
Sudoku Solver

Nikolas Pilavakis

MInf Project (Part 2) Report
Master of Informatics
School of Informatics

University of Edinburgh

2021

Abstract
Sudoku[15], in its simplest form, is defined as a n2× n2 grid that is initially filled in
with a certain number of cells. The objective is to fill every cell with numbers 1 to n2,
without using any number more than once in the same row, column, or n× n block.
Due to the puzzle’s popularity, numerous variants have emerged, changing the size of
the puzzle, or adding additional rules. In this report, the design, implementation, and
evaluation of an android Sudoku solving app is discussed. The developed app allows
users to solve a puzzle using pencil marks, while allowing them to request hints which
are generated based on an extensive set on human solving techniques. The app was
also evaluated by multiple users of variable Sudoku knowledge and familiarity with
similar apps.

During the COVID-19 pandemic, the popularity of online apps has grown significantly[44,
36]. This observation motivated the idea of multiplayer Sudoku. An idea that is mostly
unexplored, despite the popularity of the puzzle spanning multiple decades. Both com-
petitive and cooperative Sudoku are examined, with an initial version of the latter being
designed and implemented.

i

Acknowledgements

I would like to express my sincere gratitude towards my supervisor, professor Nigel
Topham for his continuous guidance and support throughout the duration of the project.

I would also like to thank my family and friends for their constant support in these
trying times.

Finally, I would like to thank each and every one of the people that took the time to
participate in the project’s evaluation.

ii

Table of Contents

1 Introduction 1

2 Background 2
2.1 Previous work . 2

2.1.1 User Interface . 2
2.1.2 Solving algorithm . 2

2.2 Part one background summary . 4
2.2.1 Sudoku Background . 4
2.2.2 Solving the Sudoku . 4

2.3 Solving techniques . 5
2.3.1 Houses in Sudoku . 5
2.3.2 Pencil marks . 5
2.3.3 Open singles . 6
2.3.4 Naked singles (lone singles) 6
2.3.5 Hidden singles . 7
2.3.6 Naked pairs . 7
2.3.7 Naked triplets and quartets 7
2.3.8 Omission (Pointing, blocking, claiming, intersection) 8
2.3.9 Hidden pairs . 8
2.3.10 Hidden triplets and quartets 8
2.3.11 X wing . 8
2.3.12 Swordfish . 8
2.3.13 XY wing . 8
2.3.14 Unique rectangle . 10

2.4 Sudoku variations . 10
2.4.1 Size and representation variants 10
2.4.2 Rules variants . 11

2.5 Existing applications . 12
2.5.1 Windows . 12
2.5.2 Web . 13
2.5.3 Android . 14
2.5.4 Comparison of solutions . 16

2.6 Synchronization . 16

3 Design 17

iii

3.1 User Interface . 17
3.1.1 Displaying pencil marks . 17
3.1.2 Editing of pencil marks . 17
3.1.3 Highlighting cells . 18

3.2 Hints . 18
3.2.1 Initialising and updating candidates 18
3.2.2 Open and naked singles . 20
3.2.3 Hidden singles . 20
3.2.4 Naked pairs, triples and quartets 20
3.2.5 Hidden pairs, triples and quartets 21
3.2.6 Omission . 21
3.2.7 X wing . 22
3.2.8 Swordfish . 23
3.2.9 XY wing . 23
3.2.10 Multiplayer . 23

3.3 Requirements . 24
3.3.1 User interface . 25
3.3.2 Hints . 25
3.3.3 Multiplayer . 25

3.4 Conceptual Design . 25
3.4.1 Competitive multiplayer . 26
3.4.2 Extending solution for variants 27

4 Implementation 29
4.1 Puzzle representation . 29
4.2 User interface . 30
4.3 Hints . 31
4.4 Multiplayer . 32

4.4.1 Spectator UI . 32
4.4.2 Connecting the app to firebase 32
4.4.3 Data exchange . 32

5 Evaluation 33
5.1 User evaluation . 33

5.1.1 Preparation of the app for evaluation 33
5.1.2 Publishing the app . 34
5.1.3 Evaluation platform . 34
5.1.4 Questionnaire design . 35
5.1.5 Evaluation results . 36

5.2 Requirements evaluation . 38

6 Conclusions 39
6.1 Project achievements . 39
6.2 Project limitations . 39
6.3 Possible extensions . 40
6.4 General remarks . 40

iv

A Sudoku variants 41
A.1 Size variations . 41
A.2 Rules variants . 45

B Implementation screenshots 51

C Participant Information Sheet 63

D Evaluation questionnaire 65

E Responses distribution 71

Bibliography 74

v

Chapter 1

Introduction

The first year of the project involved the development of an android app that can recog-
nise a Sudoku puzzle using the phone’s camera, and solve it using a backtracking al-
gorithm. This included a basic version User Interface (UI) which was mainly used for
display purposes. The goals for the second year of the project were initially concerned
with fine-tuning the aforementioned implementation, evaluating the effect of different
vision techniques to the performance of the recognition process, benchmarking and
user evaluation. Shortly after the beginning of the academic year, discussion with my
supervisor resulted in the project taking a completely different direction.

The focus on the project was shifted towards human solving of the puzzle. The main
objective of the project was the design, implementation and evaluation of an android
app that allows users to solve Sudoku puzzles and potentially request hints. As a result,
this year’s implementation is mostly unrelated to last year’s work. Even the developed
UI and the internal representation of the puzzle had to be adapted to include use of
notes, also known as pencil marks. Later, the idea of multiplayer Sudoku emerged.
A concept that was previously not even mentioned in literature and online Sudoku
communities, let alone implemented. This was then added to the project’s goals.

The resulting app can be used for solving of Sudoku puzzles. The app allows users to
solve a puzzle using pencil marks, highlighting cells, or request a detailed hint gener-
ated from the current state of the puzzle. Furthermore, undo functionality was imple-
mented, and incorrectly filled cells are highlighted. A simple version of cooperative
multiplayer Sudoku was implemented as a proof of concept, using Firebase Firestore.
A questionnaire was designed, which was used for the evaluation of the app.

In chapter 2, previous work is discussed, followed by a summary of commonly used
human solving techniques and popular Sudoku variants. Similar apps are then anal-
ysed, and important features are identified. In chapter 3, the design of the user interface
and the algorithms required for hints is discussed, followed by a conceptual design that
can be used to adapt the app for variants and competitive multiplayer. Next, the im-
plementation details are presented. Chapter 5 outlines the evaluation of the app, the
results of which are analysed extensively. Finally, the achievements of the project are
summarised, followed by its limitations and possible future work.

1

Chapter 2

Background

2.1 Previous work

As this project is a continuation of last year’s work, a brief summary of the key features
developed last year is necessary to put this year’s work into perspective. The goal for
the first year of the project was to develop an android app that uses the phone’s camera
to detect a puzzle and then displays the solution of the puzzle. The app was developed
in Kotlin.

2.1.1 User Interface

The user interface developed included functionality necessary for the scanning of the
puzzle, which is irrelevant for this part of the project. A graphical representation of
the scan puzzle was implemented, where the user could choose to edit the puzzle or
display a solution. Changes to the puzzle can then be discarded with the click of a
button. The Editing feature can be adapted for the implementation of puzzle solving
by the user.

2.1.2 Solving algorithm

For reasons described in section 2.2.2, the scanned puzzles were solved using a back-
tracking algorithm which solves the cell with the smallest number of options, limiting
the width of the search tree. Pseudocode of the solving algorithm is shown in algorithm
1:

The algorithm maintains a set of possible values for each cell. This array of sets can
be adapted to suit the needs of the hint feature.

Functionality that checks whether a puzzle satisfies the required constraints by check-
ing every row, column and block was also developed.

2

Chapter 2. Background 3

Algorithm 1 SolveSudokuRevised(grid,setsArray)
Require: a set of illegal values for each empty cell. Sets are ordered by descending

size and stored in an array.
1: largestSet ∈ setsArray s.t.size(largestSet) == max{size(A)|A ∈ setsArray}
2: if largestSet == NULL then
3: return true {Solving successful}
4: else
5: for digit ∈ {1..9}− largestSet do
6: Assign digit to cell corresponding to largestSet.
7: UpdatedSets= UpdateSets(grid,sets,cell)
8: if UpdatedSets == NULL then
9: return false {Branch cannot lead to solution, backtrack}

10: end if
11: if SolveSudokuRevised(grid,UpdatedSets) then
12: return true {further explore branch}
13: else
14: Undo Assignment
15: return false {backtrack}
16: end if
17: end for
18: end if

Algorithm 2 UpdateSets(grid,sets,cell)
1: for each set in row,column, grid do
2: add content of updated cell to set
3: if set.size == 9 then
4: return NULL {Empty cell has no more legal values}
5: end if
6: end for
7: sort sets
8: return sets

Chapter 2. Background 4

2.2 Part one background summary

This chapter is a continuation of the background section written during the first year
of the project. The majority of available literature was discussed in the report for part
one. As many of the points previously covered are built upon in this report, a summary
of the key points touched last year is provided in this section.

2.2.1 Sudoku Background

There are 6,670,903,752,021,072,936,960 valid Sudoku grids [1, 11], of which 5,472,730,538
are essentially different [12]. while fairly uncommon in printed format, valid puzzles
with multiple correct solutions exist.

The minimum number of clues that must be present in a puzzle for the puzzle to have
a unique solution is 17 [35, 29].

Multiple ways to determine the difficulty of a puzzle are present in literature. One
method uses the total number of clues, or the lower bound of number of clues in each
row or column as an inverse measure of difficulty. Puzzle difficulty can range from
extremely easy to evil. [27]

The aforementioned method ignores the position of the clues in the puzzle. A more so-
phisticated method of determining the difficulty of a puzzle is based on the complexity
of the techniques that must be used for the puzzle to be solved by a human.[20]. Use
of this method requires a human solving the puzzle before the difficulty can be deter-
mined. The various solving techniques are of prime importance for this project and
are discussed in section 2.3. A continuous scale of difficulty is also available, ranking
puzzles with a score from 1 to 4 [10].

2.2.2 Solving the Sudoku

Solving Sudoku puzzles programmatically is proven to be ASP-complete and hence
NP complete [62]. Therefore, the complexity of any known approach increases ex-
ponentially with the size of the grid. Backtracking[18] is the most popular algorithm
used for Sudoku solving. Due to the practical benefits of backtracking, namely speed
and guaranteed finding of solutions, a version of backtracking was implemented for the
first year of the project. Examples in literature that solved Sudoku using this algorithm
include: [19, 20, 27, 25, 51, 30, 2, 19]

A variety of soft-computing algorithms were also proposed. Such as Artificial Bee
Colony (ABC) [24, 45, 43, 63, 32] and Genetic Annealing (GA) [33, 34, 48, 50, 60, 5].

Solutions on FPGAs were also proposed [31, 59, 14, 9, 23, 61, 21].

Comparison between backtracking, simulated annealing and genetic algorithms veri-
fied backtracking to be the most effective approach. [22]

Other approaches used are:

• Boolean algebra [6]

Chapter 2. Background 5

• Boolean satisfiability and Constrained Programming (CP) [3, 54, 46, 7]

• Metaheuristics [39, 28, 55, 56, 57, 17, 4]

• Rewriting rules [49]

• Sinkhorn balancing [38]

• Entropy minimization [16]

• Hall’s marriage theorem [58]

• Integer programming [4],

• Harmony search [13]

• membrane computing [8]

• Hybrid Ant Colony Optimization (ACO) [47]

2.3 Solving techniques

Unless otherwise noted, all images used in this section were created using Hodoku1.
Since most publications are concerned with solving the puzzles programmatically, hu-
man solving techniques are usually omitted. The most detailed description of solving
techniques is given by Jana et.al. [20]. On the contrary, multiple websites explain-
ing the different solving techniques exist. The most commonly mentioned techniques
are outlined in this section. Use of these techniques allows for solving of most (if
not all) printed puzzles without requiring any guesswork. When the same technique
can be found under different names, alternative names are mentioned in parentheses.
Techniques are presented in order of increasing difficulty.

2.3.1 Houses in Sudoku

It is common in solving literature to refer to individual rows, columns or blocks as
”houses”. A standard Sudoku has 9 of each type of house, resulting in a total of 27
houses.

2.3.2 Pencil marks

Although use of pencil marks is not a technique per se, it is necessary for most of the
techniques outlined in this section. Pencil marks can be summarised as follows: For
every empty cell, small numbers are noted indicating all the legal number that can be
placed in the cell, without violating the puzzle constraints. Pencil marks are gradually
removed as the puzzle is solved. An example of pencil marks is shown in figure 2.1.

For consistency and easier pattern recognition, pencil marks are always placed in the
same position in the cell, resembling a dial pad, as shown in figure 2.2

1http://hodoku.sourceforge.net/en/index.php

http://hodoku.sourceforge.net/en/index.php

Chapter 2. Background 6

Figure 2.1: Use of pencil marks

Figure 2.2: Positioning of pencil marks

2.3.3 Open singles

This technique is the most basic form of Sudoku solving and does not require pencil
mark use. Simply, when there is a house with only one missing cell, there is only one
legal candidate for that cell.

2.3.4 Naked singles (lone singles)

Naked singles encapsulate the essence of pencil marks and are a generalisation of
Open singles. When there is only one pencil mark left for a cell, there is only one valid
number for that cell. An example is the highlighted cell in figure 2.1

Chapter 2. Background 7

2.3.5 Hidden singles

Hidden singles are a more advanced technique as they are harder to spot. When a
number appears as a pencil mark only once for a given row, column, or block, it is
the solution to that cell. Highlighting all squares where a number appears as a pencil
mark, helps spot hidden singles, and is widely used by Sudoku applications. Consistent
positioning of pencil marks is crucial for the detection of hidden singles, as shown in
figure 2.3. In the row example, the highlighted cell is the only cell of that row that
for which 2 is a valid solution. Similarly, number 3 is the only a candidate in the
highlighted squares for both column and block examples. To keep things concise, only
one type of house will be used for demonstration hereafter, as the 3 types of houses
(rows, columns and blocks) are symmetric.

Figure 2.3: Hidden singles for a single row,column or block

2.3.6 Naked pairs

Naked pairs are not a direct solving technique, but can be a powerful tool for elimina-
tion of pencil marks. When two cells of the same house have the exact same two pencil
marks, these two pencil marks can be eliminated from every other cell in the house.
An example is shown in figure 2.4.

Figure 2.4: The two rightmost cells form a naked pair, leaving 5 as the only option for
the leftmost cell (naked single)

2.3.7 Naked triplets and quartets

Naked triples and quartets follow the exact same logic as naked pairs but are far less
common. As one would expect, when three cells with the exact same three pencil
marks occur in the same house, those three pencil marks can be eliminated from every
other cell in the same house. Similarly, the same applies for 4 pencil marks.

Chapter 2. Background 8

2.3.8 Omission (Pointing, blocking, claiming, intersection)

Omission is another strong technique for elimination of pencil marks. Various naming
conventions exist in literature, however, all of them follow the same principle.

When a pencil mark occurs only within one block for any given row or column, the
observed number must be placed in that row or column. Hence, the corresponding
pencil mark can be removed from the rest of the block. Similarly, when a pencil mark
occurs only within a single row or column for a specific block, it must be placed in
that block and the corresponding pencil marks for the same row or column outside the
block can be removed.

2.3.9 Hidden pairs

Hidden pairs are a more advanced version of naked pairs. While two pencil marks only
appear for only two cells of the same house, they are not the only pencil marks found
in those two cells.

2.3.10 Hidden triplets and quartets

Hidden triplets follow the same intuition as hidden pairs; however 3 pencil marks only
appear on 3 cells only for the same house. Similarly for quartets.

This technique concludes the set of harder techniques and should be enough to solve
at least 90% of well-formed puzzles. The techniques described below are incredibly
rare and very hard to spot but are mentioned for completeness.

2.3.11 X wing

This technique involves a pair of rows or columns. If a pencil mark only appears
exactly twice in the two rows at the same columns (or in the two columns at the same
rows) then the same pencil mark can be eliminated from the rest of the columns (or
rows). An example is shown in figure 2.5

2.3.12 Swordfish

The swordfish technique is a variation of the X wing technique, in which three rows (or
columns) that contain a pencil mark exactly twice are examined. All candidates of that
pencil marks in the corresponding columns (or rows) that are not part of the examined
rows (or columns) can be eliminated. In the example shown in figure 2.6 the pencil
mark 2 is used using 3 rows to eliminate the candidate in two other cells.

2.3.13 XY wing

The XY wing technique requires one cell with two possible candidates (pivot). We call
these candidates X and Y. We then need two additional cells (pincers) facing the pivot
with candidates X and Z and Y and Z respectively. Then, Z can be eliminated from the
candidates of any cell facing both pincers

Chapter 2. Background 9

Figure 2.5: Xwing using two rows (orange) to eliminate a pencil mark on the column
(green). Pencil mark 2 appears on all orange cells and can be eliminated from the
green cell.

In the example shown in figure 2.7 the pivot has candidates 2 and 7 (X and Y respec-
tively). the pincers have candidates 5 and 7 and 2 and 5 (Z is 5). The cell highlighted
in green cannot contain 2, so that candidate is removed, revealing an open single.

Figure 2.7: XY wing technique with pivot highlighted in green and pincers in orange to
eliminate pencil mark 2 from cell highlighted in pink.

Chapter 2. Background 10

Figure 2.6: Swordfish using three rows (shown in orange) using pencil mark 2, which is
then eliminated from cells shown in green, revealing a naked single.

2.3.14 Unique rectangle

Unique rectangles operate on the assumption that the puzzle has exactly one solution.
As this is not always true for the puzzles discussed in this report, this technique is not
discussed further.

2.4 Sudoku variations

Due to the popularity and the long history of Sudoku puzzles, different variants have
emerged, some of which are quite popular. Variants be separated to two different
categories. First, variants based on the size and representation of the puzzle or the
symbols used. In that case, the same rules apply (i.e. no symbol must be placed in every
house exactly once). Secondly, puzzles that add additional constraints to the puzzle
exist, and can be much more interesting. Naturally, puzzles that combine multiple
variants also exist. Expanding the solver implemented last year to accommodate for
variants is discussed in section 3.4.2. Pictures of the variants that are discussed can be
found in appendix A

2.4.1 Size and representation variants

Puzzles of different sizes are found across literature. It is worth noting that puzzles up
to 25x25 can be filled using only a single character per cell, by using letter from the
alphabet. Not all variants use square blocks. Some puzzles are divided into ”jigsaw-
like” shapes and are therefore called jigsaw Sudoku. Jigsaw Sudoku are also referred
to as geometric or irregular. Some common variants are:

• 4x4 grids with 2x2 houses (using numbers 1-4). See figure A.1

• 5x5 grids with jigsaws of size 5, also known as Logi-5 (using numbers 1-5). See

Chapter 2. Background 11

figure A.2

• 7x7 grids with jigsaws of size 7 (using numbers 1-7). See figure A.3

• 12x12 grids with 4x3 regions, also known as Sudozen (using literals 1-C or 1-
12). See figures A.4 and A.5

• 16x16 grids with 4x4 houses, also known as hexadoku (using literals 1-F). See
figure A.6

• 25x25 grids with 5x5 houses, also known as alphadoku (using numbers 1-25 or
letters A-Y). See figures A.7 and A.8

• 100x100 grids with 10x10 houses, also known as Sudoku-zilla (using numbers
1-100). Figure not included due to low resolution.

• Colorku: A coloured circle is used to represent each number. Most commonly
used for classic puzzles. See figure A.9

2.4.2 Rules variants

As with size variants, Sudoku with additional rules are also found across literature,
increasing the constraints imposed. Some of the most common rule variations are
discussed in this section. In most cases, additional symbols or shadowing are used to
indicate the additional constraints.

• Sudoku X: Diagonals form two additional regions; numbers 1-9 can only appear
once on each diagonal. See figure A.10

• Center dot Sudoku: Cells appearing at the center of each block form an addi-
tional region. In other words, numbers 1-9 can only appear one in the cells that
are in the center of each block. See figure A.11

• Colour Sudoku: Cells are coloured using a variable number (x) of different
colours, forming x additional regions. Numbers 1-9 can only appear once on
each coloured region. See figure A.12. Not to be confused with Colorku.

• Hyper Sudoku: Four additional blocks (In which cells are shadowed), are added
to the standard nine. See figure A.13

• Thermo Sudoku: Thermometers appear across the grid. Starting from the base
of the thermometer, numbers in a thermometer have to be increasing towards the
top. Thermometers can be overlapping. The number of givens in this variant is
usually very low. The hardest examples of this variant usually have no givens.
See figure A.14

• Arrow Sudoku: Arrows appear across the grid. The number appearing at the tail
of the arrow, which is often circled, has to be equal to the sum of the numbers ap-
pearing in the path covered by the arrow. A similar variant with product instead
of sum also exists. See figures A.15 and A.16

• Odd/even Sudoku: Symbols appearing in cells indicate that the cell should be
filled with an even or odd number. Typically, circle is used for numbers and

Chapter 2. Background 12

square for evens. See figure A.17

• Consecutive Sudoku: Symbols (usually a small rectangle) appearing between
cells indicate that the numbers placed in the two cells must be consecutive. See
figure A.18

2.5 Existing applications

Due to the popularity of the puzzle, a plethora of applications allowing users to solve
Sudoku exist. In an attempt to highlight interesting features, the most well-known
applications are analysed in this section, followed by a comparison. As the purpose
of this analysis is to determine how different apps are suited to the needs of the Su-
doku community, emphasis will be given on the interesting features of each piece of
software. Aspects such as bugs found or possible improvements to these apps were
deemed irrelevant and are therefore not discussed. Some of the solutions analysed
have been under constant development with the help of an active user base for many
years. Inevitably, some of the features found are very sophisticated and polished. Such
features would be impossible to develop to a satisfactory degree in a year by a single
student. For completeness, software for different platforms was also evaluated, with
additional attention to android apps.

2.5.1 Windows

2.5.1.1 Hodoku

Hodoku 2 is a Windows app developed in Java. The first version was published in 2009.
It is regarded as one of, if not the most complete Sudoku solving app. It includes many
different modes such as generating, solving, learning and analysing Sudoku puzzles.
This section will only examine the solving features which are the most relevant to this
project. More specifically, Hodoku implements:

• Pencil marks: Automatically generated and updated when a cell is filled by de-
fault. Can be changed in settings.

• Highlighting: Can select to include or exclude all cells that are candidates for a
specific number from highlighting. An option to highlight cells with only two
possible candidates is also available.

• Generate puzzles of variable difficulty, ranging from easy to evil.

• Vague hints: Suggesting use of a technique, optionally including the cells in-
volved.

• Concrete hints: solving a cell or removing a pencil mark

• Colorku: Coloured circles are used instead of digits. Can be used as an aid for
the visually impaired.

• Import/export puzzles with various formats
2http://hodoku.sourceforge.net/en/index.php

http://hodoku.sourceforge.net/en/index.php

Chapter 2. Background 13

• Solution path for puzzles solved using the solving algorithm

2.5.2 Web

Web apps are more relevant to this project as some are, at least partially, compatible
with mobile web. In this section, two of the most popular web apps are discussed.

2.5.2.1 Enjoy Sudoku (web)

Enjoy Sudoku 3 is a family of apps across all major platforms (Windows, Mac OS X,
android, iOS, kindle, and web) with free and paid versions available for each platform,
except web, where only a free version is available. Free versions include ads and limit
the number of puzzles available per day.

The most attractive feature of enjoy sudoku is the simple and intuitive interface. Not
many options are available, which makes the app friendly for users that might be new
to Sudoku puzzles. Most important options have to do with pencil marks. Users can
choose between automatic or manual generation and updating of pencil marks. The
solution of the puzzle can be displayed with the click of a button. Puzzles of variable
difficulty and small tutorials explaining the basics of Sudoku are also available. Hints
are also very interesting. Variable ”levels” of hints are available upon requesting a
hint. Initially, vague hints such as ” meditate about digit 2” are given. By clicking
”show more”, the corresponding house is highlighted and the hint becomes ”where in
this block can you place a 2?”. Clicking ”show more” again fills the cell. Unfortu-
nately, only the most basic techniques are implemented, with naked pairs being the
most advanced technique witnessed. When a more advanced technique is required, a
pencil mark is eliminated instead. It is assumed that the current state of the puzzle is
compared to the solution to delete a candidate.

2.5.2.2 Sudoku slam

Sudoku slam 4 is a free web app developed since 2006 and is optimised for solving
puzzles using a keyboard. The app allows for easy highlighting of different candidates
and elimination of pencil marks. Two different solving modes are available, dictating
when a cell is filled automatically and how pencil marks are kept. ”Traditional” solv-
ing mode requires the pencil marks to be filled in manually and only completes a cell
automatically when it is the only unsolved cell in a given house. ”Sumo” mode auto-
matically initialises and updates pencil marks when required. Hidden singles are also
filled in automatically. As a result, solving speed is increased drastically. The app also
features an offline mode, while it allows for puzzles to be created manually if desired.
Puzzle progress is saved using cookies. Saving the current progress as a PDF is also
available, allowing users to print the puzzle and continue using a pen and paper. Hint
functionality is excellent, as all techniques discussed in section 2.3 are implemented.
When a hint is requested, the corresponding cells are highlighted and the hint is dis-

3http://www.enjoysudoku.com/
4https://www.sudokuslam.com/

http://www.enjoysudoku.com/
https://www.sudokuslam.com/

Chapter 2. Background 14

played. A short explanation of the hint is also provided, accompanied by a link to a
website explaining the hint.

2.5.3 Android

As the objective of the project is to develop an android app, multiple android apps
were analysed. These apps were selected based on recommendations from Sudoku
solving forums and do not necessarily correspond to the apps with the most features
or the most users. Apart from Enjoy Sudoku, all apps analysed are free and use ads to
generate revenue, with an in-app purchase available to remove ads.

2.5.3.1 Enjoy sudoku

The web version of this app was discussed in section 2.5.2.1. Two android versions
exist, a free and a paid5 version. Both versions include all features mentioned for the
web app. The only difference is that the free version allows the user to solve only one
puzzle per day, using ads to generate revenue. The paid version was sold for $2.99
at the time of writing, with 3000 users. Unfortunately, the free version, which was
far more popular, is no longer available as it was not updated in the recent years. It
was therefore taken down as it is not compatible with newer android versions. It is
interesting to note that the user interface was ported from the web interface. As a
result, it is optimised and performs poorly.

2.5.3.2 Andoku 3

Andoku is one of the oldest android apps that maintain an active user base and are reg-
ularly updated. The first version available to the public was Andoku Sudoku 2 6, which
was released in 2011 and maintains 28,000 active users to this day. Its successor, An-
doku 3 7 was released in 2015 and has over a million downloads. The app implements
all the features that are found in any modern Sudoku solving app, while maintaining a
clean and simple UI. More specifically:

• Pencil marks: Can be edited with the click of a button. For harder puzzles, the
option to automatically generate and update pencil marks is also available.

• Highlighting: When selecting a number from the input pad, all cells containing
that number (either as a solution or a pencil mark) are highlighted.

• Puzzle variety: Available puzzle difficulty ranges from ”Easy” to ”Ultra ex-
treme”. Apart from the traditional Sudoku format, variable difficulty puzzles
for some of the variants mentioned in section 2.4.2 and their combinations are
also available.

5https://play.google.com/store/apps/details?id=com.enjoysudoku.enjoysudoku&hl=
en_GB&gl=US/

6https://play.google.com/store/apps/details?id=com.andoku.two.free&
pcampaignid=pcampaignidMKT-Other-global-all-co-prtnr-py-PartBadge-Mar2515-1/

7https://play.google.com/store/apps/details?id=com.andoku.two.free&
pcampaignid=pcampaignidMKT-Other-global-all-co-prtnr-py-PartBadge-Mar2515-1/

https://play.google.com/store/apps/details?id=com.enjoysudoku.enjoysudoku&hl=en_GB&gl=US/
https://play.google.com/store/apps/details?id=com.enjoysudoku.enjoysudoku&hl=en_GB&gl=US/
https://play.google.com/store/apps/details?id=com.andoku.two.free&pcampaignid=pcampaignidMKT-Other-global-all-co-prtnr-py-PartBadge-Mar2515-1/
https://play.google.com/store/apps/details?id=com.andoku.two.free&pcampaignid=pcampaignidMKT-Other-global-all-co-prtnr-py-PartBadge-Mar2515-1/
https://play.google.com/store/apps/details?id=com.andoku.two.free&pcampaignid=pcampaignidMKT-Other-global-all-co-prtnr-py-PartBadge-Mar2515-1/
https://play.google.com/store/apps/details?id=com.andoku.two.free&pcampaignid=pcampaignidMKT-Other-global-all-co-prtnr-py-PartBadge-Mar2515-1/

Chapter 2. Background 15

• Hints: A plethora of hints are available, ranging from very easy (such as Hid-
den single) to ”Ultra extreme” (such as swordfish variations). Hints are given
gradually. Initially, relevant houses are highlighted, followed by highlighting
of the relevant pencil marks and concluding with the solution. Tutorials for all
techniques are also available, with example puzzles and step by step guides.

• Importing puzzles: Puzzles can be imported using different features. Trivially,
givens can be added to an empty board to construct a puzzle. Alternatively, A
string containing the givens of the puzzle and ’.’ for empty cells can be input to
generate the puzzle. Finally, printed puzzles can be scanned using the phone’s
camera.

2.5.3.3 Brainium Sudoku

Brainium Sudoku 8 is a regularly updated app, developed by Brainium studios with
over 10 million downloads at the time of writing. The app contains all the basic fea-
tures one would expect from a Sudoku app (pencil marks, highlighting, and basic hints)
but not much else. Highlighting is done automatically and is not ideal as there is no
apparent way to highlight all cells with a specific candidate. A gradual hint functional-
ity is also implemented. The most advanced hint witnessed was intersection (referred
to as omission in section 2.3). When more complex techniques are required, a pencil
mark is deleted, or a cell is filled. Recent reviews of the app criticize the colour scheme
used by the app, as it often painful to the eyes and the amount of information conveyed
by the colours used is limited because of their excessive use. No options to import or
export puzzles are available.

2.5.3.4 sudoku.com

sudoku.com 9 is the most popular android Sudoku solving app. Developed by Easy-
brain, it has over 50 million downloads and the ”editor’s choice” at the time of writing.
The app offers a large variety of puzzles of variable difficulty. Interestingly, Hexadoku
(or 16x16 Sudoku) are also available within the app. In terms of functionality, pencil
marks are implemented as usual, and an option to fill pencil marks automatically is
available for harder puzzles. An option to fill singles automatically is also available.
Due to the excessive number of advertisements in the app, the hint functionality was
not thoroughly tested. However, during the limited testing, the result of a hint was
either the deletion of a pencil mark or the filling of a cell, without explanation. All
cells containing a specific number or pencil mark can be highlighted when clicking a
number from the number pad. No option to import or export puzzles is available. Out
of all the apps reviewed in this section, this app has the most intuitive and polished
UI. It is very accessible for people new to the world of Sudoku, which explains its
popularity.

8https://play.google.com/store/apps/details?id=com.brainium.sudoku.free&hl=en_
GB&gl=US

9https://play.google.com/store/apps/details?id=com.easybrain.sudoku.android&
hl=en_GB&gl=US

https://play.google.com/store/apps/details?id=com.brainium.sudoku.free&hl=en_GB&gl=US
https://play.google.com/store/apps/details?id=com.brainium.sudoku.free&hl=en_GB&gl=US
https://play.google.com/store/apps/details?id=com.easybrain.sudoku.android&hl=en_GB&gl=US
https://play.google.com/store/apps/details?id=com.easybrain.sudoku.android&hl=en_GB&gl=US

Chapter 2. Background 16

Comparison of Sudoku solving apps
App name OS Free Marks highlighting Hints Portation Colorku
Hodoku Win 3 Flexible Flexible Flexible 3 3

Enjoy Sudoku Web Limited Auto Auto Gradual 7 7

Sudoku slam Web 3 Flexible Flexible Detailed 3 7

Enjoy Sudoku And 7 Auto Auto Gradual 7 7

Andoku 3 And 3(Ads) Flexible Flexible Gradual 3 7

Brainium And 3(Ads) Flexible Limited Limited 7 7

sudoku.com And 3(Ads) Flexible Flexible Auto 7 7

Table 2.1: Comparison of key features of Sudoku solving apps

2.5.4 Comparison of solutions

Applications from many different platforms were analysed in this section. Comparing
them is no easy task, as a plethora of criteria must be taken into account. A summary
of the key features relevant to this project are summarised in table 2.1. Hodoku is a
clear winner on most categories. The only areas where it is lacking compared to the
other apps is portability (taking into account that windows phones are not that popular)
and variety, as it only offers traditional Sudoku only. It also does not allow scanning
of puzzles using a camera, which could demotivate users from solving a puzzle they
saw on a newspaper. Where applicable, the price to remove ads ranges from two to
three pounds and should not be an issue for dedicated users. The quality of the UI is
of prime importance, as a feature is not important unless it is used by the users. A
simple and intuitive UI like the one implemented by the sudoku.com app is desired.
Finally, excessive or unreasonable use of colour, as done by Brainium Sudoku, should
be avoided.

2.6 Synchronization

To the best of our knowledge, multiplayer Sudoku is not discussed in literature. Fur-
thermore, no multiplayer Sudoku implementations were found, the closest to a multi-
player realisation being websites that allow two users to compare their solving times
on the same puzzle. As a result, the implementation of multiplayer functionality will
be based on similar projects, such as online games synchronization.

Chapter 3

Design

3.1 User Interface

The user interface had to be adjusted allow users to solve puzzles on the phone, as
last year’s implementation prioritised displaying a puzzle over solving it. The main
adjustments required boil down to three aspects: Displaying pencil marks, allowing
users to edit them and highlighting all cells that contain a pencil mark.

3.1.1 Displaying pencil marks

Displaying pencil marks might seem like a trivial task at first. This however was not
the case as such a feature was not forethought during last year’s implementation, as the
performance of the UI was a priority. A solution that introduced the least amount of
changes was desirable. The only requirement in place regarding the display of pencil
marks is that the each digit must appear on the same position relative to the cell when
used as a pencil mark. Of course, the selected solution was also required to be efficient
and not introduce any noticeable time delays or unpredictable behaviour.

Unfortunately, most pencil marks UI implementations using native android libraries
that are available online are severely outdated and would not work properly on a mod-
ern android device. The code used by the apps analysed in section 2.5.3 is either not
publicly available or based on a web framework. The latter option was deemed infea-
sible due to the author’s inexperience with such frameworks. As the design decisions
for the UI are implementation specific, further discussion is left for section 4.2

3.1.2 Editing of pencil marks

Adding or removing a pencil mark from a cell is a core feature of any Sudoku solving
app. Keeping this feature as intuitive as possible while matching the implementation
of similar apps was prioritised. Specifically, it was decided that switching between
solving mode (filling empty cells) and pencil marks mode (editing pencil marks) will
happen with the click of a button. In both modes, a button corresponding to each
number 1-9 will be available below the puzzle. Users will be able to select a number

17

Chapter 3. Design 18

and then a cell. Depending on the mode that is active, the selected cell will be filled
with that number or the corresponding pencil mark will be added or removed from the
cell.

3.1.3 Highlighting cells

Selecting a number will also highlight all cells for which the number is a candidate.
This is done by many Sudoku solving apps as it allows for easier spotting of techniques
that can be used. More complex highlighting techniques were considered. For exam-
ple, highlighting manually, highlighting all cells with two candidates, or highlighting
all cells that do not include a selected candidate. These were deemed too complex for
a general audience that is not required to have experience with Sudoku solving apps
or Sudoku solving in general. As a result, highlighting functionality was kept to a
minimum.

3.2 Hints

In this section, the design of the hints functionality is discussed. The goal of this
functionality is to search for occurrences at which a solving technique could be used.
Due to time and space constraints, techniques were limited to those discussed in section
2.3.

When a hint is found, a relevant message explaining the technique is displayed, and the
relevant cells will be highlighted. The amount of pseudocode provided in this section
was minimised to favour clarity and conciseness.

Unfortunately, the algorithms used by similar apps are not available in the public do-
main. As such, algorithms discussed were implemented from scratch and may not be
optimal. Each algorithm will then be run in order of appearance until a hint is found.
This ensures that the simplest possible hint will be given at any given time. Further-
more, it allows for optimisation of algorithms associated with more advanced tech-
niques because assumptions can be made about the puzzle. For example, an algorithm
for hidden pairs can assume that no hidden singles occur in the puzzle.

Most websites that explain the techniques outlined in section 2.3 claim that they are
sufficient for solving 90-95% of all Sudoku puzzles. Experimenting with some puz-
zles confirmed that this number is not an exaggeration, as they are often sufficient for
solving puzzles classified as ”evil”.

3.2.1 Initialising and updating candidates

Before any hint can be given, the candidates of each cell have to be initialised. For
each cell, a set containing the legal values that can be entered into that cell is created.
Sets are then stored in a list. The process followed for the initialisation is described in
algorithm 3. It is worth noting that this algorithm goes over every cell exactly twice
when creating a set. (once for the block and once for the row or block. The only excep-
tion is the cell for which the cell is created, which is visited exactly three times. Due to

Chapter 3. Design 19

the small size of the grid, the overhead associated with ensuring that each cell is visited
exactly once is likely to outweigh the performance benefit of such an optimisation. As
the algorithm is quite simple and is expected to terminate instantaneously for standard
Sudoku, such an optimisation was deemed unnecessary complex.

Algorithm 3 Initialise constraints(grid)
1: initialise empty list
2: for cell in grid do
3: if cell is not empty then
4: set = {}
5: add set to list.
6: continue to next cell
7: else
8: set ={1..9}
9: for nonempty cell in same house do

10: set = set - {nonempty cell value}
11: end for
12: add set to list
13: end if
14: end for
15: return list

When a pencil mark is edited, the corresponding set is adjusted accordingly. When
a cell is filled, the sets of all cells in the same house are updated, as described in
algorithm 4

Algorithm 4 Initialise constraints(grid, filled cell, filledNumber)
1: for cell in same house as filled cell do
2: cellSet = cellSet - {filledNumber}
3: end for

A list containing the index of non-empty sets in ascending size order is also maintained.
The list is created by sorting the list of sets in parallel with a list of indices. 1 Sorting
is performed using Quicksort, which has an θ(nlogn) complexity on average. Due
to space limitations, the implementation of Quicksort is omitted. Concretely, the first
element of the list contains the index of the cell with the least candidates. The sorting
algorithm is stable, meaning that the order is maintained in case of a tie. As such, cells
with the smallest index will appear higher up on the list in case of a tie. This will allow
for consistency during development and testing.

Henceforth, algorithms will assume the existence of the aforementioned populated data
structures and any mention of their existence will be omitted to reduce repetition.

1Recall that the index of a cell is defined to be row∗9+ col and ranges from 0 to 80

Chapter 3. Design 20

3.2.2 Open and naked singles

When the first element with the least candidates has only one candidate, that cell is
a naked single. Determining whether it is an open single requires it to be the only
empty cell in its row, column or box. Checking if the condition is filled is trivial but
unnecessary, as all open singles can be generalised to be naked singles. When a naked
single is spotted, the candidate and cell in question are trivial to find without requiring
any additional computation.

3.2.3 Hidden singles

Hidden singles are slightly more complicated to spot, as the algorithm must check each
individual house. It is worth noting that no apparent simplification can be made. For
example, checking all rows and columns for a hidden single does not eliminate the
possibility of a hidden single being present in a box. Finding the corresponding cell
is then trivial. The process is described in algorithm 5. For efficiency, the algorithm
marks the first time it finds a digit occurring as a candidate in every house. Traversing
the house stops when a digit is found a second time, as that digit cannot be a hidden
single. A hidden single is found if a house is traversed from start to finish.

Algorithm 5 HiddenSingles(grid,candidates)

1: result = -1 { Index of hidden single}
2: for digit ∈ 1..9 do
3: found = false {reinitialised when checking a different house}
4: for cell ∈ row,column,box do
5: if digit ∈ candidates(cell) then
6: if !found then
7: result = cell
8: found = true
9: else

10: result = -1
11: next house
12: end if
13: end if
14: return index {-1 if not found}
15: end for
16: end for

3.2.4 Naked pairs, triples and quartets

Finding naked pairs is slightly more complicated as it involves two distinct stages. A
textual description was deemed more suitable for this technique, mainly for simplicity
and conciseness purposes. The first stage involves finding two cells in the same house
that have the same two candidates. The candidates are then extracted. For the second
stage, the same house is traversed a second time. If a third cell that has at least one of
the two candidates is found in the same house, then a naked pair is detected. Otherwise,

Chapter 3. Design 21

the algorithm returns to the first stage and the next house is checked. For the hint
functionality, the first two cells must be highlighted in a different colour than the third.
It is worth noting that multiple cells might be benefit from this technique for a given
house. The second stage described can be trivially adapted to return a list of cells from
which pencil marks can be omitted instead of a single cell.

The same two-stage algorithm can then be easily adapted to finding naked triples or
quarters. For this to happen, the first stage is changed to find two cells that share the
same three or four candidates, respectively. The second stage is identical.

3.2.5 Hidden pairs, triples and quartets

Identification of hidden pairs by a human is often compared to identification of naked
pairs. However, from a computation standpoint, the analogy is not entirely accurate.
Hidden pairs only require identification of two cells. As such, the second stage of the
algorithm described for naked pairs is not necessary.

A hidden pair is identified if two pencil marks appear only in two cells for any given
house. One solution would be to check all 72 combination of digits for every house.
This approach would not be too detrimental to the performance of the algorithm, as the
search space is quite small. Alternatively, the search space is limited to pairs that exist
in a cell in a given house. Tuples of digits that are checked for a given house are saved
to ensure that each pair of digits is searched only once.The two cells are then returned.

Of course, the algorithm works only on the assumption that naked pairs have already
been eliminated. If this prerequisite is not guaranteed, then the algorithm could return
a naked pair, without identifying cell(s) in which pencil marks can be eliminated. In
fact, such cells may not exist. As such, an additional constraint is added to ensure that
at least one of the two cells has more than two candidates.

Hidden triples and quartets can then be found by adapting the algorithm described
above.

3.2.6 Omission

Omission is a harder technique to spot computationally as multiple different scenarios
that can be categorised as omission exist. As discussed in section 2.3, these scenarios
are often separated using different naming conventions (Pointing, blocking, claiming
and intersection). As the philosophy of identifying each one is the same, a distinction
is not beneficial.

Put simply, the omission technique can be used if all occurrences of a given pencil
mark for any row or column are in the same block. In that case, all other occurrences
of that pencil mark in that row or column can be omitted. The symmetric nature of the
Sudoku puzzles means that omission can happen in a block. All four possible scenarios
can be summarised into one.

As an attempt to simplify the terminology, the house from which pencil marks are
omitted from is referred to as the ”primary house” and the other one is referred to as

Chapter 3. Design 22

the ”secondary house”. The algorithm traverses all secondary houses (rows, columns,
blocks) and checks if all occurrences of some digit appear within the same primary
house (blocks, rows, columns). This idea can be generalised by grouping cells within
secondary houses into groups of three cells. If a digit appears only in one group of
cells, then there is a possibility that at least one pencil mark can be omitted from the
primary house.

For the sake of an example, imagine that all occurrences of digit 3 in the first row
appear within the first block. The algorithm detects this by traversing the first row and
observing that the digit 3 appears as a candidate only in the first group of three cells
as described above. (Recall that digit 3 must appear at least twice in a given group,
otherwise a hidden single is found, checks for which were already performed.) Then,
the algorithm traverses the second and third row of the same block to check if digit 3
appears in a different row in the same block. In that case, the omission technique can
be used. To make the hint as intuitive as possible, all cells that contain the digit as a
candidate in the given block are highlighted.

Unfortunately, finding cell(s) for which the technique can be applied requires multiple
traversals of houses. Performance wise, this should not be an issue as the search space
is quite small

3.2.7 X wing

X wing is another technique that involves removal of pencil marks. Contrary to previ-
ous techniques, it only requires pairs of rows or columns (not blocks).

First, we need to find two rows (or columns) that contain a digit exactly twice. Next, we
need to check if the pairs of cells for each row (or column), exist in the same column (or
row). Given two cells with index2 i1 and i2 respectively, cells are in the same column if
(i2− i1) mod 9 = 0, Where mod is defined as the remainder of division. Furthermore,
two cells are in the same row if i1 div 9 = i2 div 9 where div is defined as integer
division. Once two pairs of such cells are found, the corresponding pair of columns (or
rows) is traversed. If at least one additional cell with that candidate is found, then the
X wing technique can be used. The digit under inspection can then be eliminated from
the additional cells found.

For the purposes of providing a hint, the algorithm needs to return the digit for which an
X wing was found, the two pairs of cells identified and the cells from which the pencil
mark can be removed. The two types of cells must be highlighted using a different
colour.

It is worth reiterating that the technique requires that the pencil mark appears exactly
twice for the pair of rows or columns. Limiting the search space to pairs of cells that
appear on the same columns or rows is tempting but incorrect.

2Recall that the index of a cell was defined to be row*9+column, and ranges from 0 to 80

Chapter 3. Design 23

3.2.8 Swordfish

The swordfish technique is a more general case of the X wing technique. The main dif-
ference between the two is that for the identification of a swordfish technique, pairs of
three rows (or columns) are examined instead of two. Similarly, the algorithm focuses
on a single digit at a time. First, the same digit must appear exactly twice in all three
rows (or columns). Second, the pencil mark must appear in exactly three columns (or
rows) across all three rows (or columns). In that case, if the digit appears as a pencil
mark in any other cell in the same columns (or rows), that pencil mark can be removed.
It is worth noting that this algorithm works on the assumption that no X wings exist in
the puzzle.

The digit and 6 cells used for identification are then returned, along with the cells
from which the pencil mark will be eliminated. Again, the two categories of cells are
highlighted using a different colour.

3.2.9 XY wing

XY wing is the last technique that will be implemented for this project. The technique
requires three cells that have exactly two candidates. Finding all cells that have exactly
two candidates can be easily found with the setup described at the start of the section
(Section 3.2.1). All cells that have more than two candidates are irrelevant to this tech-
nique. The algorithm for detection examines each cell that has exactly two candidates
separately. The candidates of each such cell (pivot) are named X and Y. Then, the
algorithm tries to find two other cells (pincers) that share a house and a pencil mark
with this cell. In other words, the candidates of the pincers are (X, Z) and (Y, Z) re-
spectively. If three such cells are found, then the XY wing technique can be used. The
algorithm traverses all cells that share a house with both pincers and returns the subset
of these cells that have Z as a candidate.

3.2.10 Multiplayer

3.2.10.1 Multiplayer modes

As previously mentioned, no implementation of multiplayer Sudoku was found on-
line. As a result, the design of such functionality was kept as simple as possible. This
section is mainly concerned with the concepts and challenges associated with the im-
plementation of multiplayer Sudoku.

Both cooperative and competitive multiplayer modes were considered. However, as
the project was limited to one academic year and the idea of multiplayer Sudoku is
completely new, implementing both cooperative and competitive multiplayer modes
was deemed too difficult. Implementation of cooperative multiplayer was preferred.
The reasoning behind this decision can be broken down to two factors.

The most apparent problem with an implementation of a setting where two users com-
pete to solve the same puzzle in real time is the user interface. As the purpose of the
project is to develop an android app, showing two boards side by side while keeping
the numbers readable was a tough ask. Such implementation would be much more

Chapter 3. Design 24

suitable for a web app or a desktop app. Furthermore, implementation of such a user
interface could prove troublesome, due to the author’s limited experience with android
development.

The second reason a cooperative multiplayer was preferred was that the potential re-
quirement of synchronization techniques. Such an implementation was deemed more
interesting from an academic standpoint. Even though competitive multiplayer was
not implemented, its design is discussed in section 3.4.1.

3.2.10.2 Multiplayer summary

Cooperative multiplayer, in its simplest form, can be summarised as follows: Two users
look at the same board, one of them solves the puzzle while the other one provides
assistance. Assistance can be given by highlighting specific cells to point out that
a specific technique can be used. Furthermore, hints or explanations can be given
through a chat box.

3.2.10.3 Choosing a database

For the purpose of synchronization, an online database was required. As the needs of
the project are straightforward and simple, any database would suffice. Two different
databases were considered: Faircom EDGE and Google’s Firebase realtime database.

Faircom EDGE 3 is one of the most popular database solutions and is widely used in
the industry. Owned by Faircom, initially released in 1972, it provides a relational
DBMS across many platforms, including android. It is accompanied with ample doc-
umentation and provides support for multiple scenarios, with cutting edge technology
when it comes to performance and security. Unfortunately, the service is not provided
to students for free. Furthermore, the initial learning curve seemed quite steep, as most
guides found online often assume prior knowledge with the software.

Firebase Firestore 4 is a cloud-based realtime document store. Created by Google
in 2012, it is primarily aimed towards android developers, and is the official recom-
mendation for android apps. A trial period for students to test small projects is also
available. The author experimented with the Firestore SDK for a personal project in
the past, something that is likely to reduce the time required to set up the database.

The comparison between the two databases leaves Firebase as a clear winner for the
needs of this project.

3.3 Requirements

In this section, the requirements that each individual component of the app must fulfill
to be considered successful are specified.

3https://www.faircom.com/products/faircomedge-iot-database
4https://firebase.google.com/docs/firestore

Chapter 3. Design 25

3.3.1 User interface

• Intuitiveness: The implemented interface must be easy to understand and must
be usable without any prior training.

• Responsiveness: The interface must be responsive to the user’s actions without
any noticeable delay. Loading icons must be displayed when a delay is antici-
pated.

• Robustness: The app must not crash under normal circumstances.

• Functionality: The interface must be capable of displaying the current state of
the puzzle, while responding to the user’s actions. Users must be able to solve a
puzzle, edit pencil marks, highlight cells and request a hint.

• Speed: The interface must take no longer than 0.5 seconds to update after a state
change, such as editing of a cell.

3.3.2 Hints

• Intuitiveness: Hints must be displayed in an intuitive way that requires no prior
knowledge.

• Functionality: Given a puzzle, the user must be able to request a hint. Hints
should include as much information as possible. Hints should include an ex-
planatory message while potentially highlighting the cells involved or the digit
of interest.

• Speed: Providing a hint should take no longer than 2 seconds. More basic hints
are expected to be delivered faster.

3.3.3 Multiplayer

• Intuitiveness: Multiplayer functionality should be easy to use.

• Functionality: Users must be able to connect using Firebase Firestore and co-
operate to solve a puzzle, as described in section 3.2.10.2,

• Responsiveness: State changes must appear in real-time. Ideally, it should not
take more than one second for the board to be updated after a state change.

3.4 Conceptual Design

Due to time constraints, only some of the proposed ideas were implemented. However,
significant effort was put in designing the potential implementation of some of them.
In this section, two such ideas are discussed.

Chapter 3. Design 26

3.4.1 Competitive multiplayer

Competitive Sudoku is an interesting subject that is unfortunately not found in litera-
ture or online. The only form of competitive Sudoku available is comparison of solving
times for a specific puzzle. In this section, two possible implementations of real-time
competitive Sudoku are discussed. The difference between the two lies in whether a
player can see their opponent’s board.

3.4.1.1 Blind multiplayer

The simplest possible enhancement of existing competitive Sudoku solutions would in-
volve asking two users to start solving a puzzle simultaneously and aim for the fastest
time. Without any additional modifications, this process only adds psychological pres-
sure to the players.

To further improve this mode, players could receive indication of their opponent’s
progress. This could be done in many different ways, such as displaying percentage of
empty cells filled or highlighting cells solved by the opponent using a different colour.

A clear advantage of this mode is that it requires less development time as the UI does
not need to be significantly altered. Furthermore, it can be easily scaled to accommo-
date 3 or more players simultaneously.

3.4.1.2 Viewing opponent’s progress

A different implementation of competitive multiplayer would be one that allows play-
ers to see their opponent’s grid. As previously mentioned, this requires adjustments to
the UI and would be much more suitable for a desktop or web app.

The simplest implementation would not force players to be competitive. On the con-
trary, it would allow players to speed up their progress by ”copying” missing cells from
their opponent’s grid. In that case, the first player to complete a puzzle is not neces-
sarily the best solver. One way of enforcing fairness would be to implement a scoring
system. Coming up with a fair and balanced scoring system is far from trivial, some-
thing that at least partially explains the absence of something similar in the Sudoku
community, despite the puzzle’s popularity for decades. Multiple parameters need to
be taken into account when designing such a scoring system. Some of these parameters
overlap but can be important at different scenarios. The weight of each parameter can
only be determined experimentally, something that requires observing multiple users
of variable expertise solve puzzles of variable difficulty. These weights could also be
adjustable by users to offer a tailored experience. Some factors that could be taken into
account when deciding how to award or deduct points when a user fills a cell are listed
below:

• First player to solve a cell: The purpose of this parameter is twofold; Discour-
age players from waiting for their opponent to solve a cell, and add additional
pressure to solve as much of the puzzle as possible before their opponent. It
is important to note that choosing a different ”solving path” is very common.
In that case, this parameter is not completely disregarded, as some paths allow

Chapter 3. Design 27

for quick solving of most ”easy” cells. Such behaviour might seem unwanted
at first, but is something that could be factored in by experienced players when
solving a puzzle.

• Time between previous filled cell: The main purpose of this parameter is to
promote a systematic approach to solving a puzzle and push players to improve
instead of staring at a puzzle waiting for their opponent to solve a cell.

• Technique required to fill cell: Solving a cell that requires a more advanced
technique should award more points than solving an open single. The hint func-
tionality implemented can be adapted to find the technique required to solve a
cell.

• Hints requested: Competitive players could still ask for a hint when stuck.
Some sort of penalty is desirable to prevent players from exploiting this feature.

• Mistakes made: Whenever a user fills in a cell, the value entered can be com-
pared with the solution(s) found by the solving algorithm to determine whether
the value filled is correct. Deducting points for a mistake would discourage
guesswork, as almost every puzzle can be solved using appropriate solving tech-
niques, without requiring any guessing. This factor is probably the most inter-
esting. First of all, it is common to believe that guessing is part of the spirit of
Sudoku puzzles, arguing that players that unnecessarily guess will be certainly
penalised by the emerging need to backtrack. Second, a question that arises is
whether the score deduction should be communicated to the player. Such an
implementation could encourage guesswork at the later stages of the game, as
players could overcompensate for any points penalty by guessing by solving the
puzzle faster. Conversely, if players are not aware of their mistake, then deduct-
ing points for mistakes could be seen as a double penalty.

• Cell correctly filled: Similarly to deducting points for mistakes, points could be
awarded when a cell is correctly filled. A similar dilemma also emerges in this
case. More importantly, an indication whether the opponent filled a cell correctly
or not will lead players to blindingly copying the correct value or eliminating a
pencil mark.

• Win bonus: Winning the game should have some bonus associated with it. Af-
ter all, this is the primary purpose of the game. From a gaming standpoint, it
increases the excitement of the players and motivates them to stay focused at the
latest stages, which are often trivial.

3.4.2 Extending solution for variants

In this section, ways in which the solver and hints functionality could be extended for
Sudoku variants are discussed.

Extending the solver to accommodate larger puzzles is trivial with the current imple-
mentation. The same applies for the hint functionality, as the techniques discussed,
and the algorithms implemented are not depending on the size of the puzzle.

Chapter 3. Design 28

In the case of puzzles with additional regions, the problem boils down to taking these
regions into account when initialising or updating the candidates for each cell. The
same can be said about the hint functionality. Not all techniques can be applied to
all the regions. As such, Variant-specific techniques could be implemented but are
probably unnecessary for most puzzles of this kind.

Adapting for variants that introduce additional symbols is not as straightforward, as the
representation of the grid must be accompanied by the the positioning of these sym-
bols. An implementation that favours simplicity, but might not be the most efficient,
would be one that adjusts the candidates of all cells affected by such a symbol when-
ever a relevant cell is filled. The same could happen for cell candidates. Everything
else remains unchanged.

With this implementation, the internal representation of these symbols poses the final
hurdle. Thermometers used in thermo Sudoku are always forming a straight line. As
such, storing a tuple with the cells at which the base and top of the thermometer appears
is sufficient. Of course, this representation requires additional logic to determine the
orientation at which the thermometer is placed. In the case of arrow Sudoku, all cells
that an arrow passes by must be stored. Finally, Adapting for Odd/Even Sudoku is
trivial as the corresponding candidates could be eliminated during the initialisation
phase. No further adjustments would be required in that case.

Chapter 4

Implementation

4.1 Puzzle representation

The addition of pencil marks meant that the way that puzzles are stored had to be
changed. Last year’s implementation stored a string containing the contents of each
row sequentially, using 0 to represent empty cells. As a result, every puzzle was rep-
resented by an 81-character string. This could be adapted to a string that contains 9
characters for each cell. Variants of this representation are commonly used among sim-
ilar apps, such as Hodoku1 With such a setup, A cell is determined to be filled when
only one nonzero value is present in the 9 characters corresponding to the contents of
the cell. This system is nearly perfect, but there is a caveat. Unfilled cells with only
one candidate must be handled separately. Hodoku handles this edge case by assuming
that the puzzle represented is correctly formed. When such a cell is encountered, all
other cells that share a house with the cell in question are examined. If the number
corresponding to that cell does not appear as a pencil mark in any other relevant cells,
it is assumed to be filled.

Incorrect puzzle representations cannot be eliminated completely, especially when
multiple people are editing the same puzzle. As such, a different representation was
used. With the order of appearance remaining unchanged, the contents of each cell
are separated with a comma. Furthermore, substrings corresponding to unfilled cells
start with 0, leaving no ambiguity. The resulting string’s length ranges from 161, for a
fully filled puzzle, to 891, for an empty puzzle. A size that is still quite small and can
be easily handled by any modern mobile device and internet connection. For easier
development and testing, a method that parses a string corresponding to a puzzle was
implemented. Such strings are available in most Sudoku websites, including Hodoku.

Board values and pencil marks are then separated internally, for more efficient com-
putation of hints. Pencil marks appearing in each cell are stored in a set as described
in section 3.2.1. A fixed-sized array is used for the cell values, with 0 representing an
empty cell. When a cell is filled, its pencil marks are discarded.

1http://hodoku.sourceforge.net/en/show_example.php?file=fh02&tech=Full+House

29

http://hodoku.sourceforge.net/en/show_example.php?file=fh02&tech=Full+House

Chapter 4. Implementation 30

Figure 4.1: Interface of the app. (1) Text box for hints and errors. (2) Buttons used
to select digit. (3) Undo button. (4) Toggle pencil marks. (5) Request a hint. (6) Cell
highlighted for hint

4.2 User interface

Adjusting the grid for pencil marks turned out to be much harder than originally esti-
mated. As previously mentioned, no plans for such adjustments were made during the
first year of the project, and no easy solution was found online. The official recommen-
dation for such tasks is the use of table layout 2. Unfortunately, this layout is known to
perform poorly, especially on older devices. Even the official documentation suggests
the use of ConstraintLayout instead. As the responsiveness of the UI is a requirement,
alternatives were considered.

Designing the individual components a board may consist of was attempted. The pro-
cess proved time consuming and preliminary testing showed unpredictable behaviours
across devices. Such behaviours could prove catastrophic in a project that involves
user evaluation. As a result, a safer alternative was preferred. Specifically, each cell of
the grid was divided into 3 ”rows”, in attempt to replicate the intended behaviour. This

2https://developer.android.com/guide/topics/ui/layout/grid

https://developer.android.com/guide/topics/ui/layout/grid

Chapter 4. Implementation 31

solution did not hinder the performance of the UI. Unfortunately, for some devices,
pencil marks are not always aligned consistently, as shown in figure 4.2. Android pro-
vides a variety of options for typography 3, however, experimentation did not yield a
solution.

An overview of the different components that are included in the solving screen is
shown in figure 4.2. Additional screenshots showcasing the functionality of the app
are available in appendix B. From last year’s implementation, 9 numbered buttons
were placed beneath the grid (number 2). Three additional buttons were added. The
pencil button (number 4) is responsible for toggling between solving and editing mode.
The hint button (number 5) is responsible for displaying a hint. A text box above the
grid (number 1) is used to display the details of the hint, such as the type of the hint and
the digit of interest. A text box was preferred over a popup to offer an uninterrupted
solving experience and ensure that users can see the entire board along with the hint.
The box is also used if a cell is filled incorrectly (figure B.6). For the implementation
of this feature, the puzzle is compared to the solution(s) of the puzzle. An undo button
(number 3) was also implemented. The button appears only when the initial puzzle
was edited at least once. Every time the puzzle is edited, the previous state is saved in
a stack. Even though size of each entry of the stack is negligible for modern devices,
it was limited to 50. The undo functionality is demonstrated in figure B.4.

The functionality of the number buttons was enhanced, such that all cells that contain
the corresponding number as a pencil mark are highlighted. This feature allows for
easier detection of cells where solving techniques can be used.

For a cell to be filled, the desired number is clicked, followed by the desired cell. Then,
the pencil marks for all unfilled cells that share a house with the edited cell are adjusted
accordingly. The sequence required for the filling of a cell is demonstrated in figure
B.2. Similarly, to add or remove a pencil mark, the pencil button is clicked, followed
by the desired number button and then the desired cell. One such example is showed
in figure B.3.

The initial state of the puzzle is saved in a dedicated variable to ensure that givens
cannot be altered. When the user attempts to edit a given, an error message is displayed
(figure B.5).

4.3 Hints

To determine the type of hint that needs to be provided, the algorithms described in
section 3.2 are run sequentially until a hint is found. Additional care was taken to
ensure that only the necessary computation is performed. For example, traversing a
house stops as soon as the required condition is guaranteed to be false. As a result,
hints are displayed instantaneously, with the most advanced instances requiring no
more than 2 seconds.

3https://medium.com/google-design/the-android-developers-guide-to-better-typography-
97e11bb0e261

Chapter 4. Implementation 32

4.4 Multiplayer

As described in section 3.2.10.2, the purpose of the multiplayer mode is to allow a
spectator to join another player solving a puzzle and view their progress, highlight
cells, or send messages through chat. This setup is convenient as it means that the
contents of the board are controlled entirely by the player, eliminating the need for
sophisticated synchronisation techniques.

4.4.1 Spectator UI

The UI for the first player is identical for the multiplayer mode. This is desirable as no
additional time is required for users to be familiarised with the mode.

The UI was adapted for the spectating user. In an attempt to minimise the learning
curve associated with spectating, no buttons were placed in the spectator’s UI. Instead,
they can highlight a cell by tapping on it and send a message to the player by typing it
in a text box placed below the grid. The resulting UI for the spectating player is shown
in figure B.7. Additional care was taken to ensure that the board is fully visible while
the spectator is typing a message. This feature is extremely important in a real-time
application as the state of the puzzle might change significantly while the spectator is
typing a message. Furthermore, it allows the spectator to highlight cells while typing,
resulting in a friendlier UI.

A simple starting screen that allows a user to create a new multiplayer ”room” or
spectate another player was also created. When a room is created, the user is asked to
enter a password. A potential spectator can then use the password to join the room.

4.4.2 Connecting the app to firebase

Connecting the app to firebase is usually a trivial task, as detailed documentation is
provided. Unfortunately, this was not the case as firebase requires use of the latest
libraries (androidX4 instead of the support library). Last year’s implementation ex-
perimented with multiple deprecated libraries for the vision part of the project. After
updating the libraries accordingly, the app was connected to a firebase project.

4.4.3 Data exchange

The data sent between the two players was kept to a minimum. Specifically, the current
state of the board is sent to the database, every time a change is made, overwriting the
previous. For this to happen, the board is converted to a string, as outlined in section
4.1. The spectator’s app polls the database every one second. This ensures consistency
between the two users. When a spectator highlights a cell, its id is added in a database
array, which is then polled by the user’s app every one second. A similar process is
followed for the chat messages, which appear in bubbles at the bottom of the player’s
screen. An example of the multiplayer mode in use is demonstrated in figures B.8 and
B.9

4https://developer.android.com/jetpack/androidx

https://developer.android.com/jetpack/androidx

Chapter 5

Evaluation

Evaluation is a core part of every successful app that is designed for a general audience.
The most common evaluation methods for apps are user evaluation and Jakob Nielsen’s
10 heuristics [37, 42, 40, 41]. Both methods could be used to provide quantitative
evaluation metrics in a small period of time. As the app is relatively simple with only
one screen, use of Nielsen’s heuristics would not provide much benefit. Hence, user
evaluation was preferred.

Due to the COVID-19 pandemic, in-person evaluation was not possible. To ensure that
the app could be evaluated by as many people as possible, evaluation was limited to
the parts developed this year. The vision part developed last year would be hard to
evaluate as it would require participants to have a printed Sudoku. Evaluation of the
multiplayer mode was also harder to evaluate as it required evaluation between two
participants. Alternatively, evaluation could happen with the author taking the role
of one of the two required users, simplifying the process. Organising meetings for
evaluation proved impractical and time consuming. As a result, no significant user
evaluation was performed for that part of the implementation.

5.1 User evaluation

The evaluation performed was certified according to the Informatics Research Ethics
Process, RT number 2019/45209. The full participant information sheet associated
with this evaluation is available in appendix C. No personal information or information
that could lead to the identification of participants was stored as part of this study.
As no in-person evaluation was possible, the next best option that was the evaluation
through a questionnaire.

5.1.1 Preparation of the app for evaluation

Before the app was published for user evaluation, minor changes were made to make
the app as user friendly as possible. First, any requests for permissions were removed
to eliminate any fears of malicious behaviour. Unfortunately, this means that the cur-
rent state of the puzzle is no longer saved to the phone’s internal storage. As a result,

33

Chapter 5. Evaluation 34

the user’s progress is reset when the app is closed. Second, a welcome message that
is displayed the first time that the app is opened was added. The message is meant to
introduce the user to the rules of Sudoku and provide information about using the app.
The welcome message is shown in figure B.1.

Third, the app was limited to a single medium puzzle. Allowing users to enter their
own puzzle was desirable but impractical, as the app requires no Sudoku knowledge.
Giving a selection of puzzles of variable difficulty was also considered but rejected as
such a choice could discourage people new to Sudoku from evaluating the app.

Fourth, use of pencil marks was enforced to make the hint functionality more intuitive,
as most of the hints do not make sense without pencil marks. Furthermore, pencil
marks are updated automatically when a cell is filled, leading to a smoother experience.

Finally, the app was tested extensively across multiple devices and android versions,
revealing no bugs.

5.1.2 Publishing the app

Ideally, the app would be uploaded to the play store1, allowing users to conveniently
download the app on their device. Uploading the app to the play store could result in
unpredictable delays, mainly due to the author’s inexperience with the play store and
the variety of libraries used. To avoid such delays and allow as much time as possible
for evaluation, the app was bundled in an APK (Android Package), which would be
used for evaluation.

5.1.3 Evaluation platform

Choosing the correct platform to host the questionnaire was not as trivial as expected.
Use of the university’s online survey tool2 was suggested. Use of the tool by students
is limited to postgraduate students and was therefore eliminated.

Use of Microsoft forms was considered next. Unfortunately, the formatting and cus-
tomisation options available were very limited. This is the case as most options are
exclusive to Microsoft forms pro, which is now re-branded to Microsoft Dynamics
365 Customer Voice3. As a results, alternatives were considered.

The most popular alternatives used for surveys are SurveyMonkey4, Google Forms,
and Qualtrics 5. GDPR legislation required that the data gathered for the purposes
of this study are handled and stored in the European Union. This was not the case
for the first option and was ambiguous for the other two options. Data entered in
Microsoft forms are stored in servers within the EU. Use of Microsoft forms was also
considered safer as it was used during the Human Computer Interaction course in the

1https://en.wikipedia.org/wiki/Google_Play
2https://www.ed.ac.uk/information-services/learning-technology/survey-tools/

online-surveys/introduction
3https://dynamics.microsoft.com/en-gb/customer-voice-transition/
4https://www.surveymonkey.co.uk/
5https://www.qualtrics.com/uk/

https://en.wikipedia.org/wiki/Google_Play
https://www.ed.ac.uk/information-services/learning-technology/survey-tools/online-surveys/introduction
https://www.ed.ac.uk/information-services/learning-technology/survey-tools/online-surveys/introduction
https://dynamics.microsoft.com/en-gb/customer-voice-transition/
https://www.surveymonkey.co.uk/
https://www.qualtrics.com/uk/

Chapter 5. Evaluation 35

same academic year. To avoid any legal issues, Microsoft forms was used to host the
developed questionnaire, despite the limited text formatting options.

Fortunately, Microsoft forms provided two very interesting and important features.
First, forms created are guaranteed to be mobile friendly. This was of particular impor-
tance for the purposes of this project, as it allowed users to complete the questionnaire
on their phone, directly after interacting with the app.

Second, questions can be made completely optional with the use of branching. Specif-
ically, the answer to a question can influence the subsequent questions that are dis-
played. As a result, the questionnaire experience can be tailored to ensure that the
maximum amount of useful information is gathered from each participant.

Another feature worth mentioning is the built-in immersive reader, which makes the
survey accessible to people with disabilities.

5.1.4 Questionnaire design

Designing User Experience Questionnaires is a popular field of study with a wide
range of literature. For the purposes of this project, the UEQ6[26, 52, 53] handbook
was consulted. Use of a 7-point scale was advised closed-type questions to reduce the
effect of central tendency bias. As our questionnaire is quite simple, such a scale was
deemed overly complex. The standard 5-point scale was used instead. Each question
should be concerned with the evaluation of one aspect of the app.

The questionnaire was broken into 7-10 quasi-qualitative compulsory questions. Fur-
thermore, 3 open ended questions were used to allow participants to include additional
information if they want to, without the process becoming onerous. One such ques-
tionnaire should take less than 5 minutes to complete.

The resulting questionnaire was distributed to University of Edinburgh students. It is
worth noting that the only requirement set was access to an android phone. As a result,
participants are expected to have variable knowledge regarding Sudoku puzzles and
experience with similar apps. The questionnaire is available in appendix D.

The questionnaire and app were both versioned to ensure that potential changes were
documented. Fortunately, no changes were required. The survey was segmented into
four sections. The title and version of the survey along with the author’s contact infor-
mation were placed at the top of each section.

The first section (figure D.1 contains the Participant information sheet, as shown in
appendix C. This approach ensures that every participant at least scrolled past the in-
formation sheet before answering any questions.

The second section (figure D.2) is concerned with the installation of the app. Specifi-
cally, instructions to download, install and uninstall the app are given. If the participant
states that they could not download and install the app, an additional question prompt-
ing them to provide additional details and optionally contact the author appears. No
additional questions are given to users that fail to install the app. If the participant states

6https://www.ueq-online.org/

https://www.ueq-online.org/

Chapter 5. Evaluation 36

that they managed to successfully install the app, even with some troubleshooting, then
the survey proceeds to the third section.

The third section (figures D.3, D.4 ,D.5) aims to evaluate the app with close-ended
questions. The first two questions are compulsory and aim to evaluate the enjoyment
and ease of use of the app. The third question asks the user if they have used the
hint functionality. Answering positively results in an additional question regarding
the user’s satisfaction with the hint functionality. Next participants are asked whether
they have used another Sudoku solving app. A positive answer results in two additional
questions regarding the frequency of use of that app and a comparison between our app
and the other app. Comparing the app with available solutions is extremely important
for evaluation purposes and identifying weak spots of the app.

The fourth and final section (figure D.6) involves three open-ended questions. Specifi-
cally, users are asked to report any bugs, suggestions, and additional comments.

5.1.5 Evaluation results

In this section, the results of the evaluation are analysed. The distribution of the an-
swers for the quasi-quantitative questions is available in appendix E. Despite the sim-
plicity of the questionnaire, various insights can be gained by examining the results.

The survey received 41 responses, 71% of which are from people that managed to
download and install the app successfully. We can conclude that the instructions given
were clear and effective. The actual number of people that have completed the survey
might be slightly lower as some people might have submitted a negative response be-
fore troubleshooting or contacting the author for help. Regardless, the questionnaire
received enough responses for the results to be considered significant.

The questionnaire took an average of 6 minutes and 33 seconds to complete, which
is slightly longer than expected but can be justified when the time required to read
through the PIS is considered. Another possible explanation could be that participants
that had not used the hint functionality tried to test it while completing the question-
naire.

5.1.5.1 Installation problems

Some users that were unable to install the app cited the fact that the app is unavailable
on the play store as the reason. This was unfortunate but expected and understandable.
Some other users cited fears about malware and data theft. As previously mentioned,
additional care was taken to eliminate unwanted behaviours, and ensure that the app
does not have unnecessary privileges. Some other users had trouble following the guide
to enable installation of third-party apps. Any such problems were easily resolved in
the cases that the author was contacted.

Finally, one participant claimed that they were unable to install the app as it was not
compatible with their operating system version. The app requires android SDK 24,
which is equivalent to android 7.0, released in 2016. Even actively maintained apps do

Chapter 5. Evaluation 37

not provide support for this version, as security patches are no longer provided7. At
the time of writing, android studio states that such a minimum requirement supports
73.7% of all devices. Even so, omitting this requirement from the questionnaire was a
mistake which fortunately did not affect many of the participants.

5.1.5.2 Reported bugs

Even with extensive testing performed on a variety of devices and operating systems,
discovery of some bugs is inevitable the first time any app is released to a wider audi-
ence. Excluding cases where intended behaviour was reported as a bug, (which will be
addressed shortly) two bugs were identified. Both bugs were related to the UI and the
settings of the specific users.

For the first bug, the participant reported an usual colour scheme. Fortunately, the af-
fected user kindly emailed the author with a screenshot of the problem. Indeed, the
colour scheme displayed was significantly darker than the implemented one. Research
and experimentation revealed that this behaviour was caused by an experimental fea-
ture, which forces a ”dark mode” theme to all layouts. The problem was fixed by
prompting the user to exclude the app from this feature. Unfortunately, ensuring that
the app is always excluded from such changes is not possible. One way to mitigate the
problem would be to use colours with higher contrast, making the interface friendlier
when such features are enabled. However, caution must be taken to ensure that the
appearance of the app under normal circumstances is not worsened. It is worth not-
ing that the feature mentioned is different from the commonly used ”dark mode”, for
which the compatibility of the app was thoroughly tested prior to its public release.

For the second bug, unusually large digits were reported. This was most likely due
to the user’s font settings. The app was designed according to the official implemen-
tation guidelines, which aim to respect the user’s settings. Admittedly, different font
sizes were not tested before the app was released. To fix this issue, the units used to
determine the text size were changed to ignore this setting. As stated in the official
documentation8: The sp unit is the same size as dp, by default, but it resizes based on
the user’s preferred text size. This is not ideal as it is a bad practice. However, the UI
was cautiously designed to be easy to read.

Both reported bugs highlight the importance of user evaluation and the importance
accessibility in software development. The latter is, unfortunately, often grossly over-
looked in the industry.

5.1.5.3 User satisfaction

The app received mostly positive feedback, especially regarding its ease of use, for
which 77% of participants were satisfied. Some aspects of the app received mixed
feedback. For example, the lack of options was praised by most users as it allowed
them to focus on the task at hand. Some other users criticised this as they believe the

7https://en.wikipedia.org/wiki/Android_version_history
8https://developer.android.com/training/multiscreen/screendensities.html#

TaskUseDP

https://en.wikipedia.org/wiki/Android_version_history
https://developer.android.com/training/multiscreen/screendensities.html#TaskUseDP
https://developer.android.com/training/multiscreen/screendensities.html#TaskUseDP

Chapter 5. Evaluation 38

app is too restrictive. This problem can be easily mitigated by introducing an options
menu. In that case, additional care must be taken to ensure that use of the app remains
simple. It is worth noting that the automatic editing of pencil marks was praised by
most users, as it kept their interest piqued. Furthermore, it reduced the solving time,
allowing them more time to fill in the questionnaire. Another aspect of the app that
was frequently praised is the absence of advertisements. These two factors can be used
to justify the preference of 47% of participants that have used a similar app in the past.

The biggest criticism observed was related to the lack of variety in puzzles, something
mentioned by multiple users. As previously mentioned, this was a conscious decision
rather than an oversight, as the volume of responses was prioritised. Adding additional
puzzles of varying difficulty is trivial with the existing implementation.

Another issue that was caused by the medium difficulty of the puzzle is that only
59% of the participants used the hint functionality. A harder puzzle could potentially
motivate more users to request a hint. Most of the users that requested a hint were
satisfied. Two participants complained about the hint functionality, stating that they
would expect the hint to solve a cell or remove a pencil mark, as done by some other
apps. This criticism was unexpected as hints were primarily designed as a learning
method. To accommodate for these users, an option could be added that removes a
pencil mark from the least constrained cell or solves singles when the user requests a
hint.

The most common suggestion, other than the inclusion of more puzzles, was the inclu-
sion of a tutorial section, explaining the rules of Sudoku, the various types of hints, and
the logic behind them. Inclusion of a timer was also suggested. This was overlooked
during research and implementation, as it is common in most similar apps. Minor im-
provements for the UI were also proposed. Finally, some users mentioned the lack of
acknowledgment when the puzzle was completed. In hindsight, a popup congratulating
users and redirecting them to the questionnaire could have been implemented.

5.2 Requirements evaluation

Overall, the app meets most of the requirements set in section 3.3. Specifically, the
user interface was proved to be intuitive, responsive and robust through user evaluation.
The only minor issue is related to the position of the pencil marks, which is not always
consistent.

The hint functionality works as expected, while being intuitive and responsive.

The simple implementation of multiplayer Sudoku that was implemented is believed
to be functional and intuitive. The responsiveness of the mode was inconsistent during
testing, taking up to 2.5 seconds for some state updates. This can be partially attributed
to the testing environment, as an emulator was used as a second device. Any induced
delays would be unnoticeable for an offline app but are crucial for an app that responds
in real time. Using a premium instance of the firebase database could also improve the
responsiveness of the system. Additional evaluation is required to accurately assess
the performance of this part of the implementation.

Chapter 6

Conclusions

6.1 Project achievements

The achievements of the project in the second year can be summarised as follows:

• Summary of previous work and extensive literature review covering human solv-
ing techniques, Sudoku variants and analysis and comparison of similar apps
across various platforms.

• Design and implementation of efficient algorithms used to generate and display
solving hints based on the current state of the puzzle.

• Adaptation of user interface and internal representation used from last year’s
project to handle pencil marks.

• Design and implementation of an intuitive app for Sudoku solving, including
highlighting, undo functionality, detection of errors and display of detailed hints.

• Design of a questionnaire which was used for the evaluation of the implemented
app. The results of the questionnaire were thoroughly and critically evaluated.

• Design of two novel real-time multiplayer Sudoku modes; competitive and co-
operative.

• Implementation of cooperative Sudoku using Google’s Firebase Firestore.

6.2 Project limitations

When the app is compared to the apps analysed in section 2.5.3, some limitations
are immediately made obvious. Namely, the UI of these apps looks much more pro-
fessional while they offer a plethora of customization options and tutorials. This was
expected as these apps were developed by professional software companies, over many
years. Naturally, the implementation produced by a single student over the course of an
academic year could not directly compete with such apps. Regardless, some evaluation
participants expressed a preference for the developed app.

39

Chapter 6. Conclusions 40

Another important limitation of the developed app lies in the variety of puzzles avail-
able. An issue that can be easily mitigated at first, as inclusion of additional puzzles is
trivial. However, the app would benefit greatly with the addition of Sudoku variants,
such as those described in section 2.4. Such addition would be significantly harder, as
it requires changes to the UI and potentially the hint functionality and solver.

6.3 Possible extensions

Despite two years of continuous implementation, the project can be extended in multi-
ple ways, including:

• Integration of features developed during the first year of the project, after which
users should be able to scan a puzzle using the phone’s camera and continue
solving it on the app.

• Additional implementation to accommodate Sudoku variants, as described in
section 3.4.2

• Extension of the developed multiplayer mode, adding more options and poten-
tially implementing synchronization techniques. Generalisation to more than
two users is also possible.

• Implementation of a competitive multiplayer mode, as discussed in section 3.4.1

• Refinement of the user interface, aiming for a more professional appearance and
more customisation options.

• Additional evaluation, especially regarding the puzzle recognition feature and
the multiplayer mode.

6.4 General remarks

In this report, the implementation of an android app for solving Sudoku with pencil
marks and hints was discussed. Furthermore, the concepts of cooperative and compet-
itive multiplayer Sudoku were analysed thoroughly, and a prototype of the former was
implemented. The single player features of the app would benefit greatly from cus-
tomization options and aesthetic improvements. The multiplayer concepts discussed
showed great potential towards innovation in Sudoku puzzles. Concepts that were, un-
fortunately, overlooked prior to this project. All the goals of the project were achieved
to a satisfactory degree. Therefore, the project is considered successful.

Appendix A

Sudoku variants

This section is used to demonstrate examples of Sudoku variants discussed in section
2.4. The examples used were found online.

A.1 Size variations

Figure A.1: 4x4 Sudoku. Mainly intended for kids. Source: sudokuonline.io

41

sudokuonline.io

Appendix A. Sudoku variants 42

Figure A.2: 5x5 Sudoku. The smallest available jigsaw/irregular Sudoku, forming 5
different regions. Source:sudoku-download.net

Figure A.3: 7x7 Sudoku. Jigsaw/irregular Sudoku, forming 7 different regions. Source:
logicmasters.de

 sudoku-download.net
logicmasters.de

Appendix A. Sudoku variants 43

Figure A.4: 12x12 Sudoku, also called Sudozen. Similar to traditional Sudoku, blocks
are three rows long and four columns wide. Filled with numbers 1-12. Source: http:
//12x12sudoku.com/

Figure A.5: 12x12 Sudoku alternative, filled with characters 1-C. Source: https://
puzzlemadness.co.uk/12by12giantsudoku

http://12x12sudoku.com/
http://12x12sudoku.com/
https://puzzlemadness.co.uk/12by12giantsudoku
https://puzzlemadness.co.uk/12by12giantsudoku

Appendix A. Sudoku variants 44

Figure A.6: 16x16 Sudoku, also known as hexadoku. Similar to the traditional Sudoku,
filled with characters 1-F. Source: https://puzzlemadness.co.uk/16by16giantsudoku/

Figure A.7: 25x25 Sudoku, Similar to traditional Sudoku but with blocks of size 5x5.
Filled with numbers 1-25. Source: Sudoku-download.net

Sudoku-download.net

Appendix A. Sudoku variants 45

Figure A.8: 25x25 Sudoku known as alphadoku. Filled with Characters A-Y. Source:
https://www.sudoku-puzzles-online.com/

Figure A.9: Colorku. Regular Sudoku filled with coloured circles instead of numbers.
Source: Hodoku

A.2 Rules variants

https://www.sudoku-puzzles-online.com/

Appendix A. Sudoku variants 46

Figure A.10: X sudoku. Cells on the diagonals (shadowed) form two additional regions.
Source:http://www.sudoku-space.com/x-sudoku/

Figure A.11: Center dot Sudoku. Cells on the middle of every block (shadowed) form
one additional region. Source:https://puzzlemadness.co.uk

http://www.sudoku-space.com/x-sudoku/
https://puzzlemadness.co.uk

Appendix A. Sudoku variants 47

Figure A.12: Colour sudoku using 9 different colours to create 9 additional regions.
Source:https://puzzlephil.com/

Figure A.13: Hyper Sudoku. Shadowed cells form four additional regions.
Source:http://www.sudoku-space.com/hyper-sudoku/

https://puzzlephil.com/
http://www.sudoku-space.com/hyper-sudoku/

Appendix A. Sudoku variants 48

Figure A.14: Thermo Sudoku. Numbers in cells from the base of the thermometers
(shadowed) can only be increasing towards the top Source:https://www.gmpuzzles.
com//

Figure A.15: Arrow Sudoku. The cell in every circle must be equal to the sum of
the numbers in the cells the corresponding arrow passes through. Source:https:
//sudokucentral.co.uk/

https://www.gmpuzzles.com//
https://www.gmpuzzles.com//
https://sudokucentral.co.uk/
https://sudokucentral.co.uk/

Appendix A. Sudoku variants 49

Figure A.16: Arrow Sudoku. The cell in every circle must be equal to the product
of the numbers in the cells the corresponding arrow passes through. Source:https:
//www.gmpuzzles.com

Figure A.17: Odd-even Sudoku. Squares must be filled with odd numbers and circles
must be filled with odd numbers. Source:https://www.gmpuzzles.com/

https://www.gmpuzzles.com
https://www.gmpuzzles.com
https://www.gmpuzzles.com/

Appendix A. Sudoku variants 50

Figure A.18: Consecutive Sudoku. When an edge between two cells is marked,
the number placed in those two cells must be consecutive. Source:http://www.
anypuzzle.com/

http://www.anypuzzle.com/
http://www.anypuzzle.com/

Appendix B

Implementation screenshots

This appendix contains sequences of screenshots that demonstrate the functionality
available in the app.

Figure B.1: Welcome message shown the first time the app is opened.

51

Appendix B. Implementation screenshots 52

Figure B.2: Steps required to fill the cell in row 4, column 3. The user selects the
number from the buttons below the grid (middle) and then clicks on the cell.(Right). The
undo button appears once a change is made to the board.

Appendix B. Implementation screenshots 53

Figure B.3: Steps required to fill remove pencil mark 4 from row 2 column 3. The user
selects the number from the buttons below the grid (middle) and then clicks on the
cell.(Right).

Appendix B. Implementation screenshots 54

Figure B.4: User clicks undo, removing the filled value from the cell in row 4 column 3.

Figure B.5: Error message displayed when user attempts to modify givens.

Appendix B. Implementation screenshots 55

Figure B.6: Example of UI response when a cell is filled incorrectly. Incorrect cell is
highlighted in red and an explanatory message is shown in the text box

Appendix B. Implementation screenshots 56

Figure B.7: Spectator user interface

Appendix B. Implementation screenshots 57

Figure B.8: Screen of spectator
highlighting cells and sending a
message.

Figure B.9: Screen of player with
highlighted cells and message at
bottom.

Appendix B. Implementation screenshots 58

Figure B.10: Naked pairs hint example

Appendix B. Implementation screenshots 59

Figure B.11: Hidden pairs hint example

Appendix B. Implementation screenshots 60

Figure B.12: Omission hint example

Appendix B. Implementation screenshots 61

Figure B.13: X-wing hint example

Appendix B. Implementation screenshots 62

Figure B.14: XY-wing hint example

Appendix C

Participant Information Sheet

This study was certified according to the Informatics Research Ethics Process, RT
number 2019/45209. Please take time to read the following information carefully. You
should keep this page for your records.

Who are the researchers?

Nikolas Pilavakis (Author) Nigel Topham (Supervisor)

What is the purpose of the study? Evaluate the usability and performance of a Su-
doku solving android app.

Why have I been asked to take part? Anyone who enjoys Sudoku and has a few
minutes to spare can take part. An android phone is required.

Do I have to take part? No – participation in this study is entirely up to you. You
can withdraw from the study at any time, up until completing the questionnaire, where
the study is concluded, without giving a reason. After this point, personal data will
be deleted and anonymised data will be combined such that it is impossible to remove
individual information from the analysis. Your rights will not be affected. If you wish
to withdraw, contact the PI. We will keep copies of your original consent, and of your
withdrawal request.

What will happen if I decide to take part? You will be asked to install an android
app on your personal phone and interact with it for 5-10 minutes before completing a
short questionnaire. No personal data will be required and you will not be contacted
again (unless desired).

Are there any risks associated with taking part?

There are no significant risks associated with participation.

Are there any benefits associated with taking part?

No

What will happen to the results of this study?

63

Appendix C. Participant Information Sheet 64

The results of this study may be summarised in published articles, reports and presen-
tations. Quotes or key findings will be anonymized: We will remove any information
that could, in our assessment, allow anyone to identify you. With your consent, infor-
mation can also be used for future research. Your data may be archived for a maximum
of 6 months. All potentially identifiable data will be deleted within this timeframe if it
has not already been deleted as part of anonymization.

Data protection and confidentiality.

Your data will be processed in accordance with Data Protection Law. All information
collected about you will be kept strictly confidential. Your data will be referred to by
a unique participant number rather than by name. Your data will only be viewed by
the researcher/research team. I.e. Me (Nikolas Pilavakis) and my supervisor (Nigel
Topham), if necessary All electronic data will be stored on a password-protected en-
crypted computer, on the School of Informatics’ secure file servers, or on the Univer-
sity’s secure encrypted cloud storage services (Sharepoint) and all paper records will
be stored in a locked filing cabinet in the PI’s office. Your consent information will be
kept separately from your responses in order to minimise risk.

What are my data protection rights?

The University of Edinburgh is a Data Controller for the information you provide You
have the right to access information held about you. Your right of access can be exer-
cised in accordance Data Protection Law. You also have other rights including rights
of correction, erasure and objection. Accessing data will be impossible after the sub-
mission of the questionnaire, as data submitted is not associated with the participant.
For more details, including the right to lodge a complaint with the Information Com-
missioner’s Office, please visit www.ico.org.uk. Questions, comments and requests
about your personal data can also be sent to the University Data Protection Officer at
dpo@ed.ac.uk.

Who can I contact?

If you have any further questions about the study, please contact the lead researcher,
Nikolas Pilavakis on s1623062@sms.ed.ac.uk If you wish to make a complaint about
the study, please contact inf-ethics@inf.ed.ac.uk. When you contact us, please provide
the study title and detail the nature of your complaint. Updated information. If the
research project changes in any way, an updated Participant Information Sheet will be
made available on http://web.inf.ed.ac.uk/infweb/research/study-updates.

Alternative formats

To request this document in an alternative format, such as large print or on coloured
paper, please contact Nikolas Pilavakis on s1623062@sms.ed.ac.uk

General information.

For general information about how we use your data, go to: edin.ac/privacy-research

Appendix D

Evaluation questionnaire

For demonstration purposes, screenshots of the questionnaire used for evaluation are
provided. These screenshots correspond to the desktop version. Similar results are
displayed when the form is visited from a mobile device.

Figure D.1: First section of the questionnaire. The Participant Information Sheet (as
shown on appendix C is displayed first to ensure that users at least scroll past it.

65

Appendix D. Evaluation questionnaire 66

Figure D.2: Second section of the questionnaire. The section begins with instructions
to install and uninstall the app. If the user was unable to install the app, an additional
question (2) appears, asking for details and prompting the user to contact the author.

Appendix D. Evaluation questionnaire 67

Figure D.3: First part of third section of the questionnaire. This part is mandatory and
does not involve branching.

Appendix D. Evaluation questionnaire 68

Figure D.4: Second part of the third section of the questionnaire. Question 5 is dis-
played only if the user answered ”Yes” in question 4.

Appendix D. Evaluation questionnaire 69

Figure D.5: Third part of the third section of the questionnaire. Questions 7 and 8 are
displayed only if the user answered positively in question 6.

Appendix D. Evaluation questionnaire 70

Figure D.6: Last section of the questionnaire. Three optional open-ended questions.

Figure D.7: Navigation buttons, found at the bottom of every section.

Appendix E

Responses distribution

This appendix contains supplementary plots of the distribution of the responses given
by users that filled in the questionnaire.

Figure E.1: Were you able to download and install the app successfully?

Figure E.2: How satisfied are you with the app overall?

Figure E.3: How satisfied are you with the app’s ease of use?

71

Appendix E. Responses distribution 72

Figure E.4: Did you use the hint functionality?

Figure E.5: How satisfied were you with the hint functionality?

Figure E.6: Are you using a similar Sudoku solving app?

Figure E.7: How often do you use a similar app?

Figure E.8: How does the app compare to other Sudoku solving apps you’ve used?

Appendix E. Responses distribution 73

Figure E.9: How often do you need help when solving a Sudoku puzzle?

Bibliography

[1] Google groups. https://groups.google.com/forum/#!topic/rec.
puzzles/A7pi7S12oFI.

[2] An incomplete review of sudoku solver implementations, Jul
2011. https://attractivechaos.wordpress.com/2011/06/19/
an-incomplete-review-of-Sudoku-solver-implementations/.

[3] Krzysztof R. Apt. Principles of constraint programming. 2003.

[4] A. C. Bartlett, Timothy P. Chartier, Amy Nicole Langville, and Timothy D.
Rankin. An integer programming model for the sudoku problem. 2006.

[5] Haradhan Chel, Deepak Mylavarapu, and Deepak Sharma. A novel multi-
stage genetic algorithm approach for solving sudoku puzzle. 2016 International
Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT),
pages 808–813, 2016.

[6] Abu Sayed Chowdhury and Suraiya Akhter. Solving sudoku with boolean alge-
bra. 2012.

[7] Broderick Crawford, Margaret Aranda, Carlos Castro, and Eric Monfroy. Using
constraint programming to solve sudoku puzzles. 2008 Third International Con-
ference on Convergence and Hybrid Information Technology, 2:926–931, 2008.

[8] Dipti Deodhare, Shailesh Sonone, and Anubha Gupta. A generic membrane
computing-based sudoku solver. 2014 International Conference on Issues and
Challenges in Intelligent Computing Techniques (ICICT), pages 89–99, 2014.

[9] Michael Dittrich, Thomas B. Preußer, and Rainer G. Spallek. Solving sudokus
through an incidence matrix on an fpga. 2010 International Conference on Field-
Programmable Technology, pages 465–469, 2010.

[10] Mária Ercsey-Ravasz and Zoltán Toroczkai. The chaos within sudoku. In Scien-
tific reports, 2012.

[11] Bertram Felgenhauer and Frazer Jarvis. Enumerating possible sudoku grids.
2005.

[12] Bertram Felgenhauer and Frazer Jarvis. Mathematics of sudoku ii. 2006.

[13] Zong Woo Geem. Harmony search algorithm for solving sudoku. In KES, 2007.

74

https://groups.google.com/forum/#!topic/rec.puzzles/A7pi7S12oFI
https://groups.google.com/forum/#!topic/rec.puzzles/A7pi7S12oFI
https://attractivechaos.wordpress.com/2011/06/19/an-incomplete-review-of-Sudoku-solver-implementations/
https://attractivechaos.wordpress.com/2011/06/19/an-incomplete-review-of-Sudoku-solver-implementations/

Bibliography 75

[14] Cristina Gonzalez, Javier Olivito, and Javier Resano. An initial specific proces-
sor for sudoku solving. 2009 International Conference on Field-Programmable
Technology, pages 530–533, 2009.

[15] Peter Gordon and Frank Longo. Mensa guide to solving sudoku: hundreds of
puzzles plus techniques to help you crack them all. Sterling Pub. Co., 2006.

[16] Jacob H. Gunther and Todd K. Moon. Entropy minimization for solving sudoku.
IEEE Transactions on Signal Processing, 60:508–513, 2012.

[17] Agnes M. Herzberg and M. Ram Murty. Sudoku squares and chromatic polyno-
mials. 2007.

[18] Ellis Horowitz, Sartaj Sahni, and Sanguthevar Rajasekaran. Computer algo-
rithms. 1996.

[19] Rohit Iyer, Amrish Jhaveri, and Krutika Parab. A review of sudoku solving using
patterns. 2013.

[20] Sunanda Jana, Arnab Kumar Maji, and Rajat Kumar Pal. A novel sudoku solving
technique using column based permutation. 2015 International Symposium on
Advanced Computing and Communication (ISACC), pages 71–77, 2015.

[21] Dhanya Job and Varghese Paul. Recursive backtracking for solving 9*9 sudoku
puzzle. 2016.

[22] Snigdha Kamal, Simarpreet Singh Chawla, and Nidhi Goel. Detection of sudoku
puzzle using image processing and solving by backtracking, simulated anneal-
ing and genetic algorithms: A comparative analysis. 2015 Third International
Conference on Image Information Processing (ICIIP), pages 179–184, 2015.

[23] Snigdha Kamal, Simarpreet Singh Chawla, and Nidhi Goel. Identification of
numbers and positions using matlab to solve sudoku on fpga. 2015 Annual IEEE
India Conference (INDICON), pages 1–6, 2015.

[24] Dervis Karaboga. An idea based on honey bee swarm for numerical optimization.
2005.

[25] Donald E. Knuth. Dancing links. 2000.

[26] Bettina Laugwitz, Theo Held, and M. Schrepp. Construction and evaluation of a
user experience questionnaire. In USAB, 2008.

[27] Wei-Meng Lee. Programming Sudoku. Apress, 2006.

[28] Rhyd Lewis. Metaheuristics can solve sudoku puzzles. Journal of Heuristics,
13:387–401, 2007.

[29] Hung-Hsuan Lin and I-Chen Wu. Solving the minimum sudoku poblem. 2010
International Conference on Technologies and Applications of Artificial Intelli-
gence, pages 456–461, 2010.

Bibliography 76

[30] Arnab Kumar Maji and Rajat Kumar Pal. Sudoku solver using minigrid based
backtracking. 2014 IEEE International Advance Computing Conference (IACC),
pages 36–44, 2014.

[31] Pavlos Malakonakis, Miltiadis Smerdis, Euripides Sotiriades, and Apostolos Dol-
las. An fpga-based sudoku solver based on simulated annealing methods. 2009
International Conference on Field-Programmable Technology, pages 522–525,
2009.

[32] Timo Mantere. Improved ant colony genetic algorithm hybrid for sudoku solving.
2013 Third World Congress on Information and Communication Technologies
(WICT 2013), pages 274–279, 2013.

[33] Timo Mantere and Janne Koljonen. Solving and rating sudoku puzzles with ge-
netic algorithms. 2006.

[34] Timo Mantere and Janne Koljonen. Solving, rating and generating sudoku puz-
zles with ga. 2007 IEEE Congress on Evolutionary Computation, pages 1382–
1389, 2007.

[35] Gary McGuire, Bastian Tugemann, and Gilles Civario. There is no 16-clue su-
doku: Solving the sudoku minimum number of clues problem. Experimental
Mathematics, 23:190–217, 2012.

[36] P. Mincheva and R. Anastasova. Tele-occupational therapy: Experience with
bulgarian children during covid-19 pandemic. In 2020 International Conference
on Assistive and Rehabilitation Technologies (iCareTech), pages 67–70, 2020.

[37] R. Molich and J. Nielsen. Improving a human-computer dialogue. Commun.
ACM, 33:338–348, 1990.

[38] Todd K. Moon, Jacob H. Gunther, and J. J. Kupin. Sinkhorn solves sudoku. IEEE
Transactions on Information Theory, 55:1741–1746, 2009.

[39] Alberto Moraglio, Julian Togelius, and Simon M. Lucas. Product geometric
crossover for the sudoku puzzle. 2006 IEEE International Conference on Evolu-
tionary Computation, pages 470–476, 2006.

[40] J. Nielsen. Enhancing the explanatory power of usability heuristics. In CHI ’94,
1994.

[41] J. Nielsen. Heuristic evaluation. 1994.

[42] J. Nielsen and R. Molich. Heuristic evaluation of user interfaces. In CHI ’90,
1990.

[43] Jaysonne A. Pacurib, Glaiza Mae M. Seno, and John Paul T. Yusiong. Solving
sudoku puzzles using improved artificial bee colony algorithm. 2009 Fourth In-
ternational Conference on Innovative Computing, Information and Control (ICI-
CIC), pages 885–888, 2009.

Bibliography 77

[44] M. Pesce. Peering into the pandemic end game: Before covid–19 fades, we’ll see
a flurry of advances in contact tracing, cloud computing, surveillance, and online
gaming. IEEE Spectrum, 58(1):22–25, 2021.

[45] Haiyan Quan and Xinling Shi. On the analysis of performance of the improved
artificial-bee-colony algorithm. pages 654 – 658, 11 2008.

[46] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of constraint pro-
gramming (foundations of artificial intelligence). 2006.

[47] Ibrahim Sabuncu. Work-in-progress: Solving sudoku puzzles using hybrid ant
colony optimization algorithm. 2015 1st International Conference on Industrial
Networks and Intelligent Systems (INISCom), pages 181–184, 2015.

[48] Liu San-yang. Algorithm based on genetic algorithm for sudoku puzzles. 2010.

[49] Gustavo Santos-Garcı́a and Miguel Palomino. Solving sudoku puzzles with
rewriting rules. Electr. Notes Theor. Comput. Sci., 176:79–93, 2007.

[50] Yuji Sato and Hazuki Inoue. Genetic operations to solve sudoku puzzles. In
GECCO, 2010.

[51] Moriel Schottlender. The effect of guess choices on the efficiency of a backtrack-
ing algorithm in a sudoku solver. IEEE Long Island Systems, Applications and
Technology (LISAT) Conference 2014, pages 1–6, 2014.

[52] M. Schrepp, Andreas Hinderks, and J. Thomaschewski. Applying the user expe-
rience questionnaire (ueq) in different evaluation scenarios. In HCI, 2014.

[53] M. Schrepp, Andreas Hinderks, and J. Thomaschewski. Construction of a bench-
mark for the user experience questionnaire (ueq). Int. J. Interact. Multim. Artif.
Intell., 4:40–44, 2017.

[54] Helmut Simonis. Sudoku as a constraint problem. 2005.

[55] Ricardo Soto, Broderick Crawford, Cristian Galleguillos, Eric Monfroy, and Fer-
nando Paredes. A hybrid ac3-tabu search algorithm for solving sudoku puzzles.
Expert Syst. Appl., 40:5817–5821, 2013.

[56] Ricardo Soto, Broderick Crawford, Cristian Galleguillos, Eric Monfroy, and Fer-
nando Paredes. A prefiltered cuckoo search algorithm with geometric operators
for solving sudoku problems. In TheScientificWorldJournal, 2014.

[57] Ricardo Soto, Broderick Crawford, Cristian Galleguillos, Fernando Paredes, and
Enrique Norero. A hybrid alldifferent-tabu search algorithm for solving sudoku
puzzles. In Comp. Int. and Neurosc., 2015.

[58] Ricardo Soto, Broderick Crawford, Cristian Galleguillos, Francisca C. Vene-
gasy, and Fernando Paredes. A marriage theorem based-algorithm for solving
sudoku. 2015 Fourteenth Mexican International Conference on Artificial Intelli-
gence (MICAI), pages 117–121, 2015.

Bibliography 78

[59] Kees van der Bok, Mottaqiallah Taouil, Panagiotis Afratis, and Ioannis Sourdis.
The tu delft sudoku solver on fpga. 2009 International Conference on Field-
Programmable Technology, pages 526–529, 2009.

[60] Zhiwen Wang, Toshiyuki Yasuda, and Kazuhiro Ohkura. An evolutionary ap-
proach to sudoku puzzles with filtered mutations. 2015 IEEE Congress on Evo-
lutionary Computation (CEC), pages 1732–1737, 2015.

[61] Baptiste Wicht and Jean Hennebert. Camera-based sudoku recognition with deep
belief network. 2014 6th International Conference of Soft Computing and Pattern
Recognition (SoCPaR), pages 83–88, 2014.

[62] Takayuki Yato and Takahiro Seta. Complexity and completeness of finding an-
other solution and its application to puzzles. 2003.

[63] John Paul T. Yusiong and Jaysonne A. Pacurib. Sudokubee : An artificial bee
colony-based approach in solving sudoku puzzles. 2010.

	Introduction
	Background
	Previous work
	User Interface
	Solving algorithm

	Part one background summary
	Sudoku Background
	Solving the Sudoku

	Solving techniques
	Houses in Sudoku
	Pencil marks
	Open singles
	Naked singles (lone singles)
	Hidden singles
	Naked pairs
	Naked triplets and quartets
	Omission (Pointing, blocking, claiming, intersection)
	Hidden pairs
	Hidden triplets and quartets
	X wing
	Swordfish
	XY wing
	Unique rectangle

	Sudoku variations
	Size and representation variants
	Rules variants

	Existing applications
	Windows
	Web
	Android
	Comparison of solutions

	Synchronization

	Design
	User Interface
	Displaying pencil marks
	Editing of pencil marks
	Highlighting cells

	Hints
	Initialising and updating candidates
	Open and naked singles
	Hidden singles
	Naked pairs, triples and quartets
	Hidden pairs, triples and quartets
	Omission
	X wing
	Swordfish
	XY wing
	Multiplayer

	Requirements
	User interface
	Hints
	Multiplayer

	Conceptual Design
	Competitive multiplayer
	Extending solution for variants

	Implementation
	Puzzle representation
	User interface
	Hints
	Multiplayer
	Spectator UI
	Connecting the app to firebase
	Data exchange

	Evaluation
	User evaluation
	Preparation of the app for evaluation
	Publishing the app
	Evaluation platform
	Questionnaire design
	Evaluation results

	Requirements evaluation

	Conclusions
	Project achievements
	Project limitations
	Possible extensions
	General remarks

	Sudoku variants
	Size variations
	Rules variants

	Implementation screenshots
	Participant Information Sheet
	Evaluation questionnaire
	Responses distribution
	Bibliography

