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1. Introduction

A typical finance panel data set contains observations
on multiple firms across multiple time periods. Although
OLS standard errors will be consistent as long as the
regression residuals are uncorrelated across both firms
and months, such uncorrelatedness is unlikely to hold in a
finance panel. For example, market-wide shocks will
induce correlation between firms at a moment in time,
and persistent firm-specific shocks will induce correlation
across time. Furthermore, persistent common shocks, like
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business cycles, can induce correlation between different
firms in different years.

A number of techniques are available for adjusting
standard errors for correlation along a single dimension.
Fama and MacBeth (1973) propose a sequential time-
series of cross-sections procedure that produces standard
errors robust to correlation between firms at a moment in
time. Huber (1967) and Rogers (1983) show how to
compute “clustered” standard errors which are robust
either to correlation across firms at a moment in time or
to correlation within a firm across time. None of these
techniques correctly adjusts standard errors for simulta-
neous correlation across both firms and time. If one
clusters by firm, observations may be correlated within
each firm, but must be independent across firms. If one
clusters by time, observations may be correlated within
each time period, but correlation across time periods is
ruled out.

This paper describes a method for computing standard
errors that are robust to correlation along two dimen-
sions. To make the discussion concrete, we call one
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dimension time, and the other firm, but the results
trivially generalize to any two-dimensional panel data
setting. In addition, these standard errors are easy to
compute. In the simplest case, we have firm and time
effects, but no persistent common shocks. In this case, the
variance estimate for an OLS estimator S is

Vé\l‘(ﬁ) = ‘7ﬁrm +‘7time,0 _vwhite.O-

where Vj,, and Vi are the estimated variances that
cluster by firm and time, respectively, and V.o is the
usual heteroskedasticity-robust OLS variance matrix
(White, 1980).! Thus, any statistical package with a
clustering command (e.g., STATA) can be used to easily
calculate these standard errors. The paper also provides
valid standard errors for the more complicated case which
allows for persistent common shocks.

This paper also discusses the pros and cons of double-
clustered standard errors. I analyze the standard error
formulas using the familiar trade-off between bias and
variance. The various standard error formulas are esti-
mates of true, unknown standard errors. The more robust
formulas have less bias, but more estimation variance. The
lower bias improves the performance of test statistics, but
the increased variance can lead to size distortions. I use
Jensen’s inequality to show that, when sample sizes are
small, the more robust standard errors lead us to find
statistical significance even when it does not exist.

When is the bias reduction likely to be important? I
argue that double clustering is likely to be most helpful in
data sets with the following characteristics: the regression
errors include significant time and firm components, the
regressors themselves include significant firm and time
components, and the number of firms and time periods is
not too different. So, if the regressors vary by time but not
by firm, then clustering by time may be good enough,
and double clustering may not make a large difference.
If there are far more firms than time periods, clustering
by time eliminates most of the bias unless within-firm
correlations are much larger than within-time period
correlations.

I also point out special considerations related to
persistent common shocks. Correcting for correlations
between different firms in different time periods involves
estimating autocovariances between residuals. As Hur-
wicz (1950) and many subsequent authors have shown,
autocovariance estimates are biased downward. Thus,
standard errors that correct for persistent common shocks
will tend to be biased downward. Eliminating the bias
requires a large number of time periods.

I use a Monte Carlo to evaluate how large sample sizes
must be in practice. When I apply pure double clustering,
and do not adjust for persistent common shocks, the
standard errors are reliable in data sets with at least
25 firms observed over 25 time periods. When I correct for

! The double-clustering problem was also solved in Cameron,
Gelbach, and Miller (2006). I was unaware of their paper while working
on these results. Their paper was made available on the Web at roughly
the same time as this one.

persistent common shocks, the number of time periods
should be greater than 50.

This leads to reasonably simple advice for applied
researchers. Double clustering is worth doing because it is
an easy robustness check, and the standard error
estimates are accurate in small samples. However, we
should not expect it to make a big difference in all data
sets, especially when there are far more firms than time
periods. I do not make as strong a case for adjusting for
persistent common shocks. The standard error formulas
are a bit more complicated, and a larger number of time
periods is needed for the estimates to be accurate.

2. Firm effects, time effects, and persistent common
shocks

Consider the panel regression
Yie =X, B+&;. M

yit is the dependent variable, ¢; is the error term, X;; is the
covariate vector, and f is the coefficient vector. We have
i=1,...,N firms observed over t=1,...,T time periods. More
generally, index i could refer to any unit of observation,
such as an industry- or country-level observation, and t
could refer to any other unit. I write in terms of firms and
time periods because it makes the discussion more
concrete. The errors may be heteroskedastic, but must
have zero conditional mean, so E(g;;|X;;) = 0. We make the
following assumptions about the correlations between
errors.

Assumption 1. Firm effects: The errors may exhibit firm
effects, meaning that errors may have arbitrary correlation
across time for a particular firm: E(g;.&|X;t.Xi) #0 for all
t#k.

Assumption 2. Time effects: The errors may exhibit time
effects, meaning that errors may have arbitrary correlation
across firms at a moment in time: E(g; & |X;,X;) #0 for
i#].

Assumption 3. Persistent common shocks: The errors may
exhibit persistent common shocks, meaning that we allow
some correlation between different firms in different time
periods, but these shocks die out over time, and may be
ignored after L periods. So E(g;&j[XiXj) =0 if i#j and
|t—k| > L.

To understand the difference between time effects,
firm effects, and persistent common shocks, consider the
following data-generating process:

& = 0,8 4+ + 1y,

Nie = @Nie_1+Git» Mig =0. )

f; is a vector of random factors common to all firms, and 6;
is a vector of factor loadings specific to firm i. u;; and g;; are
random shocks, uncorrelated across both firm and time.
The 7;, term generates firm effects—shocks specific to firm
i. ;f; generates both time effects and persistent common
shocks. When f; is uncorrelated across time, we have
time effects but no persistent common shocks—firms are
correlated with one another at a moment in time, but



S.B. Thompson / Journal of Financial Economics 99 (2011) 1-10 3

different firms in different time periods are uncorrelated.
When f; is persistent, we have both time effects and
persistent common shocks. We assume that the auto-
correlations for f; disappear after L months.?

2.1. Examples

The assumptions cover many interesting corporate
finance applications. Consider a capital structure regres-
sion as in Petersen (2009), where the dependent variable
is the ratio of firm debt to assets. The residual probably
includes a firm-specific effect (our #; term) as well as
common persistent business-cycle shocks that affect
all firms (our f; term). Later in this paper, I consider
profitability regressions as in Fama and French (2000),
where the dependent variable is profitability measured as
the ratio of firm earnings to book value of equity. The
residual probably includes firm-specific components, as
well as common components that vary over time.

Other examples come from the literature that links a
country’s growth rate of output to its financial develop-
ment. A country’s growth rate is probably influenced by
country-specific and business-cycle shocks. Rajan and
Zingales (1998) run regressions at the country and
industry level, and use country and industry dummies to
control for common effects. Papers such as Larrain (2006)
and Li, Morck, Yang, and Yeung (2004) estimate country-
level panel regressions.

For an asset-pricing example, consider predictive
panel regressions with overlapping returns. The depen-
dent variable y; is a J-period overlapping return, so
Vit = Z{(= 1 Rit+k Where R;, is the return on company i’s
stock in month t. The regression errors will likely contain
shocks common to many stocks, and the overlapping
structure of the dependent variable will induce correla-
tions across different firms in different time periods. Thus,
is it likely that we will have time effects and persistent
common shocks, but we may be able to rule out firm
effects.

Predictive regressions with overlapping returns have
been well studied in the univariate case. For example,
Hansen and Hodrick (1980) show how to calculate correct
standard errors when predicting a univariate time-series of
exchange rates. The panel regression case is less well
understood. Cohen, Polk, and Vuolteenaho (2003) is an
example of a paper that handles the problem carefully—
the formulas in this paper generalize and simplify their
calculations.

2.2. Alternative approaches

This paper provides standard error formulas that
correctly handle these examples. In order to better

2 More generally, shocks to f, could decay slowly but not completely
disappear after L periods. For example, f; could follow a first-order
autoregressive process. While this would violate the assumption, I
assume that after some time the correlation between shocks is small
enough that it can be ignored. Autoregressive processes could be
handled by allowing the lag length L to grow with the sample size (see,
for example, Newey and West, 1987).

understand the usefulness of this result, let us consider
other approaches that an applied researcher might take.
One approach would be to use the usual standard errors
that do not adjust for correlation between observations.
Petersen (2009) and many other have shown that can lead
to standard errors that are too small. Small standard
errors lead to large t-statistics, and the researcher will see
statistical significance even when it does not exist.

Another approach is to cluster along a single dimen-
sion. Similarly, we could use the standard errors of Fama
and MacBeth (1973), since they also solve the single-
clustering problem [see Petersen (2009) for further
explanation]. Again, this can lead to understated standard
errors. Consider an application to model firm profitability.
We might cluster by time, meaning that we allow firms to
be correlated with one another at a moment in time. This
will ignore persistent firm-specific effects. The residual
may contain unobserved components that cause one
company to be persistently more profitable than others.

One way to simultaneously handle firm and time
effects is to use firm and time dummies. For example, we
could cluster the standard errors by time and include firm
fixed effects (e.g., we could include firm-specific dummy
variables in the regression). This is a sensible procedure
that will work well in many cases. However, fixed effects
will not handle many relevant forms of correlated errors.
In our example data-generating process (Eq. 2), the time
effect has the factor structure 6;f; and the firm effect
follows the autoregressive process #;.. Time dummies will
not correctly model the factor structure if the loadings 6;
vary across firms, and firm dummies will not correctly
model the autoregressive process.

Another limitation with firm or time fixed effects is
that they limit the kinds of covariates that can be
included. If we use time dummies, we cannot include
macroeconomic variables in the regression, since they are
collinear with the dummies. Similarly, dummies can
significantly increase the standard errors when the
covariate does not vary much along a dimension. For
example, consider a regression where the covariate is the
yield on a firm’s long-term debt. If the firms in our sample
have similar credit quality, this covariate may vary
significantly across time, but may not vary much across
firms at a moment in time. While it is possible to include
time dummies in this regression, they will be highly
correlated with the covariate and therefore, will cause the
standard errors to increase.

3. Standard error formulas

What is the variance of the OLS estimator? The
estimator satisfies

poren e

with w; =X;¢; and H=}, x;X;. In large samples, the
estimator variance can be approximated by H-'GH™ !,
where G =Var[)_; ,u;]. The term G may be written as

G= ZE(u"thk).

ij.tk
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Under the error assumptions, we can simplify the
formula as

L
G= Gﬁrm + Gn‘me,O_ white,0 Z(Gﬁme,! + G/time,l)
=1

L
- Z(Gwhite,l +Goypite
i-1

with
Gﬁnﬂ = ZE(CEC;)- Gn’me,l = ZE(S,;S'[_H),
i t

Gwhite,l = ZE(uitu;"t+ [)-
it

ci=> ,u; is the sum over all observations for firm i,
and s;=);u; is the sum over all observations for
time t. The variance can be con51stently estimated by
Var(ﬁ) vﬁml +Vnme()_ vwhlreO+ El—](vnmel"‘vnmel)
Zl = 1(thlte 1 +vwhxte l) where

Vim=H" N ecH
i
Vime =H'> 85, H ',
t
thite,l = H_IZZﬁltﬁ; t+lH €)
t

Ui =Xy €y, €;=) Uy, S¢ =) ;U;, and &; is the residual
Yi—X;B. Vi is the usual formula for standard errors
clustered by firm, VnmeO is the usual formula for standard
errors clustered by time, and th,mg are the usual OLS
standard errors robust to heteroskedasticity. The Vnme,
and th,,e, terms for [>1 correct for persistent shocks
common to many firms.

We subtract vwhxteO to correct for double-counting the
within-firm variance. Both V,—,,71 and VnmeO sum over the
cross product u; . Since that cross product appears in
th,[eo, we eliminate the double-counting by subtraction.
Similarly, Vf,m, the variance that clusters by firm, includes
all residual cross products U}, ; within firm i. These
cross products also appear in Vnme 1» SO we subtract th,te,
to avoid double-counting. R

The Ve, terms are less familiar. V., estimates
H 'Y ,Cov(s:,s;.)H™!, a weighted autocovariance be-
tween time clusters. The autocovariances are induced by
the persistent common shocks. Why do the V., terms
appear twice? Recall that, when we take the variance of a
univariate sum, the result is the sum of variances plus two
times the sum of covariances. In the vector case, we have
a similar result:

T T-1 -
Var(Z st) = Var(s;)+ Z Z Cov(S,S¢.1)
t=1 t t= =
T-1 -
+ Z Z Cov(s;,S; 41)-
t=11=

The covariance terms Cov(s;,S;,;) appear twice, just as
they do in the univariate case.

Special case (Double-clustering, but no persistent com-
mon shocks): If the residuals do not contain persistent
common shocks, then L=0 and the variance estimator
becomes Var(ﬁ) Vﬁ,m-f-vnmeo—vwh,teo This estimator is

trivially calculated using a statistical package that has a
built-in clustering command.?

Special case (Persistent common shocks, but no double-
clustering): Consider the predictive regression where y;; is
an L-period overlapping return, so y; = Zk: 1Rit ik
where R;; is the return on company i’s stock in month t.
This regression is typically run under the assumption that
there is no persistent firm-specific shock. In this case,
the variance estimator becomes Var(ﬁ)—Vnmeo+ Z,_1
(Vnme 1 +vt|me l)

Asymptotic consistency: Asymptotic consistency of the
standard errors is demonstrated in Appendix A. Consis-
tency requires that both N and T become large. I assume
that T = aN, where o is a positive constant, and then take
the probabilistic limit as N— oco. The relative magnitudes
do not matter; for example consistency holds if N is twice
as big as T, as long as both approach infinity. However,
consistency will not necessarily hold if T goes to infinity
while N is fixed, or if N goes to infinity while T is fixed. The
intuition for this result is that we need T to become large
for Vt,me, to be consistent, and we need N to become large
for Vﬁ,m to be consistent. When either T or N are small,
there may be too much sampling variability in Vnme, or
Vﬁ,m.

4. When should we use robust standard errors?

Is there a downside to double-clustering the standard
errors? Should we always adjust standard errors to handle
persistent common shocks? In fact, it is not always best to
use the “most robust” standard error formula. The various
standard error formulas are estimates of true, unknown
standard errors. In this section, I point out that the more
robust standard error formulas tend to have less bias, but
more variance. The lower bias improves the performance
of test statistics. But the increased variance often leads us
to find statistical significance even when it does not exist
(e.g., we erroneously reject a true null hypothesis).

4.1. Bias

More robust standard errors have less bias. When is
this effect likely to be important? Consider a researcher
who uses single-clustered standard errors, and is con-
sidering double-clustering and adjusting for persistent
common shocks. When will the more robust formulas
make a difference? In this section, I argue that the
researcher should think about three features of the data
set: the distribution of the errors, the distribution of the
regressors, and relative number of observations along the
two clustering dimensions.

To make the discussion more concrete, consider a few
scenarios.

3 For example, in STATA we would issue the command “reg y X,
cluster(firm)” to compute Vﬁm. “reg y x, cluster(time)” to compute
Viimeo, and “reg y X, robust” to compute Ve.o. Here, “y” is the
dependent variable, “x” is the single regressor (we could have more than
one), “firm” is an index number unique to each firm, and “time” is an
index number unique to each time period.
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Scenario #1: The researcher should double-cluster, but
instead single-clusters by firm. The double-clustered
formula is Vfirm+Vtime 0—Vwhite 0, While the single-clus-
tered formula is Vgm. Thus, the researcher omits
Vtime,0—V white,0-

Scenario #2: The researcher should double-cluster, but
instead single-clusters by time. The researcher omits
vﬁml_vwhite,o-

Scenario #3: The researcher should adjust for persis-
tent common shocks but fails to do so. The researcher
omits Vime1—Vihite for [> 1.

These scenarios show us that robust standard
errors are most help£u1 whgn terms like Vﬁm—\?wh,-tevo,
Vtime,O_vwhite,O- and Vtime.l_vwhite,l are large. When are
these terms large?

Start with scenario #1. The bias comes from omitting
the time clustering. In large samples we can approximate
the bias with

EV time,0—EViwhiteo ¥ H'Y > Cov(Xyeéip, X;&50H . (€Y
toi#j

This formula tells us three things: the distribution of
the errors matters, the distribution of the regressors
matters, and the balance between the number of
observations on firms and time periods matters. Let us
first consider the distribution of the errors, then come
back to the other points. If, conditional on the regressors,
errors are not correlated across firms, then there is no bias
in scenario #1. To put it in mathematical terms, we know
that E[g;&;¢|Xir,X;] = 0 implies Cov(X;:&it,Xje&jr) = 0. We can
make similar statements for the other scenarios. If the
errors are conditionally uncorrelated across time then
there is no bias in scenario #2, and if the errors are not
conditionally autocorrelated then there is no bias in
scenario #3.

Next consider the distribution of the regressors.
Suppose that the errors exhibit strong time effects,
so Cov(gg,g) >0, but the regressors x; and X are
independent of each other and of the errors. Then
Cov(Xic&ir,Xje&jr) =0, and we do not need to cluster by
time, even though the residuals have strong time effects.
The same argument holds for scenario #2. When we fail to
cluster by firm, we omit the term Vﬁm —thimo. This term
is a sum over Cov(X;é&;,Xik&ik)—the covariance between
observations on the same firm in different time periods. If
the regressors are not correlated across time, clustering by
firm will not affect the standard errors, even if the
errors have significant firm components. The same
argument can also be applied to scenario #3. We need
to adjust for persistent common shocks if the regressors
are correlated across time. Otherwise the adjustment is
not important.

To better understand this point, consider a few
examples. Suppose the regressor is the growth rate of
gross domestic product. This does not vary at all by firm,
but varies across time and is persistent. Omitting the
corrections for time effects and persistent common shocks
may lead to bias. Thus, the researcher should worry about
scenarios #1 and #3, but #2 is less important. Now
suppose that the regressor is the return on the aggregate
stock market. This does not vary by firm, but is not

persistent. So scenario #1 is important, but #2 and #3
may not be a problem. Next consider the dividend yield of
a firm. This varies by both firm and time. However, if most
of the variation is across firms, and not across time, then
omitting the firm clustering will create more bias than
omitting the time clustering.

Double-clustering is most useful when both scenarios
#1 and #2 lead to bias. In this case, clustering in either
dimension will not eliminate the bias. This is likely to
happen when the regressors exhibit both time and firm
effects. For example, a regressor like the dividend
yield has both time and firm variation, although most
of the variation may be at the firm level. Another
important case is a multivariate regression where some
regressors vary by time, and some vary by firm. For
example, if one regressor is the dividend yield, and
another regressor is growth in gross domestic product,
then time clustering alone would not get the standard
errors right for the dividend yield, and firm clustering
alone would not get the standard errors right for the other
regressor. The only way to get both standard errors right
is to double-cluster.

Finally, consider the relative number of firms and time
periods in a data set. Suppose that we have 1,000 firms
observed over ten years, for 10,000 total observations. The
OLS formula Ve o relies on the assumption that we have
10,000 uncorrelated observations. Probably we have far
fewer. If we cluster by time, we allow arbitrary correlation
between observations in the ten time periods, thus, we
assume that we have only ten uncorrelated observations.
If we cluster by firm, we assume 1,000 uncorrelated
observations. Going from 10,000 observations to ten
probably has a bigger effect than going from 10,000 to
1,000. In this example, omitting the time clustering is
likely to be more important than omitting the firm
clustering.

The general point is that, all else equal, it is more
important to cluster along the dimension with fewer
observations. If we have a sample with ten firms and
1,000 time periods, the bigger bias reduction will
probably come from clustering by firm.

In fact, we can make a stronger statement—if the
dimensions are extremely unbalanced, we do not need to
double-cluster at all. If we fix the number of observations
in one dimension, and let the number of observations in
the other become very large, the bias disappears (so long
as we single-cluster on the less-numerous dimension).
Here is a mathematical statement of this claim when N is
fixed and T is very large:

lim Vﬁrm +vtime,0_vwhite.0 -1
T—o0,N fixed Vﬁrm ’

This is a counter-intuitive result. To understand it,
recall that our estimate f§ becomes more precise as we
add more independent observations. The estimator var-
iance reflects this and converges to zero in large samples.
The term Vipne o is constructed based on the assumption
that observations in different time periods are indepen-
dent. Thus, it will converge to zero as T becomes large,
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whether or not the assumption is in fact true.* Likewise,
Viuhite,o CONVerges to zero as the total number of observa-
tions becomes large. In contrast, Vg, relies on the
assumption that observations are independent across
firms. If we fix N, Vg, will not converge to zero. Stated
loosely, as T becomes large, we average away noise due to
variation across time, but we do not average away noise
due to variation across firms.

I should not over-sell this point. To be clear, the effect
of clustering is determined by an interaction between the
number of observations in each dimension and the
magnitude of the correlation between observations. If
there is no firm effect, so observations on a given firm are
uncorrelated across time periods, then we do not need to
cluster by firm, even if there are 1,000 time periods and
only ten firms. However, if the data have significant firm
and time effects, then it is probably more important to
cluster along the dimension with fewer observations.

This analysis suggests that double-clustering is most
important when the number of firms and time periods are
not too different. For example, Fama and French (2000)
predict firm-level profitability in a panel with thousands
of firms and roughly 35 years of annual accounting data.
In this case, clustering by time is probably good enough as
the increase in bias from failing to also cluster by firm will
likely be small. In the empirical application later in this
paper, I run profitability regressions at the industry level.
There are far fewer industries than firms, and in that
application double-clustering significantly changes the
standard errors relative to single-clustering by time.

4.2. Variance

In many cases of interest, the more robust standard error
estimates have higher variances. In some simple cases we can
verify this statement with analytic results. Consider a
regression with a single regressor where the errors are
independent, so that we do not need to cluster. When Nand T
are both large, the single-clustered standard error estimate
always has a higher variance than the OLS standard errors.
In more complicated cases we can carry out simulations. For
example, consider a regression model with a single indepen-
dent and identically distributed (iid) standard normal
regressor and iid standard normal errors. Suppose we have
ten firms observed over ten time periods, for 100 observa-
tions total. This is a model where the OLS standard errors are
appropriate, and we do not need to single-cluster, double-
cluster, or adjust for persistent common shocks. I generate
10,000 samples from this model and calculate the various
standard error estimates. White standard errors (with no

4 To see this mathematically, return to the formula for the estimator
in Eq. (3):

U -1\ o H-!
Vimeo=H™'> SSH".
t

H is ) X;X;, a summation over NT terms. s; is a summation over N
terms, so Y ,S;S;, is a summation over TN? terms. Therefore,
EV ime,0 < K(N-1T-1)(TN?)(N-1T-1) = K(T-1), where K is a finite constant.
Since V“-,,w‘o is non-negative, this inequality implies that \7[,-,,,8.0
converges to zero as T becomes large. This holds whether or not
observations are truly independent across time.

clustering) had a simulation standard deviation of 1.4%, and
single-clustered standard errors had simulation standard
deviations of 2.6%, whether clustering was done by firm or
time. The double-clustered standard errors that exclude
persistent common shocks had a simulation standard
deviation of 3.2%, and when allowing for persistent common
shocks with L=2 lags, the standard deviation was 3.6%. From
this simple experiment we see that more robust standard
error estimates tend to have more sampling variability.
Increasing the variance of a standard error estimate
may lead us to see statistical significance where it does
not exist. This result comes from Jensen’s inequality.
Suppose we have a single coefficient, and we test the null
hypothesis that f=pf,,;. We reject the null for large

values of the t-statistic T = |B—ﬂ,,u,,| /se([Ai). If B and se(ﬁ)
are independent, then as the variance of se(ﬁ) increases,

the expected value of the test statistics E(f) will rise.
Larger test statistics mean that we too often reject a true

null hypothesis. In many cases of interest, E and se(B) are
independent or are close to independent. For example, in
aregression with independent normal errors, the estimate

f} is asymptotically independent of all the standard error
estimators proposed in this paper. If we repeat the
simulation experiment in the previous paragraph, we
get approximately zero correlations between the coeffi-
cient estimate and all the standard error estimates.

For the clustered standard errors, the variance of the
standard error estimate becomes large as the number of
clusters decreases. Clustered standard errors are esti-
mated by averaging across clusters. Few clusters means a
small number of terms in the average, and thus more
estimation error. Consider, for example, the standard
errors that cluster by time:

U —_H-1\"con-!
Viimeo=H"> s;s;H .
t

This is an average over the products §;S;. As we increase T,
we increase the number of terms in the average, and the
variance of the standard error estimate declines. Thus, we
need large T to shrink the variance of \Alﬁme',, and we need
large N to shrink the variance of \7ﬁ,m. If either T or N are
small, then double-clustered standard errors can do more
harm than good.

Consider the situation where a researcher sees very
different results when going from single- to double-clustered
standard errors. The researcher may take this as evidence
that it is important to cluster along both dimensions. But if
there are too few clusters in either the time or firm
dimension, the double-clustered standard error estimate will
be noisy. The different results could be spurious and due to
noise. Thus, double clustering makes sense only when we
have sufficient clusters along both dimensions. How many
clusters do we need in practice? In the next section, I
investigate this question with a Monte Carlo experiment.

4.3. Added bias when adjusting for persistent common
shocks

There is a special consideration when adjusting for
persistent common shocks. The estimator is biased, and it



S.B. Thompson / Journal of Financial Economics 99 (2011) 1-10 7

is not a simple thing to fix this bias. We handle persistent
common shocks with the terms V iy and Vg - Both of
these terms involve estimates of autocorrelations: V'ime,
uses >°,S;S;,;, and Vypiee; uses > u;l;, . In general,
estimates of non-negative autocorrelations are biased
downward. Thus, we have identified two factors that
cause these standard errors to falsely reject true null
hypotheses—they have larger estimation variances than
simpler formulas, and they exhibit downward bias.

We can see the bias in a simple example. Suppose we
have data {Zt}tT= ;- The first-order autocovariance is
Cov(Z;,Z;_1) = EZ,Z,_1—(EZ,)*. We estimate this with

COVZeZe) =MD" 2212,

t>2

where Z =T-'Y", . ;Z:. The expectation of the estimate is

ECoV(Z:,Z1) = EZ:Z, 1 —EZ".

If EZ° = (EZ)?, then this estimate is unbiased. But
Jensen’s inequality tells us that EZ° > (EZ)?, which shrinks
the estimate. The downward bias is present even when
the true autocorrelation is zero—in this case the expected
value of the estimate is negative.

The bias of autocorrelation estimates is an old and
unsolved statistical problem that dates at least back to
Hurwicz (1950). Nickell (1981) points out some of the
problems this effect causes in panel regressions. Stam-
baugh (1999) shows that it makes conventional inference
in predictive time-series regressions unreliable. Petersen
(2009) shows that the effect leads to bias in adjusted
Fama-MacBeth standard errors. Petersen’s critique applies
here as well.

Two useful facts about the bias are that it increases
with the magnitude of the correlation, and it disappears as
the sample becomes large. Therefore, we expect these
standard errors to perform well when the correlations are
close to zero, and the sample size is large. Of course, if the
correlations are low then we can just ignore them and use
simpler formulas. The only case where these standard
errors are unambiguously preferred is when the correla-
tions are significant and the sample size is large enough to
correct the bias. I perform Monte Carlos to see how big the
samples need to be.

5. Monte Carlo experiments

In this section, I use Monte Carlo simulations to
investigate the small-sample performance of the robust
standard errors. I simulate 5,000 draws from the panel
regression,

Yie = Bo+B1X1,ic + BaXa it + &its

with By =0 and f; = ff, = 1. The simulation is repeated for
various sample sizes and error dependencies. For each
sample, I estimate the regression and carry out two-sided
t-tests of the nulls that f; =1 and B, = 1. Table 1 reports
rejection frequencies for t-tests constructed from many
different variance estimators: the usual OLS variance
estimator, Vypieeo, the estimator that clusters by firm,
Vim0, the estimator that clusters by time, Vimeo, the
estimator that clusters by both firm and time but does not

allow persistent common shocks, Vﬁm+\7n~me‘0—\7wh,mo,
and the full variance estimator that clusters by firm and
time and allows persistent common shocks (with L=2).
The Monte Carlo also considers fixed-effects regressions—I
run the regression with firm fixed effects and cluster the
standard errors by time, and run the regression with time
fixed effects and cluster the standard errors by firm. Since
the null hypothesis is true, we prefer standard errors that
deliver rejection frequencies close to 5%.

I consider three different data-generating processes.

Panel A: The errors and regressors are distributed
N(0,1) and independent across both i and t.

Panel B: x; has time effects, x, has firm effects, and the
errors have both. There are no persistent common shocks.
X1 =&, where & ~N(0,1) and independent across t.
Xp,it = Ny, Where n;, =0.97;, ;+G;, with ¢; ~N(0,1) and
independent across i and t. & = ¢, +1;,, where &, and 7;
have the same distributions as &; and #;,.

Panel C: x; has a persistent common shock, x, has firm
effects, and the errors have a persistent common shock
but no firm effects. ¢; = 0;f; +u;;, where 6; ~ N(0,0.25) and
independent across firms, f; = 0.5f;_1 +v;, with v, ~ N(0,1)
and independent across time. xq ;; = o0.f ¢» Where f ¢ has the
same distribution as f;, and 6; is the same loading used to
generate &;. X, ;; =1#;, where 1; ~N(0,1) and independent
across firms.

Notice that, in Panels B and C, the regressors exhibit
correlations similar to those in the errors. As argued in
Section 4.1, double-clustering matters most when both
the regressors and the errors exhibit time and firm effects.

In Panel A all the variance estimators are valid and
should deliver rejection frequencies of 5%. Instead we see
that the simpler formulas get the size right, but the more
robust formulas over-reject in small samples. For example,
in the simulation with T=25 and N=50, the standard errors
that are robust to persistent common shocks reject a true
null at least 12% of the time. The size distortion diminishes,
but does not disappear, when we go to a sample with 100
time periods. This is consistent with the arguments made in
Section 4.2: in small samples the more robust formulas have
higher estimation noise, and via Jensen’s inequality this
causes us to over-reject a true null hypothesis.

In Panel B we need to double-cluster. The OLS rejection
frequencies are all at least 40%. Single-clustering by firm
gets the size right for 8, but not for ;. Likewise, single-
clustering by time gets the size right for 8, but not for j,.
This happens because x; has only time effects, x, has only
firm effects, and the two regressors are uncorrelated. Thus,
even though the errors have both firm and time effects,
single-clustering works for either f; or f,. In order to get
the size right for both regressors, we need to double-cluster.
The fixed effects do not help much. The time fixed effects
are collinear with x;, so we cannot estimate f,. The firm
fixed effects do not capture the actual firm dynamics, which
follow an autoregressive process.

In Panel C we need to use standard errors robust to
persistent common shocks. However, from our results in
Panel A we know that these standard errors have
poor small-sample properties. We see a similar effect
here—there are size distortions for all sample sizes,
and they are smallest in the biggest sample. It is worth
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Table 1
Monte Carlo comparison of standard error formulas.

The table shows results of a Monte Carlo evaluation of various standard error formulas. I simulate 5,000 samples from the regression model
Yie = Bo+ B1X1ic + PoXaie +&i With By =0 and f; = 8, = 1. For each sample, I estimate the regression and carry out two-sided t-tests of the nulls that 8, =1
and B, = 1. The table reports rejection frequencies from various estimator variance formulas: (1) “OLS std errors” denotes V,ypi, (2) “cluster by firm”
denotes Vim, (3) “cluster by time” denotes Viime, (4) “cluster by firm, time FE” denotes time fixed effects with Vi, (5) “cluster by time, firm FE” denotes
firm fixed effects with Viime, (6) “cluster by both firm and time (not robust to persistent common shocks)” denotes Vfirm + Viime — Viwhite: and (7) “cluster by
both firm and time (robust to persistent common shocks, L=2)" denotes Vnn + Viime — Viwnite + {corrections for persistent common shocks with L=2}.

Panel A: Both regressors and &;, are iid N(0,1) across both i and t, so OLS error assumptions are satisfied

T=25, N=50 T=50, N=50 T=100, N=100
B B2 B Ba B B2

OLS std errors 0.049 0.048 0.050 0.047 0.049 0.056
Cluster by firm 0.053 0.056 0.056 0.053 0.052 0.055
Cluster by time 0.058 0.065 0.057 0.056 0.052 0.059
Cluster by firm, time FE 0.057 0.056 0.060 0.058 0.051 0.058
Cluster by time, firm FE 0.065 0.067 0.060 0.059 0.051 0.062
Cluster by both firm and time

(not robust to persistent common shocks) 0.069 0.070 0.062 0.064 0.054 0.059
Cluster by both firm and time

(robust to persistent common shocks, L=2) 0.127 0.123 0.100 0.100 0.069 0.078

Panel B: Errors have both time and firm effects, and persistent common shocks. X1 has time fixed effects (and no persistent common shock), and x;, has firm

effects that follow an autoregressive process

T=25, N=50 T=50, N=50 T=100, N=100
B Ba B Ba B B2

OLS std errors 0.560 0.425 0.519 0.482 0.640 0.478
Cluster by firm 0.695 0.058 0.635 0.059 0.707 0.053
Cluster by time 0.093 0.531 0.074 0.533 0.056 0.501
Cluster by firm, time FE - 0.058 - 0.058 - 0.054
Cluster by time, firm FE 0.093 0.369 0.074 0.466 0.056 0.477
Cluster by both firm and time

(not robust to persistent common shocks) 0.105 0.066 0.081 0.061 0.060 0.055
Cluster by both firm and time

(robust to persistent common shocks, L=2) 0.174 0.103 0.113 0.080 0.076 0.062

Panel C: Errors have both time and firm effects, and persistent common shocks. x,; has time effects with persistent common shocks, and x,;; has firm fixed

effects
T=25, N=50 T=50, N=50 T=100, N=100
B B2 B B2 B B2

OLS std errors 0.747 0.563 0.765 0.673 0.809 0.750
Cluster by firm 0.906 0.074 0.916 0.074 0.931 0.056
Cluster by time 0.169 0.865 0.155 0.906 0.139 0.924
Cluster by firm, time FE 0.654 0.074 0.672 0.074 0.726 0.056
Cluster by time, firm FE 0.167 - 0.157 - 0.140 -
Cluster by both firm and time

(not robust to persistent common shocks) 0.176 0.087 0.162 0.081 0.143 0.058
Cluster by both firm and time

(robust to persistent common shocks, L=2) 0.201 0.127 0.145 0.100 0.098 0.067

pointing out that, since x, has only firm effects, we can get
the right test size for 8, by clustering on firm, and we do
not need to adjust for persistent common shocks.

The Monte Carlos are generally supportive of using
robust standard errors. Single-clustered standard errors
cannot handle regressions where one regressor has sig-
nificant time effects and another has significant firm effects.
If we are willing to accept false rejections of up to 10% in a
test with 5% size, then double-clustering works well so long
as we have more than 25 observations on both firms and
time periods. Correcting for persistent common shocks
requires between 50 and 100 time periods.

6. Application to modeling industry profitability

I demonstrate the standard errors with an application
to modeling industry profitability. I consider the hypoth-
esis that profits are higher in more concentrated
industries, and measure concentration with a forward-
looking variant of the Herfindahl-Hirschman Index
(HHI) (Hirschman, 1964). The HHIis a widely used
measure of industry concentration. For example, the U.S.
Department of Justice uses the index to help determine
whether a merger is anticompetitive (see USDOJ and
FTC, 1997).
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The HHI is usually calculated from historical sales data.
I calculate a variant based on market capitalization. We
have M industries, indexed by m=1,...,M. For each
industry m, the value of the index is

HHlIme

-1 OOZZ market cap of firm i in industry m at time t 2
- total market cap of all firms in industry m at time t/ ’

ieln

where I, is the set of all firms i in industry m. While sales
data are backward looking, market capitalization is a
forward-looking measure of earnings (and payouts).

I test the predictive power of our index in a panel data
set of US industries. The sample consists of annual
Compustat data observed from 1964 to 2007. I predict
ROA,,;, a measure of industry profitability given by the ratio
of earnings to assets. Industries are based on four-digit
Standard Industrial Classification (SIC) codes. The panel is
unbalanced—there are 434 SIC categories and 44 years, for a
total of 15,066 observations. The regression is

ROAm, = B+ B1In(HHI 1 1)+ B2 PBr,t—1+ B3 DBt
+B4ROA;_1 +&m,.

PB and DB are industry-level price-to-book and dividend-to-
book ratios, respectively. Fama and French (2000) identify
these variables as strongly contemporaneously associated
with firm-level profitability. My regression is predictive, but
takes their contemporaneous regression model as a starting
point. Fama and French (2000) argue that high price-to-
book ratios indicate that the market predicts higher future
earnings, and that high dividend-to-book ratios indicate that
company management anticipates higher earnings. ROA; is
the return on assets for the market as a whole in year t. It
controls for market-wide trends in profitability. The data
and regressors are described in more detail in Appendix B.

Notice that this example uses industry-level rather than
firm-level data. Even though the text of this paper has mostly
referred to the clustering dimensions as firms and time
periods, the results trivially generalize to clustering along any
two dimensions. I picked this example in part because it is

Table 2
Application to modeling industry profitability.

one where double-clustering is likely to make a significant
difference. If I used an example with firm-level data, there
would be many more firms than time periods. As discussed in
Section 4.1, double-clustering is most useful when the
number of observations in each dimension is not too far
apart. This data set has 434 industries and 43 years, but US
firm-level data would have many more than 434 firms.

Results appear in Table 2. HHI positively predicts
industry profitability, indicating that profits tend to be
persistently higher in more concentrated industries. Like
Fama and French (2000), I find that PB and DB are
significant positive predictors of profitability. ROA is also
positive, suggesting that higher-than-usual profits one
year predict higher-than-usual profits the next.

It is interesting to compare the effects of single- and
double-clustering. For the regressor In(HHI), double-clustered
standard errors are similar to standard errors from single-
clustering on industry. For ROA, double-clustering gives
results similar to single-clustering by year. Industry concen-
tration varies a lot between industries, and does not vary as
much over time within an industry. In contrast, ROA varies
across time, but does not vary at all across industries. As
discussed in Section 4.1, clustering makes a big difference
when both the error and the regressor are correlated within
the clustering dimension. We need to cluster by industry to
get the right standard error for In(HHI), and we need to
cluster by time to get the right standard error for ROA.
Double-clustering gets the right standard error for both.

Correcting for persistent common shocks generally
increases the standard errors. The largest effect is for ROA,
and the smallest effect is for In(HHI). This makes sense,
since ROA is positively correlated across time, while
In(HHI) has very weak time effects.

7. Conclusion

This paper derives easy-to-compute formulas for stan-
dard errors that cluster by both firm and time. Both the
statistical theory and the Monte Carlo results suggest that

The table shows a regression to model industry profitability. The dependent variable is ROA,,,, the ratio of earnings-to-assets in industry m in year t.
The regressors are as follows. In(HHI, 1) is the log of the Hefindahl-Hirschman concentration index for the industry, computed from market caps.
Price/Book equity,,,_1 is the price-to-book ratio. Dividends/Book equity,,,_; is the dividends-to-book ratio. Market ROA,_, is the market-wide (not
industry-specific) ratio of earnings-to-assets. “Estimate” denotes ordinary-least-squares estimates. t-Statistics are presented for different standard error
formulas: (1) “White” denotes Vi, (2) “single- clustered, time” denotes Viin, (3) “single-clustered, firm” denotes V., (3) “double-clustered, L=0"
denotes Vijme + Viirm — Viwnite» and (4) “double-clustered, L=2" denotes Vjim + Vime — Viwnice + {corrections for persistent common shocks} with L=2. See

Appendix B for details about the data.

t-Statistics
Single-clustered Double-clustered

Regressor Estimate White Time Industry L=0 L=2
In(HHI 1) 0.0049 10.530 9.988 4314 4.274 4.610
Price/Book equity,,,: 1 0.0072 17.670 5.604 11.062 5.212 3.394
Dividends/Book equity, 1 03171 20.700 9.877 10.083 7.505 5.482
Market ROA, _, 1.0631 32.720 8.667 19.958 8.195 4.924
Intercept —0.0521 —14.461 -9.148 —5.847 —5.240 —-4.714

R-squared: 19.29%
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simultaneously clustering by firms and time leads to
significantly more accurate inference in finance panels.
Monte Carlo experiments suggest that, as long as we do not
allow for persistent common shocks, clustering on both firm
and time works adequately when we have at least 25 firms
and time periods. However, allowing for persistent common
shocks requires a larger number of time periods.

This paper leaves a number of issues unresolved. The
standard errors that correct for persistent common shocks
do not behave well in small samples. Further work could
be done to improve their small-sample performance.
There is also more work to be done with the pure double-
clustering problem, some of which has already been
carried out by Cameron, Gelbach, and Miller (2006). They
show how to extend two-way clustering to clustering
along more dimensions. They also describe how to apply
these methods to nonlinear estimators.

Appendix A. Demonstration of asymptotic consistency

To establish consistency, normalize the estimator as

Var[N- 2T HB) = N> Wi+ T Weime,0.— Wois 0.0)
i t

+¥ TﬁlE(wﬁme,l,t_Wols,l,t“’ t’ime,l,t_wo;ls.l.t)]’

where Wi =T 2 XilubuXy,  Wiime, e =0 N2
PijXicicke+ X, and  Wipiee e = o IN"2 3 X 1.1
X;, - Tedious manipulations lead to the results that

COV(Wrm s Wiirmj) = O(T 1) for i#j,
and
COV(Wiime 1.6 Weime,1) = O(N~1)  for |t—k| > L.

Therefore, we can show by direct calculation that
Tll—p;lc var {T_l Xt:wtime,l,t] =0,

which implies that T='S>,Wijne . converges to its expecta-
tion in mean square. A similar argument demonstrates that
N1 W, and N=1S";Wypie 1 CONVerge to their expecta-
tions. Consistency of the standard errors follows.

Appendix B. Data construction for empirical application

The data used for the application to forecasting firm
profitability come from Compustat. Data construction
details and Compustat codes follow.

Firm-level earnings are Compustat item IB, earnings
before extraordinary items. Firm-level assets are item AT.
Firm-level liabilities are item LT. Book value is calculated as
Assets-Liabilities—Preferred Stock. To calculate the value of
preferred stock, I use the redemption value of preferred stock
(item PSTKRV). If that is not available I use the liquidating
value (PSTKL), and if that is not available the carrying value
(UPSTK) is used. Market capitalization is common shares
outstanding (CSHO) multiplied by the closing price at the end
of the fiscal year (PRCC_F). Dividends are item DVC.

I also carried out the empirical analysis adjusting
earnings and book value for deferred income taxes and
investment tax credits, as in Fama and French (2000). The
results did not meaningfully change.

Industry-level ratios were calculated by aggregating
firm-level ratios. Aggregation is carried out at the four-
digit Standard Industrial Classification (SIC) level. Indus-
try-year pairs that contain only one firm are excluded. The
results are not sensitive to inclusion of the single-firm
industries. They are also not sensitive to screening out
industry-year pairs with five firms. Before calculating
industry-level data, I first drop all observations with
book values less than $5 million and assets less than
$10 million.

To calculate industry-level return on assets, I calculate
the firm-level earnings-to-assets ratio, then winsorize with-
in each yearly cross-section at the 1% and 99% percentiles.
Industry-level ROA is the asset-weighted average of firm-
level ratios. Similarly, market-wide ROA is calculated as the
asset-weighted average over the entire market.

To calculate industry-level dividends-to-book, I calcu-
late the firm-level dividends-to-book, winsorize at yearly
1% and 99% percentiles, and form the book-weighted
average of firm-level ratios. Industry-level market-to-
book is calculated in the same way.
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