � because NB is
large. When the sample size of B is large, the computation for calibration equation (8) may be
challenging. In this case, one-step approximation (Kim, 2010) can be used.

Based on (7), we discuss how to select the second-phase sample .B2/ of size n from the big
data sample B such that O�B2 D n�1

P
i2B2

yi is approximately design unbiased for O�B1 in (4).
The basic idea is to choose the conditional first-order inclusion probability �i2j1 D P.i 2 B2 j
i 2 B/ such that

�i2j1 D nwi1; i 2 B; (9)

where wi1 is the importance weight in (4). To guarantee

�i2j1 2 .0; 1�; i 2 B; (10)

we should choose n � 1= maxi2B¹wi1º. Once ¹�i2j1 W i 2 Bº satisfying (9) and (10) are found,
we can apply any unequal probability sampling techniques to obtain the second-phase sample;
see Tillé (2006) for details on algorithms for unequal probability sampling designs.

Once the second-phase sample B2 is obtained, we can use the sample mean of yi in B2 to
estimate � . The variance estimator of O�B2 can be decomposed as

Var. O�B2/ D Var. O�B1/C Var. O�B2 � O�B1/;

where the first term is of order O.N�1
B / and the second term is of order O.n�1/. If n=NB D

o.1/, the first term can be safely ignored, and we only need to estimate the second term. Because
we can express

O�B2 D
X
i2B2

1

�i2j1
.wi1yi /;

we can apply the standard variance estimation formula for the Horvitz–Thompson estimator
(Horvitz & Thompson, 1952) by treating the big data as the finite population. That is, we
can use

OV D
X
i2B2

X
j2B2

�ij 2j1 � �i2j1�j 2j1
�ij 2j1

wi1yi

�i2j1
wj 1yj

�j 2j1

as a variance estimator for O�B2, where �ij 2j1 is the joint inclusion probability for the second-
phase sampling.
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4 Data Integration

Survey data integration is an emerging area of research, which aims to combine information
from two independent surveys from the same target population. Kim et al. (2016) propose a
new method of survey data integration using fractional imputation of Kim (2011) under the
instrumental variable assumption, and Park et al. (2017) use a measurement error model to
combine information from two independent surveys.

Survey data integration idea can be used to combine big data with survey data. Here, we
assume that we have two data sources, one is a survey data (denoted by A), and the other is a
big data (denoted by B), which is subject to selection bias. We assume that item x is available
from survey data while .x; y/ is available from the big data, and n=NB D o.1/, where n is the
sample size of A. We are interested in estimating the population mean NYN by combing two data
sources. Because of the selection bias, the sample mean NYB from the big data is biased. Table 1
presents the data structure for this setup.

If both samples were probability samples, then synthetic data imputation can be used to cre-
ate imputed values of yi in the sample A. Such synthetic data imputation, or mass imputation, is
also considered by Legg & Fuller (2009) and Kim & Rao (2011). When B is a non-probability
sample, Rivers (2007) proposes a mass imputation approach using nearest neighbour imputa-
tion for survey integration. That is, we can use x to find the nearest neighbour in the big data
sample B to create an imputed value of yi for each element in the sample A. Once the imputed
values of yi are created for all the elements in the sample A, we can compute an imputed
estimator of � D E.Y / from the sample A. Such a method can be justified if

fB.y j x/ D f .y j x/; (11)

where fB.y j x/ is the conditional density of y given x for the big data sample B and f .y j x/
is for the target population. This assumption, which is called transportability, can be achieved
if the selection mechanism for big data is non-informative (Pfeffermann, 1993). Because the
sample A is a probability sample, the imputation estimator O�A;I D N�1

P
i2A diy

�
i is approx-

imately unbiased under certain conditions, where y�i is the imputed value of unit i and di is the
associated sampling weight.

Instead of using mass imputation of Rivers (2007), we propose to use PS weighting for the
big data based on auxiliary information in the sample A. To formally describe the idea, we first
assume that we can observe ıi , the big data sample inclusion indicator, from the sample A. That
is, among the elements in the sample A, it is possible to obtain the membership information
from the big data sample B . For example, if the big data sample B consists of people using a
certain credit card, then we can obtain ıi from A by asking whether person i uses the credit
card.

We assume that the selection mechanism of the big data sample is ignorable

P.ıi D 1 j xi ; yi / D P.ıi D 1 j xi /; i 2 U;

and it follows a parametric model

P.ıi D 1 j xi / D pi .�/ 2 .0; 1�; i 2 U; (12)

Table 1. Data structure.

Data Representativeness X Y

A Yes X
B No X X
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where pi .�/ D p.xT
i �/ for some known function p.�/ with second continuous derivatives

with respect to an unknown parameter � and pi .�/�1 D O.N /. Because we observe .ıi ; xi /
from the sample A, we can estimate � by maximising the pseudo log-likelihood function of �
given by

l.�/ D
X
i2A

di Œıi log¹pi .�/º C .1 � ıi / log¹1 � pi .�/º�:

Once the pseudo maximum likelihood estimator O� is obtained, then we can use a PS weighting
estimator, that is,

O�B;PS D
P

i2B pi . O�/�1yiP
i2B pi . O�/�1

(13)

as a weighted estimator of � from the big data sample B .
To discuss variance estimation of O�B;PS , note that . O�; O�B;PS /0 is a solution to the joint

estimating equation, that is,

U.�; �/ �
X

i2B
pi .�/�1.yi � �/ D 0; (14)

S.�/ �
X

i2A
di¹ıi � pi .�/ºgi .�/ D 0; (15)

where gi .�/ D @logit¹pi .�/º=@�. Thus, by using the sandwich formula, we can obtain a
consistent variance estimator of O�B;PS ; see Appendix A for details.

Remark 1. If we can build a working outcome regression model for E.Y j x/, say E.Y j x/ D
xTˇ, we can construct a doubly robust (DR) estimator (Kim & Haziza, 2014) given by

O�B;DR D 1

N

´X
i2B

1

pi . O�/

�
yi � xT

i
Ǒ �CX

i2A

dix
T
i
Ǒ
μ

; (16)

where Ǒ is the estimated regression coefficient based on the big data sample. We assume that
an intercept term is included in x. Under the model assumption (11), Ǒ can be obtained
by ordinary least squares. To show double robustness, let O�A;HT D N�1

P
i2A diyi be the

Horvitz–Thompson estimator of � from the sample A. Note that

O�B;DR � O�A;HT D 1

N

´X
i2B

1

pi . O�/
Oei �

X
i2A

di Oei

μ
;

where Oei D yi � xT
i
Ǒ . Thus, if the model (12) is correctly specified, we have

Eı. O�B;DR � O�A;HT / � 1

N

 X
i2U

ei �
X
i2A

diei

!
; (17)

where ei D yi � xT
i ˇ� and ˇ� is the probability limit of Ǒ . The right side of (17) is design-

unbiased to zero, so O�B;DR is asymptotically unbiased under model (12). On the other hand, if
E.Y j x/ D xTˇ is correctly specified, then
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1

N
E

´X
i2B

1

pi . O�/
Oei j B

μ
� 1

N

X
i2B

1

pi .�
�/

E. Oei j B/;

1

N
E

 X
i2A

di Oei j B

!
D 1

N

X
i2U

E . Oei j B/ ;

where Oei D yi � xT
i
Ǒ and �� is the probability limit of O�. Note that E. Oei j B/ D 0 under

E.Y j x/ D xTˇ and missing at random (MAR). Thus, we have

E. O�B;DR � O�A;HT / � 0; (18)

if the outcome regression model is correctly specified. Therefore, we have established double
robustness of O�B;DR. Variance estimation of O�B;DR is discussed in Appendix B.

5 Simulation Study

5.1 Inverse Sampling

In this simulation study, we consider the proposed inverse sampling under a simple setup. A
finite population is generated by

yi D 5C 3xi C ei ; i D 1; : : : ; N;

where xi 	 Exp.1/, ei 	 N.0; x2
i /, N D 1 000 000, N.�; �2/ is a normal distribution with

mean � and variance �2 and Exp.�/ is an exponential distribution with mean �. The inclusion
indicator of the big data sample is generated by ıi 	 Ber.pi / independently for i D 1; : : : ; N ,
where logit.pi / D �.xi � 2/, Ber.p/ is a Bernoulli distribution with success probability p
and logit.x/ D log.x/ � log.1 � x/ for x 2 .0; 1/. In addition, we assume that the population
mean NXN is known. We consider two cases, � D �0:2 and � D �0:5, and we are interested in
making inference for the population mean NYN and a proportion PN D N�1

PN
iD1 I.yi < 6/,

where I.x < a/ D 1 if x < a for a given number a and 0 otherwise.
We compute the following three estimators with n D 500 and n D 1 000, respectively, and

recall that n is the sample size for the second-phase sampling.

(i) Naive estimator. We use simple random sampling to obtain a sample of size n from the big
data sample B .

(ii) Calibration estimator. From the sample obtained by the naive method, we use the expo-
nential tilting method described in Section 3 to obtain a calibration estimator using NXN

information.
(iii) Proposed inverse sampling estimator. First, we obtain the important weights in (7) satis-

fying the calibration condition (8), and then a sample of size n is selected by probability
proportional to size sampling.

We conduct 10 000 Monte Carlo simulations and compare the three estimators with respect
to the bias and standard error of the point estimator, the relative bias of the estimated standard
error and the coverage rate of a 95% confidence interval obtained from the Wald-type method.
Table 2 summarises the simulation results. The naive estimator works poorly because it does
not account for the selection bias of the big data sample. Specifically, its coverage rate decreases
as the sample size becomes larger, conforming the big data paradox of Meng (2018). Although
the calibration estimator works better than the naive one by incorporating external information,
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Table 2. Bias, SE, RB.SE and CR for different estimators based on 2 000 simulation studies.

Par. � Method
n D 500 n D 1 000

Bias SE RB.SE CR Bias SE RB.SE CR

NYN

�0:2
Naive �0:27 0.133 0.01 0.48 �0:27 0.096 �0:01 0.22

Calibration 0.00 0.070 �0:01 0.95 0.00 0.050 �0:02 0.95
Proposed 0.00 0.146 0.01 0.95 0.00 0.104 0.00 0.95

�0:5
Naive �0:55 0.117 0.01 0.01 �0:55 0.083 0.00 0.00

Calibration 0.00 0.081 �0:04 0.94 0.00 0.057 �0:03 0.94
Proposed 0.00 0.141 0.00 0.95 0.00 0.101 0.00 0.95

PN

�0:2
Naive 0.02 0.021 �0:01 0.83 0.02 0.015 �0:01 0.70

Calibration 0.00 0.018 0.01 0.95 0.00 0.012 0.01 0.95
Proposed 0.00 0.021 �0:01 0.95 0.00 0.015 0.00 0.95

�0:5
Naive 0.05 0.021 0.00 0.45 0.04 0.015 0.01 0.16

Calibration �0:01 0.018 0.09 0.92 �0:01 0.012 0.09 0.89
Proposed �0:01 0.021 0.00 0.92 �0:01 0.014 0.02 0.90

‘Naive’ stands for the naive estimator, ‘Calibration’ for the calibration estimator and ‘Proposed’ for the pro-
posed inverse sampling estimator. Par., parameter that we are interested in; Bias, Monte Carlo bias; SE,
standard error; RB.SE, relative bias of the estimated standard error; CR, coverage rate.

its performance is still questionable because its variance estimator is biased when � D �0:5,
that is, when the mean of the big data sample, N�1

B

P
i2B xi , differs significantly from NXN . For

estimating NYN , which is a linear function of NXN in our simulation, the biases of the calibration
estimator and the proposed inverse sampling estimator are negligible compared with the stan-
dard errors, and the coverage rates of these two methods are close to 0.95 in spite of the small
bias of the estimated variance of the calibration estimator. For estimating PN , which is not a
linear function of NXN , the biases of the calibration estimator and the proposed inverse sampling
estimator are approximately the same, but they are not negligible compared with the standard
error when � D �0:5. Thus, the coverage rates of the calibration estimator and the proposed
inverse sampling estimator are below 0.95. Besides, variance estimator of the proposed inverse
sampling estimator is unbiased for all cases, but that of the calibration estimator becomes worse
when � D �0:5.

5.2 Data Integration

We use a simulation setup similar to Kim & Haziza (2014) to compare the two proposed
estimators shown in (13) and (16) with a naive estimator and Rivers’ method. We consider the
following two outcome regression models for generating the finite population.

(i) Linear model. That is,

yi D 1C x1;i C x2;i C 	i ; i D 1; : : : ; N; (19)

where x1;i 	 N.1; 1/, x2;i 	 Exp.1/, 	i 	 N.0; 1/, N D 1 000 000 and .x1;i ; x2;i ; 	i / is
pairwise independent.

(ii) Non-linear model. That is,

yi D 0:5.x1;i � 1:5/2 C x2;i C 	i ; i D 1; : : : ; N; (20)

where .x1;i ; x2;i ; 	i / is the same with those in the linear model.

The sampling indicator of the big data sample is generated by ıi 	 Ber.pi / independently for
i D 1; : : : ; N , and we consider the following two big data propensity models.
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(i) Linear logistic model. That is,

logit.pi / D x2;i ; i D 1; : : : ; N: (21)

(ii) Non-linear logistic model. That is,

logit.pi / D �0:5C 0:5.x2;i � 2/2; i D 1; : : : ; N: (22)

The average sampling rates for the big data are about 60% under both models.
We consider the following three scenarios to generate the finite population and the big data

sample.

(i) Both the outcome regression model and the big data propensity model are linear. That is,
the finite population is generated by (19), and the sampling indicator of the big data sample
is generated by (21).

(ii) The outcome regression model is linear, and a non-linear logistic model is used for the big
data propensity model. That is, we use (19) to generate the finite population and use (22)
to generate the sampling indicator of the big data sample.

(iii) The outcome regression model is non-linear, and the big data propensity model is linear.
That is, we use (20) and (21) to generate the finite population and big data sample.

The parameter of interest is the population mean NYN . We use simple random sampling to obtain
an independent sample A of size n, and we consider n D 500 and n D 1 000. We compare the
following methods for estimating NYN and the corresponding 95% confidence interval.

(i) Naive estimator. We use sample mean and sample variance of the big data sample to make
inference.

(ii) Rivers’ method. The nearest neighbour is obtained by the Euclidean norm based on
.x1;i ; x2;i /.

(iii) The proposed PS weighting estimator (13) using a logistic model for p.�/, that is,
logit¹pi .�/º D �0 C �1x2;i .

(iv) The proposed DR estimator in (16). The working outcome regression model is E.yi j
x1;i ; x2;i / D ˇ0 C ˇ1x1;i C ˇ2x2;i , and the working big data propensity model is the same
as that in method (iii).

For each scenario, we conduct 2 000 Monte Carlo simulations to compare the data integration
estimators regarding the bias and standard error of the point estimator and the coverage rate
of the 95% confidence interval obtained by the Wald-type method. Table 3 summarises the
simulation results. The naive estimator is biased because it does not account for the random
mechanism for the big data sample, and its coverage rate is zero for all scenarios. Rivers’
method works well in terms of the bias and coverage rate in all three scenarios. For scenarios
I and III, the proposed PS estimator has the smallest standard error compared with others,
and its bias and coverage rate is as good as those by Rivers’ method and the proposed DR
estimator. However, the proposed PS estimator is sensitive to the misspecification of the big data
propensity model, and its estimates are biased in scenario II, where a non-linear logistic model
is used for the big data propensity model. For all three scenarios, the proposed DR estimator
works better than the Rivers’ method in terms of the standard errors, and both methods have
approximately the same bias and coverage rate.

Remark 2. The asymptotic variance of the Rivers’ method is �2
y=n (Rivers, 2007), and it is

consistent with the simulation results shown in Table 3 for all scenarios, where �2
y is the vari-

ance of y with respect to the outcome regression model, �2
y D 3 for scenarios I and II and
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Table 3. Bias, SE and CR of different data integration methods based on 2 000
simulation studies for each scenario.

Scenario Method
n D 500 n D 1 000

Bias SE CR Bias SE CR

I

Naive 0.19 0.001 0.00 0.19 0.001 0.00
Rivers 0.00 0.077 0.95 0.00 0.054 0.95

PS 0.00 0.023 0.95 0.00 0.016 0.95
DR 0.00 0.063 0.95 0.00 0.044 0.95

II

Naive �0:10 0.001 0.00 �0:10 0.001 0.00
Rivers 0.00 0.077 0.96 0.00 0.055 0.94

PS 0.11 0.183 0.99 0.08 0.085 1.00
DR 0.00 0.063 0.95 0.00 0.046 0.95

III

Naive 0.19 0.001 0.00 0.19 0.001 0.00
Rivers 0.00 0.074 0.94 0.00 0.053 0.95

PS 0.00 0.022 0.95 0.00 0.016 0.95
DR 0.00 0.050 0.95 0.00 0.035 0.95

‘Naive’ stands for the naive estimator, ‘Rivers’ for the Rivers’ method, ‘PS’
for the proposed propensity score weighting estimator and ‘DR’ for the pro-
posed doubly robust estimator. Bias, Monte Carlo bias; SE, standard error; CR,
coverage rate.

�2
y D 2:75 for scenario III. For the proposed DR estimator, if one of the working outcome

regression model and the working big data propensity model is correctly specified, the variance
of O�B;DR can be estimated by the sampling variance of the imputed values ¹xT

i ˇ� W i 2 Aº,
which is VB;DR D ˇ�x

T
†xxˇ�x=n, where ˇ�x is the coefficient of .x1;i ; x2;i / in ˇ� shown in

Remark 1 and †xx is the variance of .x1;i ; x2;i /; see Appendix B for details. For scenarios I
and II, VB;DR D 2=n, and for scenario III, VB;DR � 1:25=n, and the results are consistent
with those shown in Table 3. Thus, the proposed DR estimator is more efficient than the Rivers’
method in all three scenarios.

6 Conclusion

Adjusting for the selection bias in big data is an important practical problem. By properly
incorporating the auxiliary information from an external source, we can reduce the selection
bias either by inverse sampling or by PS weighting. DR estimation shows good performance in
the simulation study, and extension to multiple robust estimation (Chen & Haziza, 2017) seems
to be a promising research area. The proposed methods implicitly assume that the selection
mechanism for big data is MAR in the sense of Rubin (1976). If MAR assumption does not hold,
then we can build a not-missing-at-random model for the selection mechanism and estimate the
model parameters (Chang & Kott, 2008; Riddles et al., 2016).

If there is error in the matching mechanism, then misclassification errors for ı can arise,
and capture–recapture experiments (Chen & Kim, 2014) can be useful in this situation. Such
extensions will be the topics for future research.
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Appendix A. Variance Estimation of O�B;PS in (13)

We rewrite (14) and (15) as

U.�; �/ D
XN

iD1
ıipi .�/�1.yi � �/;

S.�/ D
XN

iD1
Iidi¹ıi � pi .�/ºgi .�/;

where Ii is the sampling indicator for sample A, Ii D 1 if i 2 A and 0 otherwise and gi .�/ D
@logit¹pi .�/º=@�. Then, we have

Var¹U.�; �/º D
NX

iD1

¹1 � pi .�/ºpi .�/�1.yi � �/2; (A.1)

Var¹S.�/º D E ŒVar¹S.�/ j Aº�C Var ŒE¹S.�/ j Aº�
D E ŒVar¹S.�/ j Aº� ;

(A.2)

Cov¹U.�; �/; S.�/º D E ŒCov¹U.�; �/; S.�/ j Aº�C Cov ŒE¹U.�; �/ j Aº; E¹S.�/ j Aº�
D E ŒCov¹U.�; �/; S.�/ j Aº� ;

(A.3)
where (A.1) holds because ¹ıi W i 2 U º are pairwise independent, the second equalities of (A.2)
and (A.3) hold because ıi is independent with Ii and Cov¹U.�; �/; S.�/ j Aº D PN

iD1.yi �
�/Iidi¹1 � pi .�/ºgi .�/T.

Therefore, we can estimate (A.1) to (A.3) by

OV ¹U.�; �/º D
X
i2B

¹1 � pi .�/ºpi .�/�2.yi � �/2; (A.4)

OV ¹S.�/º D OV ¹S.�/ j Aº
D
X
i2A

d 2
i pi .�/¹1 � pi .�/ºgi .�/Tgi .�/; (A.5)

OC ¹U.�; �/; S.�/º D OC ¹U.�; �/; S.�/ j Aº
D

X
i2A\B

dipi .�/�1.yi � �/¹1 � pi .�/ºgi .�/T: (A.6)
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Denote

H.�; �/ D
 

@U.�;�/
@�T

@U.�;�/

@�T

0 @S.�/

@�T

!

to be the Hessian matrix of ŒU.�; �/T; S.�/T�T, and

OVU;S . O�; O�/ D
� OV ¹U.�; �/º OC ¹U.�; �/; S.�/º
OC ¹U.�; �/; S.�/ºT OV ¹S.�/º

�

to be the variance estimator of ¹U.�; �/; S.�/º based on (A.4) to (A.6).
Thus, by the sandwich formula, the variance of . O�B;PS ; O�/ can be estimated by

H. O�; O�/�1 OVU;S . O�; O�/¹H. O�; O�/�1ºT; (A.7)

where O� D O�B;PS , and the variance estimator of O�B;PS is the (1,1)-th element of (A.7).

Appendix B. Variance Estimation of the Double Robust Estimator

Denote

Q�B;DR. O�/ D 1

N

´X
i2B

1

pi . O�/

�
yi � xT

i ˇ�
�CX

i2A

dix
T
i ˇ�

μ
;

where ˇ� is the probability limit of Ǒ . Because Var. Ǒ / D O.N�1
B /, Q�B;DR. O�/ is asymptotically

equivalent to O�B;DR. O�/ if n=NB D o.1/.
Let �� be the probability limit of O�, and we have

Q�B;DR. O�/ D N�1
X
i2B

1

pi .�
�/

.yi � xT
i ˇ�/C 
B.��/T. O� � ��/C O�A;reg C op.n�1=2/ (B.1)

by Taylor expansion, where 
B.��/ D N�1
P

i2B pi .�
�/�1¹pi .�

�/ � 1º.yi � xT
i ˇ�/xi and

O�A;reg D N�1
P

i2A dix
T
i ˇ�.

Note that Ǒ is a consistent estimator of ˇ�. Under the model assumption (11), ˇ� is also the
probability limit of ˇN , where ˇN solves

PN
iD1.yi � xT

i ˇ/xi D 0. Thus, we have

Ǒ D ˇ� COp.N
�1=2
B /; (B.2)

ˇN D ˇ� COp.N
�1=2
B /; (B.3)

where the second result holds because ˇN D ˇ� COp.N�1=2/ and NB=N D O.1/. Next, we
wish to show


B.��/ D Op.N
�1=2
B /; (B.4)

if one of the outcome regression model and the big data propensity model is correctly specified.
Suppose that the outcome regression model is correctly specified. Then, ei D yi � xT

i ˇ� is
independent with xi , so (B.4) holds under mild conditions on the working big data propensity
model.
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If the big data propensity model is correctly specified, consider


B.��/ D N�1
X
i2B

.yi � xT
i ˇ�/ �N�1

X
i2B

pi .�
�/�1.yi � xT

i ˇ�/ D 
B;1.��/ � 
B;2.��/:

First, note that
P

i2B.yi � xT
i
Ǒ / D 0, and we have


B;1.��/ D N�1
X
i2B

.yi � xT
i ˇ�/ D N�1

X
i2B

.yi � xT
i
Ǒ /CN�1

X
i2B

xT
i . Ǒ � ˇ�/

� Op.N
�1=2
B /N�1

NX
iD1

kxik2

D Op.N
�1=2
B /;

(B.5)

where the inequality holds by (B.2), and the second equality holds if xi has a finite second
moment. Now, to discuss 
B;2.��/, note that ˇN satisfies

PN
iD1.yi � xT

i ˇN / D 0. Thus,


B;2.��/ D N�1
X
i2B

pi .�
�/�1.yi � xT

i ˇ�/

D N�1
NX

iD1

.yi � xT
i ˇ�/COp.N

�1=2
B /

D N�1
NX

iD1

.yi � xT
i ˇN /CN�1

NX
iD1

xT
i .ˇN � ˇ�/COp.N

�1=2
B /

D Op.N
�1=2
B /;

(B.6)

where the last equality holds by (B.3). Thus, if the big data propensity model is correctly
specified, we have shown (B.4) by (B.5) and (B.6).

Similarly, we can show that the first term of (B.1) has order Op.N
�1=2
B / if one of the outcome

regression model and the big data propensity model is correctly specified. Thus, the variance of
Q�B;DR. O�/ can be estimated by the sampling variance of O�A;reg under the assumption n=NB D
o.1/.
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