
CSE341T/CSE549T 09/15/2014

Merge Sort
Lecture 6

Today we are going to turn to the classic problem of sorting. Recall that given an array of
numbers, a sorting algorithm permutes this array so that they are arranged in an increasing order.
You are already familiar with basics of the sorting algorithm we are learning today, but we will see
how to make it parallel today.

1 Reminder: Sequential Merge Sort

As a reminder, here is the pseudo-code for sequential Merge Sort.

MergeSort(A, n)

1 if n = 1

2 then return A
3 Divide A into two Aleft and Aright each of size n/2
4 A′

left =MERGESORT(Aleft, n/2)

5 A′
right =MERGESORT(Aright, n/2)

6 Merge the two halves into A′

7 return A′

The running time of the merge procedure is Θ(n). The overall running time (work) of the entire
computation is W (n) = 2W (n/2) + Θ(n) = Θ(n lg n).

2 Let’s Make Mergesort Parallel

The most obvious thing to do to make the merge sort algorithm parallel is to make the recursive
calls in parallel.

1



MergeSort(A, n)

1 if n = 1

2 then return A
3 Divide A into two Aleft and Aright each of size n/2
4 A′

left ←spawn MERGESORT(Aleft, n/2)

5 A′
right ← MERGESORT(Aright, n/2)

6 sync
7 Merge the two halves into A′

8 return A′

The work of the algorithm remains unchanged. What is the span? The recurrence is

SMergeSort(n) = SMergeSort(n/2) + Smerge(n)

Since we are merging the arrays sequentially, the span of the merge call is Θ(n) and the recurrence
solves to SMergeSort(n) = Θ(n). Therefore, the parallelism of this merge sort operation is Θ(lg n),
which is very small. In general, you want the parallelism to be polynomial in n, not logarithmic in
n.

What is the problem? It is the merge operation — doing merge sequentially is the bottleneck.

3 Let’s Parallelize the Merge in Mergesort

In Mergesort, we generally merge two arrays of the same size. However, in order to get this parallel
merge to work, we have to be more general. We must learn how to merge two arrays which can be
different in size.

Problem Statement: Given two arrays B[1..m] and C[1..l], each of which is sorted, we want
to merge them into a sorted array A[1..n] where n = m + l. Without loss of generality say that
m > l. Here’s the procedure.

ParallelMerge(B,m,C, l)

1 if m < l

2 then return MERGE(C, l, B,m)

3 if m = 1,
4 then Concatenate the arrays in the right order and return.
5 mid← bm/2c
6 s←SEARCH(C,B[mid]).
7 A′

left ← spawn MERGE(B[1..mid],mid, C[1..s], s)

8 A′
right ← spawn MERGE(B[mid+ 1..m],m−mid, C[s+ 1..l], l − s)

9 sync
10 Concatenate A′

left and A′
right and return

2



Let us calculate work and span. The search takes Θ(lg n) work and span.
Say k = mid+ s. First, we notice that

k = mid+ s

= m/2 + s

≤ m/2 + l

≤ n/4 + n/2

= 3n/4

Also, we know that k = m/2 ≥ n/4. Therefore, we have n/4 ≤ k ≤ 3n/4.

WMerge(n) = WMerge(k) +WMerge(n− k) + Θ(lg n)

= WMerge(αn) +WMerge((1− α)n) + Θ(lg n) For some 1/4 ≤ α ≤ 3/4

= Θ(n)

Exercise 1 Show using induction that the recurrence W (n) = W (αn) +W ((1− α)n) + Θ(lg n)

solves to Θ(n).

For span, we have:

SMerge(n) = max{SMerge(k), SMerge(n− k)}+ Θ(lg n)

≤ SMerge(3n/4) + Θ(lg n)

= Θ(lg2 n)

Note that parallelizing the Merge procedure did not increase its work — which is exactly what
we want. It is a work-efficient algorithm. But we reduced the span from Θ(n) to Θ(lg2 n).

Work and Span of Parallel Merge Sort using Parallel Merge

We can use this parallel merge procedure as a subroutine of merge sort and our work remains
Θ(n lg n). If we substitute the span of merge back into the Merge Sort equation, we get

SMergeSort(n) = SMergeSort(n/2) + SMerge(n)

= SMergeSort(n/2) + Θ(lg2 n)

= Θ(lg3 n)

Therefore, the parallelism of this new merge sort procedure is Θ(n lg n/ lg3 n) = Θ(n/ lg2 n).
Therefore, we now have polynomial amount of parallelism.

3



b1 b2 b3 

c1 c2 c3 c’1 c’2 

b'1 

c’3 

Figure 1: Merging two arrays.

4 Just for Kicks: Further Reduce the Span

We now see if we can further reduce the span of the Merge procedure. In practice, you probably
don’t want to use this algorithm since generally, the previous algorithm has ample parallelism.
However, this algorithm will teach you a technique for parallelizing algorithms that is quite general
and quite interesting.

Our goal is to design a merge algorithm that has O(n) work and O(lg n) span. In our previous
algorithm, we divided the array into 2 parts and merged them recursively. Lets try a different
extreme. How about if I had arrays B[1..n/2] and C[1..n/2] and wanted to merge them. One
very easy thing I can do is search for every element in C within B. The span of this procedure is
O(lg n), but the work is O(n lg n). So we managed to reduce the span at the cost of increasing the
work, which is no good.

So how many binary searches can we afford to do? Each costs O(lg n) work and we can only
afford O(n) total work, so we can afford to do O(n/ lg n) binary searches. So that’s what we will
do.

We can divide B and Cinto n/ lg n chunks each of size O(lg n). Say the boundary elements of
these chunks are b1, b2, ..., bn/ lgn and c1, c2, ..., cn/ lgn. We search for these boundary elements in
the other array. That is we search for b1, b2, ..., bn/ lgn in C using binary search. Since all of these
binary searches can happen in parallel, the work of this step is O(lg n × n/ lg n) = O(n) and the
span is O(lg n). These searches lead to new boundary elements as shown in Figure 1.

Each of the chunks in the two arrays are size at most lg n. Therefore, the corresponding chunks
can now be merged sequentially with work and span O(lg n), and all the merges can occur in
parallel. Therefore the total work is O(n/ lg n) binary searches, each with cost O(lg n) added
to O(n/ lg n) sequential merge operations, each with the cost O(lg n), for a total work of O(n).
Similarly, span is the cost of the binary search added to the cost of a sequential merge of two arrays

4



each of size O(lg n). Therefore, the total span is O(lg n).

Merge(B,C, n)

1 if n ≤ 2

2 then Concatenate the arrays in the right order and return.
3 parallel for i← 1 to n/ lg n

4 do bi ← i× lg n

5 c′i ← BINARYSEARCH(C,B[i])

6 parallel for i← 1 to n/ lg n

7 do ci ← i× lg n

8 b′i ← BINARYSEARCH(B,C[i])

9 parallel for (j, k)← {(1, 1)} ∪ {(bi, c′i)} ∪ {(b′i, ci)}
10 do Use a sequential merge algorithm to merge the chunks starting at B[j] and C[k] and place the results in A′ starting at A′[j + k − 1]

Exercise 2 I have swept something under the rug here. How do you find out where your corre-
sponding chunk, which starts at B[j], C[k] ends? Try to write the full pseudocode of this algorithm
with all the gory details while keeping the work O(n) and span O(lg n).

5


	Reminder: Sequential Merge Sort
	Lets Make it Parallel
	Let us Parallelize Merge
	Just for Kicks: Further Reduce the Span

