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ABSTRACT
In this work, we propose a framework that enables collection
of large-scale, diverse sign language datasets that can be used
to train automatic sign language recognition models.

The first contribution of this work is SDTRACK, a generic
method for signer tracking and diarisation in the wild. Our
second contribution is to show how SDTRACK can be used
to automatically annotate 90 hours of British Sign Language
(BSL) content featuring a wide range of signers, and includ-
ing interviews, monologues and debates. Using SDTRACK,
this data is annotated with 35K active signing tracks, with
corresponding video-level signer identifiers and subtitles, and
40K automatically localised sign labels.

Index Terms— Signer Diarisation

1. INTRODUCTION

Sign languages represent the natural means of communica-
tion of deaf communities. They are visual languages with
grammatical structures that differ considerably from those of
spoken languages; there is no universal sign language and un-
related sign languages are mutually unintelligible [37]. While
there has been considerable progress in machine comprehen-
sion of spoken languages in recent years [18], automatic
recognition of sign languages remains challenging [23]. A
key obstacle is the scarcity of appropriate training data: sign
language datasets are typically (i) orders of magnitude smaller
than their spoken counterparts [3], and (ii) collected in con-
strained settings (e.g. lab conditions, TV interpreters), that
do not reflect the complexity and diversity of “real-life” sign
language interactions. For example, multiple signers often
engage in conversation [9], which introduces the additional
challenge of identifying who is signing when.

In this work, we address this issue by proposing a method
for automatically annotating a large-scale, diverse dataset of
signing under a broad range of conditions to allow training
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Fig. 1. Signer diarisation in the wild. In this work, we
propose a signer tracking and diarisation framework and au-
tomatically annotate 90 hours of in-the-wild signing content.

of strong sign language recognition models. This requires
identifying (i) temporal segments when signing occurs, and
(ii) who is signing as there may be several people present.
Our first contribution is therefore to propose SDTRACK, a
generic framework for signer detection, tracking and diari-
sation in the wild (Sec. 3). Our second contribution is to
employ SDTRACK, together with a recently proposed auto-
matic annotation technique [1] to annotate TV broadcasts of
the programme SeeHear, which is presented entirely in BSL.
The show includes signing in diverse conditions (both indoors
and outdoors in a variety of scenes) and contains a rich vari-
ety of interviews, monologues and debates. The signing con-
tent is accompanied by written English translations, obtained
from broadcast subtitles. It was the first magazine programme
series for the British deaf community, launched in 1981, and
continues to be broadcast. The SeeHear data is annotated with
active signing tracks, along with corresponding signer identi-
ties and subtitles, in addition to localised sign labels (Sec. 4).
Finally, we evaluate performance for the tasks of signer diari-
sation and sign recognition using this data (Sec. 5).

2. RELATED WORK

Signer diarisation. Signer diarisation has received limited
attention in the computational literature. Existing works have
considered small-scale experiments (i.e. on four short videos
in constrained conditions) using low-level motion cues [16,
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Fig. 2. The SDTRACK framework for diarisation com-
prises three modules: (left) Multi-person tracker forms per-
son tracks and estimates the pose of each person, (middle) Ac-
tive signer detector determines which (if any) of the tracked
persons are actively signing, (right) Signer re-identification
associates identities to each tracked person. See Sec. 3 for
more details.

17]. Several methods have been proposed for active signer
detection (which aims to estimate whether a signer is active in
a given video frame): [30] proposes an efficient online system
appropriate for videoconferencing software, while [2] pro-
poses a multi-layer RNN model which performs frame-level
active signer detection. To the best of our knowledge, no prior
work has considered signer diarisation at large-scale in un-
constrained environments.
Sign language datasets. A number of sign language datasets
have been proposed in the literature (see [23] for a survey of
the predominant benchmarks). Key shortcomings of existing
datasets include: a lack of diversity (in terms of signing envi-
ronment, number of signer identities, or both), restricted do-
main of discourse [5, 24] (for example, weather broadcasts)
and limited scale [3]. MSASL [22], WLASL [25], BSL-
DICT [29] and BSL SignBank [14] cover a wide vocabulary,
but are restricted to isolated signs. BSLCORPUS [35] pro-
vides fine-grained linguistic annotation of conversations and
narratives, but is limited to pairs of signers under lab condi-
tions. BSL-1K [1] provides a large-scale dataset of contin-
uous signs, but is derived entirely from crops of inset public
broadcast interpreters (occupying a fixed region of the screen)
and lacks scene diversity and interaction.

3. DIARISATION

Task formulation. Given an unconstrained video containing
an arbitrary number of signers, our objective is to answer the
question: “who is signing when?” by parsing the video into
spatio-temporal tracks of active signers together with their
identities. Our task therefore represents the combination of
two techniques: (i) active signer detection which seeks to an-
swer the question “which person is signing?”, and (ii) signer
identification which addresses the question “who is this per-
son?”

Concretely, given a sequence of video frames x1:T =
{x1, . . . , xT } containing signing content, the objective is
to identify active signers at each frame, xt, and to provide
bounding boxes representing projections of each individuals’
3D signing space on the image plane.
Proposed Framework: SDTRACK. Our approach, SD-

TRACK (an abbreviation of Signer Diarisation and Tracking)
comprises three modules: (1) a multi-person tracker, (2)
an active signer detector, and (3) a signer re-identification
model (see Fig. 2 for an overview). The role of each of these
modules are described next.
Multi-Person Tracking. The objective of the tracker is to lo-
calise each person appearing in the footage and track their
trajectories across frames. The tracker output consists of a
collection of spatio-temporal bounding box trajectories T =
{τi : τi ∈ Rli×4, i ∈ {1, . . . , N}}, where N represents the
total number of trajectories, li denotes the length of trajectory
i, and τi specifies an array of bounding box locations in pixel
coordinates.
Active Signer Detector. For each trajectory τi delivered by
the tracker, the role of the active signer detector is to produce
a vector, yi = {0, 1}li , which associates to each trajectory
bounding box a label of 1 to indicate that the person contained
within it is actively signing, and 0 otherwise.
Tracked person Re-identification (Re-ID) module. The role
of this module is to group the trajectories T delivered by the
tracker by their identity. To each track, τi, the model assigns
an identity label ηi ∈ [0, . . . ,MT ], where MT denotes the
estimated total number of identities in T .

Finally, the modules are combined by segmenting each
person track τi into the sequences of contiguous active sign-
ing frames indicated by yi and assigning to each segment its
corresponding track identity identity label ηi.
Implementation. We instantiate the multi-person tracking
module with the robust pose-based tracker recently proposed
by [32]. In brief, this method employs a YOLOv3 [33] ob-
ject detector, trained for person detection on the MS COCO
dataset [26] to produce initial bounding box proposals at
a fixed frame interval. Human keypoint estimation is then
performed within the proposals over consecutive frames
by recursively updating the bounding box such that it en-
closes the keypoints. These keypoints are fed to a two-layer
Siamese graph convolutional network (which is trained to
estimate the similarity of two poses via a learned metric in
128-dimensional feature space) that is used together with spa-
tial consistency constraints to link box-enclosed poses into
tracks.

While SDTRACK is agnostic to the implementation of the
tracker, the pose-based tracking described above has the aux-
iliary benefit of estimating a set of human keypoints for each
trajectory bounding box which can be efficiently re-used by
the active signer detector module. We therefore implement
the active signer detector as a binary classifier which takes
as input the keypoint trajectories for a track and predicts its
labels yi. We explore two variants of the active signer de-
tector: (1) a simple frame-level decision tree heuristic which
predicts an active signer whenever the estimated forearm-to-
upper-arm angle is less than a fixed threshold (1.1 radians—
determined through visual inspection on example data); (2)
An eight-layer convolutional network which consumes tem-
poral sequences of estimated keypoint confidences and lo-



cations (normalised with respect to their enclosing bounding
box) and produces frame-level active signer labels. The latter
model, implemented with the framework provided by [13], is
“bootstrapped” by training on the predictions of the former
across unlabelled data.

The Signer Re-ID module employs face verification for
inter-track Re-ID (linking identities across tracks) and relies
on the person tracker for intra-track Re-ID (identity is as-
sumed consistent within a person track). Inter-track Re-ID
comprises a three stage pipeline. (1) Faces are detected using
the RetinaFace architecture [11], with Mobilenet0.25 [20]
as the backbone network, trained on the WIDER FACE
dataset [41]. (2) Face-identity discriminating embeddings
are extracted from the face detections using an SENet-50 [21]
architecture (pre-trained on the MS-Celeb-1M [19], and fine-
tuned on VGGFace2 [6]). (3) As with the person tracker,
face detections of the same identity in consecutive frames
are linked together into face-tracks, using a combination of
IoU (intersection over union) and similarity between face
embeddings to link detections. For each face-track, the em-
beddings from the constituent detections are average-pooled
across the track and L2-normalised, giving a single face-track
embedding.

We evaluate these design choices and ablate their effect
on diarisation performance in Sec. 5.

4. ANNOTATION PIPELINE

Data Description. The data that we annotate in this work,
which we refer to as the SEEHEAR dataset, comprises 90
hours of British Sign Language (BSL) content produced by
a wide variety of signers. It is sourced from public broadcast
archive footage of the long-running UK BBC show, SeeHear.
We annotate 35K active signer tracks and 40K automatically
localised instances of specific signs for this data.

The partitions of the dataset are shown in Tab. 1. We note
that in a number of episodes for the first several seasons of
the show, presenters used “Sign-Supported English” (SSE)1,
which differs from true BSL in terms of grammar and form
of sign production [39, 40]. These data are excluded in this
work from algorithmic performance evaluation but may nev-
ertheless be of interest to the sign recognition community. We
therefore estimate the presence of SSE in each signing track
automatically with the method of [8].

The Train, Val, Test and Reserved partitions (summarised
in Tab. 1) are formed by assigning the earliest 80 episodes
(for which SSE is more prevalent) to Train, then randomly
assigning the remaining episodes across splits in the given
proportions.
Dataset Pipeline. To construct the SEEHEAR dataset,
SDTRACK was employed as part of a multi-stage dataset
pipeline, described next.
1. Source footage was obtained from 344 episodes of the

1We note that SSE lacks a universally agreed upon definition [4]. In our
work, it refers to simultaneous production of both sign and speech.

Num.
vids

Track duration
(in hours)

Sparse
annos

Num. tracks
(of which SSE)

Train 275 75.7 36.7K 28.7K (10.6K)
Val 17 3.7 1.4K 1.6K (0.5K)
Test 27 6.6 2.4K 2.7K (0.8K)
Reserved 25 5.7 2.1K 2.5K (0.8K)

Total 344 91.7 5,352 (6,945) 35.6K (12.8K)

Table 1. Statistics for the partitions of the SEEHEAR
dataset. See Sec. 4 for further details.

TV show, SeeHear, from UK university library sources [38],
enabling its use for non-commercial research.
2. OCR subtitle extraction. Subtitle text is first detected using
the PixelLink algorithm [10, 27], and then recognised via
the matching method of [42] trained on synthetic text lines.
For each frame sequence containing a subtitle text, the text
recognised on each frame is then analysed with an English
transformer language model [31] trained with the Fairseq se-
quence modelling toolkit. The text with the lowest perplexity
is chosen as the subtitle for the whole frame sequence.
3. Signer tracking and diarisation. Using the SDTRACK
framework, tracks were obtained from all episodes and di-
arised into active signer segments. Each active signer is
associated with the corresponding subtitles produced by the
previous stage.
4. Annotations from mouthings. Within the active signer
segments produced by SDTRACK, we apply the sign spot-
ting method proposed by [1] using the improved visual-only
keyword spotting model of Stafylakis et al. [36] from [28] (re-
ferred to in their paper as “P2G [36] baseline”). To generate
the list of candidate signs for spotting, the subtitles are first
text-normalised using the method of [15] (this converts non-
standard words such as numbers and date abbreviations to a
canonical written form, e.g. “35” is mapped to “thirty five”).
Signing tracks are then queried with each word present in the
normalised subtitles that possesses four or more phonemes.
Following [1], sparse annotations are retained for all spotting
predictions which are assigned a posterior probability of 0.5
or greater by the visual keyword spotting model. These lo-
calised sign annotations allow us to use the SEEHEAR data to
assess sign recognition performance.

The outputs of this fully automatic pipeline, which com-
prise SEEHEAR with active signing tracks along with subti-
tle sentences and sparse sign annotations, are summarised in
Tab. 1. In addition to the above, the dataset also includes a
set of 4,478 sparse annotations (distributed across all dataset
partitions) that have been manually verified as correct by an-
notators (described in more detail in Sec. 5).

5. EXPERIMENTS

In this section, we report on using ground truth annotations to
evaluate components of the SDTRACK framework, validate
the automatic sparse annotations, and assess automatic sign



DER↓ JER↓ NMI↑
SDTRACK (w/o ASD,Re-ID) 71.1 53.8 0.76
SDTRACK (w/o Re-ID) 62.9 51.3 0.79
SDTRACK (w/o ASD) 25.3 41.9 0.86
SDTRACK 12.2 29.8 0.93

SDTRACK with ASD heuristic 12.3 29.9 0.93
SDTRACKwith bootstrapped ASD ConvNet 12.2 29.8 0.93

Table 2. Signer diarisation performance on annotated
portion of SEEHEAR test set. (Upper) the effect of remov-
ing the Active Signer Detection (ASD) and Re-ID modules
from the SDTRACK framework. (Lower) The influence of
different ASD methods on overall diarisation performance.

recognition performance on the sparse annotations.
Signer Diarisation: benchmark and metrics. To evaluate
diarisation performance, six videos from the test partition
were manually annotated with active speaker and identity
labels (resulting in a total of 104 turns of signing across 43
minutes of video). We report three metrics to compare per-
formance: Diarisation Error Rate (DER) (which is formed
from the sum of missed signing, false alarm signing, and
signer misclassification error rates), Jaccard Error Rate (a
metric recently introduced for the DIHARD II diarisation
challenge [34] which represents the ratio of intersections to
unions between predicted and ground truth signer turns) and
Normalised Mutual Information (NMI) between predicted
and ground truth signer turns.
Ablations. In Tab. 2 (upper), we first perform ablations by re-
moving various components of the SDTRACK pipeline. The
results confirm that each module plays an important role in
diarisation performance. In Tab. 2 (lower), we fix the Multi-
Person Tracking and Signer Re-identification modules of the
SDTRACK framework and evaluate the two proposed vari-
ants for the active signer detection module. We observe that
the ConvNet, trained on the predictions of the crude decision
tree heuristic, performs similarly to the baseline. However,
given its marginal improvement, we use this model for the
final SDTRACK implementation.
Sparse annotation validation. We next provide an assess-
ment of the quality of the sparse annotations listed in Tab. 1
that were obtained using mouthing cues through visual key-
word sign spotting (using the method of [1]). To quantify an-
notation quality, we extended the open-source VIA tool [12],
to allow human experts in sign language to assess the cor-
rectness of approximately 10K sign spotting predictions. Of
these, 60.4% of the predictions were marked correct, validat-
ing the effectiveness of the automatic annotation approach.
We then further investigated a random sub-sample of 100 an-
notation errors to assess their causes. We found that 74% of
annotation errors could be attributed to mistakes made by the
visual keyword spotting model, and 26% resulted from fail-
ures in the tracking and diarisation pipeline to correctly iden-
tify the currently active signer in the scene (to whom the con-
tent of the subtitles corresponds), highlighting the room for

per-instance per-class
Pretraining Finetuning top-1 top-5 top-1 top-5

BSL-1K [1] - 21.2 38.4 22.3 38.6

Kinetics SEEHEARm.5 52.4 68.7 39.0 54.2
BSL-1K SEEHEARm.7 63.5 80.1 51.9 73.2
BSL-1K SEEHEARm.5 67.4 82.1 58.0 75.4

Table 3. Sign recognition on SEEHEAR: We evaluate per-
formance for sign classification on the manually verified test
set of SEEHEAR.

further improvement of the latter.
Automatic sign recognition. As described in Sec. 4, besides
diarisation, SEEHEAR can be used for sign language recog-
nition. Here, we provide results for classifying signs given
short temporal intervals around sparse annotations within ac-
tive signer tracks. Specifically, the input is a 20-frame video
cropped around the active signer. We determine a vocabulary
of 4321 signs from the train split, removing words for which
all mouthing annotation confidences are below 0.8. For the
training set (combining Train+SSE splits), we use 36K au-
tomatic mouthing annotations. For testing, we use the 307
manually verified signs which fall within the test partition
spanning a vocabulary of 124 signs. Tab. 3 reports the recog-
nition performance for several I3D [7] models with or without
fine-tuning on the SEEHEAR training set. First, we apply the
state-of-the-art model of [1], which is trained for 1064 sign
categories on BSL-1K, covering our test vocabulary. We ob-
tain 21.2% accuracy, which highlights the difficulty of gener-
alisation to in-the-wild SEEHEAR data. Second, we finetune
this model for the more challenging task of 4321-way classi-
fication and observe significant gains (67.4%). Third, similar
to [1], training with a less noisy but smaller set of annotations
by filtering the mouthing confidence at 0.7 (SEEHEARm.7)
degrades the performance (63.5%). Finally, sign recognition
pretraining on BSL-1K gives a significant boost over action
recognition pretraining with Kinetics (52.4% vs 67.4%).

6. CONCLUSION

In this work, we introduced the SDTRACK framework for
signer tracking and diarisation in the wild. We used SD-
TRACK to annotate a large-scale collection of BSL signing
content in diverse conditions. We also used the annotated data
to evaluate several diarisation and recognition baselines to as-
sess their effectiveness for sign language understanding in the
wild.
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