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Abstract

Negative sampling schemes enable efficient train-
ing given a large number of classes, by offering a
means to approximate a computationally expen-
sive loss function that takes all labels into account.
In this paper, we present a new connection be-
tween these schemes and loss modification tech-
niques for countering label imbalance. We show
that different negative sampling schemes implic-
itly trade-off performance on dominant versus rare
labels. Further, we provide a unified means to ex-
plicitly tackle both sampling bias, arising from
working with a subset of all labels, and labeling
bias, which is inherent to the data due to label
imbalance. We empirically verify our findings on
long-tail classification and retrieval benchmarks.

1. Introduction

Classification problems with a large number of labels arise
in language modelling (Mikolov et al., 2013; Levy & Gold-
berg, 2014), recommender systems (Covington et al., 2016;
Xu et al., 2016), and information retrieval (Agrawal et al.,
2013; Prabhu & Varma, 2014). Such large-output problems
pose a core challenge: losses such as the softmax cross-
entropy can be prohibitive to optimise, as they depend on
the entire set of labels. Several works have thus devised
negative sampling schemes for efficiently and effectively
approximating such losses (Bengio & Senecal, 2003; 2008;
Blanc & Rendle, 2018; Ruiz et al., 2018; Bamler & Mandkt,
2020).

Broadly, negative sampling techniques sample a subset of
“negative” labels, which are used to contrast against the
observed “positive” labels. One further applies a suitable
weighting on these “negatives”, which ostensibly corrects
the sampling bias introduced by the dependence on a ran-
dom subset of labels. Intuitively, such bias assesses how
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closely a scheme approximates the unsampled loss on the
full label set. This bias is well understood for sampled
softmax schemes (see, e.g., Bengio & Senecal (2008)); sur-
prisingly, however, far less is understood about other popular
schemes, e.g., within-batch and uniform sampling (cf. §2.2).

In this paper, we systematically study the sampling bias of
generic negative sampling schemes, with two main findings.
First, we precisely characterise the implicit losses optimised
by such schemes (§3). This reveals that, e.g., uniform and
within-batch sampling do not faithfully approximate the
unsampled loss; thus, measured by the yardstick of sampling
bias, such schemes appear woefully sub-optimal.

Intriguingly, however, our analysis further reveals a novel
labeling bias perspective on negative sampling. Specifically,
we show that when the label distribution is skewed — as
is common with a large number of labels (Jain et al., 2016)
— different negative sampling schemes implicitly trade-off
performance on dominant versus rare labels (§4). Conse-
quently, while certain schemes may incur a sampling bias,
they may prove highly effective in modeling rare labels.

Put together, our analysis reveals that negative sampling can
account for both sampling and labeling bias, with the latter
done implicitly. Note that the two concerns fundamentally
differ: the former results from working with a random subset
of labels, while the latter results from an inherent property
of the data. By disentangling these concerns, we arrive at a
unified means to explicitly tackle both biases (§4.2).

In summary, our contributions are:

(i) we precisely characterise the effect of generic negative
sampling schemes by explicating the implicit losses they
optimise (§3; Theorem 3). This shows that popular
schemes such as uniform and within-batch negative
sampling (Hidasi et al., 2016; Wang et al., 2017) do
not faithfully approximate the unsampled loss.

(i) we provide a novel connection between negative sam-
pling and long-tail learning, and show that negative sam-
pling can implicitly trade off performance on dominant
versus rare labels (§4.1; Proposition 4). This implies
that, e.g., within-batch sampling can boost performance
on rare labels despite not approximating the unsampled
loss. Further, this yields a unified means to tailor sam-
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pling schemes to focus on particular label slices (§4.2).

(iii) we empirically verify our analysis of sampling schemes’
implicit dominant versus rare label tradeoffs (§5).

2. Background and Notation

Consider a multiclass retrieval! setting, where given an
instance x € X, we want to recover its relevant label y €
Y= [L] = {1,2,..., L}. Let Sy = {(p,ya)}_; ~ PV
be a sample generated from the underlying data distribution
P over X x Y. We seek to learn a scorer f: X — R” via Sy
such that it minimises the retrieval risk at some r € N :

Lret(f) =Py (y ¢ topr(f)), (1)

where top,.(f) denotes the r indices with the highest scores
under the scorer f. When r = 1, the retrieval risk in (1)
reduces to minimising the standard misclassification error

Len(f) = Py (y ¢ argmax, e[ fy (I)) 2)

To achieve this, a common strategy is to minimise a surro-
gate loss £: Y x REF — R, where {(y, f(x)) is the loss
incurred for predicting f(z) when the true label is y. A
ubiquitous choice is the softmax-based cross-entropy loss
a.k.a. softmax cross-entropy loss,

Uy f(2) = —,(2) + log [nyem ef@,,m} 3

=log {1 + Z efy/(r)fy(r)} ) 4)
y'#y
Equivalently, this is the log-loss under the softmax distri-

bution p,(x) o< exp(fy(z)) with logits f,(x). Alternately,
one may use a decoupled loss (Zhang, 2004)

Uy, f(@) = o(fy (@) + Y o(~fy(x), O
y'#y
where ¢, p: R — R are margin losses for binary classifi-
cation, e.g., hinge loss. In (3) and (5), we may consider y to
be a “positive” label, and each ¢’ # y a “negative” label.

In large-output settings where number of labels L is large,
there are at least two additional considerations in designing
a loss. First, most labels may have only a few associated
samples (He & Garcia, 2009; Buda et al., 2017). Second,
computing the losses (3) and (5) may be prohibitively ex-
pensive owing to their linear complexity in L (Bengio &
Senecal, 2008; Morin & Bengio, 2005; Gutmann & Hyviri-
nen, 2012; Bose et al., 2018; Reddi et al., 2019). These
problems have been separately addressed in the literatures
on long-tail learning and negative sampling.

IThe general multilabel retrieval setting, where each instance
potentially has multiple relevant labels y C Y, can be reformulated
as a multiclass retrieval problem via standard reductions (Wyd-
much et al., 2018; Reddi et al., 2019; Menon et al., 2019).

2.1. Long-tail Learning Methods

In long-tail learning settings, 7, = P(y) is highly skewed,
and so many labels have few associated samples. Here,
achieving low misclassification error (2) may mask poor
performance on rare classes, which is undesirable. To
cope with this problem, existing approaches include post-
processing model outputs (Fawcett & Provost, 1996; Zhou
& Liu, 2006), re-balancing the training data (Chawla et al.,
2002; Wallace et al., 2011), and modifying the loss func-
tion (Xie & Manski, 1989; Morik et al., 1999). One strategy
is to encourage larger classification margins for rare labels.
Such approaches augment the softmax cross-entropy with
pairwise label margins p,,» (Menon et al., 2020):

lrary. f@) =log 143

where log p,,/ represents the desired gap or “margin” be-
tween scores for y and y'. For suitable p,,, this loss allows
for greater emphasis on rare classes’ predictions. For ex-
ample, Cao et al. (2019) proposed an “adaptive” loss with
Pyy’ X Ty /4 This upweights rare “positive” labels y to en-
courage a larger gap f, (z)— f, () for such labels. Tan et al.
(2020) proposed an “equalised” loss with py,» = F'(m,/),
for increasing F': [0,1] — R,. This downweights rare

‘ efy/<z>—fy<r>] . (6)

“negatives” ¢/, thus preventing f,, from being too small.

Finally, Khan et al. (2018); Ren et al. (2020); Menon et al.
(2020); Wang et al. (2021) proposed a “logit adjusted” loss
with py,» = —%. This encourages larger margin between

positives y that are relatively rare compared to negative 1’.

Another popular strategy is to re-weight the individual
samples, so that rare labels receive a higher penalty;
however, these are generally outperformed by margin ap-
proaches (Cao et al., 2019). Further, we shall demonstrate
the latter have a strong connection to negative sampling.

2.2. Negative Sampling Methods

At a high level, negative sampling proceeds as follows:
given an example (z,y), we draw an i.i.d. sample N =
{vi,...,y.,} of m “negative” labels from some distribu-
tion ¢ € Ajz). We now compute a loss using N in place
of [L], applying suitable weights wy, > 0. For example,
applied to the softmax cross-entropy in (3), we get

Ly, f(x);N,w) = log {1 + Z Wy cely @) =fy(@) | 7
y' EN
Similarly, the decoupled loss in (5) becomes
0y, f(x); N, w) = + > wyy (). (8)
y'eN

Remark 1. The distribution ¢ may or may not include the
positive label y amongst the negative sample N. In the latter
case, g, = 0. See Appendix C for further discussion.
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Sampling distribution ¢ Description

Weight w,,»  Description

Current model probabilities
Uniform distribution
Training distribution

Model-based negatives
Uniform negatives
Within-batch negatives

1/(m-q,)  Importance weighting
1/m Constant weighting
qy/qy Relative weighting

Table 1: Summary of sampling distributions ¢ € A[y) for an example (z,y), and weights w,,, on the negatives 3. Here, m
is the number of sampled negatives. Note that one may exclude the positive label y either while sampling, or via weighting.

Remark 2. We write g, w for brevity; in general, each of
these may additionally depend on (z,y).

There are several canonical (¢, w) choices in the literature.
For the sampling distribution ¢, popular choices are:

— Model-based. Here, ¢ is taken to be the current model
probabilities; e.g., when training f: X — R’ to min-
imise the softmax cross-entropy (3), g, o< exp( fy/(z)),
or an efficient approximation thereof (Bengio & Senecal,
2008; Blanc & Rendle, 2018; Rawat et al., 2019; Sun
et al., 2019).

— Uniform. Here, ¢ is uniform over all labels (Hidasi et al.,
2016; Wang et al., 2017), i.e., ¢,» = + forevery y' € [L].

— Within-batch. Suppose we perform minibatch-based
model training, so that we iteratively make updates based
on a random subset {(x, yp) }£_, of training samples. In
within-batch negative sampling, we use all labels in the
minibatch as our negatives, i.e., N = Uszl{yb} (Chen
et al., 2017; Broscheit et al., 2020). In expectation, this
is equivalent to ¢ = m, the training label distribution.

For the weighting scheme w,,,/, popular choices are:

—L_ - this choice
Meqyr

is motivated from the importance weighting identity, as
shall subsequently be explicated.

— Importance weighting. Here, w,,,» =

— Constant. Here, wy,- is a constant for all sampled nega-

tives; typically, this is just wy,, = %

— Relative weighting. Here, w is a variant of importance
weighting, given by the density ratio wy,s = ¢, /¢, .

We summarize these common choices for (g, w) in Table 1.
Particular combinations of (¢,w) yield common negative
sampling schemes. For example, the sampled softmax (Ben-
gio & Senecal, 2008; Blanc & Rendle, 2018) employs a
model-based sampling distribution ¢, coupled with the im-
portance weighting w. Within-batch and uniformly sampled
negatives are typically coupled with a constant weight (Hi-
dasi et al., 2016; Wang et al., 2017; Broscheit et al., 2020).
Yi et al. (2019b) employed within-batch sampling with rela-
tive weighting. Appendix C discusses further variants.

2.3. Efficiency versus Efficacy of Negative Sampling

There are two primary considerations in assessing a nega-
tive sampling scheme. The first is efficiency: to facilitate

large-scale training, it ought to be cheap to sample from the
distribution g. Uniform and within-batch negatives are par-
ticularly favourable from this angle, and have thus enjoyed
wide practical use (Hidasi et al., 2016; Yi et al., 2019a).

The other side of the coin is efficacy: to ensure good model
performance, the weights w ostensibly ought to yield a good
approximation to the original (unsampled) loss. Sampled
softmax schemes have been extensively studied through this
lens; surprisingly, however, less attention has been spent on
uniform and within-batch sampling, despite their popularity.

We now study the efficacy of generic sampling schemes,
with the aim of understanding their sampling bias (i.e., devi-
ation from the unsampled loss). In a nutshell, we explicate
the implicit loss that a given sampling scheme optimises
(§3). Beyond elucidating their sampling bias, this gives a
novel labeling bias view of negative sampling, and connects
them to the long-tail literature (§2.1). In particular, the
implicit losses bear strong similarity with those designed
to ensure balanced performance for long-tail settings. We
thus propose a unified approach to design negative sampling
schemes that overcome sampling and labeling bias (§4).

3. The Implicit Losses of Negative Sampling

Given a negative sampling scheme parameterised by (¢, w),
we now ask: what loss does this scheme implicitly optimise?
Comparing this implicit loss with the unsampled loss (e.g.,
the softmax cross-entropy loss (3)) quantifies the sampling
bias, which we shall see is non-trivial for popular schemes.

3.1. Implicit Losses for Generic Negative Samplers

Negative sampling schemes are characterised by the sam-
pling distribution ¢ and weighting scheme w. Each (g, w)
pair defines the sampled loss minimised during the training
based on a random subset of negatives N (cf. (7) and (8)).
Such sampled losses are random variables, owing to their
dependence on N. We may thus study their corresponding
expected losses, which we view as the implicit loss being
optimised during training. The form of this loss helps us
understand the effect of sampling on model performance.

In the following, we assume for simplicity that ¢, = 0, so
that the positive label y is excluded from the negative sample.
Further, we assume that A/ is sampled with replacement. We
first consider the setting of decoupled losses (cf. (8)), and
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Sampling distribution Weighting w,, Implicit loss

Comment

Uniform Constant (1) log [1+ DI 'y(-’”)] Softmax with downweighted negatives
Uniform Importance (m 0 ) log —1 + Zy, £y efv (@) =1 W”)} Softmax cross-entropy
Uniform Relative (;1—”/) log _1 + 7 Z , # ey @)—f v(“)] Softmax with downweighted negatives
v r
Uniform “Tail” (- ,‘M) log |1+ Zy ;éy e efy @)= (m)] Logit-adjusted loss of Menon et al. (2020)*
Within-batch Constant (1) log 1+ Dy Ty efv (@) fu(*)] Equalised loss of Tan et al. (2020)*
Within-batch Importance (m o -) log —1 + Z 'ty efv ()= fy( I>] Softmax cross-entropy
Within-batch Relative () log [1+m- Ty - ny;é efv <-r>*fy<m>} Softmax with upweighted head labels"
v r
Within-batch “Tail” (7 ) log [1+32,,, v (@)= y(z)} Logit-adjusted loss of Menon et al. (2020)*
yl ‘7l'y L 1 1, 7\'U

Table 2: Implicit losses for sampled softmax cross-entropy log {1 + Zy,eN Wy - efy (x)*fy(:c)} on example (z,%). Here,

negatives N = {y1,...

.Y, } are sampled from ¢, and weighted with w,,.

Different (¢, w) from Table 1, and a “tail”

weighting from (16), yield implicit losses (cf. Lemma 2) which equate to pairwise margin losses (6) from the long-tail
literature, e.g., Tan et al. (2020); Menon et al. (2020). Losses denoted ' (+) are expected to benefit “head” (“tail”) classes, i.e.,
yield better classification on data points with frequent (rare) labels. For the case of decoupled losses, see Table 3 (Appendix).

then the more challenging softmax cross-entropy.

Decoupled losses. For a generic (g, w), we now charac-
terise the behavior of the sampled decoupled loss (8).

Lemma 1. Pick any (q,w) where q € Ar has q, = 0. For
the sampled decoupled loss € in (8) with m € Z, negatives,

[L(y, f(z); N, w)] =
z)) + Z Pyy ~ #(
y'#y

=00 (y, f ()

w)] = Z Wyy' * Pyy’ *

y'#y

(Zpuy

y'#y

E
Nrgm

fy (@) ©)

[0y, f(x); N o(—fy ()

Nrgm

(~f@)) s (10)

where py,r =m - Wy, - ¢y |y).

The proof of Lemma 1 can be found in Appendix A. Note
that one can view (%% (y, f(z)) as the implicit loss being
optimized during the training. Compared to the unsampled
loss £ in (5), we see that for general (g, w), (4" # £ owing
to the former involving non-constant weights p,,- on each
negative. Thus, negative sampling introduces a sampling
bias in general. Eliminating this bias requires that p,,, =
1, which for a given sampling distribution g requires that

Wyy! = i.e., the importance weighting w in Table 1.

_1
meqyr’
Softmax cross-entropy loss. For the softmax cross-entropy,
a closed-form for the implicit loss is elusive owing to the
non-linear log in (7). Nonetheless, to draw qualitative con-
clusions about different negative sampling schemes, in this

setting we treat the following natural upper bound on the
expected loss Eo [£(y, f(z); N, w)] as the implicit loss.
Lemma 2. Pick any (q,w) where ¢ € Aqz) has q, = 0.
For the sampled softmax cross-entropy { in (7),

NE,,L [y, f(x); N, w)] <
~q
log {1 3 pyy el @=R@]
y'#y

=" (y, f (2))

where py, = m - @ - Wy, for m € Z negatives.

See Appendix A for the proof. Similar to the decoupled case,
the implicit loss £2;* (i.e., the upper bound in Lemma 2)
diverges from the softmax cross-entropy in general; thus,
there is sampling bias. The two coincide for the importance
weights wy,s = —L—. In fact, when g, oc e/v', this choice
of weight ensures equality in (11). For general g, it further
guarantees asymptotic unbiased estimate of the gradient of
the softmax cross-entropy as m — oo (Bengio & Senecal,
2008). See also Rawat et al. (2019) for non-asymptotic
bounds on the gradient bias.

Before proceeding, it is natural to ask if the upper bound
£3% in (11) is tight enough to base any further analysis
upon. The following result establishes that for large m,
¢4 indeed approximates the true behavior of the sampled
softmax cross-entropy loss in (7) in a squared-error sense.

(See Appendix A for the proof.)

Theorem 3. Pick any (q,w) such that q € Ay has
gy = 0, and wy, is expressible as % “Myy' JOr Nyyr in-
dependent of m. Let { be the softmax cross-entropy (3),
(90 be as per Lemma 2, ju,(z) = e/v@ 4 B[y, -

m
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efv @), and o} (x)

‘ = Vyng [y 'efy’(m)]. Assume that
py (), 0 () € (0, 400

) Then, for large enough m,

Ex [(€(y, £(2); N, w) — €52 (y, £(2)))’]
o2 (z)

2@ o 12

where E,, = 0,(1) converges to 0 in probability.

In Theorem 3, 11, () equals the standard partition function
Zy, ey (®) under the importance weighting Wyy = g
The above guarantees convergence of the sampled loss to
241 the upper bound in (11), provided w,, takes the form
Tyy /m; equally, in the language of Lemma 2, this requires
that py,/ /¢, is a constant independent of m. The rate of
convergence is governed by o7 (x)/u(x), which can be
seen as an inverse signal-to-noise ratio. Intuitively, when
the losses e+ (*) on negative labels 3/ # y are highly con-
centrated (i.e., o2(z) is small relative to p, (z)), sampling

y
even a few negatives can reliably estimate the true loss.

3.2. Implicit Losses of Existing Negative Samplers

Equipped with our understanding of the implicit losses for
generic negative sampling methods, we now focus on spe-
cific methods that are prevalent in practice, namely, uniform
and within-batch sampling distributions ¢ with different
weights w. Table 2 explicates the impact of specific choices
of (¢, w) through their implicit losses. For example, under
uniform sampling, a constant weight of - implicitly down-
weights negatives in the standard loss by a factor of + L In-
deed, except for the case of wy,, = W the 1mp1101t sam-
pling losses subtly differ from the softmax cross-entropy: in
such losses, the “negative” labels receive a variable penalty.
Thus, in general, such schemes result in a sampling bias.

3.3. Discussion and Implications

We reiterate that while negative sampling schemes such as
uniform and within-batch sampling (with constant weights)
are popular, they have primarily been motivated as a cheap
means of approximating the original (unsampled) loss.
Quantifying how well they approximate this loss, however,
has not (to our knowledge) been previously explicated.

Having specified such schemes’ implicit losses above, we
make two remarks. First, per §3.2 and Table 2, these
schemes induce a sampling bias, and do not faithfully ap-
proximate the original loss. This appears to suggest that,
despite their popularity, such schemes’ efficacy is limited.

However, our second observation hints at a different con-
clusion: note that the implicit loss in (11) bears a striking
similarity to the softmax with pairwise label margin (6) from
the long-tail learning literature. This raises an intriguing,

hitherto unexplored question: could such negative sampling
schemes be effective at modelling tail labels?

4. Negative Sampling Meets Long-tail
Learning

Leveraging the implicit loss derivation above, we now show
that negative sampling schemes can mitigate labeling bias by
implicitly trading-off performance on dominant versus rare
classes. Subsequently, we present a unified view of negative
sampling that addresses both labeling and sampling bias.

4.1. Implicit Sampling Losses: Head versus Tail
Tradeoffs

In §3.2, we have seen how from a sampling bias perspective,
to obtain an unbiased estimate of the original loss, the only
admissible choice of (g, w) is wy, = ﬁqﬂ. Interestingly,
from a labeling bias perspective, a differenthicture emerges:
other choices of (¢, w) may implicitly trade off performance
on rare (“tail”’) versus dominant (‘“head”) classes, which can
be desirable. We illustrate this point via two examples.

Example: within-batch sampling and constant weights.
Consider within-batch sampling, so that ¢ = 7 for training
label distribution 7. Coupled with a constant wy, = %

the sampled softmax cross-entropy (11) has implicit loss:

= log |:1+Z7Ty fyr

y'#y

02 (y, f(z) ~fu(@ >] (13)

Clearly, this disagrees with the standard softmax cross-
entropy (3). However, the loss down-weights the contri-
bution of rare labels when they are encountered as negatives.
Since rare labels infrequently appear as positives during
training, such down-weighting prevents them from being
overwhelmed by negative gradients. The implicit loss (and
thus the sampling scheme) is therefore expected to boost
classification performance on samples with rare labels.

Example: within-batch sampling and relative weights.
Suppose again that ¢ = m, but that we instead use the
relative weighting scheme w,,, = ~%. Here, the implicit
loss for the sampled softmax cross-er;tropy is

0y, f(@) =log [1+ 3 my - el @10 (14)

y'#y

Compared to (13), this has a subtly different negative weight-
ing of my, rather than m,/. This places greater emphasis on
positive labels that occur more frequently in the training set,
and thus has an opposite effect to (13): we encourage large
model scores for dominant compared to rare labels.
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4.2. Relating Long-tail and Implicit Sampling Losses

To generalise the above, recall that in the long-tail learning
problem (§2.1), several popular losses to cope with label
imbalance are special cases of the softmax cross-entropy
with pairwise margin (6), i.e., for a given py, > 0,

. (y, f(x) =log |1+ Z pyy - v (@) =@
Y'Y

Intriguingly, both the implicit sampling losses from §4.1 are
special cases of this loss; in particular, (13) is a special case
of the equalised loss of Tan et al. (2020). Thus, such nega-
tive sampling schemes implicitly cope with label imbalance.
This connection is no accident: the following establishes a
simple equivalence between the two loss families.

Proposition 4. Pick any py,, > 0, and let (£, be the
softmax cross-entropy with pairwise margin p (6). Given

any q € Ay with q, = 0 and m € Z., suppose we set

Wy = m”?lg . (15)
Yy

Then, the implicit {3 from (11) satisfies:

(Vo € X,z € RF) 4LV (y, 2) = 05, (y, 2).

See Appendix A for the proof. Proposition 4 illustrates an
intimate connection between negative sampling schemes,
and losses for long-tail learning. Remarkably, while the
former is ostensibly a means of coping with sampling bias,
it can implicitly address the labeling bias problem arising
from a skewed distribution of classes.

4.3. Discussion and Implications

For generic (g, w), we may understand the performance im-
pact of negative sampling by identifying the implicit losses
(Lemma 1 and 2) optimised during training. Both §4.1 and
§4.2 demonstrate the dual utility of these implicit losses. We
comment on these and further implications of our results.

Overcoming sampling and labeling bias. From §4.1,
common negative sampling schemes implicitly trade-off
performance on dominant versus rare classes. Boosting
performance on samples with rare labels is an important
goal (Van Horn & Perona, 2017; Buda et al., 2017), and
relates to ensuring fairness (Sagawa et al., 2020).

Proposition 4 also gives a way to explicitly control both sam-
pling and labelling bias: i.e., operate on a subset of labels
(for computational efficiency), but also ensure good perfor-
mance on rare labels (to ensure “fairness” across classes).
Given a target set of label margins p,, (as in (6)) — which
can suitably balance dominant versus rare class performance
— one may use (15) to pick a suitable combination of (g, w)

to achieve this balance. For example, suppose we wish to
approximate the logit-adjustment loss of Menon et al. (2020)
(see also Khan et al. (2018); Ren et al. (2020); Wang et al.

(2021)), where py,, = % Then, for a given ¢, we may set
7Ty/

= 16

Wyy e (16)

Within-batch sampling can boost the tail. Within-batch
sampling has the virtue of simplicity: it creates negatives
from each sampled minibatch, which involves minimal ad-
ditional overhead. Our above analysis further shows that
with a constant weighting, within-batch sampling can im-
plicitly boost performance on rare classes. Thus, while this
method may not be competitive in terms of standard class-
weighted error, we expect it to have good balanced error
(where dominant and rare labels are treated equally).

Bias-variance trade-off. The above apparently settles the
issue of what a good choice of (¢, w) is: for a target p,,,
(g, w) should satisfy (15). However, how can one choose
amongst the infinitude of such pairs? One desideratum is
to minimise the variance of the loss estimate. Towards this,
the following result deals with the more amenable setting
involving a decoupled loss.

Proposition 5. Pick any py,» > 0, and let wy, satisfy (15).
The sampling distribution ¢* with minimum loss variance is

(Vz € X)q" (' | ,y) < pyy - (= fy(x)). (A7)

See Appendix A for the proof. According to (17), to min-
imise the variance of the loss estimate, one would like to
sample the negative that contribute the most to the original
decoupled loss. However, this would require evaluating
the loss on all classes, which defeats the purpose of sam-
pling the negatives in the first place. Investigating efficient
approximations (e.g., per Bamler & Mandt (2020)) is an
interesting direction for future work.

Remark 3. In this paper, we focus on the bias and variance
of the loss estimate resulting from the underlying sampling
method. However, the quality of the corresponding gradient
estimates also plays a critical role in the training perfor-
mance. The bias and variance of the gradient estimate is
an active topic of research, both in the context of nega-
tive sampling and mini-batch selection (see, e.g., Bengio
& Senecal (2008); Rawat et al. (2019); Katharopoulos &
Fleuret (2018)).

5. Experiments

We now present experiments on benchmarks for both long-
tail learning and retrieval, illustrating our main finding: ex-
isting negative sampling schemes, such as within-batch sam-
pling with constant weighting, implicitly trade-off perfor-
mance on dominant versus rare labels. Further, we show the
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Figure 1: Balanced error on Head, Torso and Tail labels on long-tail learning benchmarks; see §5.1 for definitions of the
STEP and EXP profiles. We employ within-batch (within) negative sampling in Fig. 1a - 1c and uniform (unif) negative
sampling in Fig. 1d - 1f, using the constant, importance, relative, and “tail” weighting schemes from Table 2. We also include
the results of standard softmax cross-entropy (ce) and logit adjustment (Logit), which use all labels, and are thus shaded.
Amongst the standard schemes from Table 1, using within-batch negatives with a constant weighting performs the best on
Tail classes. This is despite such a scheme providing a biased estimate of the cross-entropy; indeed, on CIFAR-100-LT,
sampling does better than the cross-entropy on tail classes, despite the latter employing all labels during training. Our newly
proposed “tail” weighting scheme (16) consistently outperforms all schemes on the Tail, confirming the viability of handling

sampling and labeling bias.

viability of designing custom sampling schemes to specifi-
cally target performance on rare labels.

5.1. Results on Long-tail Benchmarks

We present results on long-tailed (“LT”) versions of the
CIFAR-100 and ImageNet datasets. All datasets feature a
rapidly decaying label distribution. Note that negative sam-
pling is hardly necessary on these datasets, as the number
of labels L (100 and 1000 respectively) is not prohibitively
large. Nonetheless, our aim is to verify that under stan-
dard long-tail learning setups, different negative sampling
schemes trade-off performance on dominant versus rare
classes; we do not seek to improve upon existing baselines.

For CIFAR-100, we downsample labels via the EXP and
STEP profiles of Cui et al. (2019); Cao et al. (2019), with im-
balance ratio max,, P(y)/min, P(y) = 100. For ImageNet,
we use the long-tailed version from Liu et al. (2019). We
train a ResNet-56 for CIFAR and a ResNet-50 for ImageNet,
using SGD with momentum; see Appendix E for details.

For each dataset, we consider the following techniques:

— standard training with the softmax cross-entropy (3),
“cosine contrastive” loss (Hadsell et al., 2006) with
margin p = 0 (i.e., a decoupled loss (cf. (5)) with

#(z) = (1 — 2)? and p(z) = [2]2), and the logit ad-
justment loss of Menon et al. (2020), a representative
long-tail learning baseline. These losses use all L labels.

— negative sampling using uniform & within-batch nega-
tives; and constant, importance, & relative weighting.
Additionally, we employ the “tail” weights for each sam-
pler that mimic the logit-adjusted loss, as per Table 2.
We use m = 32 negatives on CIFAR-100, and m = 512
negatives on ImageNet.

We report the test set balanced error, which averages the
per-class error rates; this emphasises tail classes more. We
slice this error by breaking down classes into three groups
— “Head”, “Torso”, and “Tail” — depending on whether
the number of associated samples is > 100, between 20
and 100, or < 20 respectively, per Kang et al. (2020). By
construction, for STEP profile, label frequencies take only
two values. Accordingly, we refer to classes as “Head” and
“Tail” classes. We confirm that different sampling techniques
trade-off performance on dominant (Head) versus rare (Tail)
classes.

Summary of findings. Figure 1 summarises our results
using within-batch and uniform sampling, and the softmax
cross-entropy. (See Appendix F for contrastive loss results.)
We observe the following.
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Figure 2: Performance of softmax cross-entropy loss with within-batch negative sampling (cf. (7)) on AMAZONCAT-
13K (Figure 2a - 2¢), WIKILSHTC-325kK (Fig. 2d - 2f), and DELICIOUS (Fig. 2g - 2i). These experiments utilize m = 256
negative for AMAZONCAT-13K and WIKILSHTC-325K, and m = 64 negatives for DELICIOUS. We report Recall@k for
k € {1,10,50} on three subpopulations (Head, Torso, and Tail) and the entire test set (Full). We combine within-batch
sampling with constant, importance, and relative weighting schemes. For reference, we include the results of standard
softmax cross-entropy loss (ce). For all weight choices, within-batch sampling focuses on Tail subpopulation.

Within-batch sampling and constant weighting helps on the
tail. Per our analysis, using within-batch negatives with a
constant weighting — which we argued approximates the
equalised loss of Tan et al. (2020) — performs well on tail
classes. Conversely, with relative weighting, performance
on head classes is superior. This is despite both schemes
providing biased estimates of the softmax cross-entropy.

The sampling distribution matters. Note that different
weighting schemes show markedly different trends on
within-batch versus uniform sampling. This highlights that
the choice of (g, w) crucially dictates the nature of the trade-
off on dominant versus rare classes.

Handling sampling and labeling bias. Note that the weights
given by (16) significantly improve performance on tail
classes. This confirms that, given a target loss (in this
case, logit adjustment), one can design sampling schemes
to mimic the loss. Thus, as per our analysis, one can jointly

handle sampling and labeling bias.

The limits of sampling. The logit adjustment baseline sig-
nificantly outperforms the cross-entropy on tail classes —
in keeping with Menon et al. (2020) — but also slightly
improves over the “tail” sampling proposal which seeks to
approximate it. While the latter does approximately min-
imise a similar loss, the variance introduced by working
with a subset of labels comes at a price. In practice, one
can reduce the variance by choosing as large a number of
sampled labels as is computationally feasible.

5.2. Results on Retrieval Benchmarks

We next focus on the retrieval benchmarks from the extreme
classification literature (Agrawal et al., 2013; Bengio et al.,
2019), where due to a large number of labels it is common
to employ negative sampling. In particular, we experiment
with AMAZONCAT-13K and WIKILSHTC-325K datasets
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from the extreme classification repository (Varma, 2018),
with 13K and 325K labels, respectively. In addition, we
also explored a small scale dataset DELICIOUS from the
repository to make our conclusions more general. See Ap-
pendix G for various statistics of these datasets. Given these
inherently multilabel datasets, we first construct their mul-
ticlass versions via a standard reduction procedure (Reddi
et al., 2019; Wydmuch et al., 2018): for a multilabel ex-
ample (x, {y1,...,y:}) with ¢ positive labels, we create ¢
multiclass examples {(x, y1), ..., (z,y:)}.

We employ a fully connected neural network with a single
hidden layer of width 512 using a linear activation as model
architecture. We experiment with both the softmax cross-
entropy and cosine contrastive loss, and employ the negative
sampling techniques described in the previous section.

To assess the impact of different sampling and weighting
schemes on different subpopulations of these datasets, we
partition the multiclass test set (“Full”) into three subpop-
ultations based on the label frequency. These three subpop-
ulations corresponds “Head”, “Torso”, and “Tail” labels,
with decreasing frequency in training set. In particular, the
Head subpopulation consists of those labels whose label
frequencies are greater than the 66% quantile of the label
frequencies in the training set. The label frequency for a
label in the Torso subpopulation falls between the 66% and
33% quantile of the label frequencies in the training set. The
remaining labels then constitute the Tail subpopulation.

Summary of findings. Figure 2 shows the results of the
Recall@k metric for all three retrieval datasets when soft-
max cross-entropy loss and within-batch sampling are em-
ployed. We defer the results for uniform sampling to Ap-
pendix H. Furthermore, we also present the results for the
Precision@Fk metric and its propensity-scored variant (Jain
et al.,, 2016) on the original (multilabel) datasets in Ap-
pendix H. We make the following observations.

Within-batch sampling helps on the tail. Our results show
that within-batch sampling consistently boosts the perfor-
mance on the Tail subpopulation. This is in contrast with
the uniform sampling (cf. Appendix H).

Tradeoff of Head versus Tail labels. 1t is evident from our
results that there is a trade-off in between the model’s per-
formance on Head versus Tail subpopulation. In particu-
lar, within batch sampling and uniform sampling (which is
aligned with the standard softmax cross-entropy loss on the
retrieval datasets) boost the Tail and Head respectively.

Overall, the results on the long-tail and retrieval benchmarks
confirm the implicit trade-offs associated with negative sam-
pling, and illustrate that through suitable choice of (¢, w),
one may effectively tackle both sampling and labeling bias.

6. Future Work

We have shown that negative sampling methods — while
devised for the problem of learning in large-output spaces
— implicitly trade-off performance on dominant versus rare
classes, and in particular, minimise losses that cope with
long-tail label distributions. Potential future work includes
devising instance-dependent samplers that can mimic (17),
e.g., per Bamler & Mandt (2020); Bose et al. (2018); Cai &
Wang (2018); Sun et al. (2019), and considering the labeling
bias effects of generic instance-dependent weights.
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