Segment and Combine Approach for Biological
Seguence Classification

Pierre Geurts, Antia Blanco Cuesta, Louis Wehenkel
Department of Electrical Engineering and Computer Science
CBIG - Center of Biomedical Integrative Genoproteomics
University of Liége, Belgium
Email: p.geurts@ulg.ac.be, antiablanco@hotmail.com, |.wehenkel @ulg.ac.be

Abstract— This paper presents a new algorithm based on the

A step further in this direction (see e.g. [5]) consists in

segment and combine paradigm, for automatic classification of generating a very large number of candidate features (e.g.

biological sequences. It classifies sequences by aggregating th
information about their subsequences predicted by a classifier

derived by machine learning from a random sample of training

Position dependent symbolic features, position independent
features such as n-grams, .. .), and then using feature selection

subsequences. This generic approach is combined with decisiontéchniques and/or methods like support vector machines and
tree based ensemble methods, scalable both with respect tothe Naive Bayes method to induce a classification model.

sample size and vocabulary size. The method is applied to three

families of problems: DNA sequence recognition, splice junction
detection, and gene regulon prediction. With respect to standard
approaches based om-grams, it appears competitive in terms of
accuracy, flexibility, and scalability. The paper also highlights the
possibility to exploit the resulting models to identify interpretable

patterns specific of a given class of biological sequences.

|. INTRODUCTION

Automatic sequence classification is a rather generic
problem which appears for instance in text categorization,
computer-user modeling, automatic classification of alarm
logs, and intrusion detection. In the context of bioinformat-
ics, automatic sequence classification can be applied both to
genomic data (DNA or RNA strings) as well as to proteomic
data (strings of amino-acids), and there is a multitude of appli-
cations ranging from fast database search to the identification
of patterns of some specific physical properties.

A straightforward approach for the classification of biolog-
ical sequences is to use a nearest-neighbor kind of approach
together with a distance measure based on sequence alignment
(see [1] and the references therein). However, severa other
approaches based on the use of more sophisticated machine
learning methods have been proposed in recent years to tackle
these problemsin away less dependent on an a priori defined
distance measure.

For example, in [2] and [3], a pattern discovery techniqueis
first applied to extract a set of patterns that appear frequently
in sequences of a certain class, and then the frequencies of
occurrence of these patterns are used as inputs to machine
learning techniques in order to induce a classifier. In [2]
decision trees are used and in [3] linear discriminant analysis
is used for the machine learning step. Both publications
consider the problem of the prediction of co-regulated genes
from upstream sequences. In a similar way, [4] derives linear
discriminants based on a set of pre-defined features.

Further applications of support vector machines with string
kernels have also been recently proposed for the classification
of proteins based on their amino-acid sequences [6], [7].

Along these lines, we propose another quite generic and
purely data driven approach for the automatic classification of
biological sequences. The method belongs to a new paradigm
for the classification of structured data, called segment and
combine [8], [9], which, in the present context, classifies a
sequence by aggregating the classifications of its subsequences
of a given length. To this end, a subsequence classifier is
derived by machine learning from a sample of subsequences
randomly extracted from the sequences given in the origina
training set. Within this paradigm, we propose to use machine
learning algorithms based on ensembles of randomized de-
cision trees, which are highly scalable both with respect to
sample size and vocabulary size. The resulting algorithm is
illustrated on three families of genetic sequence classification
problems. DNA sequence recognition, splice junction detec-
tion, and gene regulon prediction. It is compared to standard
approaches based on n-grams, in terms of accuracy, flexibility,
and scalability. The paper highlights also the possibility to
exploit the method to identify interpretable patterns specific
to a given class of biological sequences.

The rest of the paper is structured as follows. In Section
I, we define the problem of genetic sequence classification
and describe our test problems. In Section |11, we introduce
the proposed algorithm and discuss its intrinsic properties. In
Section IV we present the results of its application on six
test problems and compare them with those obtained by the
n-gram approach. The paper ends with our conclusions and
suggestions for future work.

1. GENETIC SEQUENCE CLASSIFICATION

A. Problem definition

Let us denote by S a discrete aphabet, i.e. a finite set of
symbols. In the case of genetic sequences, this alphabet will be

TABLE |
SUMMARY OF THE DATASETS

Dataset Ny L k Protocol
DNA-vsrandom 1000 800 2 holdout 500
Splice 3190 60 3 holdout 2000
MSN2 112 800 2 10-fold cv
ZAP1 104 800 2 10-fold cv
GLN3 62 800 2 10-fold cv
MIG1 52 800 2 10-fold cv

the set of 4 nucleotides {4, C, G, T}. A sequence (or string)
ST is the concatenation of symbols from the al phabet:

SL28152...SL Withsq;GS,izl,...,L,

where L isthe length of the sequence. In what follows, we will
denote by ST (i) = s; (i = 1,..., L) the symbol at position i
in the sequence S°.

A learning sample (or dataset) is a set (ordering is con-
sidered irrelevant at this level) of NV preclassified sequences
denoted by

LSy = { (Sfi, c)

where Sf is the 4t sequence of length L; and ¢; isits class
chosen among C = {1, ..., k}. Thelength L, of the different
sequences of the dataset are not assumed to be identical. In
our problems, however, all sequences of the same dataset will
be of equal length,i.e. L; = L,Vi=1,...,N.

The objective of the sequence classification problem is to
derive from LSy aclassifier ¢(S”) which predicts the output
class of an unseen sequence S’ as accurately as possible.

¢=1,...,N},

B. Datasets

The datasets we used correspond to several practical prob-
lems. Their main characteristics are summarized in Table |
in terms of number of sequences N4, sequence lengths L,
number of classes &, and the protocol used in Section IV for
the validation. Each problem is briefly discussed below.

1) DNA recognition: This dataset is an artificial prob-
lem. The aim of this problem is to recognize real DNA
sequences from randomly generated sequences of nucleotides.
The dataset contains 1000 sequences of length 800%. Each
of the 500 positive sequences corresponds to the 800 base
pairs upstream from the start codon of a gene randomly
selected from the yeast Saccharomyces cerevisiae genome.
The 500 negative sequences were obtained by drawing each
nucleotide independently at random from a distribution match-
ing the frequency of occurrence of the nucleotides in the
yeast genome. Both types of sequences were obtained using
the Regulatory Sequence Analysis Tools ([10]) available at
(http://rsat.ulb.ac.belrsat/). Since DNA is known to be highly
non-random, it should be possible to discriminate random from
true DNA sequences.

1This length has been chosen to match the sequence length used in the
regulon datasets (see Section 11-B.3)

2) Splicejunction: One quite popular application of genetic
sequence classification is the prediction of coding regions
in DNA. In Eukaryotic organisms, usually only part of the
sequence corresponding to a gene redly codes for proteins.
coding regions (called exons) are interrupted by non-coding
regions (called introns). During the transcription, the DNA
sequence corresponding to a gene is transcribed into a pre-
message RNA molecule. This pre-message RNA molecule is
then turned into a message RNA molecule by excising the non
coding regions. This latter mechanism is called splicing. The
prediction of the splice sites in DNA (junction between intron
and exon) is interesting both for the analysis of unknown re-
gionsin the genomes but also for understanding the biological
mechanisms responsible for the splicing.

The dataset we used contains regions of 60 nucleotides
obtained from Genbank 64.1 primate data. The center of each
seguence corresponds either to a junction between intron and
exon (an acceptor), a junction between exon and intron (a
donor), or no junction at al (with 25% I-E junction, 25%
E-l junction, and 50% of non junction). A model obtained
from this dataset can thus be used to locate coding regions of
the DNA by dliding a window of size 60 over the DNA and
detecting the limit between coding and non coding regions
with this model. The dataset was obtained from the UCI
machine learning repository [11] and it has been used for
examplein [12], [13].

3) Gene regulon: A regulon is a set of genes that are
targeted by the same transcription factor. It is assumed that
these transcription factors bind to some specific sites in the
upstream sequence of the genes. So, from this upstream
sequence, it should be possible to predict whether or not a
gene will be regulated by a specific transcription factor.

These datasets were obtained from the study carried out in
[3]. Each dataset corresponds to a different regulon from the
yeast Saccharomyces cerevisiae and is denoted by the name of
the corresponding transcription factor, namely MSN2, MIGL1,
ZAP1, and GLN3. We randomly selected four regulons from
[3] among those that correspond to a reasonable number of
genes (> 25). Each positive sequence in the datasets corre-
sponds to the 800 base pairs upstream from the start codon of
a gene of the regulon. Negative sequences correspond to the
upstream sequences from genes randomly selected in the yeast
genome. To balance the two classes, we use exactly the same
number of positive and negative examples. The number of
sequences in each dataset (corresponding to twice the number
of genes in each regulon) is reported in Table I. All sequences
were retrieved using the RSA tools (http://rsat.ulb.ac.be/rsat/).
As noted in [3], regulons were not defined from an analysis
of upstream sequences but from experimental studies. Hence
their classification can be considered reliable. Random genes,
however, may actually be member of the regulon since they
are extracted at random from the yeast’s genome.

TABLE I
THE TRAINING AND TEST STAGES OF THE SEGMENT AND COMBINE ALGORITHM

Training a length ¢ subsequence classifier

Subsequences samplingFor j = 1, ..., N, choose a sequence index i; € {1, ..., N} randomly, then choose a subsequence offset p; € {0,...,L;. — ¢}

randomly, and create a scalar attribute vector

J

L,pj Li; Li;
Sij = Sij‘ (pj +1)7"'vSij‘ (pj +9)

concatenating the values of the sequence between positions p; 4+ 1 and p; + £. Collect the samples in a training set of subsequences

LS4 = { (S ei;)

where each subsequence is classified as the sequence from which it was taken.

j:17"'7NS}7

Classifier training: Use a (propositional) supervised base learner to build a subsequence classifier from the subsequence samples L*?\rs- The “classifier” is
supposed to return a class-probability vector P (S¢), each component of which estimates the probability of the subsequence S being taken from a sequence

of one of the k classes.

Classifying a sequence by voting its subsequences.

For a new sequence ST, extract systematically all its subsequences of length ¢, $%% Vi € {0, ..., L — ¢}, and classify it according to

&St 2 arg max {

L—¢
pr(s“)} :

=0

Note that if the base learner returns 0/1 class indicators, the aggregation step merely selects the class receiving the largest number of votes. A class-probability

estimator may also be derived by normalization

c

L—t L—t -1
P(sh) & <Z Pf(SLﬂd) <Z > P <S“>> :
=0 1=0

I1l. METHODS
A. Segment and Combine approach

Assuming all sequencesin the dataset are of the same length
L, the most direct way to handle such data using machine
learning techniques is to transform each sequence S of the
learning sample into a vector of L symbolic-valued variables:

(S7(1),57(2),..., (L)) @

and to apply a standard supervised learning algorithm using
this vector as input variables. Although straightforward, this
approach has two limitations. First, since standard supervised
learning methods assume constant length input vectors, they
can not handle directly sequences of different lengths. Second
and more importantly, this representation introduces a bias
in the learning algorithm towards the detection of position
dependent patterns since al input variables are related to
a specific position in the sequence. Although this may be
appropriate for some applications, for others, it is clear that
relaxing this dependence will be necessary.

The idea of the segment and combine approach proposed
here is to use the same representation but for the classification
of small subsequences extracted at random positions in the
given sequences. More precisely, the training and test steps of
the segment and combine algorithm are described in Table II.
During the training stage, a new learning sample is gathered by
randomly sampling N, subsequencesof length ¢ (¢ < min; L;)
in the original learning sample sequences and a subsequence

classifier is built from this sample by using a standard propo-
sitional learning algorithm. A new sequence is then classified
by voting the predictions of all its subsequences given by the
subsequence classifier obtained during the training stage.

In addition to the choice of the base learner discussed
below, the sole parameters of the method are the number of
subsequences N, and the subsequence length ¢. In practice,
the larger N, the higher the accuracy. Hence, the choice of
the value of N is dictated by computational constraints only.
In our experiments that focus on accuracy, we will use a quite
large value of N, equal to 20000. Depending on the other
parameters of the problem, it may happen that N, is greater
than the total number of subsequences of length ¢ appearing
in the learning sample?. In this case, no sampling is done in
our implementation and the training set LS 1‘(, is simply taken
as the set of all possible subsequences. '

On the other hand, the subsequence length ¢ should be
adapted to the resolution of the problem. Small values of ¢
force the algorithm to focus on local (shift-invariant) patterns
in the original sequences while larger values of ¢ amount to
considering the sequences more globally.

Notice also that, in the limit of ¢ = L (assuming sequences
of identical length), the segment and combine approach will
build a classifier on the basis of the original (full length)
sequences, and thus boils down to the standard approach
mentioned at the beginning of this section.

2This happens when N, > Zil L;i—N{+ N

TABLE Il
NUMBER OF n-GRAMS SUCH THAT n. < ¥,

ln 1 2 3 4 5 6 7 8
nb.att. 4 20 84 340 1364 5460 21844 87380

In our experiments, we will analyze the results obtained
with increasing values of this parameter, and we will provide
for each dataset also the results for ¢ = L.

B. The n-gram approach

We will compare our method with the results obtained by
representing the sequences by their n-gram counts prior to
applying supervised learning.

An n-gram is a subsegquence of n consecutive symbols
extracted from a longer subsegquence. These n-grams have
been widely used for example in the context of text analysis
and data compression. The idea here is to compute the number
of occurrences of al possible n-grams of length n smaller or
equal to a certain length /,, in each sequence of the learning
sample and then use these n-gram counts as input variables
for a learning algorithm. Even if the original sequences are
of variable length, all sequences are in this way transformed
into a vector of numerical variables of fixed size which can
be used as input representation for most existing supervised
learning methods.

Within the n-gram approach, ¢,, is a parameter of the
method that regulates some tradeoffs. From an information
point of view, the larger the value of ¢, and the higher
the information about the original sequences that is kept by
the n-gram representation. However, the number of input
variables (attributes) grows exponentialy fast with ¢,,, which
is detrimental from a computational point of view (memory
requirements, preprocessing, and training times). Also, the
increasing number of attributes will result in an increase
of variance of the supervised learning algorithm, and hence
may actually lead to a decrease of accuracy of the resulting
classifiers.

To give an idea, Table Il shows the number of attributes
corresponding to increasing values of ¢,, in the case of the
alphabet of four nucleotides. In our experiments, we will
consider only values of ¢,, smaler or equal to 6. Notice
that by construction this representation destroys most of the
information about the position of patterns in the original
sequences, specially for small values of 7,,.

C. Tree-based classifier induction

In principle, any propositional base learner (support vector
machines, k-nearest neighbor, multilayer perceptrons etc.)
could be used in the above approaches. We will nevertheless
restrict our investigations to the use of decision tree based
methods, and in particular to tree based ensemble methods.
The main advantages of these methods for our application
are their scalability and the fact that they can handle quite
naturally symbolic variables.

A decision tree recursively partitions the learning sample
with tests based on the input variables (attributes). In the
standard approach these tests are binary and based on a single
atribute at a time. They merely check the appearance of the
observed val ue of the attribute in a certain subset of al possible
values of this attribute. When the tree is grown on the basis of
the learning sample, the algorithm chooses at each test node
an attribute and a particular subset of its possible values in
order to define the split. A split for a numerical attribute is
obtained by choosing a cutpoint while a split for a symbolic
attribute is obtained by enumerating explicitly a subset of its
possible values. The standard approach grows a tree top down,
starting with the root node and splitting nodes as long as
the corresponding subsets are containing objects of different
classes. These trees can also be pruned afterwards, in order to
reduce their complexity and adjust their bias-variance tradeoff.

A drawback of single tree classifiers is that they usually
suffer from a high variance (even when pruned) which often
prevents them from being competitive in terms of accuracy
with other methods. Therefore, in addition to single tree
classifiers, we consider various tree-based ensemble methods
circumventing this problem. They grow several randomized
trees and aggregate their predictions by majority vote. They
only differ in the way they randomize the tree building
procedure.

We consider three different ensemble methods, namely
Tree bagging, Random forests and Extra-trees. Tree bagging
randomizes trees by growing them from a random bootstrap
replica of the original training sample [14]. Random forests
is a variant of Tree bagging which further randomizes the
attribute choice at each internal node [15]. Extra-trees (which
stands for extremely randomized trees [16]) generates each tree
of the ensemble from the whole learning sample and random-
izes the tests by choosing both attribute and splits explicitly
a random. For a numerical attribute it draws a cutpoint at
random while for asymbolic attribute it draws a random subset
of its possible values. The Extra-trees algorithm, detailed in
the appendix, has one parameter K which allows to mitigate
the strength of randomization and enhance its ability to cope
with irrelevant attributes.

In the ensemble methods, the randomization allows together
with the averaging over a set of trees to strongly reduce the
variance with respect to single trees. On the other hand, the
use of unpruned trees with these methods ensures that the bias
remains as small as possible. With respect to Tree bagging
and to a lesser extent Random forests, Extra-trees have a
smaller variance and are significantly faster in the training
stage. In particular, in the context of symbolic attributes this
is potentially an important advantage because the number of
different binary partitions of an aphabet S grows exponen-
tially with the size of this alphabet. Thus, single trees as well
as Tree bagging and Random forest that consider al such
partitions for each variable when splitting a tree node have a
computational complexity exponential in the size of S, which
for large alphabets implies to use some suboptimal heuristics.
On the other hand, Extra-trees require only the generation of

TABLE IV
ERROR RATES ON DNA-VS-RANDOM

n-gram counts

ST BAG | ET? | ETY | RF
23.60% | 24.00% | 23.20% | 23.20% | 24.00%
10.80% | 9.60% | 7.40% | 8.00% | 9.00%
11.00% | 10.20%| 5.00% | 7.20% | 7.00%
11.00% | 10.80%| 5.60% | 7.20% | 6.60%
10.60% | 10.60%| 4.40% | 7.40% | 6.80%
10.60% | 10.40%| 4.80% | 7.60% | 5.80%
Segment and Combine
BAG | ET? | ETY
6.20% | 5.00% | 5.80%
5.00% | 5.20% | 4.40%
11.20%| 4.40% | 5.80% | 8.80%
8.40% |12.60%| 11.60%| 9.20%
12.40%| 9.60% | 12.00%| 13.00%
15.20%| 10.80%| 11.60%| 12.80%
19.60% | 16.20%| 17.80%| 18.80%
21.20%| 20.00%)| 21.20%| 20.60%
37.40%| 40.80%)| 36.00% | 36.80%

ocouhwN RS

RF¢
9.20%
5.40%

l ST

5 110.00%
10 | 13.20%
20 | 18.80%
30 | 19.40%
40 | 26.40%
50 | 26.80%
100| 28.40%
200| 29.80%
800| 37.40%

one random binary partition (at each node) for each attribute
and thus their complexity is linear with respect to the a phabet
size. This could be an important advantage in the context of
the application of the method to amino acid sequences.

IV. EXPERIMENTS

We first describe the protocols used to estimate error rates
on each problem and the parameters of the different methods.
We then discuss the results in terms of the accuracy on
al problems. Finaly, we illustrate the possibility to extract
interpretable information from subsequence classifiers.

A. Protocols and parameters

The protocol for each problem is given in the last column
of Table I. On DNA-vs-Random, we use 50% of the data for
learning (500 sequences) and 50% for testing (500 sequences).
On Splice, we randomly split the dataset into a learning set
of 2000 sequences and a test set with the remaining 1190
sequences. Because Regulon datasets are small, we use ten-
fold cross-validation to estimate accuracies (using the same
folds throughout all our experiments).

To build decision trees, we have adopted the standard
CART algorithm described in [17] with the score measure
proposed in [18]. With n-grams, single trees are pruned by
using cost-complexity pruning by ten-fold cross-validation
[17] and the ensemble methods vote over 100 unpruned trees.
In the segment and combine approach single trees are not
pruned, except when the method degenerates into the use
of the original sequences (i.e. for ¢ = L). This is justified
because averaging over subsequences already reduces enough
the variance. For the same reason, the number of trees in the
ensemble methods was reduced in this case to 50 (except for
¢=1).

For Random forests, the number of randomly selected
attributes screened at each node was fixed to its default value,
which is the square root of the total humber of attributes [19]

TABLE V
ERROR RATES ON SPLICE

n-gram counts
L,| ST BAG | ET?
1 [46.30%] 46.98% | 46.89% | 47.83% | 45.62%
2 | 44.43% | 37.53% | 36.00%)| 37.45%)| 37.45%
3
4
5

ETY | RF?

41.79%| 33.79%| 32.34% | 32.60% | 33.19%
35.75%| 28.17% | 29.70% | 31.15%| 27.75%
30.47% | 25.87% | 29.45% | 25.70% | 27.92%
Segment and Combine
¢| sr BAG | ET? | ETY | RF?

5 [41.79%| 42.64% | 41.96% | 40.00%] 40.85%
101 39.83% | 32.09% | 29.28%| 30.30%| 32.26%
20| 37.02%| 31.23%)| 29.96%| 29.02% | 32.17%
30(34.13%| 27.32% | 26.64% | 26.38% | 28.85%
40| 31.83%| 24.94%| 24.77%| 25.11% | 25.45%
50| 28.60% | 20.09% | 22.89% | 21.45% | 22.55%
60| 5.62% | 4.68% | 3.66% | 5.11% | 3.40%

(we denote this method by RF?). For Extra-trees, we compared
two settings. K defined as in the default setting of Random
forests (denoted by ET9) and K equal to the total number of
attributes (denoted by ET?V). The first method correspondsto a
larger reduction of variance but a higher bias. The second one
is more stringent in terms of variable selection and is usualy
more accurate when there are a lot of irrelevant variables.
Notice that Random forests with the latter setting actually
degenerate into Tree bagging.

Concerning the segment and combine method, N, = 20000
subsequences are randomly extracted in each case (except
when this number is larger than the total number of possible
subsequences) and we report below the results obtained with
different values of the other parameter . For n-gram counts,
we consider all values of ¢,, from 1 to 6 except for the largest
problem, Splice, where we stopped at ¢,, = 5.

B. Accuracy

Tables 1V, V, and VI gather the results on the six datasets.
We highlight in bold-face the best result in each column and
underline the overall best result in each table. The last linein
each table corresponds to the degenerated case of the segment
and combine approach, when ¢ = L.

1) DNA vs Random: Results for this problem are reported
in Table IV. We observe that both n-grams and segment and
combine yield a very good accuracy. In the latter method, the
optimal value of ¢ is usually quite small (10-20), suggesting
that there exist small position invariant patterns typical of the
DNA that do not appear as frequently in random sequences.
The important improvement with n-grams when going from
£, = 1to ¢, = 2 further shows the aready known fact that
nucleotides in DNA sequences are not independent.

Among tree-based methods, single trees are clearly inferior
while ET? obtains the lowest error rate (4.40%). We aso note
that the results depend less strongly on the ensemble method
in the segment and combine approach than with n-grams.

2) Splice: On this problem the n-gram approach behaves
very badly (see Table V) whichis dueto itsinability to capture

TABLE VI
ERROR RATES ON THE REGULON DATASETS

MSN2
n-gram counts
ln ST BAG ET?
1 [53.57% | 39.29% | 44.64%
2 (22.32%| 41.96% | 35.71%
3 | 28.57% | 37.50% | 40.18%
4
5
6

RFY
30.36%
32.14%
31.25%
29.46%
37.50%
33.93%

ETV
42.86%
31.25%
30.36%
27.68%

33.93% | 31.25% | 27.68%
75.00% | 32.15% | 44.64% | 49.11%
73.21% | 33.93% | 36.61% | 50.89%
Segment and Combine
BAG ET? ETV
20.54%] 16.07%| 16.96%
56.25% | 49.11% | 16.07%
59.82% | 37.50% | 53.57%
41.96% | 58.04% | 27.68%
40.18% | 63.39% | 17.86%
42.86% | 47.32% | 20.54%
31.25% | 22.32% | 22.32%
36.61% | 20.54% | 31.25%
57.14% | 68.75% | 75.00%

RF
19.65%
51.79%
47.32%
43.75%
50.00%
27.68%
22.32%
26.79%

48.21%

¢ ST

5 [24.11%
10 | 67.86%
20 | 41.96%
30 | 49.11%
40 | 48.21%
50 | 35.71%
100 | 33.93%
200 43.75%
800 | 56.25%

GLN3
n-gram counts
U, ST BAG ET? ET
1 [45.16% | 41.94% | 40.32% | 43.55%
2 | 45.16% | 33.87%)| 33.87%| 41.94%
3 | 43.55% | 43.55% | 41.94% | 45.16%
4
5
6

RF?
41.94%
33.87%
38.71%

50.00% | 51.61% | 45.16% | 46.77% | 48.39%
33.87%| 43.55% | 40.32% | 40.32% | 41.94%
38.71% | 50.00% | 46.77% | 30.65%| 41.94%
Segment and Combine

BAG ET? ET

33.87%| 35.48% | 32.26%
43.55% | 35.48% | 37.10%
50.00% | 50.00% | 41.94%
46.77% | 48.39% | 48.39%
45.16% | 43.55% | 40.32%
50.00% | 41.94% | 43.55%
46.77% | 46.77% | 43.55%
41.94% | 46.77% | 46.77%
56.45% | 53.23% | 59.68%

RF?
35.48%
40.32%
50.00%
46.77%
45.16%
46.77%
43.55%
48.39%
53.23%

4 ST

5 [46.77%
10 | 43.55%
20 | 46.77%
30 | 41.94%
40 | 37.10%
50 | 38.71%
100 | 40.32%
200| 43.55%
800| 67.74%

the perfectly centered information about intron-exon junctions.
The segment and combine method gives significantly better
results and it is by far optimal in the degenerated case where
¢ = L = 60. The very strong improvement when going from
£ =50 to £ = 60 is certainly due the very strict centering of
the sequences.

We note also that the different ensemble methods yield very
close results on this dataset.

3) Regulons: These problems are more difficult from a
machine learning point of view, because the datasets are
quite small with respect to the length of the sequences and
because there is potentially some noise on the labeling of
negative seguences. In addition, gene regulation may be a
quite complex process involving several factors binding to
multiple sites in the upstream sequence of the gene. Hence, the
prediction of co-regulated genes might require the detection
and the combination of multiple patterns in sequences, which
may explain why error rates in Tables VI are so high.

On MSN2 and on MIGL, segment and combine gives
better results than n-grams whatever the tree-based method.
On ZAPL, n-gram counts are only better than segment and

ZAP1
n-gram counts
ln ST BAG ET? ET
1 | 58.66% | 53.85% | 52.89% | 50.00%
2 | 25.00% | 50.00% | 46.15% | 52.89%
3 | 39.42% | 48.08% | 56.73% | 51.92%
4
5
6

RFY
46.15%
46.15%
66.35%
52.89%
32.69%
50.96%

55.77%| 28.85%| 40.39% | 35.58%
57.69% | 48.08% | 30.77% | 30.77%
48.08% | 43.27%| 29.81%| 21.15%
Segment and Combine

L ST BAG ETY ET

24.04%| 28.85%| 31.73%| 47.12%
10 | 26.92% | 35.58% | 26.92%| 28.85%
20 | 25.96% | 70.19% | 39.42% | 44.23%
30 | 29.81% | 72.12% | 38.46% | 53.85%
40 | 41.19% | 39.42% | 40.39% | 48.08%
50 | 50.96% | 34.62% | 60.58% | 46.15%
100| 66.35% | 47.12% | 55.77% | 73.08%
200| 50.96% | 68.27% | 63.46% | 43.27%
800| 33.60% | 35.60% | 47.12% | 43.27%

RFY
70.19%
52.89%
42.31%
44.23%
43.27%
32.69%
47.12%
28.85%
36.54%

MIG1
n-gram counts
ln ST BAG ET?
1 | 42.31% | 36.54% | 38.46%
2 | 42.31%| 30.77% | 38.46%
3 | 51.92% | 32.69% | 42.31%
4
5
6

RF?
48.08%
53.85%
26.92%
46.15%
44.23%
50.00%

ETN
46.15%
34.62%
48.08%
42.31%

40.39% | 32.69% | 44.23%
48.08% | 40.39% | 50.00% | 40.39%
48.08% | 51.92% | 53.85% | 50.00%
Segment and Combine

l ST BAG ETY ETN
5 |28.85%| 26.92%| 25.00%| 26.92%
10 | 32.69% | 28.85% | 30.77%| 30.77%
20 | 38.46% | 32.69% | 34.62% | 30.77%
30 | 38.46% | 30.77% | 44.23% | 36.54%
40 | 30.77% | 40.39% | 36.54% | 40.39%
50 | 53.85% | 36.54% | 38.46% | 36.54%
100| 36.54% | 40.39% | 38.46% | 40.39%
200| 46.15% | 36.54% | 50.00% | 44.23%
800| 61.54% | 53.85% | 48.08% | 50.00%

RF?
36.54%
25.00%
34.62%
32.69%
32.69%
34.62%
44.23%
50.00%
53.85%

combinewith ET?, which isthe combination yielding globally
the lowest error rate on this problem. On GLN3, n-grams are
systematically better than segment and combine although the
difference is not very large.

With segment and combine, the lowest error rate is usually
obtained with the smallest values of ¢. This confirms that
regulons are usually defined by the occurrence of small shift-
invariant patterns in the upstream sequence of the genes.

We observe also that on al these problems all tree-based
methods, even single trees, provide rather close results to each
other, while the globally best result is always obtained by one
of the two Extra-trees variants.

4) Discussion: Among the two approaches compared, the
segment and combine algorithm appears clearly to be the most
flexible one. By the adaptation of the subsequence length, it
could indeed handle as well problems with highly centered
data, like the Splice problem, as problems characterized by
position independent patterns, like DNA-vs-random and reg-
ulons. The optimization of ¢ for a new problem aso gives
information about which of these two families the problem
belongs to.

On the other hand, n-grams are not appropriate to handle
problems characterized by position specific patterns, even
when increasing ,,%. Furthermore, this approach requires the
generation and the counting of all n-grams of a given length
and thus does not scale well with respect to its parameter /,,.

Among the tree-based methods, the best results are usually
obtained by the Extra-trees method (except on Splice where
Random forest were found slightly better). Since this method
isalso by far the most efficient one from a computational point
of view, we consider it to be the most appropriate one in the
context of the segment and combine approach.

C. Interpretability

An interesting property of the segment and combine ap-
proach is that it is possible to extract useful interpretable
information from the subsequence classifiers. Indeed, these
classifiers provide for each subsequence of length ¢ a proba
bility vector that estimates for each class the probability that
this subsequence has been extracted from a sequence of this
class. Patterns specific of one class are thus patterns that are
classified by the subsequence classifier with high confidence
into this class, i.e. belonging to subsequences that receive a
high probability for this class. Among these subsequences,
the most interesting ones would be those that also appear
frequently in sequences of the considered class, i.e. which have
a high rate of covering. This suggests to combine in a score
measure both the estimated probability P(c|S*) and P(S¢|c),
for example in the form of a product.

Note that P(c|S*) can be estimated directly by the subse-
quence classifier model, whereas P(S%|c) can be estimated
by the proportion of training sequences of class ¢ which
have the corresponding sequence as subsequence. However,
in biological problems there are generally many subsequences
that will appear in al sequences irrespectively of their class.
Using a product type score measure P(c|S*)P(S*|c), these
latter would obtain a rank close to 50%, and hence mask
al specific patterns covering less than 50% of the sequences
of class c. In order to filter out these latter we propose the
following procedure, to identify subsequences representative
of a given class c:

1) For each sequence S of class ¢ in the learning sample:

a) Extract al different subsequences S/ (j =
0,...,L—¥) and compute the probability P(c|5“)
W|th the subsequence classifier;

b) Among these, retain the m subsequences that re-
ceive the highest probability for this class.

2) For each subsequence S* so obtained, compute a score
equal to P(c|S*).P(S*|c), where P(S%|c) is estimated
by the proportion of sequences of class ¢ from the
learning sample where this subsequence appears.

3) Return the subsequences ordered by decreasing value of
the score.

3The numbers of occurrences of n-grams of maximum length are non zero
only each for one sequence of the learning sample and thus do not allow
generdlization of the resulting rules.

TABLE VII
PATTERNS FOUND ON MSN2 AND ZAP1

MSN2 ZAP1
Pattern | p(cis?) | p(stle) | Score| | Pattern | p(cs?) | pste) | Score
ACTCA| 1.00 | 0.61 | 0.61 | [CCAAA]| 0.85 | 0.75 | 0.59
CCCTT| 084 | 0.71 | 060 | | TTGCA| 081 | 0.67 | 0.51
CCCCT | 095 | 059 | 0.56 | | ATAAC| 0.78 | 0.69 | 0.50
ACCTT | 093 | 059 | 055 || TCCGT| 1.00 | 0.52 | 0.48
CAAGG| 0.77 | 0.71 | 055 || TAGAT | 0.79 | 0.62 | 0.45
AAACG| 0.79 | 0.70 | 0.55 | | GTACC| 1.00 | 0.48 | 0.45
AGGGG| 092 | 059 | 0.54 | |ACACC| 0.83 | 0.56 | 0.43
ATAAC | 075 | 0.71 | 0.54 | | GCACT| 0.89 | 0.52 | 043
GGGGT| 1.00 | 054 | 054 | |GGCTT| 0.85 | 054 | 0.42
TCCCC| 089 | 055 | 0.49 | |AACGT| 0.87 | 052 | 0.42

Step 1.b avoids to retrieve subsequences that are frequent but
not typical of class c.

We have applied this procedure on the positive instances
of the MSN2 and ZAP1 problem, with m = 10, ¢ = 5, and
bagging as a subsequence classification method. The ten best
patterns together with their P(c|S*), P(S*|c), and scores are
given in Table VII. On MSN2 for example, the first pattern
appears in 61% (34 among 56) of the positive sequences and
never in negative ones (since P(c|S*) = 1). The second one s
less specific but it appears in 71% of the positive sequences.

Note that here we have used the subsequence classifier
to retrieve fully defined patterns. However, tree-based sub-
sequence classifiers do not necessarily use all £ nucleotides
for the classification of a subsequence. Hence, it would be
possible to use the subsequence classifier to find partialy
defined patterns, i.e., patterns with wildcards. This possibility
will be the subject of future investigations. It would be aso
very interesting to compare the patterns retrieved by our
method with those obtained with other more standard pattern
extraction techniques used in this field (e.g. [20]).

V. CONCLUSION AND FUTURE WORK

In this paper we have introduced a new segment and
combine approach for the automatic classification of biological
sequences. This approach isin principle able to cope both with
problems characterized by position dependent and position
independent patterns, as well as sequences of variable length.
From a computational point of view, its combination with ex-
tremely randomized trees is most attractive, since this method
scales very well when increasing the number of attributes
and samples. In particular, in the context of larger alphabet
(e.g. proteomic sequence data) this is a strong advantage with
respect to existing approaches. The empirical results provided
in the paper suggest that the method could be competitive with
other state-of-the-art approaches on severa genetic sequence
classification problems. The paper has also highlighted how
this method could be used to explicitly identify patterns
specific of a certain class of biological sequences.

In the future, we plan to further develop this method in
the context of hiological sequence classification problems.
First, since the value of £ is critical to the performance of
the method, it is highly desirable to determine automatically

its value for a given problem. One straightforward way to
do this is to use an interna cross-vaidation procedure in
the learning sample (e.g., 10-fold cross-validation) to obtain
unbiased estimates of the error corresponding to different
values of ¢ and then use the optimal value to grow the fina
model on the whole learning sample. The evaluation of this
procedure will be the subject of future works. In addition, we
aim at evaluating the performances of the method on a larger
set of test-benches (including proteomic data) along with
experimental protocols proposed by other researchers, and to
compare its results with a broader set of methods including
in particular tree-boosting, Naive Bayes and support vector
machines. We intend also to work further on the extraction
of informative patterns from an ensemble of subsequence
classifiers.

Of course, the application of the method on other types of
sequential data, such as for instance text classification would
also be interesting.

ACKNOWLEDGMENT

Pierre Geurts is a postdoctoral researcher at the FNRS,
Belgium. The authors would like to thank Jacques van Helden
for providing the regulon datasets.

REFERENCES

[1] J T.-L. Wang, S. Rozen, B. A. Shapiro, D. Shasha, Z. Wang, and
M. Yin, “New techniques for DNA sequence classification,” Journal
of Computational Biology, vol. 6, no. 2, pp. 209-218, 1999.

[2] Y. Hu, S. Sandmeyer, C. McLaughlin, and D. Kibler, “Combinatorial
motif analysis and hypothesis generation on a genomic scale,” Bioinfor-
matics, vol. 16, pp. 222-232, 2000.

[3] N.Simonis, S. Wodak, G. Cohen, and J. van Helden, “ Combining pattern
discovery and discriminant analysis to predict gene co-regulation,”
Bioinformatics, vol. 20, pp. 2370-2379, 2004.

[4] M. Zhang, “Discriminant analysis and its application in DNA sequence
motif recognition,” Briefings in Bioinformatics, vol. 1, pp. 331-342,
2000.

[5] Y. Seeys, S. Degroeve, D. Aeyels, P. Rouzé, and Y. Van de Peer, “Feature
selection for splice site prediction: a new method using eda-based feature
ranking,” BMC Bioinformatics, vol. 5, p. 64, 2004.

[6] C. Ledlie, E. Eskin, J. Weston, and W. S. Noble, “Mismatch string
kernels for SVM protein classification,” Advances in Neural Information
Processing Systems, vol. 15, pp. 1417-1424, 2003.

[7] J-P. Vert, H. Saigo, and Akutsu, Kernel methods in computational
biology. MIT Press, 2004, ch. Loca aignment kernels for biological
sequences.

[8] P Geurts and L. Wehenkel, “Segment and combine approach for non-
parametric time-series classification,” in Proceedings of the 9th Euro-
pean Conference on Principles and Practice of Knowledge Discovery in
Databases (PKDD), October 2005.

[9] R. Marée, P. Geurts, J. Piater, and L. Wehenkel, “Random subwindows

for robust image classification,” in Proceedings of the |EEE Inter national

Conference on Computer Vision and Pattern Recognition (CVPR 2005),

2005.

J. van Helden, “Regulatory seguence anaysis tools” Nucleic Acids

Research, pp. 3593-6, 2003.

C. Blake and C. Merz, “UCI repository of machine learning databases,”

1998, http://www.ics.uci.edu/~mlearn/M L Repository.html.

M. O. Noordewier, G. G. Towell, and J. W. Shavlik, “Training

knowledge-based neural networks to recognize genes in dna sequences,”

in Advances in Neural Information Processing Systems, vol. 3. Morgan

Kaufmann, 1991.

H. Hirsh and M. Noordewier, “Using background knowledge to improve

inductive learning of dna sequences,” in Proceedings of the Tenth IEEE

Conference on Artificial Intelligence for Applications. |EEE Computer

Society Press, 1994, pp. 351-357.

[10]
(11

[12]

[13]

[14] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp.

123-140, 1996.

[15] ——, “Random forests,” Machine learning, vol. 45, pp. 5-32, 2001.

[16] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,
2005, submitted.

[17] L. Breiman, J. Friedman, R. Olsen, and C. Stone, Classification and
Regression Trees. Wadsworth International (California), 1984.

[18] L. Wehenkel, Automatic learning techniques in power systems. Boston:

Kluwer Academic, 1998.

L. Breiman, Setting up, using, and understanding random forests V4.0,

University of California, Department of Statistics, 2003.

J. van Helden, B. Andre, and J. Collado-Vides, “Extracting regulatory

sites from the upstream region of yeast genes by computational analysis

of oligonucleotide frequencies,” Journal of Molecular Biology, 1998.

[19]

[20]

APPENDIX

The Extra-Trees algorithm is described in Table VIII. As
score measure, it uses a normalized version of information
quantity [18] and it has two meta-parameters. nmin, the
number of objects required to split a node, and K, the number
of random candidate splits. In our experiments, we used the
minimal value of n,;, = 2 and two settings of K: K = \/n
and K = n, where n is the number of input variables.

TABLE VIII
PROCEDURE USED TO BUILD AN ENSEMBLE OF EXTRA-TREES

Build _an_extra_tree_ensembl€¢L.S).
Input: atraining set LS. Output: a tree ensemble {7,...,77}.
o Fori=1toT
— Generate a tree 7;=Build_an_extra.tree(L.S);
e Return {71,...,77}.
Build _an_extra_tree(LS).
Input: atraining set LS. Output: atree 7.
o Return a leaf labeled by class frequencies in LS if
(i) #LS < nmin, Or
(if) dl input variables are constant in LS, or
(iii) the output variable is constant over the LS,
o Otherwise:

1) Select K attributes, {ai,...,ax }, @ random, without replace-
ment, among all (non constant) input variables;

2) Generate K tests {Ti,...,Tx}, Wwhere
Generate.arandom.test(L.S, a,),Vk = 1,..., K;

3) Select a test T; such that Score(Tj, LS) =
maxg—1,... K 3:C)re(,l—‘k7 LS),

4) Split LS into LS; and LS, according to the test T5;

5 Build 7, = Buildanextratree(LS) ad 7, =
Build_an_extra_tree(L.S;-) from these subsets;

6) Create a node with the test T}, attach 7; and 7. as left and right
subtrees of this node and return the resulting tree.

Generate a_random_test(L S,a)
Input: atraining set LS and an attribute a. Output: a test 7.

o If the attribute a is numerical:

— Compute the maxima and minimal value of a in LS, denoted
respectively by aZ? and a3, ;
— Draw acutpoint agp, uniformly in Jaly aLS1;
— Return the test [a < azp].
o If the attribute a is symbolic:

— Compute Ay, s the subset of values from the domain of a, denoted
A, that appear in LS;

— Randomly draw a non empty and proper subset A; from Apgs
and a subset Ay from A\ Ag;

— Return the test [a € A; U A3].

T, =

