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4.1 Overview of the chapter

This article develops a class of Monte Carlo (MC) methods for simulating con-
ditioned diffusion sample paths, with special emphasis on importance sampling
schemes. We restrict attention to a particular type of conditioned diffusion, the
so-called diffusion bridge processes. The diffusion bridge is the process ob-
tained by conditioning a diffusion to start and finish at specific values at two
consecutive times t0 < t1.

Diffusion bridge simulation is a highly non-trivial problem. At an even more
elementary level, unconditional simulation of diffusions, that is, without fixing
the value of the process at t1, is difficult. This is a simulation from the transi-
tion distribution of the diffusion which is typically intractable. This intractabil-
ity stems from the implicit specification of the diffusion as a solution of a
stochastic differential equation (SDE). Although the unconditional simulation
can be carried out by various approximate schemes based on discretizations of
the SDE, it is not feasible to devise similar schemes for diffusion bridges in
general. This has motivated active research in the last 15 years or so for the
development of an MC methodology for diffusion bridges.

The research in this direction has been fuelled by the fundamental role that
diffusion bridge simulation plays in the statistical inference for diffusion pro-
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cesses. Any statistical analysis which requires the transition density of the pro-
cess is halted whenever the latter is not explicitly available, which is typically
the case. Hence it is challenging to fit diffusion models employed in applica-
tions to the incomplete data typically available. An interesting possibility is to
approximate the intractable transition density using an appropriate MC scheme
and carry out the analysis using the approximation. It is of course desirable that
the MC scheme is such that the approximation error in the analysis decreases
to 0 as the MC effort increases. It turns out that basically all such MC schemes
require diffusion bridge simulation.

We have been vague about the nature of “statistical analysis” mentioned above,
since a range of statistical problems can be tackled using the diffusion bridge
simulation methodology we develop here: parameter estimation of discretely
observed diffusions, on-line inference for diffusions observed with error, off-
line posterior estimation of partially observed diffusions, etc. Additionally, a
range of computational statistics tools can be combined with the simulation
methodology to give answers to the aforementioned problems: the EM algo-
rithm, simulated likelihood, Sequential Monte Carlo, Markov chain Monte
Carlo, etc. Given the wide range of applications where diffusions are em-
ployed, it is not surprising that important methodological contributions in bridge
simulation are published in scientific journals in statistics, applied probability,
econometrics, computational physics, signal processing, etc. Naturally, there is
a certain lack of communication across disciplines, and one of the aims of this
chapter is to unify some fundamental techniques.

In this article we concentrate on two specific methodological components of
the wide research agenda described above. Firstly, we derive importance sam-
pling schemes for diffusion bridge simulation. We refer to diffusion bridge sim-
ulation as an imputation problem, since we wish to recover an unobserved path
given its end points. Secondly, we demonstrate how the samples can provide
estimators of the diffusion transition density. Such estimators can be directly
used in a simulated likelihood framework to yield approximations to the maxi-
mum likelihood estimator for the parameters of a discretely observed diffusion.
We refer to estimation of the transition density as an estimation problem.

A fundamental complication in this context is that the diffusion bridge is an
infinite dimensional random variable. One strategy to tackle this issue is to first
approximate the stochastic process with a finite-dimensional vector, a so-called
skeleton of the bridge obtained at a collection of n intermediate time points in
[t0, t1]. This step adds a further approximation error in the analysis, which to
be eliminated n has to be chosen large enough. Subsequently, one has to devise
a MC sampling scheme for the corresponding n-dimensional distribution. Let
us for convenience call this paradigm the projection-simulation strategy. The
problem with this approach is that typically reducing the approximation bias
(increasing n) leads to an increase of the MC variance.
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An alternative strategy is to design an appropriate MC scheme which oper-
ates on the infinite dimensional space, hence in principle it returns diffusion
bridges. In our specific framework, we are interested in importance sampling
for diffusion bridges. There is a certain mathematical hurdle in this direction
since it requires changes of measure in infinite dimensional spaces. For practi-
cal implementation we might have to approximate the output of the simulation
algorithm using a skeleton of the bridge based on n intermediate points. Again,
the approximation bias is eliminated as n → ∞. Let us refer to this paradigm
as the simulation-projection strategy.

There are two main advantages of this strategy over the projection-simulation.
Firstly, it often results in a much better bias/variance tradeoff. Roughly speak-
ing, the fact that by construction a valid MC scheme exists in the limit n→∞
avoids the curse of dimensionality from which they often suffer the projection-
simulation strategies. Secondly, in some contexts the approximation step is
unnecessary, and unbiased MC methods can be devised. The retrospective sim-
ulation technique is instrumental in this context, and from an operational point
of view the output of the algorithm consists of a skeleton of the diffusion bridge
unveiled at a collection of random times.

The organisation of the chapter is as follows. In Section 4.2 essential introduc-
tory material is presented on diffusions and Monte Carlo methods. Sections
4.3 and 4.4 consider the fundamental problem of Importance Sampling and
related methods for diffusion bridges. Finally, Section 4.5 discusses exact and
unbiased methods for diffusion simulation.

4.2 Background

4.2.1 Diffusion processes

Diffusion processes are extensively used for modelling continuous-time phe-
nomena in many scientific areas; an indicative list includes economics (Merton
(1971); Bergstrom (1990)), finance (Cox, Ingersoll, and Ross (1985); Sundare-
san (2000); Chan, Karolyi, Longstaff, and Sanders (1992)), biology (McAdams
and Arkin (1997); Wilkinson (2006)), genetics (Kimura and Ohta (1971); Tan
(2002)), chemistry and physics (Kampen (1981)), dynamical systems (Arnold
(1998); Givon, Kupferman, and Stuart (2004)) and engineering (Bar-Shalom,
Kirubarajan, and Li (2002)). Their appeal lies in the fact that the model is built
by specifying the instantaneous mean and variance of the process through a
stochastic differential equation (SDE). Specifically, a d-dimensional diffusion
process V ∈ Rd is a strong Markov process defined as the solution of an SDE
of the type:

dVs = b(s, Vs) ds+ σ(s, Vs) dBs, s ∈ [0, T ] , V0 = v0; (4.1)
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B is an m-dimensional standard Brownian motion, b(·, ·) : R+×Rd → Rd is
called the drift, σ(·, · ) : R+ ×Rd → Rd×m is called the diffusion coefficient.
We will treat the initial point v0 as fixed by the design, although it is straight-
forward to model it with a distribution on Rd. In applications the drift and the
diffusion matrix are only known up to some parameters, which have to be esti-
mated. It is convenient to introduce also Γ = σσ∗, where σ∗ denotes the matrix
transpose. We assume that all coefficients are sufficiently regular so that (4.1)
has a unique weak non-explosive solution, and (crucially) that the Cameron-
Martin-Girsanov theorm holds. Details of these conditions can be found for
example in Rogers and Williams (2000).

The popularity of SDEs in time-series modelling is due to various reasons:
they provide a flexible framework for modelling both stationary processes with
quite general invariant distributions and non-stationary processes, see for ex-
ample Sørensen (2012); in many applications they arise as limits of discrete-
time and/or discrete-space Markov processes; they are a natural stochastic
counterpart to deterministic modelling using Ordinary Differential Equations
(ODEs); the Markov property is particularly convenient from a computational
perspective, allowing fast statistical inference for long time-series; smooth pro-
cesses can also be modelled by allowing the drift and diffusion coefficient to
depend on the past of the process.

The SDE (4.1) describes the microscopic behaviour of the process, i.e. its dy-
namics in infinitesimal time increments. One the other hand, the exact macro-
scopic dynamics of the diffusion process are governed by its transition density:

ps,t(v, w) = Pr [Vt ∈ dw | Vs = v ] / dw, t > s, w, v ∈ Rd . (4.2)

There are very few examples of SDEs with tractable transition densities. One
generic class of such processes is the so-called linear SDEs, where the drift
is linear in the state variable and the diffusion matrix is constant with respect
to the state variable; see the corresponding subsection of this section. This
class incorporates the Ornstein-Uhlenbeck process, a special case of which is
a model due to Vasicek (1977) for the term structure of interest rates. Also in
the context of interest rate modelling Cox et al. (1985) proposed a non-linear
SDE, which, however, has a known transition density.

Although typically intractable, the transition density has various representa-
tions which suggest different approaches for its approximation. We could iden-
tify two main representations. First, it is given as a solution of the Fokker-
Planck partial differential equation (PDE) with appropriate initial and bound-
ary conditions. There are various methods to solve the PDE numerically, see
for example Hurn, Jeisman, and Lindsay (2007) for a recent article which in-
vestigates this possibility in the context of estimation of diffusions. Second, it
can be expressed in various ways as an expectation, and these expressions lend
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themselves to Monte Carlo approximation. It is this second approach which is
pursued in this article and linked with diffusion bridge simulation.

Numerical approximation

The core of Monte Carlo methodology for SDEs is the simulation of a skeleton
of the process {Vt0 , Vt1 , . . . , Vtn}. In fact, there are two types of simulations
which can be considered for SDEs. Simulating the strong solution essentially
corresponds to jointly constructing V , the solution of (4.1), and B, the Brow-
nian motion which drives it. On the other hand, simulating the weak solution
only asks for simulating V according to the probability law implied by (4.1).

Note that due to the strong Markov property, exact simulation of a skeleton
entails sequential simulation from the transition density (4.2), which how-
ever is typically intractable. Exact simulation of strong solutions is clearly an
even harder problem. Nevertheless, a vast collection of approximate simula-
tion schemes are available based on discretizations of the SDE (4.1). The sim-
plest approximation scheme is the Euler-Maruyama approximation (Maruyama
(1955)):

Vt+∆t ≈ Vt + b(t, Vt)∆t+ σ(t, Vt) · (Bt+∆t −Bt) . (4.3)

In this form the discretisation tries to approximate the diffusion in a strong
sense. A weak Euler method is not constrained to have Gaussian innovations,
but it will have innovations with the correct mean and variance (up to a cer-
tain order of ∆t). Let V ∆

T denote an approximate solution based on a ∆-
discretization of [0, T ]. We say that a strong approximation scheme is of order
γ if

E[|VT − V ∆
T |] ≤ K∆γ

and correspondingly a weak approximation scheme is of order γ if

|E[g(VT )]− E[g(V ∆
T )]| ≤ K∆γ

for suitable test functions g. Under suitable regularity conditions on the coef-
ficients of the SDE, a strong Euler scheme is of order 1/2 in the strong sense,
whereas in general Euler schemes are of order 1 in the weak sense. Many
higher order schemes exist. Some are based on the Itô-Taylor expansion, and
there are also implicit and split-step methods (which are particularly important
in the construction of MCMC methods using diffusion dynamics). For a de-
tailed exposition of numerical approximation of SDEs we refer to Kloeden and
Platen (1995).

Diffusion bridges

We now consider the dynamics of the process V not only conditioned on its
initial point, V0 = u, but also on its ending point, VT = v. The conditioned
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process, which we will also denote by V (the distinction from the uncondi-
tioned process will be clear from the context), is still Markov, and the theory of
h-transforms, see for example Chapter IV.39 of Rogers and Williams (2000),
allows us to derive its SDE:

dVs = b̃(s, Vs) ds+ σ(s, Vs) dBs, s ∈ [0, T ] , V0 = u;

b̃(s, x) = b(s, x) + [σσ∗](s, x)∇x log ps,T (x, v) . (4.4)

There are three main remarks on this representation. First, note that the local
characteristics of the unconditioned and conditioned processes are the same, in
the sense that they share the same diffusion coefficient. Second, the drift of the
conditioned process includes an extra term which forces the process to hit v at
time T . Third, although insightful for the bridge dynamics, (4.4) is typically
intractable since the drift is expressed in terms of the transition density.

Therefore, the diffusion bridge solves an SDE whose drift is intractable, hence
even approximate simulation using the schemes described above is infeasible.
Application of that technology would require first the approximation of the
transition density, and consequently a discretization of (4.4). This is clearly
impractical, and it is difficult to quantify the overall error of the approach.
Instead, we will consider alternative Monte Carlo schemes for simulating dif-
fusion bridges.

Data and likelihood

In some contexts we can observe directly a path of the modelled process V =
(Vs, s ∈ [0, T ]). More realistically we might be able to observe a skeleton of
the process {Vt0 , Vt1 , . . . , Vtn}, but where the frequency of the data can be
chosen arbitrarily high. A typical example is molecular dynamics modelling,
where the data is simulated according to a complex deterministic model, see for
example Pavliotis, Pokern, and Stuart (2012). A rich mathematical framework
is available for statistical analyses in this high frequency regime, see for exam-
ple Prakasa Rao (1999). Two main components of this theory is the quadratic
variation identity and the Cameron-Martin-Girsanov change of measure. Ac-
cording to the former, the local characteristics of the SDE can be completely
identified given an observed path. In particular, for any t ∈ [0, T ],

lim
∆→0

∑
tj≤t

(Vtj+1
− Vtj )(Vtj+1

− Vtj )∗ =

∫ t

0

[σσ∗](s, Vs)ds (4.5)

in probability for any partition 0 = t0 ≤ t1 ≤ · · · ≤ tn = t, whose mesh
is ∆; see Jacod (2012). This implies that from high frequency data we can
consistently estimate the diffusion coefficient. A further implication is that the
probability laws which correspond to SDEs with different diffusion coefficients
are mutually singular. On the contrary, under weak conditions the laws which
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correspond to SDEs with the same diffusion coefficient but different drifts are
equivalent and a simple expression for the Radon-Nikodym derivative is avail-
able. This is the context of the Cameron-Martin-Girsanov theorem for Itô pro-
cesses, see for example Theorem 8.6.6 of Øksendal (1998).

In the context of (4.1) consider functionals u and α of the dimensions of b and
assume that u solves the equation:

σ(s, x)h(s, x) = b(s, x)− α(s, x) .

Additionally, let Pb and Pα be the probability laws implied by the (4.1) with
drift b and α respectively. Then, under certain conditions Pb and Pα are equiv-
alent with density (continuous time likelihood) on Ft = σ(Vs, s ≤ t), t ≤ T ,
given by

dPb
dPα

∣∣∣∣
t

= exp

{∫ t

0

h(s, Vs)
∗dBs −

1

2

∫ t

0

[h∗h](s, Vs)ds

}
. (4.6)

In this expression, B is the Pα Brownian motion, and although this is the usual
probabilistic statement of the Cameron-Martin-Girsanov theorem, it is not a
natural expression to be used in statistical inference, and alternatives are nec-
essary. For example, note that when σ can be inverted, the expression can be
considerably simplified. Recall that Γ = σσ∗, then the density becomes

exp

{∫ t

0

[(b− α)∗Γ−1](s, Vs)dVs −
1

2

∫ t

0

[(b− α)∗Γ−1(b+ α)](s, Vs)ds

}
.

(4.7)
Appendix 2 contains a simple presentation of change of measure for Gaussian
multivariate distributions, which might be useful for the intuition behind the
Girsanov theorem. For statistical inference about the drift (4.1) the Girsanov
theorem is used with α = 0. Any unknown parameters in the drift can be
estimated by using (4.7) as a likelihood function. In practice, the integrals in the
density are approximated by sums, leading to an error which can be controlled
provided the data are available at arbitrarily high frequency.

Nevertheless, in the majority of applications, V can only be partially observed.
The simplest case is that of a discretely observed diffusion, where we observe
a skeleton of the process {Vt0 , Vt1 , . . . , Vtn}, but without any control on the
frequency of the data. As a result, the approach described above is not feasi-
ble since it might lead to large biases, see for example Dacunha-Castelle and
Florens-Zmirou (1986). From a different persective, we deal with data from a
Markov process, hence the joint Lebesgue density of a sample (discrete time
likelihood) is simply given by the product of the transition densities

n−1∏
i=0

pti,ti+1
(Vti , Vti+1

) . (4.8)

Unknown parameters in the drift and diffusion coefficient can be estimated
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working with this discrete-time likelihood. Theoretical properties of such esti-
mators are now well known in particular under ergodicity assumptions, see for
example Kessler (1997); Gobet (2002); Kutoyants (2004). Unfortunately the
discrete-time likelihood is not practically useful in all those cases where the
transition density of the diffusion is analytically unavailable.

More complicated data structures are very common. In many applications V
consists of many components which might not be synchroneously observed,
or there the observation might be subject to measurement error, or there might
be components completely latent. However, likelihood estimation of discretely
observed diffusions will serve as a motivating problem throughout the subse-
quent methodological sections.

Linear SDEs

A great part of the diffusion bridge simulation methodology is based on the
tractability of linear SDEs and uses this class as a building block. Hence, it
is useful to include a short description of this class. This is a large family of
SDEs characterised by state-independent diffusion coefficient and drift which
is linear in the state variable. In the most general form we have

dVs = (D(s)Vs +G(s)) ds+ E(s) dBs ; (4.9)

hence b(s, x) = D(s)x + G(s), and σ(s, x) = E(s), where D,G,E are
matrix-valued functions of appropriate dimensions, which are allowed to de-
pend only on time.

The SDE in (4.9) can be solved explicitly when d = m = 1. We define P (s)
to be the solution of the linear ODE

dP

ds
= D(s)P (s) , P (0) = 1 . (4.10)

Then the SDE is solved by

Vt = P (t)

∫ t

0

P (s)−1(G(s)ds+ E(s)dBs) + P (t)v0 . (4.11)

It follows that V is a Gaussian process with meanmt := E(Vt) and covariance
matrix Ct := Cov(Vt,Vt), which solve the systems of ODEs

dmt

dt
= D(t)mt +G(t) , m0 = v0

dCt
dt

= D(t)Ct + CtD(t)∗ + Γ(t) , C0 = 0.

In various contexts these ODEs can be solved analytically. When d = m = 1,
D(t)∗ = D(t). When d > 1, it is not generally possible to solve explicitly
(4.9) at that level of generality. The above argument can be carried through to
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the d > 1 case when D(s)D(t) = D(t)D(s) for all t, s, in which case the
matrix/vector versions of the previous equations remain valid.

The transition density of linear SDEs is Gaussian with mean and variance
which can be identified in the cases discussed above. A consequence of this is
a further appealing feature of linear SDEs, that the corresponding bridge pro-
cesses have tractable dynamics. This can be seen directly from the h-transform,
since the gradient of the log-density is a linear function of the state, hence from
(4.4) we have that the bridge process is also a linear SDE. This can be proved
also from first principles working with the finite-dimensional distributions of
the conditioned process, see for example Theorem 2 of Delyon and Hu (2006).
In the simplest setup where b = 0 and σ is the identity matrix, the linear SDE
is the Brownian motion and the bridge process conditioned upon VT = v is
known as Brownian bridge, which solves the time-inhomogeneous SDE

dVs =
v − Vs
T − s

ds+ dBs . (4.12)

Although the coefficient of V in the drift is time-inhomogenous, it satisfies the
commutability condition given above, and the SDE can be solved to yield for
0 < t1 < t2 < T ,

Vt2 | Vt1 ∼ N
(
Vt1 +

t2 − t1
T − t1

(v − Vt1),
(t2 − t1)(T − t2)

T − t1

)
. (4.13)

4.2.2 Importance sampling and identities

Importance sampling (IS) is a classic Monte Carlo technique for obtaining
samples from a probability measure P using samples from another probabil-
ity measure Q, see for example Chapter 2.5 of Liu (2008) for an introduction.
Mathematically it is based on the concept of change of measure. Suppose that
P is absolutely continuous with respect to Q with Radon-Nikodym density
f(x) = P(dx)/Q(dx). Then, in its simplest form IS consists of construct-
ing a set of weighted particles (xi, wi), i = 1, . . . , N , where xi ∼ Q, and
wi = f(xi). This set gives a Monte Carlo approximation of P, in the sense that
for suitably integrable functions g, we have that∑N

i=1 g(xi)wi
N

(4.14)

is an unbiased and consistent estimator of

EP[g] :=

∫
g(x)P(dx) .

However, IS can be cast in much more general terms, an extension particularly
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attractive in the context of stochastic processes. First, note that in most appli-
cations f is known only up to a normalising constant, f(x) = cfu(x), where
only fu can be evaluated and

c = EQ[fu] . (4.15)

The notion of a properly weighted sample, see for example Section 2.5.4 of
Liu (2008) refers to a set of weighted particles (xi, wi), where xi ∼ Q and wi
is an unbiased estimator of fu(xi), that is

EQ[wi | xi] = fu(xi) .

In this setup we have the fundamental equality for any integrable g

EQ[gw] = EP[g] EQ[w] . (4.16)

Rearranging the expression we find that a consistent estimator of EP[g] is given
by ∑N

i=1 g(xi)wi∑N
i=1 wi

. (4.17)

When wi is an unbiased estimator of f(xi) we have the option of using (4.14),
thus yielding an unbiased estimator. However, (4.17) is a feasible estimator
when c is unknown.

Although the first moment of w (under Q) exists by construction, the same is
not true for its second moment. Hence it is a minimal requirement of a “good”
proposal distribution Q that EQ[w2] < ∞. In this case, and using the Delta
method for ratio of averages it can be shown that (4.17) is often preferable to
(4.14) in a mean square error sense because the denominator acts effectively as
a control variable. Therefore it might be preferable even when c is known. The
same analysis leads to an interesting approximation for the variance of (4.17).
Assume for simplicity that EQ[w] = 1. Then exploiting the fact that

EP[w] = varQ[w] + 1 ,

using a further Taylor expansion we obtain the following approximation for the
variance of (4.17):

1

N
varP[g](1 + varQ[w]) . (4.18)

Although this might be a poor approximation when the residual terms are sig-
nificant, the expression motivates the notion of the effective sample size (ESS),
1/(varQ[w]+1). This corresponds to an approximation of the ratio of variances
of a Monte Carlo estimator of EP[g] based on independent samples from P, and
the IS estimator (4.17). The most appealing feature of the above approximation
is that it does not depend on the function g, hence ESS can be used as a rough
indication of the effectiveness of the IS approximation of P. N×ESS can be
interpreted as the equivalent number of independent samples from P. For more
details see Section 2.5.3 of Liu (2008) and references therein.
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The general framework where w is an unbiased estimator of the Radon-Niko-
dym derivative between P and Q, opens various possibilities: constructing new
Monte Carlo schemes, see e.g Partial Rejection Control, see Section 2.6 of Liu
(2008), devising schemes whose computational complexity scales well with
the number of particles N , e.g. the auxiliary particle filter of Pitt and Shephard
(1999), or applying IS in cases where even the computation of fu is infeasi-
ble, see e.g. the random weight IS for diffusions of Beskos, Papaspiliopou-
los, Roberts, and Fearnhead (2006); Fearnhead, Papaspiliopoulos, and Roberts
(2008) which is also covered in detail in this article.

IS includes exact simulation as a special case when Q = P. Another special
case is rejection sampling (RS), which assumes further that fu(x) is bounded in
x by some calculableK <∞. Then, if we accept each draw xi with probability
fu(xi)/K, the resulting sample (of random size) consists of independent draws
from P. This is a special case of the generalised IS where wi is a binary 0-1
random variable taking the value 1 with probability fu(xi)/K.

The IS output can be used in estimating various normalising constants and
density values involved in the costruction. It follows directly from the previous
exposition that c = EQ[w]. Moreover, note that

f(x) = EQ[w | x]/EQ[w] . (4.19)

4.3 IS estimators based on bridge processes

Let V be a multivariate diffusion (4.1) observed at two consecutive time points
V0 = u, VT = v, and consider the following two problems: a) (imputation)
the design of efficient IS scheme for the corresponding diffusion bridge, and b)
(estimation) the MC estimation of the corresponding transition density (4.2).
In this section we consider these problems for a specific class of diffusions:
those for which the diffusion coefficient is indepedent of V . In this context the
methodology is much simpler and important developments have been made
since the mid-80s. Furthermore, under additional structure exact simulation of
diffusion bridges is feasible (see Section 4.5).

Before detailing the approach let us briefly discuss the restriction imposed by
the assumption that the diffusion coefficient is independent of V . For scalar
diffusions when σ(·, ·) is appropriately differentiable, by Itô’s rule the trans-
formation Vs → η(s, Vs) =: Xs, where

η(s, u) =

∫ u 1

σ(s, z)
dz, (4.20)

is any anti-derivative of σ−1(s, ·), yields a diffusion X with diffusion coeffi-
cient 1. A particle approximation of the diffusion bridge of X directly implies
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one for V and the transition densities of the two processes are linked by a
change of variables formula. Therefore, the methodology of this section ef-
fectively covers all scalar diffusions, as well as a wide variety of multivariate
processes used in applications. At the end of this section we discuss the limi-
tations of the methodology based on bridge processes.

Let Pb be the law of the diffusion V on [0, T ] with V0 = u (abusing slighlty
the notation set up in Section 4.2.1). Similarly, let P0 denote the law of the
driftless process dVs = σ(s)dBs. Crucially, in this setting the driftless process
is a linear SDE and P0 is a Gaussian measure. Additionally, let p0,T (u, v) and
G0,T (u, v) denote the transition densities of the two processes. Let P∗b and P∗0
denote the laws of the corresponding diffusion bridges conditioned on VT = v.
As we discussed in Section 4.2.1, the conditioned driftless process is also a
linear SDE.

We present a heuristic argument for deriving the density dP∗b/dP∗0. Consider
the decomposition of the laws Pb and P0 into the marginal distributions at
time T and the diffusion bridge laws conditioned on VT . Then by a marginal-
conditional decomposition we have that for a path V with V0 = u,

dPb
dP0

(V ) 1[VT = v] =
p0,T (u, v)

G0,T (u, v)

dP∗b
dP∗0

(V ) . (4.21)

The term on the left-hand side is given by the Cameron-Martin-Girsanov theo-
rem (see Section 4.2.1). Hence, by a rearrangement we get the density between
the diffusion bridge laws:

dP∗b
dP∗0

(V ) =
G0,T (u, v)

p0,T (u, v)
exp

{∫ T

0

h(s, Vs)
∗dBs −

1

2

∫ T

0

[h∗h](s, Vs)ds

}
,

(4.22)
where h solves σh = b (see Section 4.2.1), and B is Brownian motion.

Additional structure on b and σ can lead to further simplifications of (4.22).
We emphasize the setting where σ is the identity matrix, the diffusion is time-
homogenous and of gradient-type, i.e. there exists a field H such that b(v) =
∇vH(v). When the function ρ(v) ∝ exp{H(v)/2} is integrable, the diffusion
is a reversible Markov process with ρ as the invariant density. In this setting,
we can use Itô’s rule to perform integration by parts in the exponent of (4.22)
to eliminate the stochastic integral, and obtain

dP∗b
dP∗0

(V )

=
G0,T (u, v)

p0,T (u, v)
exp

{
H(v)−H(u)− 1

2

∫ T

0

(
||b(Vs)||2 +∇2H(Vs)

)
ds

}
.

(4.23)

(4.22) forms the basis for a particle approximation of the law of P∗b using
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proposals from P∗0. An idealized algorithm proceeds by first generating a lin-
ear SDE according to P∗0, and subsequently, by assigning weight according to
(4.22). Note in particular that B in (4.22) is the Brownian motion driving the
proposed linear bridge. The weights are known only up to a normalizing con-
stant due to the presence of p0,T (u, v). However, as we saw in Section 4.2.2
this poses no serious complication in the applciation of IS. Note that G0,T (u, v)
is a Gaussian density which can be computed and be included explicitly in the
weights, although this is not necessary for the IS.

Practically, we will have to simulate the proposed bridge at a finite collection
ofM times in [0, T ] and approximate the integrals in the weights by sums. This
is an instance of the simulation-projection strategy outlined in Section 4.1. It
introduces a bias in the MC approximations which is eliminated asM →∞. It
is a subtle and largely unresolved issue how to distribute a fixed computational
effort between M and N in order to minimize the MC variance of estimates of
expectations of a class of test functions. In Section 4.5 we will see that in the
more specific case of (4.23) the approximations can be avoided altogether and
construct a properly weighted sample using unbiased estimators of the weights.

It follows directly from the general development of Section 4.2.2 that the dif-
fusion transition density can be consistently estimated using a particle approx-
imation of P∗b. From (4.15) it follows the key identity

p0,T (u, v)

= G0,T (u, v)EP∗0

[
exp

{∫ T

0

h(s, Vs)
∗dBs −

1

2

∫ T

0

[h∗h](s, Vs)ds

}]
.

(4.24)
In the case where b is of gradient form we can correspondingly write

p0,T (u, v) = G0,T (u, v) exp{H(v)−H(u)}EP∗0

[
exp

{
−
∫ T

0

φ(Vs)ds

}]
,

(4.25)
where φ(z) = (||b(z)||2 + ∇2H(z))/2. Hence, the transition density is esti-
mated by the average of the IS weights. It is at this stage where the explicit
computation of the Gaussian density in the denominator of (4.22) becomes in-
dispensable: if it were unknown we could only estimate the ratio of the two
transition densities, but not p0,T (u, v).

Historical development

The expressions (4.22) and (4.24) have been derived several times in the liter-
ature with different motives. Remarkably, there is almost no cross-referencing
among the papers which have derived the expressions. To our best knowl-
edge, the expressions appear for the first time for scalar diffusions in the proof
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of Theorem 1 of Rogers (1985). The context of the Theorem is to establish
smoothness of the transition density. Again for scalar diffusions the expres-
sions appear in the proofs of Lemma 1 of Dacunha-Castelle and Florens-Zmirou
(1986). The context of that paper is a quantification of the error in parameter
estimates obtained using approximations of the transition density. Since both
papers deal with scalar diffusions, they apply the integration by parts to get
the simplified expression (4.23). More recently, Durham and Gallant (2002)
working in a projection-simulation paradigm, derive effectively an IS for P∗b
and an estimator of p0,T (u, v), which in the case of constant diffusion coeffi-
cient are discretizations of (4.22) and (4.24) (see also Section 4.4 below). The
context here is MC estimation of diffusion models. Since the authors work in a
time-discretized framework from the beginning, the possibility to perform in-
tegration by parts when possible, is not at all considered. Nicolau (2002) uses
the Dacunha-Castelle and Florens-Zmirou (1986) expression for the transition
density as a basis for MC estimation using approximation of the weights based
on M intermediate points. Beskos, Papaspiliopoulos, Roberts, and Fearnhead
(2006) used (4.23) as a starting point for the exact simulation of diffusions and
(4.24) as a basis for unbiased estimation of the transition density (see also Sec-
tion 4.5). Finally, Delyon and Hu (2006) state (4.22) as Theorem 2 and prove
it for multivariate processes.

Limitations of the methodology

The outline of the methodology we have described in this section for IS approx-
imation of P∗b is to find a probability measure P0 which is absolutely continuous
with respect to the unconditional measure Pb, and probabilistically condition
the former on the same event that the latter is conditioned upon. Hence, the
proposed random variables are indeed bridge processes. The same develop-
ment can be carried out even when σ depends on the state variable. In the more
general setup P0 is the law of dVs = σ(s, Vs)dBs, which is now a non-linear
diffusion. Hence the corresponding bridge process will be typically intractable
(see Section 4.2.1) and the IS practically infeasible. Therefore, the methodol-
ogy of this section applies only to diffusions which can be transformed to have
state-independent diffusion coefficient.

For multivariate diffusions with V -dependent volatility the generalized version
of transformation (4.20) involves the solution of an appropriate vector differ-
ential equation which is often intractable or insolvable, see for example Aı̈t-
Sahalia (2008). A very popular class of models which have state-dependent
volatility are stochastic volatility models employed in financial econometrics.
The methodology of space transformation can be generalised to include time-
change methodology to allow models like stochastic volatility models to be
addressed, see Kalogeropoulos, Roberts, and Dellaportas (2010).
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Summarising, constructing valid and easy to simulate proposals by condition-
ing is difficult when we deal with multivariate processes with state-dependent
diffusion coefficient. Instead, the next section considers a different possibility
where the proposals are generated by a process which is explicitly constructed
to hit the desired end-point at time T . We call such processes guided.

4.4 IS estimators based on guided processes

In this section we consider the same two problems described in the beginning
of Section 4.3 but for processes with state-dependent diffusion coefficient. We
consider IS approximation of the law of the target diffusion bridge, P∗b, us-
ing appropriate diffusion processes as proposals. The design of such proposals
is guided by the SDE of the target bridge, given in (4.4), and the Cameron-
Martin-Girsanov theorem. Hence, the diffusion coefficient of any valid pro-
posal has to be precisely σ(s, v), and the drift has to be such that it forces the
process to hit the value v at time T almost surely. The following processes are
natural candidates under these considerations:

[G1] dVs = −Vs − v
T − s

ds+ σ(s, Vs) dBs (4.26)

[G2] dVs = −Vs − v
T − s

ds+ b(s, Vs) ds+ σ(s, Vs)dBs . (4.27)

Note that the drift of [G1] (“G” stands for “Guided”) is precisely the one of
the Brownian bridge (4.12); the one of [G2] mimics the structure of the drift
of the target bridge process (4.4) but substitutes the intractable term in the drift
by the Brownian bridge drift. Let QG1 and QG2 denote the laws of [G1] and
[G2] correspondingly. We will use [G] to refer to a generic guided process.

The mathematical argument which yields the IS is formally presented in Sec-
tion 4 of Delyon and Hu (2006). The construction requires for tractability that
σ is invertible so that we can work with (4.7) and introduce explicitly V (in-
stead of the driving B) in the weights. To simplify the exposition, we present
the argument when d = 1; the formulae extend naturally to the multidimen-
sional case, under the same assumptions.

We define for any z and s ≤ T ,

A(s, z) = (σ(s, z))−2 .

Up to any time t < T , QG2|t (resp. QG1|t) is absolutely continuous with
respect to P∗b|t, and we can apply the Cameron-Martin-Girsanov theorem (4.7).
The resulting likelihood ratio, although of expected value 1, it converges almost
surely to 0 as t→ T . To identify the leading term which drives the weights to
0 (denoted ψt below) we apply an integration by parts to the stochastic integral
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in the exponent. Let us define the following functionals

ψt = exp

{
− 1

2(T − t)
(Vt − v)2A(t, Vt)

}
Ct =

1

(T − t)1/2

log(φG2
t ) = −

∫ t

0

(Vs − v)

T − s
A(s, Vs)b(s, Vs)ds

−
∫ t

0

(Vs − v)2

2(T − s)
� dA(s, Vs)

log(φG1
t ) =

∫ t

0

b(s, Vs)A(s, Vs)dVs −
1

2

∫ t

0

b(s, Vs)
2A(s, Vs)ds

−
∫ t

0

(Vs − v)2

2(T − s)
� dA(s, Vs)

where the �-stochastic integral is understood as the limit of approximating
sums where the integrand is evaluated at the right-hand time-points of each
sub-interval (as opposed to the left-hand in the definition of the Itô stochastic
integral). Then, we have that

dQG2

dPb

∣∣∣∣
t

=
√
T exp

{
(u− v)2A(0, u)

2T

}
Ctψt/φ

G2
t

dQG1

dPb

∣∣∣∣
t

=
√
T exp

{
(u− v)2A(0, u)

2T

}
Ctψt/φ

G1
t .

Therefore, for any measurable (with respect to the filtration of V up to t) non-
negative function ft, we have that

EPb [ft(V )ψt] = C−1
t T−1/2 exp

{
− (u− v)2A(0, u)

2T

}
EQG2

[ft(V )φG2
t ]

= C−1
t T−1/2 exp

{
− (u− v)2A(0, u)

2T

}
EQG1

[ft(V )φG1
t ]

EPb [ψt] = C−1
t T−1/2 exp

{
− (u− v)2A(0, u)

2T

}
EQG2

[φG2
t ]

= C−1
t T−1/2 exp

{
− (u− v)2A(0, u)

2T

}
EQG1

[φG1
t ] ,

where the expression for EPb [ψt] is obtained from the first expression with
ft = 1.

Hence, we derive the key equality, that for any positive measurable ft,

EPb [ft(V )ψt]

EPb [ψt]
=

EQG2
[ft(V )φG2

t ]

EQG2
[φG2
t ]

=
EQG1

[ft(V )φG1
t ]

EQG1
[φG1
t ]

.
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The final part of the argument consists of taking the limit t → T on each
part of the previous equality (this requires a careful non-trivial technical argu-
ment, see proof of Theorem 5 and related Lemmas of Delyon and Hu (2006)).
The limit on the left hand side converges to the regular conditional expectation
EP∗b [fT (V )] = EPb [fT (V ) | VT = v]; intuitively this can be verified by the
form of ψt given above. The other two terms converge to EQG2

[fT (V )φG2
T ]/

EQG2
[φG2
T ] and EQG1

[fT (V )φG1
T ]/EQG1

[φG1
T ], respectively. Therefore, we have

that

dP∗b
dQG2

(V ) =
φG2
T

EQG2
[φG2
T ]

(4.28)

dP∗b
dQG1

(V ) =
φG1
T

EQG1
[φG1
T ]

, (4.29)

where the denominators on the right-hand side in each expression are normalis-
ing constants. These two expressions are all is needed for the IS approximation
of the diffusion bridge. Practically, as in Section 4.3, we will have to simulate
the proposed bridge at a finite collection of M times in [0, T ] and approxi-
mate the integrals in the weights by sums, which introduces a bias in the MC
approximations which is eliminated as M →∞.

We now address the problem of deriving a transition density identity, as we
did in (4.24). To our best knowledge, this is the first time that such an expres-
sion appears in the literature. Note, however, that our argument is informal and
certain technical conditions (outside the scope of this article) will have to be
imposed for a formal derivation. Working with guided processes, this deriva-
tion is much less immediate than in Section 4.3.

Since ψt is a function of Vt only, we have that

EPb [Ctψt]

=

∫
1√
T − t

exp

{
− 1

2(T − t)
(w − v)2A(t, w)

}
p0,t(u,w)dw

=

∫
exp

{
−1

2
z2A(t, z

√
T − t+ v)

}
p0,t(u, z

√
T − t+ v)dz

→t→T p0,T (u, v)

∫
exp

{
−1

2
z2A(T, v)

}
dz =

√
2π p0,T (u, v)√
A(T, v)

,

where taking the limit we have used dominated convergence (which clearly
requires certain assumptions). We can use this expression, together with the
identities which link EPb [Ctψt] with EQGi [φ

Gi
t ], i = 1, 2 given above, and the

fact that the latter converge as t → T to EQGi [φ
Gi
T ], i = 1, 2 (which is shown
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in Delyon and Hu (2006)), to establish the fundamental identity

p0,T (u, v) =

√
A(T, v)

2πT
exp

{
− (u− v)2A(0, u)

2T

}
EQGi [φ

Gi
T ] , i = 1, 2 .

(4.30)
Therefore, given the IS output the transition density can be estimated.

Connections to the literature and to Section 4.3

The first major contribution to IS in this context was made in the seminal ar-
ticle of Durham and Gallant (2002) in the context of estimating the transition
density of non-linear diffusions for statistical inference. They took, however,
a projection-simulation approach, they first discretized the unobserved paths
and then considered discrete-time processes as proposals. They suggest two
different discrete-time processes as proposals, the so-called “Brownian bridge”
proposal and the “modified Brownian bridge.” They both are inspired by (and
intend to be a type of discretization of) (4.26). Indeed, their “Brownian bridge”
proposal is precisely a first-order Euler approximation of (4.26). The Euler
approximation is not very appealing here since it is unable to capture the in-
homogeneity in the variance of the transition distribution of (4.26). To see this
more clearly, consider the simplified case where σ = 1 and contrast (4.12)
with (4.13) when t2 − t1 is small. The Euler approximation suggests constant
variance for the time-increments of the process, which is a very poor approxi-
mation when t ≈ T . To mitigate against this lack of heteroscedasticity, Durham
and Gallant (2002) use Bayes’ theorem together with heuristic approximations
to find a better approximation to the transition density of (4.26). The process
with the new dynamics is termed “modified Brownian bridge,” and it corre-
sponds to the exact solution of the Brownian bridge SDE when σ = 1. Gen-
erally, due to various approximations at various stages the connection between
IS for paths and estimation of the transition density is not particularly clear in
their paper.

It is important to observe that the samplers and identities in this section be-
come precisely those of Section 4.3 when σ is constant. An interesting devi-
ation, is the use of (4.27) when σ is constant, which does not correspond to
the setup of Section 4.3, and has the effect of making non-linear the proposal
process (hence exact skeletons cannot be simulated in this case) but removes
the stochastic integral from the weights (which typically has as a variance re-
duction effect).

As a final remark, note that when possible it is advisable to transform the diffu-
sion to have unit volatility. Apart from facilitating the methodology of Section
4.3 the tansformation has been empirically shown to be a good variance reduc-
tion technique even for schemes which do not require it, see for example the
discussion in Durham and Gallant (2002).
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4.5 Unbiased Monte Carlo for diffusions

In many cases (including most all one-dimensional diffusions with sufficiently
smooth coefficients) the need to use a fine discretisation for the diffusion sam-
ple path (and the associated approximation error) can be completely removed.
This section will very briefly describe some of the basic ideas behind this
approach, though for detailed account the reader is referred to Beskos, Pa-
paspiliopoulos, Roberts, and Fearnhead (2006); Fearnhead et al. (2008). The
methodology here is closely related to allied exact simulation algorithms for
diffusions as described in Beskos and Roberts (2005); Beskos, Papaspiliopou-
los, and Roberts (2006, 2008).

For simplicity we shall focus on the problem of estimating (unbiasedly) the
diffusion transition density. The use of this approach in Monte Carlo maximum
likelihood and related likelihood inference methodology is described in detail
in Beskos, Papaspiliopoulos, Roberts, and Fearnhead (2006). We shall assume
that the diffusion can be reduced to unit diffusion coefficient, and that the drift
b can be expressed in gradiant form b = ∇H . We can therefore express the
transition density according to (4.25).

Here we describe the so-called generalised Poisson estimator for estimating
p0,T (u, v). A simple Taylor expansion of (4.25) for an arbitrary constant c
gives

p0,T (u, v)

= G0,T (u, v) exp{H(v)−H(u)}e−cTEP∗0

 ∞∑
κ=0

(∫ T
0 (c− φ(Vs))ds

)κ
κ!

 .
(4.31)

For an arbitrary function g(·), E(
∫ T

0 g(Xs)ds) is readily estimated unbiasedly
by Tg(U) where U ∼ U(0, T ). This idea is easily generalised to consider
E((
∫ T

0 g(Xs)ds)
κ) for arbitrary positive integer κ. In this case the unbiased

estimator is just Tκ
∏κ
i=1 g(XUi) where {Ui} denote an independent collec-

tion of U(0, T ) variables.

Therefore, letting {qi} denote positive probabilities for all non-negative inte-
gers i, an unbiased estimator for p0,T (u, v) is given for arbitrary constant c
by

p̂0,T (u, v) =
G0,T (u, v) exp{H(v)−H(u)− cT}T I

∏I
i=1(c− φ(VUi))

qII!
(4.32)

where I ∼ q. The choice of the importance proposal q is critical in determining
the efficiency of the estimator p̂0,T (u, v), and this is discussed in more detail



330 IMPORTANCE SAMPLING TECHNIQUES

in Beskos and Roberts (2005); Beskos, Papaspiliopoulos, and Roberts (2006);
Beskos et al. (2008).

For the purposes of parameter estimation, it is critical to be able to obtain den-
sity estimates simultaneously for a collection of plausible parameter values.
This is one important advantage of the form of the estimator in (4.32) since
the estimator can be applied simultaneously to provide unbiased estimators of
densities at a continuum of parameter values in such a way that the estimated
likelihood surface is itself continuous (and of course unbiased for each parame-
ter choice). As well as being of practical use, these properties are indispensible
for proving consistency of Monte Carlo MLEs for large sample sizes Beskos,
Papaspiliopoulos, and Roberts (2009).
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4.6 Appendix 1: Typical problems of the projection-simulation paradigm
in MC for diffusions

In this article we have advocated a simulation-projection paradigm, that is, de-
signing Monte Carlo methods on the path space which are then, if necessary,
discretized for practical implementation. Apart from the transparency of the
resulting methods, the motivation for adopting this paradigm is also due to typ-
ical problems faced by the projection-simulation alternative. In this Appendix
we mention two typical problematic cases. The first concerns the estimation
of the transition density by Monte Carlo, and the the simultaneous parame-
ters estimation and imputation of unobserved paths using the Gibbs sampler.
A common characteristic in both is that decrease in approximation bias comes
with an increase in Monte Carlo variance. For the sake of presentation we only
consider scalar homogeneous diffusions.

The problem of estimating the transition density by Monte Carlo and use of
the approximation for likelihood inference for unknown parameters was first
considered by Pedersen (1995). Using the Chapman-Kolmogorov equation and
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Euler approximation he obtained

p0,T (u, v)

= EPb [pt,T (Vt, v)]

≈ EPb

[
Ctψt

A(t, Vt)
1/2

√
2π

× exp

{
−1

2
A(t, Vt)(b(t, Vt)

2(T − t) + 2(v − Vt)b(t, Vt))
}]

with the definitions as in Section 4.4. This suggest an IS approximation where
we generate (unconditionally) paths up to time t < T and associate weights to
each path given by

ψtA(t, Vt)
1/2 exp

{
−1

2
A(t, Vt)(b(t, Vt)

2(T − t) + 2(v − Vt)b(t, Vt))
}
.

Due to the Euler approximation on [t, T ] the weights have a bias which is
eliminated as t→ T . On the other hand, the leading term in the weights for t ≈
T is ψt, thus the variance of the weights tends to infinity as t→ T . (There is of
course additional potential bias in simulating Vt using a discretization method;
this however, can be eliminated with increasing Monte Carlo effort without
inflating the variance of the weights). The approach we expose in Sections 4.3
and 4.4 is designed to overcome this problem.

Bayesian inference for unknown parameters in the drift and the volatility of
the SDE and the simultaneous imputation of unobserved paths for discretely
observed diffusions, was originally considered by Elerian, Chib, and Shephard
(2001); Eraker (2001); Roberts and Stramer (2001) (and remains a topic of
active research). The first two articles work in a projection-simulation frame-
work, hence the unobserved path between each pair of observations (i.e each
diffusion bridge) is approximated by a skeleton of, M say, points. The joint
distribution of the augmented dataset can be approximated using for example
the Euler scheme (which gets increasingly accurate asM increases). This is ef-
fectively equivalent to using a Riemann approximation to the continuous-time
likelihood (4.7). Therefore, we deal with a missing data problem where, given
additional data (the imputed values in-between the observations) the likelihood
is available, although here the missing data (for each pair of observations) are
in principle infinite-dimensional and are approximated by an M -dimensional
vector. Hence the computations are subject to a model-approximation bias
which is eliminated in the limit M → ∞. The Gibbs sampler is a popular
computational tool for parameter estimation and simultaneous imputation of
missing data in such a context. It consists of iterative simulation of missing
data given the observed data and current values of prameters, and the simula-
tion of the parameters according to their posterior distribution conditionally on
the augmented dataset.
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There are two main challenges in designing a Gibbs sampler for discretely ob-
served diffusions: how to efficiently simulate the M intermediate points given
the endpoints for each pair of observations, and how to reduce the dependence
between the missing data and the parameters. As far as the first problem is
concerned, note that it is directly related to the diffusion bridge simulation,
and it is best understood thinking of the simulation in the infinite-dimensional
space. For diffusions which can be transformed to have unit volatility (as in
Section 4.3) Roberts and Stramer (2001) describe a Markov chain Monte Carlo
(MCMC) scheme which uses global moves on the path space, an approach very
closely related to that described in Section 4.3. More recently, global moves
MCMC using the processes discussed in Section 4.4 as proposals has been con-
sidered by Golightly and Wilkinson (2008); Chib, Shephard, and Pitt (2004).
For local moves MCMC designed on the path space, see for example Beskos,
Roberts, and Stuart (2009).

However, it is the second challenge we wish to emphasize in this section, i.e.
the dependence between the imputed data and the parameters. Strong posterior
dependence between missing data and parameters is known to be the principal
reason for slow convergence of the Gibbs sampler and results in high vari-
ance of the estimates based on its output, see for example Papaspiliopoulos,
Roberts, and Sköld (2007). The dependence between imputed data and pa-
rameters in this application can only be understood by considering a Gibbs
sampler on the infinite-dimensional space, i.e the product space of parame-
ters and diffusion bridges. This approach was adopted in Roberts and Stramer
(2001) where it was noticed that due to the quadratic variation identity (4.5)
there is complete dependence between the missing paths and any parameters
involved in the volatility. Hence, an idealized algorithm (M = ∞) would be
completely reducible, whereas in practical applications where M is finite we
observe that decreasing the bias (increasing M ) causes an increase of the mix-
ing time of the algorithm and a corresponding increase in the variance of esti-
mates based on its output. A solution to this problem is given in Roberts and
Stramer (2001) by appropriate transformations in the path space which break
down this dependence. It turns out that the strong dependence between param-
eters and unobserved processes is very common in many hierarchical models
and a generic methodology for reducing it, which includes the one considered
in Roberts and Stramer (2001), is known as non-centred parametrisations, see
Papaspiliopoulos, Roberts, and Sköld (2003); Papaspiliopoulos et al. (2007).

4.7 Appendix 2: Gaussian change of measure

The concept of change of measure is very central to the approaches we have
treated in this article. The aim of this section is to give a simplified presentation
of the change of measure between two Gaussian laws, and to the various ways
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this result might be put in use. It is easy to see the correspondence between
the expressions we obtain here and those of Section 4.2.1, but the greatly sim-
plified context of this section has the educational value of pointing out some
of the main elements of the construction, which can be understood without
knowledge of stochastic calculus.

Let (Ω,F) be a measure space with elements ω ∈ Ω, B : Ω → Rm a random
variable on that space, let σ be a d×m matrix, Γ = σσ∗, a, b, be d×1 vectors,
and define a random variable V via the equation

V (ω) = b+ σB(ω) .

Let Rb be the probability measure on (Ω,F) such that B is a standard Gaus-
sian vector. Therefore, under this measure V is a Gaussian vector with mean
b (hence the indexing of the measure by b). Assume now that we can find a
m× 1 vector h which solves the equation

σh = (b− a) , (4.33)

and define B̂(ω) = B(ω) + h. Thus, we have the alternative representation

V (ω) = a+ σB̂(ω) ,

which follows directly from the definitions of V and h. Let Ra be the measure
defined by its density with respect to Rb,

dRa
dRb

(ω) = exp {−h∗B(ω)− h∗h/2} , (4.34)

which is well-defined, since the right-hand side has finite expectation with re-
spect to Rb. Notice that under this new measure, B̂ is a standard Gaussian
vector. To see this, notice that for any Borel set A ⊂ Rm,

Ra[B̂ ∈ A] =

∫
{ω:B̂(ω)∈A}

exp {−u∗B(ω)− u∗u/2}dR[ω]

=

∫
{y:y+u∈A}

exp {−u∗y − u∗u/2− y∗y/2} (2π)−m/2dy

=

∫
A

e−v
∗v/2(2π)−m/2dv ,

where the last equality follows from a change of variables.

Notice that directly from (4.34) we have

dRb
dRa

(ω) = exp{h∗B(ω) + h∗h/2} = exp{h∗B̂(ω)− h∗h/2} . (4.35)

Let Eb and Ea denote expectations with respect to Rb and Ra respectively.
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Thus, for any measurable Rb-integrable function f defined on Rd,

Eb[f(V )] = Ea [f(V ) exp{h∗B + h∗h/2}]

= Ea
[
f(V ) exp{h∗B̂ − h∗h/2}

]
.

LetX be another random variable, defined asX(ω) = a+σB(ω). Since under
Ra, the pair (V, B̂) has the same law as the pair (X,B) under Rb, we have that

Eb[f(V )] = Eb[f(X) exp{h∗B − h∗h/2}] .

If further σ is invertible we get

Eb[f(V )] = Eb

[
f(X) exp

{
(b− a)∗Γ−1X − 1

2
(b− a)∗Γ−1(b+ a)

}]
.

(4.36)

Let Pb and Pa be the law of V implied by Rb and Ra respectively. Then, as-
suming that σ is invertible and taking α = 0, we can obtain from the previ-
ous expression the likelihood ratio between the hypotheses that V has mean
b against that it has mean 0, but a Gaussian distribution with covariance Γ in
both cases. Therefore, we get the likelihood function for estimating b on the
basis of observed data V , while treating Γ as known:

L(b) =
dPb
dP0

(V ) = exp

{
b∗Γ−1V − 1

2
b∗Γ−1b

}
. (4.37)

It is interesting to consider the cases where (4.33) has many or no solutions.
We will do so by looking at two characteristic examples. We first consider the
case where (4.33) has multiple solutions and take d = 1, m = 2, σ = (1, 1),
in which case (4.33) has infinite solutions. Notice that in this case there are
more sources of randomness than observed variables. To simplify matters (and
without loss of generality) we take a = 0. Then, for any φ ∈ R, u = (φ, b−φ)∗

solves (4.33), and the measure Rφ0 defined by (4.34), makes B̂ a standard Gaus-
sian vector. Then, writing B = (B1, B2), the importance weights in (4.36)
become

exp{(b− φ)B1 + φB2 − φ2 − b2/2 + φb} . (4.38)

Direct calculation verifies that the change of measure in (4.36) holds for any φ;
it is instructive to do directly the calculations using a change of variables and
check that the right-hand side of (4.36) does not depend on φ. Additionally,
using the moment generating function of the Gaussian distribution, one can
verify that the expected value of the importance weights (4.38) under Rφ0 is 1.
However, the second moment of the importance weights is exp{2(φ− b/2)2 +
b2/2}, which is minimized for φ = b/2. Additionally, we can re-express (4.38)
in terms of V as

exp{(b− φ)V + (2φ− b)B̂1 − φ2 − b2/2 + φb} .
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In a statistical application only V will be observed whereas B̂1 will be unob-
served, therefore we cannot use the expression directly to estimate b. Notice
that for φ = b/2 the B̂1 terms cancels out from the density.

We now consider the case where (4.33) has no solution. An example of that
is produced under the setting d = 2, m = 1, σ = (0, 1)∗. Writing V =
(V1, V2)∗ and a = (a1, a2), b = (b1, b2)∗, notice the example implies that
V1 = b1. Therefore, it is expected that Rb will be mutually singular with any
measure which implies that V1 = a1, if b1 6= a1. However, notice that (4.33)
can be solved by u = b2 − a2 provided that a1 = b1. Then, (4.34)-(4.36) hold.
Moreover, defining P(b1,b2) and P(b1,0) analogously as before, and noticing that
B = V2− b2, we have the following likelihood ratio which can be used for the
estimation of b2:

L(b2) =
dP(b1,b2)

dP(b1,0)
(V ) = exp

{
b2V −

1

2
b22

}
.


