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SAMPLING THEORY METHODOLOGY APPLICABLE TO
DATA VALIDATION STUDIES

Michael R. Chernick

ABSTRACT

In data validation studies, surveys are conducted to obtain infor-
mation about the data collection process and the uses of the data. In
many cases standard sampling techniques can be used. Two methods,
stratified random sampling and cluster sampling, were used for surveys
in the Form 4 data validation study. Form 4 is a data collection system
on monthly generation and consumption of fuels by electric power plants.
Those applications are described in Section B.

Sometimes time and cost constraints make more sophisticated con-
trolled sampling approaches necessary. One such approach using balanced
incomplete block designs-is described in Section C and an appendix
surveying the existence results for these type designs is included in
the report. Sequential methods which may prove to be more cost effective
are discussed in Section D. Sequential approaches to the problem of :
determining the size of a population is also discussed in Section D.

Problems requiring further research are discussed in Section E.
This includes some preliminary results on the problem of stratification
with respect to more than one variable. The results were obtained for
the Form 4 respondent population.

The Form.4 study indicated that standard statistical sampling
methods could be useful in data validation surveys. For example, at
least 30 percent of the respondents do not report nét generalion as
the instructions define it, and only 25 percent of the state regulatory
agencies use the Form 4 data. Such inferences were possible only
because statistical sampling procedures were used.

vii



A. INTRODUCTION

In data validation studies, surveys are conducted to obtain
information about the data collection process and the uses of the
data. These surveys are referred to as respondent and user surveys.

Often in the case of respondent surveys the population from which
the sample is taken is known, and one wants to design a sampling plan
from which inferences can be drawn about the population. For such
cases, techniques such as pure random sampling, stratified random
sampling, and one- or two-stage cluster sampling can usually be applied.
Some of these methods will be described in Sect. B; they are standard
and are covered thoroughly by Cochran [1977].

Sometimes additional controls are required on the sampling plan.
In such cases, controlled random sampling procedures may prove useful.
One method based on the use of balanced incomplete block designs is
given by Avadhani and Sukhatme [1973] and is discussed in Sect. C.

In some cases, there may be advantages in using sequential
sampling methods. The theory of sequential sampling in finite popula-
tions is not a well-developed area. A recent paper by Lai [1979]
deals with the finite population problem. Lai's gtopping rule is -
applicable to the problem of testing a hypothesis about a proportion
‘in the population. His method or an extension of it could be used for
a sequential test of the proportion of respondents in the population
who would give a particular answer to a survey question. Lai's method
and a method based on the technique of Sobel and Wald [1949] are given
in Sect. D.



For some data validation surveys (in particular, user surveys) the
size of the population is unknown. We may be intergsted in estimating
the population size or determining a stopping procedure, which assures
us of a high probability that we have found all the users. The first -
problem has been approached in several ways, while the latter problem
has not received much attention in the literature. One solution to
the second problem is given by Darling and Robbins [1967]. Severdl
authors have treated the first problem. A good survey of the litera-
ture on capture-recapture methods is given by Johnson and Kotz [1977,
pp. 248-58]. Solutions involving log linear models are given by
Bishop, Fienberg, and Holland [1975, pp. 229-56]. Efron and Thisted
{1975] use an empirical Bayes approach to the problem. Govindarajulu
[1975] discusses the sequential estimation problem as treated by
Samuel [1968]. Some of these methods arc discussed in Sect. D.

In all cases some modeling asshmptions are made about the
sampling mechanism, which will not strictly hold in the actual data
validation surveys. The effect of the assumptions on the estimates is
a subject for further research. The author of this paper has con-
ducted a test, using literature articles on outlier methods as the
population and reference 1ists from chosen articles as the sampling
mechanism. Reésults of the test and implications of the results are
given in Sect. D.

This document is preliminary for several reasons. First, the
author has had limited experience with data validation projects, and
the methods described herein are only those which have proved useful

to date. It is expected that several other sampling problems and



methods of solution will arise in the future. Second, some of the
methods described in this paper require further research as to their
applicability. Third, better methods of solution may be developed
through further research. A discussion of possible approaches to
these problems, which require further research, is given in Sect. E.
Also, é stratified sampling problem for which current reseakch holds

promise for solution is given in Sect. E.
B. STANDARD SAMPLING METHODS

Many of the standard sampling techniques described in textbooks
such as Cochran's [1977] are applicable to data validation surveys.
Two techniques, stratified random sampling and cluster sampling, were
used for surveys in the FPC form 4 data validation study. Those
applications are describhed in this section to illustrate their use=
fulness for future validation efforts.

We shall first describe the basic concept of random sampling. We
start with a finite population of size N. We select n members from
the population, and based on these n observations we wish to draw
inferences about the population. There are (ﬁ) distinct ways of
choosing n members out of the population of size N. A sample of n
from the poupulation i1s said to be chosen at random if the (ﬁ) choices

are equally likely.*

*
This is the definition used in most survey sampling texts for a pure
‘or simple random sample.



Let Y3, Y2, «.., YN denote the values in the population of a

variable which would be measured for each unit in the chosen sample.

N N vys
The population total, ¢ Yj, population mean, = —l, and population
i=1 i=1 N
. N o (vi — )2 o
variance, I —g—7 > are all parameters of the population which we

i=1
may choose to estimate. The population mean is denoted by Y and the

variance by S2.
For a random sample, the sample mean and sample variance are

unbiased estimates of Y and S2 respectively. The proofs are given by
n

Cochran [1977]. The variance of the sample mean is-§— (1 —=N). The
quantity (1 — N) is called the finite population correction, since the
5 ;
variance would be 3 if the population were infinite.
n

Often we can divide the population into distinct categories
called subpopulations. If we have L subpopulations and Nj members in
the ith subpopulation for i =1, 2, «.., L, wé can choose a random
sample of size nj < Nj from the ith subpopulation. A sample obtatned
in this manner is called a stratified randém sample. For any strat-
ified sampling plan, unbiased estimates can be obtained for the popu-
lation mean and variance. Stratified random sampling can be advan-
tageous when the variability within the subpqpu]ations is less than
the variability between the subpopulations. When this is the case, we
have for a total sample of size n a smaller variance for Lhe eslimdle
of the mean from the stratified random sample than for the estimate we
\wou]d get from a purely random sample. When the total sample size n
for a stratified random sample is fixed, the choice of the sizes nj,

i= i, 2, «+., L, for the subpopulations is called the allocation

scheme (i.e., a scheme which minimizes some specified loss function).



In practice we may have some information about the variability within
the subpopulations, but it would be unlikely that we would know the
variances. In such cases we would choose an allocation that was not
optimal but would probably give better estimates than a pure random
sample of comparable size. A proportional allocation scheme (i.e.,
ny & ﬂgi) will often satisfy this purpose when information about the
variability within the subpopulations is vague. Such an allocation
scheme was used for the telephone survey of form 4 respondents.

In the form 4 respondent survey it seemed plausible that the
variability in response to some survey questions might be related to
the size of the power company. Consequently, we decided to stratify
according to company size. A study of the frequency distribution of
companies according to size indicated a logical breakout into six
categories. Since the sixth category represented such a small peréen-
tage of the total number of companies, we decided to combine it with
category five.

An optimal allocation scheme was not attempted, since there would
be many variables of potential interest. Even if enough information
were available for an optimal allocation scheme with respect to one of
these variables, the scheme could be far from optimal for other
variables.

We chose a proportional allocation scheme, since it would be
better than a pure random Samp]e if our assumptions about the re-
sponses were correct. On the other hand, if the responses are not at
all related to size class, the stratified sample would do about the

same as a pure random sample.



Geographical location was another variable which could be related
to the responses. Since location would be another candidate for strat-
ification, we chose to consider the nine census regions and determine
the distribution of size class for each of the regions. If the
distributions were similar, we could use a stratified random sample
with proportional allocation among size class and not expect to induce
significant bias with respect to census region.

This statistical problem could be treated more precisely. We
choose to stratify a sample one way, thus exercising some control over
the sample. We would like the sample to be distributed "nicely" with
respect to another possible stratification scheme without exercising
further control. We need to define precisely what we mean by distri-
buted nicely. One possible definition is that the number of samples
in specific categories fall within some limits. The work of Sobel,
Uppuluri, and Frankowski [1977] may give answers to the probability of
occurrence tor the event nicely distributed. The possibility of
further research on.fhis type of problem is discussed in Sect. E.

A sample of size 31 was chosen for the form 4 respondent survey,
since a sample of about 30 was considered adequate, and 31 gave a
closer approximation to the proportional allocation. Note that an
exact proportional allocation would not in general give an integer
allocation to each subpopulation.

The sample of size 31 was taken from a population of 1474. The
stratified random sample enables us to compute unhiased estimates of

the proportion of the population giving a specific response and assess

the variability of those estimates.



The stratified random sample would probably yield estimates with
better precision than would a pure random sample and hence narrower
confidence intervals. Table 1 gives the standard deviations and
approximate confidence intervals for proportions when the true
proportion p ranges between 0.1 and 0.9; p is the unbiased estimate

for p.

Table 1. Standard deviations and confidence intervals for
_proportions (p)

p Standard deviation Approximate 95% confidence intervald

0.1 0.0529 [p — 0.1058, p + 0.1058]
0.2 1 0.0714 [p — 0.1428, p + 0.1428]
0.3 0.0812 [p — 0.1624, p + 0.1624]
0.4 0.0871 [p — 0.1642, p + 0.1642]
0.5 0.0889 [p — 0.1778, p + 0.1778]
0.6 0.0871 [p — 0.1642, p + 0.1642]
0.7 0.0812 [p — 0.1624, p + 0.1624]
0.8 0.0714 [p — 0.1428, p + 0.1428]

0.9 0.0529 [p — 0.1058, p + 0.1058]

dconfidence 1imits are obtained using the normal approximation
without the continuity correction.

These intervals are quite broad, indicating that a sample of size

30 will not give precise estimates. In order to reduce the width of



the interval from 0.3 to 0.1, we would need to increase the sample
size by nearly a factor of 9. The gain in precision is probably not
worth the expense of taking 280 samples.

Besides telling us about the precision of our estimates, the
intervals enable us to make some valuable inferences. If, for
example, we obtain an estimate for the percentage of respondents
reporting negafive generation of p = 0.8, we can say with high con-
fidence that the proportion in the population is greater than 0.65 and
less than 0.95. From this we can conclude with near certainty that a
majority of the population report negative generation. On the other
hand, if p were near 0.5 we could not be confident that a majority
report negative generation. We could, however, conclude that a signif-
icant proportion of the population report negative generation, since
for p = 0.5 we would get an interval of [0.32, 0.68].

In some sampling problems it is not easy to identify the sampling
units in the population, but is rather easy to identify groups of
sampling units. when groups are selected at random and all sampling
units are taken within the group, the sampling procedure is called
single-stage cluster sampling. When, in addition to selecting the
group at random, a random subset of the units within the group is
taken, the procedure is called two-stage cluster sampling.

In the FPC form 4 state users survey, a two-stage cluster sample
seemed appropriate; the sampling unit was state agencies. It was
known that each state has at least one regulatory agency, but a Tist

of the agencies was not available. It was convenient to pick the



states at random, contact the selected states to get a 1ist of their
agencies, and then choose a random sample from the list.

We consider a general problem where there are N states and M
agencies within each state. Time and cost considerations restrict us
to a total sample size of L or less. Our sampling procédure will be
to choose n of the N states at random and then for each state choose m
of the M agencies at random. The allocation problem is to decide n
and m, given the requirement nm < L.

One way to choose is to pick a parameter of interest and minimize
the variance of an unbiased estimate of the parameter, keeping the
restriction in mind. |

One example of a parameter of interest from the survey would be

the proportion of the population of state agencies which use form 4

data.
Let Yjj5 =0 if ith agency in the jth state does not use
form 4 data
=1 otherwfse.
f
Lety = ';1 Jf%ﬁiii ;
j=

Yy is then the proportion in the sample which uses form 4 data, and
since the states and the agencies were chosen at random, it is an

unbiased estimate of the parameter.
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M 2
NI Y No(Ys =Y
et V= & 453 s 2= 3 iz%
i=1 1 =1 N-1
N M 7 MY
s2= 1 3 i—li————ll— , where Yj = LR A
2 =1 j=1 N (M—1) =1 M

Y is the parameter of interest, and 512 and 322 are population
parameters which affect the variance of y; 512 is called the variance
among primary unit means, and 522 is called the variance amon@ sub-
units within primary units. In our examb]e the primary units are the

agencies. The variance of y is derived by Cochran [1977, p. 277]:

5,2 .. 5.2

-y - (N=n) 71 (M—m) ~2
V(y) = +

N n M mn

Our goal is to minimize V(y), subject to nm < L. We see that

. 52 s st st
y) = TN T T
S 2
and since —— 1is constant, minimizing V(y) is equivalent to minimizing
5’ . S, _ S,
n mn Mn



1

2
S
subject to nm ¢ L. If we choose nm = L, the term —%; is as small a;

possible, and this choice does not affegtzthesogher terms. We have
thus reduced the problem to minimizing —%—-—-—%;, subject to nm = L.

We see that the solution depends on whether or not M312 > 322.

If MS7 > 522, we minimize the variance by making n as large as
possible, and if M512 < 522, the minimum occurs when m is as large as
possible. So if L < N and M512 > 522, we choose n =L and m = 1. If
L >Nand M512 > 322, we take n = Nand m = L/N if L/N is an integer.
When M512 <A522, we taken=1andm=~L if L <M, or we take n = L/M
andm=Mif L > Mand L/M is an integer. 1In our case, N = 50, L was
chosen to be 30, and M was believed to be 2. It turned out that M was
1 for some states and 3 or more for other states. Although this
violation of the assumptions has an effect on the variance formula and
the feasibility of the optimal allocation, the necessary adjustments
were not considered serious.

In the case of proportion of agencies using form 4, we do not
even know whether or not M512 > 522. Assuming N = 50, M = 2, and L =
30, we would either want to choose n =30 andm=1, orn=15and m =
2. Answers to other questions in the survey provide estimates for
other paraﬁeters of interest from the population. It is likely that
n =15 and m = 2 would be optimal for estimating some of these parame-
ters. Note that the optimization depended only on the estimate being
a sample mean and the relationship between 512 and 322. The choice
n =15 and m = 2 seems to be best, since it would likely be optimal

for some of the estimates and would probably not increase the variance
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very much for those cases where n = 30 would be optimal. We note that

whenm =M = 2,

2
V(y) = iﬂ;ﬁ_ﬂl.il_ .

n

The finite population correctionniﬂﬁi—ﬂl is 0.7, and hence it is
significant. |

Since some of the chosen states had three agencies and others had
only one, m was chosen to be 3 for some. A total of 30 state agencies
was chosen. This change in procedure will have some effect on the
variance of the estimates.

This example shows the value of using cluster sampling methods in
data validation surveys. It is the first application to the author's
knowledge of the use of this standard sampling method.

Unfortunately, stratified random sampling, a very commonly used
sampling procedure, has not been used much in data validation surveys.
It appears to the author that a proportional allocation scheme for a
stratified random sample could be reasonably applied to many respon-
dent surveys in data validation studies.

In Sects. C, D, and F, special sampling techniques are described
which we leel will have some application in data validation studies.
Some of these methods can be applied immediately, while others may be
improved by further research. We feel, however, that the basic
methods of survey sampling, of which the two described in this section

are examples, can have a major and favorable impact on data validation

surveys, if properly applied.



13

C. CONTROLLED RANDOM SAMPLING

Pure random sampling without replacement, when used to draw a
sample of size n from a population of size N, gives equal probability
of selection to each of the (ﬁ) possible samples. In some sampling
situations, some of the possible samples may be undesirable, possibly
because the sampling units are too widespread. The selection of such
a sample might then lead to excessive traveling expense or require
much more time for the collection of the sample. The techniques of
stratification and clustering described in the previous section can be
used to exercise some control on the sample. Herver, even after
stratification, there may be a need to control the selection of
samples within the subpopulations. Cluster sampling has the drawback
that it usually causes a reduction in precision of the estimate of the
parameter of interest. The method gjven by Avadhani and Sukhatme
[1973] is a simple procedure which gives the undesirable samples
(called nonpreferred samples) lower probability of occurrence than for
the preferred samples without 1oss of precision in the estimate. 1In
some cases, some or all of the nonpreferred samples can be given zero
probability of occurrence.

The method is based on the use of balanced incomplete block
designs, the theory of which was developed to provide good sampling
designs in experiments. It i5 uscd here in a different context.
Nevertheless, all known results on the existence and construction.of
balanced incomplete block designs are relevant, since the more we know

about the construction of these designs, the more flexibility we have
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in constructing a controlled random sample. There is a vast litera-
ture on existence and construction of these designs which will be sum-
marized in the Appendix.

In an agricultural experiment, crops may be planted in rows with
an equal number of crops in each row. These rows are referred to as
blocks. Several different types of fertilizer are applied to the
crops. The distinct types of application of fertilizers are referred
to as treatmenls. In order to obtain estimates of differences between
treatmenls for all possible pairs with equal precision, the balanced
incomplete block design was devised. It requires that each treatmeﬁt
occurs in the same number of blocks and that each possible pair of
treatments occurs in the same number of blocks.

In a survey sampling problem, the blocks correspond to the sam-
ples to choose from with equal probability. Thal each sample unit
occurs the same number of times implies that the sampTe mean will be
an unbiased estimate ot the population mean just as for a pure random
sample. The condition on the appearance of pairs of sample units
implies that the variance of the sample mean will be the same as for a
pure random sample. So there is no loss in precision.

To c]qrify these ideas we will consider a simple example.

Suppose we have a population of size 6 and want to take a sampleAnf
size 3. We label the sampling units with 1, 2, ..., 6. In pure ran-
dom sampling we choose from the (g) = 20 possible samples, each Qith
probability 1/20. Now consider the following balanced incomplete block

design:
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124 125 135 136 146
234 236 256 345
456

Each of the ten samples listed would be taken with probability 1/10.
We see that each unit occurs five times in the design, while each pair
occurs in two blocks. We have eliminated half of the possible
samples. If we had several nonpreferred samples, we could include
some of them in the ten samples excluded from the design. For
example, the triple 123 is not included in the design, and so we could
let 123 designate an unpreferred sample, thus preventing its-se1ec-
tion.

Let Yj, i =1, 2, ..., 6, denote the observations and Y =
g l{i-be the population mean. Let X3, X2, and X3 denote the sample

i=1 6

- X1+ X2+ X3 — - .
values and X = 3 . We see that E(X) =Y, since

- Y1 + Yo + Y Y1 + Yo + Y Y + Y3 + Y Y1 + Y3 + Y
E(Y) = 1M 2 4,1 2 5,1 3 5>, 1 3 6
10 3. 3 3 3
Y1 + Y4 + Yp + Y3 + + Y34 '
JYitYa+Ye YotV¥gt¥g YotV¥ztl¥e Yo+tYstlYe
3 3 3 3
Y3+ Yg+ Y5 Yg+Yg+Y 6 6 vy
+ 3 4 5 + 4 5 ,m_—§-r = —1- 5 I Y.I = T —1— = Y a
-3 3 30 =l i=1 6
6 % 6
Yi — Y : -2
Also, Var (X) = : iil————l— (1-23) S (Yi—=Y),
izl 6 x5 6 60 i=1

the same as for a pure random sample.
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Iwae are interested in estimating the population variance, the
usual sample estimate is unbiased just as for a pure random sample.
However, the variance of the estimator will be different from the
variance of the corresponding estimator from a pure random sample.
The author has done some calculations on simple examples which indi-
cate that the differences can‘be small.

Suppose the population consisted of the following seven values;
1, 5, 6, 7, 10, 11, and 14. The popu]atidn parameters are Y = 7.714
and S2 = 18.57. We compare a random sample of size three to the
following controlled random sample:

124 135 . 167 236 257

347 456
Each element appears three times and each pair once in the design.
For the pure random sample the variance of the estimator of variance
is 161.86, as compared with 161.91 for the controlled random sample.

When drawing a sample ot size n from a population of size N, our
ability to eliminate certain sample paths depends on the existence of
a balanced incomplete block design with n elements in each block and
1ess than (ﬁ) blocks. Far some values of n and N, no such desiyn may
exist, or even 1f 1t exists 1t may not be known. A complete character-
ization of balanced incomplete block designs has not been found to
date.

In order to be more flexible, Avadhani and Sukhatme [1973] allow
the nonpreferred samples to have smaller but nonzero probabilities.
They qivide the N samples into k groups containing Ny, Np, «..,

Nk units. The elements are placed in the groups at random. For each
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i=1, 2, ..., k we choose an integer nj such that nj < nj < Nj, where

n=mn3+np+...%ng, and nj is proportional to Nj. The choice of
nj is made so that a balanced incomplete block design exists with the
parameters (nj, bj, riy, nj, Aj); nj denotes the number of treatments,
bj the number of blocks, rj the number of repl{éations of each treat-
ment, ni the block 'size, and Aj the number of replications of pairs of
treatments. We select a simple random sample of nj units from the

ith group and do this independently for each i. We then proceed to
determine the sample for the ith group just as in the simple examples
described ear]iér. We make the correspondence between preferred
samples if necessary. This makes the probability of drawing a nonpre-
ferred sample as small as possible for this design.

Avadhani and Sukhatme [1973] give the following example: The
illustration is from a survey carried out in India in 1964-1965. The
objective was to obtaih reliable estimates of acreage, yield rates,
and total production of major fruit crops. The district under study
was divided into several stratum, based on infofmation from previous
surveys. In one strata, there were 90 villages, and a sample of 9
villages was proposed to be selected. Because of the mountainous
terrain and lack of good roads and transportation, it was desirable to
keep the distance between the selected villages as small as possible.
To show how controlled random sampling could have been used in this
problem, they divided the 90 villages inta three random groups of size
30; (go) is a large number, so nj was taken to be 7. Suppose the 7

villages in group 1 (these 7 were chosen at random from the 30) are

" located as shown:
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We have (g) = 35 possible combinations of size 3. They are:
(1,2,3)*, (1,2,4), (1,2,5), (1,2,6)*, (1,2,7), (1,3,4), (1,3,5),
(1,3,6)*, (1,3,7)*, (1,4,5), (1,4,6)*, (1,4,7)*, (1,5,6), (1,5,7),
(1,6,7)*, (2,3,8)*, (2,3,5), (2,3,6)*, (2,3,7)*, (2,4,5) (2,4,6)%,
(2,4,7)*, (2,5,6), (2,5,7), (2,6,7), (3,4,5), (3,4,6), (3,4,7)*,
(3,5,6), (3,5,7), (3,6,7), (4,5,6) (4,5,7), (4,6,7)*, and (5,6,7).

The 14 combinations marked with the asterisk are not preferred.
For a pure random sample the probability of obtaining a nonpreferred

sample 1is -%%< = 0.4. The following balanced incomplete block design

conlains only one nonpreferred sample:

(1,2,4) (2,6.7)
(1,3,7)* (3,4,6)
(1,5,6) (4,5,7)
(2,3,5) |

So using the controlled sampling procedure the probability of

obtaining a nonpreferred sample is only '% = 0.14.

D. SEQUENTIAL SAMPLING METHODS

We shall first consider the problem of determining whether the

fraction of a population which would give a yes responée to a yes-no
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question is greater than some specified propor;ion 01 but less than
some other proportion 9. We consider this problem from the sequen-
tial point of view. We sample and decide to stoﬁ sampling based on a'
decision rule which leads us to one of three conclusions: (1) © is
less than 6, (2) 0 is between 07 and 02, (3) © is greater than 0.
When we use a sequential stopping rule, there is a probability of
making an incorrect decision when using the rule. Sequential sampling
procedures are chosen which control these .errors.

Sobel and Wald [1949] considered this type of problem for testing
the mean of a normal distribution. The method is also applicable to
the binomial distribution, which would be the case here if the popula-
tion were not finite. Lai [1979] considered the problem of testing
© <01, vs © > 01, in the case where the population is finite. Since
we are considering the choice of three possible decisions instead of
two, some modification of his decision rule would be necessary to
apply it to the problem we are considering.

In many situations the population size is large, and the Wald-
Sobel approach can be applied. Armitage [1950] gave a modification to
the Wald-Sobel approach which avoids a technical difficulty, and his
approach is considered to be preferable by sohe statisticians. When
the population size is small, the Wald-Sobel approach leads to a con-
servative test. For some applications it may be too conservative. We
shall describe the method and illustrate the conservative nature of
the test for a small population size with a simple vs simple hypothe-

sis test.
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Sobel and Wald [1949] define indifference regions for 0. When o ¢
(010, @20), where 010 <oq < 020, we do not care about differentiating
between (1) and (2) but wish to reject (3). Wheno ¢ (030 . eZ ), where
02 % 930 <0y < @40, we want to reject (1) but do not care about
distinguishing between (2) and (3).

For © < 910 we wish to accept (1) and reject (2) and (3). For
@20 <0< @30 we wish to accept (2) and reject (1) and (3)., When o >
ca4° we wish to accept (3) and reject (1) and (2). Once we have spec-
ified 610, @20, @30, and 040, we have defined what constitutes a
wrong decision for each © in the parameter space (i.e., 0 < 0 < 1).

We then do two sequential probability ratio tests simultaneously:
910, 020, @30, and 640 are chosen so that

0 0 0 0]
0 €01 <0 <38 <P,

0 0 o o
01 + 0p =201, 603 + 64 = 200,
 — 0] =0 —03 = A
The two likelihood ratios are
L-I = P[X].’ X2, cee, Xn | Q= Ozo]
n - ]
PIX , X, aae, X 4= 4O
[0 % , lo=09°]
L2 _ P[Xlt XZ’ erey Xn | o= (\40]
n- 2
F' x ] x 9 o900, X GE ()0
( 1" 2 n | 3 ] :

where X1, X2, «.., Xn is the observed sequence of n observations. We
stop sampling when both tests reach a conclusion. The stopping time T

is the maximum of (T, Tp)» Where Ty = inf (n: Ly > Ap or L1p < By)s
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and Tp = inf (n: Lz > Az or Lgp < B2). Let R denote this stopping
rule and L(©IR) be the probability of a correct decision when © is thg
true value of the parameter and the rule R is used. For infinite
populations, L(®|R) has the properties given by Sobel and Wald [1949],
which are needed to keep the probability of a wrong decision less than
some specified value v for all 0; v will depend on the chosen Aj, Az,
By, and Bp.

To illustrate the conservative nature of the test in finite popu-
lations, we consider a simple vs simple hypothesis test: Hg: € = 01
vs Hi: 0 = 620 with 020 > 610. The 1ikelihood Eatio statistic after

the nth observation would then be

Xi+1 1 = Xi41
nﬁl Nop — S N(1 — ©) — i + S

i=0 Ne1 —-Si N(1 —-C&) -1+ Si

Lin =

where X1, Xo, «++, Xp is the observed sequence of zeroes and ones,
i

Xo = 0, and S5 = 'EO Xj. N is the size of the population.

For the stopg;ng time T = inf (n: Ly > Aor L1, <B) forA> 1>
B >0, LlT is a martingale with expected value 1 under Hgy, and 1/L1T
is a martingale with expectation 1 under Hj. This implies that o = P
[reject Hy when Hy is true] and 8 = P [reject H; when Hy is true] to a

reasonable approximation satisfy

1=aA+ (1—0a)B,

1=8 .18
B

A
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1-8 anag =8
o l]—-o
specified « and 8, A and B are determined to good approximations.

Solving these equations yields A = So for any
For finite population size the theory does not go through, and the
approximating equations do not hold. For some sample paths we are
certain at time T which of Hy or Hy is true, and accordingly the like-
lihood ratio is either zero or +=. This leads one to suspect that the
test would be conservative. This is borne out by Lai's work [1979],
which Shows that a reasonable procedure would be to apply a finite
population correction to the stopping houndary.

To indicate what is going on, here is an example of a simple vs
simple hypothesis test. We let o7 = 1/4, N = 8, and 85" = 3/4.

Under both-Hy and Hy, there are 28 possible sequences of zeroes and
1 — p*

*
* )
and B = ] B —> SO A =0 andB =-% a 0.11. Under H, we reject Hy for

-0

ones which are equally probable. We let a* = g* = 0.1, and A =

one sequence and accept it in the 27 other cases; so the true value of
1 I . . .
a =-E§ v 0.036. Similarly, under Hy, Hy is rcjected in one case, and

hence R = 1 .
28

Under both Hy and Hy the average sample number is 3. The usual
method for computing the avérége sample numher is by Wald's lemma,
which is not applicable in the finite population case, since the
observations are not independent or identically distributed. Wald's

lemma would give

9 1
10 1og B + 10 log A _ 1 16
E T = S —= 302 ’ E T T —_—= . .
% (T) -1/2 log 3 % (T) 3.2

(5]

This is not too bad an approximation.
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We note that when N is small we obtain lower error probabilities
than we controlled for.

A test procedure such as Lai's would not be
so conservative and hence might have a smaller average sample number.

Lai [1979] formulates the problem as follows.

He tests H: 0
1 —9y) vs the alternative K: © >-l (1 +9y), where N is the popu-

1
¢ 1

lation size and the interval EE (1 —-oyp),
ference zone for the experimenter.

% (1 +0yp)] is an indif-
For 0 <

a < =, he defines

N =

Cy = min [max(ﬂog [(1 = o)/e]}/{log [(1 +ox)/(1 —opN)]}, 1>,

N(1 —op) + 1}.

He proposes the stopping rule

T =

inf {n > 1: |Sp| > Cy— (n—=1) (Cy— 1)/IN(L — oy) ]}

where Sy = 2Xp — n, and Xp is the number of yes votes in the first n
samples.

The term subtracted from Cy can be viewed as a finite popu-
lation correction. He proves the following asymptotic result:

Theorem [Lai, 1979]: As N > = and 0y ~ 0 such that Noy + = ,

PH [(t,8) rejects H] = Py [(<,68) rejects K] » o

Lai presents some results which show that the approximation can be
reasonable even when N = 200 and Noy = 6.
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Another problem which can be treated sequentially is the estima-
tion of the size of a population. Solutions to this problem may have
application to user surveys.

There has been much work done on this problem, using capture-
recapture methodology. Other methods used are the empirical Bayes'
approach and stochastic modeling.

The capture-recapture method can be described by the following
urn model. The urn contains an unknown number, N, of white balls and
no others. An estimate of N is desired, based on a procedure of
drawing balls at random one at a time and coloring the white balls
black before returning them.- Black ba1is are returned uﬁchanged. Let
Wi, bi denote the number ot white and black balls respectively
observed in the first i draws.

Samuel [1968] considers this formulation of the problem. Others
have considered the problem in the more general setup of sampling
nj balls at the i?h draw. Samuel considers the following stopping
rules:

Rule A. Let A > 0 be a fixed integer ty = A.

Rule B. Let B > 0 be a fixed integer tp

inf (i|bj = B).
Rule C. Let C > 0 be fixed,

tc = inf (i|bj > Cwyj) = inf [i]i > (C + 1)wy].
Rule D. Let -» < D < = be fixed,

tp = inf [i|bj > max (1,w; log wj + wiD)]

inf {i]|i > max [wj + 1, wj Tog wj + wy (D + 1)]J.
Rule E. Let {Dj) pe such that 1im Dj = =,

tg = inf {i|bj > max [1,w; Tog wj + wj (Dw;) 13
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Rule D was<consfdered by Darling and Robbins [1967]. They show that
for 0 < o <1 and a suitable choice of D, one obtains the probabil-
ity that Wp = N is greater than 1 — a for any N.

For user surveys, one may start with an initial incomplete 1list
of users and sample from this list. The users sampled will then be
asked to name other users. The extended 1ist could then be used to
interview additional users and to continue to add to the 1ist. A
sequential rule would be used to decide when to stop interviewing. If
the capture-recapture methodology is to be used to decide when a
"good" estimate of the population size is available, we must determine
that the urn model on which it is based is a good approximate model
for the actual sampling mechanism. One way to test this would be to
conduct a sample on a population of known size and see how good the
estimates are. The author chose to use a bibliography of outlier
papers. The bibliography was large, containing 419 references. The
population was reduced from 419 to 141 so that only references
available in the Mathematics and Statistics Research Department were
included. This was done to expedite the identification of references.

The sampling procedure was as follows: Thirty reference papers
were selected at random to form the initial 1ist. One paper was cho-
sen at random from the list, and the references listed in that paper
were added to the list. If any of the references were on the initial
list, they were noted as repeats. The procedure was conducted for 24
iterations, with estimates of the population size computed at each
stage. The nearly unbiased estimator given by Johnson and Kotz [1977,

p. 253] was used. This estimator has small bias when the urn model is
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appropriate. However, in the outlier paper example, the model is not
appropriate, and the estimator seemed to be highly underestimating the
population size. Table 2 gives the results of the test, with the
estimate of population size at each stage.

Let Ng = 30 and Ny = number of papers on the ith reference 1ist.
Let T = number of papers on the ith 1ist which are already on the
population list, and let Uj = Nj — Tj be the number of new articles in

the Tist. The estimator was

i-1
* K§ U') + 1] (Nj +1)
fi = =0 -1

Niy —Uj +1

The final estimate of 72.8 is 9n1y about half the size of the
population. There is some dependence structure in Lhe reference popu=
Tation which is causing this severe underestimation. One aspect of
this dependence is that authors can only reference articles which pre-
ceded their paper. This type of temporal dependence may not be as
severe for data form users, since they are asked to list counlemporary
users, and their knowledge of users may not be as dependent on the
time at which they became users.
arise from using capture-recaptufe methodology on user surveys.
Although the method might not be as bad for user surveys as it was in
this population size test, it may be necessary to test it on known
user populations or to find other methods which would prove to be

better in such tests.
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Table 2. Population size test

Samp]le No. N; Us T f’;
0 30 30 |
1 9 4 .5 50.7
2 1 1 0 69
3 2 0 2 35
4 7 3 4 56.6
5 3 2 1 77
6 6 5 1 142.5
7 3 1 2 60.3
8 2 1 1 69.5
9 1 1 0 95
10 4 1 3 60.25
11 5 0 5 49
12 4 3 1 124
13 4 2 2 '87.3
14 11 2 9 65
15 3 1 2 75
16 6 6 6 57
17 2 0 2 57
18 1 0 1 57
19 ' 1 0 1 57
20 o2 1 1 86
21 1 1 0 115
22 5 2 3 89
23 9 2 7 76.5

24 14 2 12 72.8
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E. PROBLEMS FOR FURTHER RESEARCH

Although many of the sampling problems in data validation can be
handled reasonably well with existing techniques, some ﬁroblems occur
which need special treatment. The idea of reducing survey costs by
sequential testing has led the authors to tests such as Lai's solution
to the hypergeometric sampling problem. Further research may lead to
a modification of Lai's results which would be applicable to the
three-decision problem.

That user populations for various data forms are unknown has led
us to consider the sequential problems of estimating population size
and of determining when the entire population has been identified with
high probability. A preliminary test, using reference articles, has
indicated that the various procedures need to be tested against an
example where the population size is known and the population and
sampling mechanism are very much like they are for a user survey.
Methods using birth-death or other types of stochastic models should
be studied and tested.

For simple stratified random sampling schemes, there are often
two or more variables which are reasonable candidates for stratifica-
tion. Many questions arise from Fhis problem which require further
research. For example, which variable would be the best single
variable to stratify with? Cochran [1977, pp. 124-26] gives a method
for two-way stratification. Is it desirable to control for more than
one variable at a time? If we control for only one variable, what

effect will this have on the distribution of the sample with respect
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to another variable? The work of Sobel, Uppuluri, and Frankowski
[1977] may be helpful in answering this last question.

At this time, some preliminary work of this type has been
accomplished. We considered the data from the form 4 respondent sur-

vey given in the following table:

Distribution of respondents by census region and
production capacity

Class Census
size region 1 2 3 4 5 6 7 8 9

126 5 7 15 42 11 2 15 22 7
423 19 13 50 228 20 2 34 34 23
570 37 35 121 109 83 23 69 44 49
211 18 11 24 38 28 9 35 26 22
144 9 16 27 12 23 11 20 10 16

GrH WM =

Total 1474 88 82 237 429 165 47 173 136 117

The stratified random sample used in the form 4 study was as

follows:
Class size No. of samples
1 | 3
2 9
3 12
4 4
5 3

Onc important question which could be asked about this scheme is
what is the probability that certain census regions will not be ‘repre-
- sented. Questions of this type for committee problems have been

addressed by Walter [1976].
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We computed these probabilities for each of the census regions by
using the computer package for the multivariate hypergeometric distri-
bution available from V. R. R. Uppuluri of the Mathematics and |
Statistics Research Department of Union Carbide Nuclear Division. The

results are given in the following table:

‘Census region number Probability of no observations

1 - 0.1483691
0.1658927
0.0039392
0.0000065
0.0241125

~ 0.3655248
0.0203849
0.0467072
0.0764983

OONOTOP»PWN

It is not surprising that census region 4 shou]d.have the lowest
probabi11ty (d very low probﬁbi]ity), since region 4 has the most com-
panies of any region and has over half the total number of plants in
class size 2. Census region 6 has the highest probability, since it
has the fewest companies in each class size except number 5. The fact
that this probability is as high as 0.366 is significant and indicates
that if we wanted to be sure that this census region is represented,
further controls on the sample would be necessary. In the actual
sample, one member of census region 6 was selected. We now know that
it could have easily happened that no samples were chosen froh region 6.

Other questions such as the probability that at least one region
is not represented or that the minimum number of representatives in

any region is at least two (or any specified number) can be answered
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through the use of the program, and further research to answer some of

the more difficult questions l1ooks promising.
F. CONCLUSIONS

Our experience in data validation studies has shown that survey
sampling methods such as those given by Cochran [1977] can be useful
in respondent and user surveys.

Sequential methods may prove to be useful for some problems, and
further research is needed, particularly in the population size
problem.

Sometimes cost and time constraints are such that certain samples
must be exc]uded; The methods of Avadhani and Sukhatme [1973] enable
one to exclude such samples in some instances without sacrificing
accuracy ofvestimates of population parameters. Even when it is not
possible to exclude these undesirable samples, it may still be
possible to make their probability of occurrence very small.
Assessment of the usefulness of this method and/or modifications to it

awaits some practical applications.
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APPENDIX

Existence results for balanced incomplete block designs

We denote the number of treatments (also referred to as varieties
in the literature) with the 1etter v and the number of blocks with b.
No variety appears more than once in a block, and no two blocks will be
jdentical. We assune v » 1 and b » 1. Every block must contain the
same number, say k, of varieties, and each variely must appear in the
same number, say r, of blocks. We assume, moreover, that any pair of
varieties appears together in the same number, say A, of blocks. This
then defines a balanced incomplete block design.

It follows that (1) bk = vr and that (2) r(k — 1) = x(v—1).

wheﬁ b = v and hence r = k, the balanced incomplete design is
called symmetric.

A balanced incomplete block design is called resolvable if its
blocks ¢an be grouped into sets of equal sizes, so that the blocks of
each set contain between them all the varieties once. If in addition
any two blocks from different sets have the same number of varieties
in common, then the design is called attine resolvable.

A natural question to ask is for what values of v, h, r, k, and A
do balanced incomplete block designs exist and how these designs can
be constructed.

There are several necessary conditions known for the parameters
v, b, r, k, and-A. From (1) and (2) we also get that b(%) = (g). It
was first proved by Fisher [1940] that b > v. Later, Bose [1949] gave

a simpler proof which used the concept of an incidence matrix.
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The theory of projective and euclidean geometries can be used to
construct various types of balanced incomplete block designs, and
results are given in Mann [1949] and Vajda [1967].

For resolvable designs b > v + r — 1, is a stronger inequality
than b > v. A proof is given in Vajda [1967].

A balanced incomplete blocked design is said to be of the linked
block type if two of the blocks have the same number of varieties in
common. Vajda [1967, p. 12] proves that symmetry is equivalent to
being of the linked block type.

Equations (1) and (2) imply that r = A(v — 1)/(k — 1) and b =
av(v — 1) /k(k — 1), both must be integers. These necessary conditions
are also sufficient when A =1 and k =2, x=1and k =3, k = 3 or 4
with any value of X, and also for k = 5 when A = 1, 4, or 20; see
Hanani [1961] for proofs. When k = 6 and A = 1 the conditions are not
sufficient. This result was given by Tarry [1900].

We shall now state three existence theorems and give some con-
sequences.

Theorem 1. If v = b is an even integer, then r — X = k — X must

1}
-
[}
~
™
>
1]
[N ]
-

be a square. As a consequence the designs v = b = 22, k
and v =b =46, k = r =10, A = 2 are not possible.

- Theorem 2. If v, k, and X are parameters of a symmetric balanced
incomplete block design and v is odd, then x2 = (k — 1) y2 + (=1)(v—1)/2
»z2 has an integer solution, where x, y, and z are not all zero. The
proof is given in Vajda [1967]. The theorem shows that the existence
of certain symmetric designs is dependent on the existence of nontriv-

ial solutions to certain Diophantine equations.



36

Theorem 3. If in an affine resolvable design with parameters v,
b, ry, k, and X the number v of varieties is odd, then if r is odd, k
must be a square; and if r is even, v must be a square. This result is
proved in Vajda [1967].

A theorem due to Chowla and Ryser [1950] is also given in Vajda
[1967], and it can be used to show that a design with v = b = 29,

r =k =28, and A = 2 cannot exist.

A complete charactcrization of balanced incomplete block designs
is not yet known. In any event, existing results indicate thal such 4«
characterization would be complicated. Many designs have been
constructed, and some results can be used to show that designs of cer-
tain specified orders cannot exist.

The literature on balanced incomplete block designs is vast and
scattered. This summary of results is intended to give the reader some
idea of the types of results available and is not intended to enu-
merate all known results. If the reader is interested in details, the
monograph of Vajda [1967] is a good starting point. Cochran and Cox

[1957] 1ist several types of designs for practical use.
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