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Introduction.

7 6 8 1 4 5
5 6 8

1 2 3 9
4

1 7 3
3 5

3 4 1
9 7 5

6 3 2

Figure 1: Sudoku Puzzle P

The goal of the popular game of Sudoku is to fill in the numbers 1

through 9 in such a way that there is exactly one of each digit in each row,

column and 3×3 block. When a human, as opposed to a computer 1, solves

a Sudoku puzzle with paper and pencil, strategies such as the following are

used: “There is no 3 in the first row. The third, sixth and seventh cell

are empty. But the third column already has a 3, and the top right block

already contains a 3. Therefore, the 3 must go in the sixth cell.” We call

this a Human Solving Strategy (HSS for short). This particular strategy

has a name, called the hidden single strategy. (For more information on

solving strategies see [7].) The following strategy may be used for the cell

in the second row, second column: “This cell cannot contain 5, 6 or 8 since

these numbers are already in the second row. It cannot contain 3 or 9

since these are already in the second column. And it cannot contain 1,

2, or 7 since these numbers are already in the first block. Therefore, the

only number this cell can contain is 4.” This strategy is called the naked

single strategy. If the Sudoku is “easy” enough, one can continue on in a

strategic manner using these simple strategies and solve the whole puzzle.

1The way a human solves a Sudoku is strikingly different than the way a computer

would solve the same puzzle. The most efficient computer algorithm for solving Sudoku

is a brute force, depth first search. A popular such algorithm is Knuth’s “Dancing

Links” version of Algorithm X [5].
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If the Sudoku is harder, one would need to use more complicated logical

strategies. We discuss a few of these in Section 2.

1 5 2
4 7 5 1
2 7 6 9

9 3
7 2 5

8
9 8 7 1

5 4 3 8
6 7 9

Figure 2: Sudoku Puzzle Q

Consider Sudoku Puzzle Q above. As an initial strategy, one may look

at the last column and notice that there is no 7 in it. The third, fifth

and seventh cell are available. But the third row already has a 7 and the

bottom right block already has a 7. Therefore, the 7 must go in sixth cell. If

one continues to solve this puzzle (and we strongly suggest that the reader

attempt to solve both puzzles) one will most likely get the feeling of déjà

vu. Sudoku Q is essentially the same puzzle as Sudoku Puzzle P . Sudoku

Q is just Sudoku P rotated 90◦ clockwise with the entries relabeled by the

permutation (159483726).

In this paper, we introduce a novel way to codify human solving strate-

gies. In Section 1, we define precisely what we mean when we say two puz-

zles are “essentially the same” by discussing the Sudoku symmetry group

found in the literature. At the end of the section, we present a theorem

with a smaller generating set than that used in other papers. In Section 2

we describe some human solving strategies in terms of “non-clues” which

we call packets. In section 3 we introduce a new algebraic group that can be

associated to Sudoku, the group of solving symmetries. Finally in Section

4 we use solving symmetries to demonstrate the feeling of déjà vu described

in this section.

2
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1 Essentially the Same Sudoku Puzzles

What do we mean when we say two Sudoku puzzles are “essentially the

same”? First we distinguish between a Sudoku “puzzle” and Sudoku

“board”. A Sudoku board is a 9×9 grid filled with the digits 1-9 accord-

ing to the rules of the game. A Sudoku puzzle is any subset of a Sudoku

board. We will say that two Sudoku boards, B and C are essentially the

same if there is an action which maps B to C such that if that action is per-

formed on any given Sudoku board, it would not create any inconsistencies

in the rules of the game. As already mentioned in the introduction, rotat-

ing a puzzle 90 degrees will give another puzzle that is essentially the same

as the original. Also, permuting the numbers used for clues in one puzzle

leads to another essentially the same puzzle. In the following paragraphs,

we determine other actions which lead to essentially the same puzzles.

First a bit of notation. The three three-row strips are called bands

and the three three-column strips are called stacks. We can interchange

any two rows in a band and not create any inconsistencies. We cannot,

however, interchange two rows that are not in the same band. Similarly,

we can interchange any two columns in a stack, but we cannot interchange

two columns in different stacks. We can also interchange any two entire

bands and any two entire stacks. Finally, we can reflect the entire puzzle

across any of the lines of symmetry of the square: horizontal, vertical or

diagonal.The set generated by all of the actions on Sudoku boards described

above, form the full group of Sudoku symmetries [6]. Next we find a smaller

generating set for this group.

Let r be the rotation 90 degrees clockwise and let t be the reflection

across the diagonal from upper left to bottom right. The band and stack

swaps can be defined as follows: Let B12 to be the swap of band 1 with

band 2 and B13 to be the swap of band 1 with band 3. Notice that

B12 ◦ B13 ◦ B12 swaps bands 2 and 3. r ◦ B12 ◦ r−1 swaps stack 1 and

2. Similarly, we can swap the other stacks using a conjugation of a band

swap and a rotation. Now, let R12 to be the swap of row 1 and row 2

3
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and R13 to be the swap of row 1 and row 3. Together with the band

swaps, we can now swap any two rows in the same band. Together with

rotation, we can swap any two columns in the same stack. Now the group

of all of the actions defined above can be generated by these six elements:

r, t, B12, B13, R12, R13. We call this the group of position symmetries.

This group permutes three sets of three rows, three bands, three sets of

three columns, three stacks, and transpose. Therefore we see that this is a

non-abelian group of size [(3!)3 · 3!]2 · 2 = 2938 = 3, 359, 232. Using GAP

[4], we confirm this calculation. This group is non-Abelian. In addition

to the position symmetries, we can also relabel the entries in the cells.

There are 9! ways to do this. The position symmetries commute with

the relabeling symmetries. So the entire Sudoku symmetry group is G =

〈r, t, B12, B13, R12, R13〉 × S9 [6, 2]. We give a much smaller generating

set in the following theorem.

Theorem 1.1. The Sudoku Symmetry Group, G can be generated by the

three elements B12, R12 and r together with S9. That is

G = 〈B12, R12, r〉 × S9.

Proof. We just need to show that the generators above can be written as

a combination of these three generators. B23 can be obtained by rotating

twice, swapping band 1 and band 2 and then rotating back. That is

B23 = r2 ◦B12 ◦ r2.

R13 can be obtained by rotating twice, swapping row 1 and row 2,

rotating twice again, swapping bands 1 and 2, and again rotating twice

and swapping bands 1 and 2. That is

R13 = B12 ◦ r2 ◦B12 ◦ r2 ◦R12 ◦ r2.

The reflection t is much more complicated, and we use GAP to find

t = r ◦B12 ◦ r2 ◦B12 ◦ r2 ◦R12 ◦B12 ◦ r2 ◦R12 ◦B12 ◦ r2 ◦R12 ◦B12 ◦ r2 ◦
R12 ◦ B12 ◦ r2 ◦ R12 ◦ B12 ◦ r2 ◦ R12 ◦ B12 ◦ R12 ◦ r2 ◦ R12 ◦ B12 ◦ R12.
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Alternatively, since one set of generators is contained in the other, we can

use GAP to compute the size of both groups. We find that they have the

same size, indicating that they generate the same group.

Now we use G to define precisely what we mean by “essentially the

same” Sudoku boards.

Definition 1.1. Two Sudoku boards are essentially the same if they are

in the same equivalence class induced by the the action of the group, G
on the set of Sudoku boards. In other words, Sudoku boards B and C are

essentially the same, if there exists a Sudoku symmetry, g ∈ G such that g

applied to B yields C.

In [6] an explicit calculation yields that there are 5,472,730,538 equiva-

lence classes of Sudoku boards.

In the next section, we define another symmetry group relating to Su-

doku: the group of solving symmetries. Before we do this, however, we

introduce the idea of a “packet”. A packet tells the solver what number

does not go in a particular cell. Packets turn out to be a critical ingredient

of solving symmetries.

2 Packets and Human Solving Symmetries

When humans solve a Sudoku puzzle with pencil and paper, they often

look at a cell and decide which clues can NOT go in the cell. In the naked

single strategy described in the introduction, one determines what numbers

cannot go in a cell and based on this, one determines the only possible clue

that can be placed in the cell. We give this type of clue the name packet.

Definition 2.1. A packet is a representation that a number cannot be

placed in a cell.

For example, if we determine that 1, 3, 5 and 7 cannot go in the first

cell, we represent the packets by putting an ⊗ in the first, third, fifth and

5
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⊗ ⊗
⊗

⊗

Figure 3: Packets in the first cell

seventh position, in the first cell. If we label the top left cell by the letter

a, then we will refer to these packets as a1, a3, a5 and a7.

We can expand on the Human Solving Strategy (HSS), naked single,

and discuss another HSS, naked triple. In Figure 4, we have packets in

the 7-position in all but the last three cells in row 3. This implies that we

must have packets in the 7-position in the top 6 cells of the top right block.

In the diagram below, packets marked with ⊗ are given packets. Packets

marked with × are immediately implied by the given packets.

× × ×

× × ×

⊗ ⊗ ⊗ ⊗ ⊗ ⊗

Figure 4: Packets representing a Naked Triple

Another HSS that takes advantage of packets is the “X-Wing” strategy.

In this strategy, two rows have packets in all but two cells and these two cells

are in the same column in the two rows. These given packets, represented

by ⊗ in figure 5 below, imply packets in all but the two empty cells in the

two columns. In the figure, the value 3 can only be in cell three or seven

6
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in both rows one and eight. Therefore, 3 cannot be in any of the other

cells in column three and column seven. If three belongs in the third cell

in the first row, then it must also be in the seventh cell in the eighth row.

If it belongs in the seventh cell in the first row, then it must also be in the

third cell in the eighth row. The possibilities for the 3 form an X, hence

the name.

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

× ×

× ×

× ×

× ×

× ×

× ×

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

× ×

Figure 5: A Sudoku packet puzzle with an X-Wing

In the next section we use the idea of given packets and implied packets

to algebraically define these human strategies for solving Sudoku puzzles.

3 Solving Symmetries

Before defining solving symmetry, we first give a general context that will

relate the group of solving symmetries to the Sudoku symmetry group, G,

described in Section 1. There are 729 possible packets in a 9 × 9 Sudoku

grid (9 possible packets for each of the 81 cells). We denote this set of

729 packets by K. We can now identify a Sudoku board as a subset of K,

with eight packets in each cell, corresponding to the solution of the puzzle.

The packet that is missing from each cell represents the entry in the cell.

A Sudoku puzzle is also a subset of K. We call a subset of K a packet

set. Note that not all packet sets are Sudoku puzzles. There may be

inconsistencies such as nine packets in a cell, or a packet in the 7-position

of every cell in a given row. We call packet sets that are consistent and lead
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to a valid Sudoku board, packet puzzles. We summarize these definitions

below.

Definition 3.1. The set of 729 packets in a Sudoku grid is denoted by K.

A subset of K is called a packet set. The set of all packet sets is the power

set of K denoted P(K). A packet puzzle is an element of P(K) that is

consistent with the rules of Sudoku. A Sudoku board, can be considered

as an element of P(K) with all but one packet filled in each cell, consistent

with the rules of Sudoku.

Let B denote the set of all Sudoku boards. If a packet puzzle, P , is a

subset of a board, B ∈ B, then we say that P completes to B. Note

that a packet puzzle can complete to more than one board. This would not

be a fun game for humans to play, but it is necessary to consider for our

mathematical context.

Now we come to an important concept: the variety of a packet puzzle.

Definition 3.2. The variety of a packet puzzle, P, denoted V (P ), is the set

of all boards to which P completes. V (P ) ⊆ B is the set of all completions

of P .

So why do we call this a variety when there are no ideals in sight? It

turns out that we can represent Sudoku constraints as polynomials. If we

use Boolean polynomials in 729 variables, one for each packet, then we can

create a packet puzzle ideal by adding the packet variables to the ideal gen-

erated by the Sudoku constraint polynomials. If we call the packet puzzle

ideal P , then V (P ) is in fact the variety of the ideal P which represents

all possible Sudoku boards to which the puzzle P completes. This is all

we will mention in this article about polynomials and ideals. See [1, 3] for

more information about polynomial representation of Sudoku.

Note that if B ∈ B is a Sudoku board, and P ∈ P(K) is a packet puzzle

such that P ⊆ B. Then B ∈ V (P ). We also have the following statement,

based on the fact that V (P ) is an actual variety: Let P and Q be packet

puzzles. If P ∪Q is a packet puzzle, then V (P ∪Q) = V (P ) ∩ V (Q).

8
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This small, simple statement helps to show how a Sudoku solver can

take a given set of packets and add new packets. If a good Sudoku puzzle

solver is adding a set of packets S to a starting set P , then we would expect

V (P ∪ S) = V (P ). A Sudoku solver should only add new packets to the

puzzle which do not add any new constraints, thus preserving the variety

of the original puzzle. This brings us to the concept of solving symmetries.

In order to give context to both the group of solving symmetries and

the group of Sudoku symmetries defined in Section 1, we define a universal

set that encompasses all invertible functions on packet sets.

F = {f |f : P(K)→ P(K), f invertible}

It is easy to see that F is a group under composition. Since P(K) is finite

with order 2729 the set of invertible functions on P(K) is isomorphic to the

symmetric group on 2729 elements, S2729 . The group of Sudoku symmetries,

G, described in Section 1 consists of invertible functions acting on packet

sets. Therefore G is a subgroup of F .

Definition 3.3. A solving symmetry is an invertible function σ ∈ F
such that for all packet puzzles P ∈ P(K) , V (σP ) = V (P ). In other

words σ maps a packet puzzle to another packet puzzle with the same set of

solutions. Let S denote the set of all solving symmetries.

It is not hard to see that S is also a subgroup of F under composition.

The following is an example of a human solving strategy that we would

like to represent as a group element of S. We can call the first cell in the

Sudoku grid a and the remaining cells in the row b, c, d, e, f, g, h and i. In

this example, we have a set of 8 packets in the first cell in all positions

except the 1-position. Call this set T = {a2, a3, a4, a5, a6, a7, a8, a9}. From

this information, the naked single strategy implies that the first cell must

contain a 1. The human solver then concludes that a 1 cannot be present

in any other cell in the first row. So we know that the packet set S =

{b1, c1, d1, e1, f1, g1, h1, i1} is implied by the packet set T . Now we can

define

ρ : T 7→ T ∪ S

9
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shown in Figure 6. Here the elements of the packet set T are represented

by the symbol ⊗ and the elements of the packet set S are represented by

×.
⊗⊗

⊗⊗⊗
⊗⊗⊗

ρ−→

⊗⊗
⊗⊗⊗
⊗⊗⊗

× × × × × × × ×

Figure 6: ρ acting on its triggering set

The solving symmetry ρ will act on a packet puzzle P if and only if P

contains the set T . Hence, we call T the triggering set for ρ. The problem is

that ρ is not an invertible function on the set of all packet sets, P(K) . Say,

for example, a packet puzzle, P , already has a packet in the b1 position. If

T ⊆ P and we apply ρ to P , then we get a new packet puzzle Q such that

Q = P ∪S. If we define ρ−1(Q) to be Q \S, then we see that ρ−1(Q) 6= P ,

since it is missing the packet in the b1 position. This issue, however, can

be corrected by considering one packet at a time and taking the symmetric

difference of P and S, denoted P∆S, rather than the union. Now every

primitive solving symmetry is invertible with order two.

Definition 3.4. Suppose a packet set, T , implies a packet set S. By this

we mean that V (T ) = V (T ∪ S). Then we call T a triggering set for S

and S the implied packet set for T .

Next, we define the building block for Solving Symmetries.

Definition 3.5. Given a triggering set, T , and a packet k 6∈ T , we define

a primitive solving symmetry to be a function

FT,k : P(K)→ P(K) ∈ F as follows:

FT,k(P ) =

{
P∆{k} if T ⊆ P

P if T 6⊆ P

10
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where T is a triggering set for the single packet k. If the triggering set T

is in the packet set P , then we form the symmetric difference, P∆{k} and

add it to T . In other words, we add the packet k to P if it is not already

there, and take it away if it is there. If the triggering set T is not a subset

of the puzzle P , then we do nothing.

Next we show that a primitive solving symmetry is indeed a solving

symmetry.

Theorem 3.1. Given a triggering set T and a single packet k implied by

T , the primitive solving symmetry σ = FT,k, is a solving symmetry.

Proof. Let σ = FT,k be a primitive solving symmetry. σ is an invertible

function from P(K) to P(K) . Note that σ−1 = σ. Now consider an

arbitrary packet set P ∈ P(K) . To show that σ is a solving symmetry, we

need to show that V (σP ) = V (P ). Suppose that T 6⊆ P . Then σP = P ,

so V (σP ) = V (P ).

Suppose now that T ⊆ P . We have two cases. Either the packet k

is in P or it is not in P . Suppose k ∈ P . Then σ(P ) = P \ {k}. We

want to show that V (P \ {k}) = V (P ). Since T is a triggering set for {k},
V (T ∪ {k}) = V (T ). Since T ⊆ P , we have that

V (P ) = V (P ∪ T ) = V (P \ {k} ∪ {k} ∪ T ) = V (P \ {k}) ∩ V ({k} ∪ T ) =

V (P \{k})∩V (T ) = V (T ∪P \{k}) = V (P \{k}) which is what we wanted

to show.

Suppose now that k 6∈ P . Then σ(P ) = P ∪{k}. We want to show that

V (P ∪ {k}) = V (P ). Now we have that V (P ∪ {k}) = V (P ∪ T ∪ {k}) =

V (P ) ∩ V (T ∪ {k}) = V (P ) ∩ V (T ) = V (P ∪ T ) = V (P ).

So in both cases, V (σP ) = V (P )

Does the set of primitive solving symmetries form a group? The answer

is no. The identity is, in fact, not a primitive solving symmetry. And

the composition of two primitive solving symmetries is not a primitive

solving symmetry. The composition of two primitive solving symmetries

is, however, a solving symmetry, which prompts our next definition.
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Definition 3.6. A simple solving symmetry is a primitive solving sym-

metry or the composition of two or more primitive solving symmetries with

the same triggering set. If τ is a simple solving symmetry with triggering

set T which implies a packet set, S, then

τ(P ) =

{
P∆S if T ⊆ P

P if T 6⊆ P

A primitive solving symmetry has a triggering set that implies a single

packet at a time. Simple solving symmetries, which are just compositions

of primitive solving symmetries with the same triggering set, imply more

than one packet. For example, the naked triple HSS in Figure 4, is a

simple solving symmetry. The triggering set consists of the six packets

represented by the ⊗ symbols and the implied packet set consists of six

packets represented by the× symbols. This simple symmetry can be broken

down into the composition of six primitive symmetries, each with one of

the × packets as its implied set.

Note that two simple solving symmetries with the same triggering set

commute. Simple solving symmetries with different triggering sets may not

commute.

The next theorem shows that the compositions of simple solving sym-

metries form a group.

Theorem 3.2. Denote by S3 the set of compositions of simple solving

symmetries together with the identity solving symmetry. Then S3 is a group

under composition.

Proof. The identity symmetry in S3 can be described in several ways. A

simple way to describe the identity of this group is, an element of S3 with

its triggering set being the empty set and its implied packet set also being

the empty set. If we call this element e, then clearly, for any a ∈ S3 we

have a ◦ e = e ◦ a.

If a, b ∈ S3 then a and b are each compositions of simple solving symme-

tries. Hence the composition, a ◦ b, is also a composition of simple solving

symmetries.

12
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Each simple solving symmetry is invertible since it is the composition

of invertible symmetries of order two. Therefore S3 is a group under com-

position.

Now any human solving symmetry can be represented by a simple solv-

ing symmetry in S3. In fact, given a puzzle that completes to a unique

board, the set of all packets in the puzzle can be considered a triggering

set, T , and the remaining packets needed to complete the board can be

considered the set of implied packets, S. So any Sudoku puzzle can be

solved in one fell swoop with a single solving symmetry! However, most

humans are not so adept at recognizing such a large triggering set and im-

plied packet set, so one solves the puzzle one small step at a time and uses

a composition of solving symmetries.

Now we have the group of simple solving symmetries, S3, sitting inside

the group of all solving symmetries, S. An obvious question to ask is, “Are

there any solving symmetries that are not compositions of simple solving

symmetries?”

Conjecture 3.1 There are no solving symmetries other than the com-

position of simple solving symmetries and the identity. In other words,

S = S3.

4 Déjà Vu

Now we return to the question of déjà vu that we get when solving the two

puzzles from the introduction. Why do we get a feeling of déjà vu when

we solve two puzzles that are essentially the same? The answer should be

clear by now: Because we use the same solving symmetry to solve both.

Sudoku P and Sudoku Q are the puzzles from the introduction. Sup-

pose we have a Sudoku puzzle, P (here represented with clues rather than

packets for readability) that completes to a Sudoku board, B. Now suppose
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P πP = Q

7 6 8 1 4 5
5 6 8

1 2 3 9
4

1 7 3
3 5

3 4 1
9 7 5

6 3 2

π
−→
←−
π−1

1 5 2
4 7 5 1
2 7 6 9

9 3
7 2 5

8
9 8 7 1

5 4 3 8
6 7 9

↓ σ ↓ πσπ−1

7 6 9 8 1 3 2 4 5
3 4 5 2 9 7 6 8 1
8 1 2 6 4 5 3 9 7
5 7 6 3 8 4 1 2 9
1 2 4 9 7 6 8 5 3
9 8 3 5 2 1 7 6 4
2 3 8 7 5 9 4 1 6
4 9 7 1 6 2 5 3 8
6 5 1 4 3 8 9 7 2

π
−→
←−
π−1

1 8 6 4 5 9 3 7 2
9 4 7 3 6 2 5 8 1
5 2 3 7 8 1 6 9 4
8 5 2 9 4 7 1 6 3
7 1 9 6 2 3 8 4 5
3 6 4 5 1 8 9 2 7
4 9 8 2 3 5 7 1 6
2 7 5 1 9 6 4 3 8
6 3 1 8 7 4 2 5 9

B πB = C

there is a Sudoku symmetry, π ∈ G, the Sudoku Symmetry Group, that

maps P to another Sudoku puzzle Q. In our example, π = r ◦ (159483726),

the permutation of the entries followed by a rotation of 90 degrees. So

Q = π(P ). The packet set Q completes to the board π(B) = C. Now,

suppose the solving symmetry needed to take P to B is σ. Here is the

explanation for the déjà vu: The solving symmetry needed to take Q to C

is π−1σπ. It is essentially the same solving symmetry, σ.

5 Conclusion

There is a wealth of mathematics to be discovered and explored concerning

Sudoku puzzles. The idea of a packet enables us to define several algebraic

groups that act on Sudoku boards and puzzles. This concept also allows

us to mathematically codify how humans solve Sudoku puzzles. We will
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continue to study and hope to understand better this very large, but finite

group of Solving Symmetries.
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