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As you probably know, a Sudoku puzzle is a 9 × 9 grid divided into nine 3 × 3
subgrids. Some of the cells in the grid contain a symbol: usually the symbols are the
numbers 1, 2, . . . , 9. The idea is to put a symbol into each empty cell so that every
symbol appears exactly once in each row, exactly once in each column and exactly once
in each of the nine 3×3 subgrids. An example of a Sudoku puzzle is given below: it was
the daily puzzle on http://sudoku.com.au on 9 June 2011, when I wrote this article.

1 4 9 2

6 5 9

2 8 7 1 4

9 1 6 5

6 3 2 7

8 9 1 3

8 2 4 5 6

7 3 8

3 7 2 4

Figure 1: A Sudoku puzzle

Sudoku puzzles are extremely popular, addictive and fun. Wikipedia [4] describes
Sudoku as “a logic-based, combinatorial number-placement puzzle”. I want to focus on
the links between Sudoku, logic and proof, but as a combinatorialist it is my duty to
tell you a bit about the combinatorics of Sudoku first.

A latin square is an n × n grid containing the symbols 1, 2, . . . , n such that every
symbol occurs exactly once in every row and exactly once in every column. So a com-
pleted Sudoku puzzle is a 9 × 9 latin square with an extra property: namely that the
nine 3 × 3 subsquares contain each symbol exactly once. Using brute-force computer
enumeration it has been shown that there are
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different 9× 9 Sudoku grids [2] (that’s about 6.7× 1021), but many of these only differ
by some kind of symmetry: for example, writing the rows in a different order, or the
columns in a different order, or swapping the symbols around, or rotating the grid. If
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we agree that these symmetries produce Sudoku puzzles that are essentially the same,
then there are
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essentially different Sudoku grids [2]. That’s about 5.5 billion different completed puz-
zles.

Now let’s talk about Sudoku and mathematical logic. Sudoku puzzles became pop-
ular outside of Japan around 2004, when they started appearing in daily newspapers
in the United Kingdom and then around the world. Many newspapers felt the need to
reassure nervous readers that they did not need to use mathematics in order to solve the
puzzle. (Sadly, many people do not understand the difference between “mathematics”
and “arithmetic”!) For example, The Australian newspaper used to print this text next
to Sudoku puzzles:

The game requires no mathematics and can be solved by logic alone.

I imagine mathematicians around the world tearing their hair out when confronted with
such statements. A far better message would be to tell the world that Sudoku puzzles
use logic and that logic is mathematics. (Therefore, since Sudoku puzzles are fun, it
follows that mathematics can be fun too!)

Every mathematical proof requires careful logic, and you can learn a lot about math-
ematical logic by solving Sudoku puzzles. To illustrate this, let’s start to solve our ex-
ample Sudoku. Have a look at the cell marked by the black square in Figure 2. We know

1 4 9 2

6 5 9

2 8 7 1 4

9 1 � 6 5

6 3 2 7

8 9 1 3

8 2 4 5 6

7 3 8

3 7 2 4

Figure 2: Direct proof

that it has to contain a symbol, and looking at the symbols in the same row or column
of that cell, we see that the only possible symbol for that cell is 8. Therefore, that cell
must contain 8. This is an example of a direct proof, where we consider everything that
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we know is true and draw a logical conclusion. The conclusion that we draw is called a
deduction. We might write a careful proof as follows:

The marked cell must contain a symbol from the set {1, 2, 3, 4, 5, 6, 7, 8, 9}.
However, it cannot contain a symbol from {1, 5, 6, 9}, because these symbols
occur in the same row as the marked cell. Similarly, it cannot contain a
symbol from {2, 3, 4, 7, 9} as these symbols occur in the same column as the
marked cell. Therefore the cell must contain the symbol 8.

Now we can fill in the marked cell, and using the same kind of direct proof we can also
fill in the centre cell (for example).

This gives the grid shown in Figure 3, which also contains three marked cells which
we’ll use below. Next we will illustrate another kind of proof technique, called proof

1 4 9 2

6 5 9

2 8 7 1 4

9 1 8 ♠ 6 5

6 3 1 2 7

� � 8 9 1 3

8 2 4 5 6

7 3 8

3 7 2 4

Figure 3: Proof by cases

by cases. (It is also called proof by exhaustion of cases but I think that sounds far too
tiring.)

Consider the 3 × 3 subgrid which contains the cells marked with the black
squares in Figure 3. This subgrid does not yet contain a 7, and the only cells
where a 7 could be placed are the two cells marked by the black squares. So
the 7 must be in the marked cell on the left (call this Case 1) or the marked
cell on the right (call this Case 2). In either case, the cell marked with the
spades symbol ♠ must contain 7, since this is the only cell in the centre 3×3
subgrid which does not have a 7 in its row.

The important point is that we were able to conclude with certainty that there must be
a 7 in the cell marked ♠, even though we do not know which of Case 1 or Case 2 holds.
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It is enough to know that either Case 1 or Case 2 must be true, and that our desired
conclusion holds in either case.

The proof by cases argument leads to the grid shown in Figure 4. Now we fill

1 4 9 2

6 5 9

2 8 7 1 4

9 1 8 7 6 5

6 3 1 2 7

8 9 1 3

8 2 4 5 6

7 3 8

3 7 2 4

Figure 4: The partially completed solution

in three more cells (using direct proofs) to reach the grid shown in Figure 5, which
also contains a cell marked with a black square, a cell marked with a ♠ symbol and
a cell marked with a ♣ symbol. We will use these cells to illustrate our next proof

8 1 4 9 2

6 5 9 ♠ �

2 8 7 1 4

9 1 8 7 6 5 ♣

6 3 1 2 7

8 9 4 5 1 3

8 2 4 5 6

7 3 8

3 7 2 4

Figure 5: Proof by contradiction
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technique, proof by contradiction. Here we wish to prove that something is true, and yet
we start off by assuming that the opposite is true. We argue logically until we obtain
a contradiction, which is something impossible that cannot be true. The only way to
explain this contradiction is that our original assumption was incorrect. For example,
consider the cell marked by the black square in Figure 5. We wish to show that it must
contain 8. Our proof by contradiction proceeds as follows:

For a contradiction, suppose that the cell in Figure 5 marked by a black
square does not contain 8. The second row does not yet contain an 8, and
the only possible cells in the second row where an 8 may be placed are
the cells marked with the black square and the ♠ symbol. Therefore, by
our assumption, the cell marked with the ♠ symbol must contain 8. Now
consider the 3 × 3 subgrid containing the cell marked with the ♣ symbol.
This subgrid does not yet contain an 8, and the only cell in this subgrid which
does not have an 8 in its column is the cell marked with the ♣ symbol. So
this cell must contain an 8. But then the symbol 8 appears twice in the
the row containing the ♣ symbol, which is a contradiction. Therefore our
original assumption (that the cell marked with the black square does not
contain 8) is incorrect. We conclude that the cell marked with the black
square must contain 8.

(There is a branch of mathematical philosophy called constructivism which does not trust
proof by contradiction. But most mathematicians are untroubled by these concerns.)

After our proof by contradiction we arrive at the grid shown in Figure 6.

8 1 4 9 2

6 5 9 8

2 8 7 1 4

9 1 8 7 6 5

6 3 1 2 7

8 9 4 5 1 3

8 2 4 5 6

7 3 8

3 7 2 4

Figure 6: A partial solution

So far we have covered most proof techniques used by mathematicians, but not quite
all: proof by contrapositive and the principle of mathematical induction are the main
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ones we have missed. (These are both extremely useful in mathematics but do not easily
apply to solving Sudoku puzzles.)

1 4 9 2

6 5 9

2 8 7 1 4

9 1 8 4 6 5

6 3 1 2 7

8 9 � ♣ 1 3

8 2 4 5 6

7 3 8

3 7 2 4

Figure 7: An incorrect partial solution

Finally, let’s discuss what happens when you make a mistake in Sudoku, and why it’s
important never to guess. In Sudoku, as in any mathematical proof, any wrong guess
or error means that every subsequent step you take is unreliable. For example, suppose
that when we filled in the cell marked with the ♠ symbol in Figure 3, we made a mistake
(or an incorrect guess) and placed a 4 there. Then we would have the grid shown in
Figure 7. From here, by direct proof, we would conclude that the cell marked with a
black square in Figure 7 must contain 7. Then we would complete the centre 3× 3 grid
by placing a 5 in the cell marked with the clubs symbol ♣ in Figure 7. By comparing this
with Figure 6 we see that our first deduction was incorrect but our second deduction
was correct! From a false assumption you can correctly prove some true statements
and correctly prove some false statements, meaning that everything proved from a false
assumption is unreliable. Even if you realise later that a mistake has been made, it can
be very difficult to find the original mistake: often you just have to throw everything
out and start again. This shows why it is so important, in Sudoku as in mathematical
proof, to proceed carefully and make sure that every step you take is correct.

If you would like to learn more about mathematical proofs, a good reference is
Franklin & Daoud’s Proof in Mathematics: an Introduction [1]. Meanwhile, keep on
puzzling!
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