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Preface: Mathematical Statistics

After teaching mathematical statistics for several years using chalk on a black-
board (and, later, smelly “dry erase markers” on a whiteboard) mostly doing
proofs of theorems, I decided to lecture from computer slides that provide
an outline of the “big picture”. Rather than spend class time “doing” proofs
that are given in standard texts, I decided that time would be better spent
discussing the material from a different, higher-level perspective.

While lecturing from canned slides, I cannot, however, ignore certain de-
tails of proofs and minutiae of examples. But what details and which minutiae?
To be effective, my approach depends on an understanding between students
and the instructor, an understanding that is possibly implicit. I lecture; but I
ask “what is ... 77 and “why is ... 77; and I encourage students to ask “what is
... 77 and “why is ... 77. I adopt the attitude that there are many things that I
don’t know, but if there’s something that I wonder about, I'll admit ignorance
and pursue the problem until I've attained some resolution. I encourage my
students to adopt a similar attitude.

I am completely dissatisfied with a class that sits like stumps on a log
when I ask “what is ... 7?7 or “why is ... 77 during a lecture. What can I say?

After writing class slides (in ITEX 2¢, of course), mostly in bullet form, I
began writing text around the bullets, and I put the notes on the class website.
Later I decided that a single document with a fairly extensive subject index
(see pages 7?7 through ??) would be useful to serve as a companion for the
study of mathematical statistics. The other big deal about this document is
the internal links, which of course is not something that can be done with a
hardcopy book. (One thing I must warn you about is that there is a (known)
bug in the IMTEX package hyperref; if the referenced point happens to occur
at the top of a page, the link takes you to the previous page — so if you don’t
see what you expect, try going to the next page.)

Much of the present document reflects its origin as classroom notes; it
contains incomplete sentences or sentence fragments, and it lacks connective
material in some places. (The connective material was (probably!) supplied
orally during the lectures.)
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Another characteristic of this document that results from the nature of its
origin, as well as from the medium itself (electronic) is its length. A long book
doesn’t use any more paper or “kill any more trees” than a short book. Usually,
however, we can expect the density of “importance” in a short document to
be greater than that in a long document. If I had more time I could make this
book shorter by prioritizing its content, and I may do that someday.

Several sections are incomplete and several proofs are omitted.
Also, I plan to add more examples. [ just have not had time to type up
the material.

I do not recommend that you print these notes. First of all, they are evolv-
ing, so a printed version is just a snapshot. Secondly, the PDF file contains
active internal links, so navigation is easy. (For versions without active links, I
try to be friendly to the reader by providing page numbers with most internal
references.)

This document is directed toward students for whom the theory of statis-
tics is or will become an important part of their lives. Obviously, such students
should be able to work through the details of “hard” proofs and derivations;
that is, students should master the fundamentals of mathematical statistics.
In addition, students at this level should acquire, or begin acquiring, a deep
appreciation for the field, including its historical development and its rela-
tion to other areas of mathematics and science generally; that is, students
should master the fundamentals of the broader theory of statistics. Some of
the chapter endnotes are intended to help students gain such an appreciation
by leading them to background sources and also by making more subjective
statements than might be made in the main body.

It is important to understand the intellectual underpinnings of our science.
There are certain principles (such as sufficiency, for example) that guide our
approaches to statistical inference. There are various general approaches (see
page 239) that we follow. Within these general approaches there are a number
of specific methods (see page 240). The student should develop an appreciation
for the relations between principles, approaches, and methods.

This book on mathematical statistics assumes a certain amount of back-
ground in mathematics. Following the final chapter on mathematical statistics
Chapter 8, there is Chapter 0 on “statistical mathematics” (that is, mathe-
matics with strong relevance to statistical theory) that provides much of the
general mathematical background for probability and statistics. The mathe-
matics in this chapter is prerequisite for the main part of the book, and it
is hoped that the reader already has command of the material; otherwise,
Chapter 0 can be viewed as providing “just in time” mathematics. Chapter 0
grew (and is growing) recursively. Every time I add material, it seems that I
need to add some background for the new material. This is obviously a game
one cannot win.

Probability theory is the most directly relevant mathematical background,
and it is assumed that the reader has a working knowledge of measure-theory-
based probability theory. Chapter 1 covers this theory at a fairly rapid pace.
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The objective in the discussion of probability theory in Chapter 1, as in that
of the other mathematical background, is to provide some of the most relevant
material for statistics, which is the real topic of this text. Chapter 2 is also on
probability, but the focus is on the applications in statistics. In that chapter, I
address some important properties of probability distributions that determine
properties of statistical methods when applied to observations from those
distributions.

Chapter 3 covers many of the fundamentals of statistics. It provides an
overview of the topics that will be addressed in more detail in Chapters 4
through 8.

This document is organized in the order in which I cover the topics (more-
or-less!). Material from Chapter 0 may be covered from time to time during
the course, but I generally expect this chapter to be used for reference as
needed for the statistical topics being covered.

The primary textbooks I have used in the past few years are Shao
(2003), Lehmann and Casella (1998), and Lehmann (1986) (the precursor to
Lehmann and Romano (2005)). At various places in this document, references
are given to the related sections of Shao (2003) (“MS2”), Lehmann and Casella
(1998) (“TPE2”), and Lehmann and Romano (2005) (“TSH3”). These texts
state all of the important theorems, and in most cases, provide the proofs.
They are also replete with examples. Full bibliographic citations for these
references, as well as several other resources are given in the bibliography
beginning on page 873.

It is of course expected that the student will read the primary
textbook, as well as various other texts, and to work through all
proofs and examples in the primary textbook. As a practical matter,
obviously, even if I attempted to cover all of these in class, there just is not
enough class time to do it.

The purpose of this evolving document is not just to repeat all
of the material in those other texts. Its purpose, rather, is to provide
some additional background material, and to serve as an outline and a handy
reference of terms and concepts. The nature of the propositions vary consider-
ably; in some cases, a fairly trivial statement will be followed by a proof, and
in other cases, a rather obtuse statement will not be supported by proof. In all
cases, the student should understand why the statement is true (or, if it’s not,
immediately send me email to let me know of the error!). More importantly,
the student should understand why it’s relevant.

Each student should read this and other texts and work through the proofs
and examples at a rate that matches the individual student’s understanding
of the individual problem. What one student thinks is rather obtuse, another
student comprehends quickly, and then the tables are turned when a different
problem is encountered. There is a lot of lonely work required, and this is why
lectures that just go through the details are often not useful.

It is commonplace for textbooks in mathematics to include examples
and exercises without reference to the source of the examples or exercises
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and yet without implying any claim of originality. (A notable exception is
Graham et al. (1994).) My book is not intended to present new and origi-
nal work, and it follows the time-honored tradition of reusing examples and
exercises from long-forgotten sources.

Notation

Adoption of notation is an overhead in communication. I try to minimize that
overhead by using notation that is “standard”, and using it locally consis-
tently.

Examples of sloppy notation abound in mathematical statistics. Functions
seem particularly susceptible to abusive notation. It is common to see “f(x)”
and “f(y)” used in the same sentence to represent two different functions.
(These often represent two different PDFs, one for a random variable X and
the other for a random variable Y. When I want to talk about two different
things, I denote them by different symbols, so when I want to talk about two
different PDF's, I often use notation such as “fx(-)” and “fy(-)”. If z = v,
which is of course very different from saying X = Y, then fx(z) = fx(y);
however, fx(z) # fy(x) in general.)

For a function and a value of a function, there is a certain amount of
ambiguity that is almost necessary. I generally try to use notation such as
“f(z)” or “Y(w)” to denote the value of the function f at z or YV at w, and
Tuse “f7, “f(-)7, or “Y” to denote the function itself (although occasionally,
I do use “f(z)” to represent the function — notice the word “try” in this
discussion).

If in the notation “f(x)”, “2” denotes an element of a set A, and B C A
(that is, B is a set of the same kinds of elements as A), then “f(B)” does not
make much sense. For the image of B under f, I use “f[B]”.

I also freely use the notation f~!(y) or f~![B] to denote the preimage,
whether or not f~! is actually a function; that is, whether or not f is invert-
ible.

There are two other areas in which my notation may be slightly different
from common notation. First, to designate the open interval between the real
numbers a < b, I use the Bourbaki notation “Ja,b[”. (I eschew most of the
weird Bourbaki notation, however. This particular notation is also used in my
favorite book on analysis, Hewitt and Stromberg (1965).) Second, I do not
use any special notation, such as boldface, for vectors; thus, z may represent
a scalar or a vector.

All vectors are “column vectors”. This is only relevant in vector-vector or
vector-matrix operations, and has nothing to do with the way we represent a
vector. It is far more convenient to represent the vector = as

33:(3:1,...,:5(1)

than as
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1

Zq
and there is certainly no need to use the silly notation
= (x1,...,24)".

A vector is not a matrix.

There are times, however, when a vector may be treated like a matrix in
certain operations. In such cases, the vector is treated as a matrix with one
column.

Appendix C provides a list of the common notation that I use. The reader
is encouraged to look over that list both to see the notation itself and to get
some idea of the objects that I discuss.

Solving Problems

The main ingredient for success in a course in mathematical statistics is the
ability to work problems. The only way to enhance one’s ability to work
problems is to work problems. It is not sufficient to read, to watch, or to
hear solutions to problems. One of the most serious mistakes students make in
courses in mathematical statistics is to work through a solution that somebody
else has done and to think they have worked the problem.

While sometimes it may not be possible to solve a given problem, rather
than looking for a solution that someone else has come up with, it is much
better to stop with a partial solution or a hint and then sometime later return
to the effort of completing the solution. Studying a problem without its solution
is much more worthwhile than studying the solution to the problem.

Do you need to see a solution to a problem that you have solved? Except
in rare cases, if you have solved a problem, you know whether or not your
purported solution is correct. It is like a Sudoku puzzle; although solutions
to these are always published in the back of the puzzle book or in a later
edition of the medium, I don’t know what these are for. If you have solved
the puzzle you know that your solution is correct. If you cannot solve it, I
don’t see any value in looking at the solution. It’s not going to make you a
better Sudoku solver. (Sudoku is different from crossword puzzles, another
of my pastimes. Seeing the solution or partial solution to a crossword puzzle
can make you a better crossword solver.) There is an important difference in
Sudoku puzzles and mathematical problems. In Sudoku puzzles, there is only
one correct solution. In mathematical problems, there may be more than one
way to solve a problem, so occasionally it is worthwhile to see someone else’s
solution.

The common wisdom (or cliché, depending on your viewpoint) that it takes
10000 hours to master a field or a skill is probably applicable to statistics.
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This means working on this stuff for about 40 hours a week for 5 years. This
is approximately the amount of work that a student should do for receipt of
a PhD degree (preferably in less than 5 years).

Many problems serve as models of “standard operations” for solving other
problems. Some problems should become “easy pieces”.

Standard Operations

There are a number of operations and mathematical objects that occur over
and over in deriving results or in proving propositions. These operations are
sometimes pejoratively called “tricks”. In some sense, perhaps they are; but
it is useful to identify these operations outside of the context of a specific
application. Some of these standard operations and useful objects are listed
in Section 0.0.9 on page 676.

Easy Pieces

I recommend that all students develop a list of easy pieces. These are proposi-
tions or examples and counterexamples that the student can state and prove
or describe and work through without resort to notes. An easy piece is some-
thing that is important in its own right, but also may serve as a model or
template for many other problems. A student should attempt to accumulate
a large bag of easy pieces. If development of this bag involves some memo-
rization, that is OK, but things should just naturally get into the bag in the
process of working problems and observing similarities among problems —
and by seeing the same problem over and over.
Some examples of easy pieces are

e State and prove the information inequality (CRLB) for a d-vector param-
eter. (Get the regularity conditions correct.)
Give an example to distinguish the asymptotic bias from the limiting bias.
State and prove Basu’s theorem.
Give an example of a function of some parameter in some family of distri-
butions that is not U-estimable.

e A statement of the Neyman-Pearson Lemma (with or without the ran-
domization) and its proof.

Some easy pieces in the background area of “statistical mathematics” are

e Let C be the class of all closed intervals in IR. Show that o(C) = B(IR)
(the real Borel o-field).

e Define induced measure and prove that it is a measure. That is, prove: If
(Q, F,v) is a measure space and (A, G) is a measurable space, and f is a
function from Q to A that is measurable with respect to F/G, then vo f~1
is a measure with domain G.

e Define the Lebesgue integral for a general Borel function.
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e State and prove Fatou’s lemma conditional on a sub-o-field.

Make your own list of easy pieces.

Relevance and Boundaries

For any proposition or example, you should have a clear understanding of why
the proposition or example is important. Where is it subsequently used? Is
it used to prove something else important, or does it justify some statistical
procedure?

Propositions and definitions have boundaries; that is, they apply to a spe-
cific situation. You should look at the “edges” or “boundaries” of the hypothe-
ses. What would happen if you were to remove one or more assumptions? (This
is the idea behind counterexamples.) What would happen if you make stronger
assumptions?

“It is clear” and “It can be shown”

I tend to use the phrase “it is clear ...” often. (I only realized this recently,
because someone pointed it out to me.) When I say “it is clear ...”, I expect
the reader to agree with me actively, not passively.

I use this phrase only when the statement is “clearly” true to me. I must
admit, however, sometimes when I read the statement a few weeks later, it’s
not very clear! It may require many minutes of difficult reasoning. In any
event, the reader should attempt to supply the reasoning for everything that
I say is clear.

I also use the phrase “it can be shown ...” in connection with a fact (the-
orem) whose proof at that point would be distracting, or else whose proof I
just don’t want to write out. (In later iterations of this document, however, I
may decide to give the proof.) A statement of fact preceded by the phrase “it
can be shown”, is likely to require more thought or background information
than a statement preceded by the phrase “it is clear”, although this may be
a matter of judgement.

Study of mathematical statistics at the level appropriate for this document
is generally facilitated by reference to a number of texts and journal articles;
and I assume that the student does refer to various sources.

”»

My Courses

The courses in mathematical statistics at George Mason University are
CSI/STAT 972 and CSI/STAT 973. The prerequisites for these courses
include measure-theoretic-based probability theory, such as is covered in
CSI/STAT 971. Chapters 0 and 1 address the prerequisite material briefly,
and in CSI/STAT 972 some class time is devoted to this material. Although
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Chapters 1 and 2 are on “probability”, some of their focus is more on what
is usually covered in “statistics” courses, such as families of distributions, in
particular, the exponential class of families.

My notes on these courses are available at

http://mason.gmu.edu/~ jgentle/csi9723/
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1

Probability Theory

Probability theory provides the basis for mathematical statistics.

Probability theory has two distinct elements. One is just a special case
of measure theory and can be approached in that way. For this aspect, the
presentation in this chapter assumes familiarity with the material in
Section 0.1 beginning on page 692. This aspect is “pure” mathematics. The
other aspect of probability theory is essentially built on a gedanken experiment
involving drawing balls from an urn that contains balls of different colors, and
noting the colors of the balls drawn. In this aspect of probability theory, we
may treat “probability” as a primitive (that is, undefined) concept. In this line
of development, we relate “probability” informally to some notion of long-term
frequency or to expectations or beliefs relating to the types of balls that will
be drawn. Following some additional axiomatic developments, however, this
aspect of probability theory is also essentially “pure” mathematics.

Because it is just mathematics, in probability theory per se, we do not ask
“what do you think is the probability that ...?” Given an axiomatic framework,
one’s beliefs are irrelevant, whether probability is a measure or is a primitive
concept. In statistical theory or applications, however, we may ask questions
about “beliefs”, and the answer(s) may depend on deep philosophical consid-
erations in connecting the mathematical concepts of probability theory with
decisions about the “real world”. This may lead to a different definition of
probability. For example, Lindley and Phillips (1976), page 115, state “Proba-
bility is a relation between you and the external world, expressing your opinion
of some aspect of that world...” I am sure that an intellectually interesting
theory could be developed based on ways of “expressing your opinion|[s]”, but I
will not use “probability” in this way; rather, throughout this book, I will use
the term probability as a measure (see Definition 0.1.10, page 704). For spe-
cific events in a given application, of course, certain values of the probability
measure may be assigned based on “opinions”, “beliefs”, or whatever.

Another useful view of “probability” is expressed by Gnedenko and Kolmogorov
(1954) (page 1): “The very concept of mathematical probability [their empha-
sis] would be fruitless if it did not find its realization in the frequency [their
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2 1 Probability Theory

emphasis| of occurrence of events under large-scale repetition of uniform con-
ditions.” (See a more complete quotation on page 143.)

Ranks of Mathematical Objects

In probability theory we deal with various types of mathematical objects.
We would like to develop concepts and identify properties that are indepen-
dent of the type of the underlying objects, but that is not always possible.
Occasionally we will find it necessary to discuss scalar objects, rank one ob-
jects (vectors), and rank two objects (matrices) separately. In general, most
degree-one properties, such as expectations of linear functions, can be consid-
ered uniformly across the different types of mathematical objects. Degree-two
properties, such as variances, however, must usually be considered separately
for scalars, vectors, and matrices.

Overview of Chapter

This chapter covers important topics in probability theory at a fairly fast
pace. Some of the material in this chapter, such as the properties of certain
families of distributions, is often considered part of “mathematical statistics”,
rather than a part of probability theory. Unless the interest is in use of data
for describing a distribution or for making inferences about the distribution,
however, the study of properties of the distribution is part of probability
theory, rather than statistics.

We begin in Section 1.1 with statements of definitions and some basic
properties. The initial development of this section parallels the first few sub-
sections of Section 0.1 for more general measures, and then the development
of expectations depends on the results of Section 0.1.6 for integration.

Sections 1.3 and 1.4 are concerned with sequences of independent random
variables. The limiting properties of such sequences are important. Many of
the limiting properties can be studied using expansions in power series, which
is the topic of Section 1.2.

In Section 1.5 we do a fairly careful development of the concept of condi-
tioning. We do not take conditional probability to be a fundamental concept,
as we take (unconditional) probability itself to be. Conditional probability,
rather, is based on conditional expectation as the fundamental concept, so we
begin that discussion by considering conditional expectation. This provides a
more general foundation for conditional probability than we would have if we
defined it more directly in terms of a measurable space. Conditional probabil-
ity plays an important role in sequences that lack a simplifying assumption
of independence. We discuss sequences that lack independence in Section 1.6.
Many interesting sequences also do not have identical marginal distributions,
but rather follow some kind of evolving model whose form depends on, but is
not necessarily determined by, previous variates in the sequence.
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1.1 Some Important Probability Facts 3

In the next chapter, beginning on page 155, I identify and describe useful
classes of probability distributions. These classes are important because they
are good models of observable random phenomena, and because they are
easy to work with. The properties of various statistical methods discussed in
subsequent chapters depend on the underlying probability model, and some of
the properties of the statistical methods can be worked out easily for particular
models discussed in Chapter 2.

1.1 Some Important Probability Definitions and Facts

A probability distribution is built from a measure space in which the measure
is a probability measure.

Definition 1.1 (probability measure)
A measure v whose domain is a o-field defined on the sample space Q with
the property that v(Q) = 1 is called a probability measure. |

We often use P to denote a probability measure, just as we often use A, p, or
v to denote a general measure.

Properties of the distribution and statistical inferences regarding it are
derived and evaluated in the context of the “probability triple”,

(Q, 7, P). (1.1)

Definition 1.2 (probability space)
If P in the measure space (0, F,P) is a probability measure, the triple
(Q, F, P) is called a probability space. |

Probability spaces are the basic structures we will consider in this chapter. In
a probability space (Q, F, P), a set A € F is called an “event”.

The full o-field F in the probability space (€2, F, P) may not be necessary
to define the space.

Definition 1.3 (determining class)
If P and @ are probability measures defined on the measurable space ({2, F),
a collection of sets C C F is called a determining class of P and @, iff

P(A) = Q(A) YA € C = P(B) = Q(B) VB € F.
1

For measures P and @ defined on the measurable space (£, F), the condition
P(B) =Q(B)VB € F, of course, is the same as the condition P = Q.

Notice that the determining class is not necessarily a sub-o-field. If it is,
however, a probability measure on the measurable space of the determining
class results in a probability space that is essentially the same as that formed
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4 1 Probability Theory

by the probability measure on the original measurable space. That is, in the
notation of Definition 1.3, if C is a determining class, then the probability
space (2, 0(C), P) is essentially equivalent to (2, F, P) in so far as properties
of the probability measure are concerned.

We now define complete probability measures and spaces as special cases of
complete measures and complete measure spaces (Definitions 0.1.16 and 0.1.21
on pages 707 and 709). Completeness is often necessary in order to ensure
convergence of sequences of probabilities.

Definition 1.4 (complete probability space)

A probability measure P defined on the o-field F is said to be complete if
A; C A€ Fand P(A) = 0 implies A; € F. If the probability measure P in
the probability space (€2, F, P) is complete, we also say that the probability
space is a complete probability space. |

An event A such that P(A) = 0 is called a negligible event or negligible
set. For a set A; that is a subset of a negligible set, as in Definition 1.4, it is
clear that A; is also negligible.

Definition 1.5 (almost surely (a.s.))
Given a probability space (2, F, P), a property that holds for all elements of
F with positive probability is said to hold almost surely, or a.s. |

This is the same as almost everywhere for general measures, and there is no
essential difference in “almost everywhere” and “almost surely”.

1.1.1 Probability and Probability Distributions

The elements in the probability space can be any kind of objects. They do not
need to be numbers. Later, on page 9, we will define a real-valued measurable
function (to be called a “random variable”), and consider the measure on IR
induced or “pushed forward” by this function. (See page 712 for definition of
an induced measure.) This induced measure, which is usually based either on
the counting measure (defined on countable sets as their cardinality) or on
the Lebesgue measure (the length of intervals), is also a probability measure.

First, however, we continue with some definitions that do not involve ran-
dom variables.

Probability Measures on Events; Independence and
Exchangeability

Definition 1.6 (probability of an event)

In a probability space (2, F, P), the probability of the event A is P(A). This
is also written as Pr(A). |
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1.1 Some Important Probability Facts 5

In the probability space (2, F, P), for A € F, we have

HM%J%@:AdP (1.2)

We use notation such as “Pr(-)”, “E(:)”, “V(-)”, and so on (to be intro-
duced later) as generic symbols to represent specific quantities within the
context of a given probability space. Whenever we discuss more than one
probability space, it may be necessary to qualify the generic notation or else
use an alternative notation for the same concept. For example, when dealing
with the probability spaces (2, F, P) and (A, G, @), we may use notation of
the form “Prp(-)” or “Prg(-)”; but in this case, of course, the notation “P(-)”
or “Q(-)”is simpler.

One of the most important properties that involves more than one event or
more than one function or more than one measurable function is independence.
We define independence in a probability space in three steps.

Definition 1.7 (independence)
Let (Q, F, P) be a probability space.

1. Independence of events (within a collection of events).
Let C be a collection of events; that is, a collection of subsets of F. The
events in C are independent iff for a positive integer n and distinct events

Al,...,An inC,
P(A1N--NA,) = P(Ar) - P(Ay). (1.3)

2. Independence of collections of events (and, hence, of o-fields).
For any index set Z, let C; be a collection of sets with C; C F. The
collections C; are independent iff the events in any union of the C; are
independent; that is, {A; € C; : i € T} are independent events.

3. Independence of Borel functions (and, hence, of random variables,
which are special functions defined below).
For 7 in some index set Z, the Borel-measurable functions X; are indepen-
dent iff 0(X;) for i € Z are independent.

While we have defined independence in terms of a single probability measure
(which gives meaning to the left side of equation (1.3)), we could define the
concept over different probability spaces in the obvious way that requires the
probability of all events simultaneously to be the product of the probabilities
of the individual events.

Notice that Definition 1.7 provides meaning to mixed phrases such as “the
event A is independent of the o-field 7”7 or “the random variable X (defined
below) is independent of the event A”.

We will often consider a sequence or a process of events, o-fields, and so
on. In this case, the collection C in Definition 1.7 is a sequence. For events C =
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6 1 Probability Theory

Aj, Ag, ..., which we may write as {A, }, we say the sequence is a sequence of
independent events. We also may abuse the terminology slightly and say that
“the sequence is independent”. Similarly, we speak of independent sequences
of collections of events or of Borel functions.

Notice that each pair of events within a collection of events may be inde-
pendent, but the collection itself is not independent.

Example 1.1 pairwise independence
Consider an experiment of tossing a coin twice. Let
A be “heads on the first toss”
B be “heads on the second toss”
C be “exactly one head and one tail on the two tosses”
We see immediately that any pair is independent, but that the three events
are not independent; in fact, the intersection is (). |

We refer to this situation as “pairwise independent”. The phrase “mutually
independent”, is ambiguous, and hence, is best avoided. Sometimes people use
the phrase “mutually independent” to try to emphasize that we are referring to
independence of all events, but the phrase can also be interpreted as “pairwise
independent”.

Notice that an event is independent of itself if its probability is 0 or 1.

If collections of sets that are independent are closed wrt intersection, then
the o-fields generated by those collections are independent, as the following
theorem asserts.

Theorem 1.1

Let (2, F, P) be a probability space and suppose C; C F for i € T are inde-
pendent collections of events. If Vi € T,A,B € C; = AN B € C;, then o(C;)
fori € T are independent.

Proof. Exercise. |
Independence also applies to the complement of a set, as we see next.

Theorem 1.2
Let (2, F, P) be a probability space. Suppose A, B € F are independent. Then
A and B° are independent.

Proof. We have
P(A)=P(ANB)+ P(ANB°),

hence,

P(AN B%) = P(A)(1 - P(B))

= P(A)P(B°),
and so A and B¢ are independent. |
In the interesting cases in which the events have equal probability, a con-
cept closely related to independence is exchangeability. We define exchange-

ability in a probability space in three steps, similar to those in the definition
of independence.
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1.1 Some Important Probability Facts 7

Definition 1.8 (exchangeability)
Let (Q, F, P) be a probability space.

1. Exchangeability of events within a collection of events.
Let C = {A; : i € T}} for some index set Z be a collection of events; that
is, a collection of subsets of F. Let n be any positive integer (less than
or equal to #(C) if #(C) < o0) and let {iy,...,i,} and {j1,...,Jn} each
be sets of distinct positive integers in Z. The events in C are exchangeable

iff for any positive integer n and distinct events A;,, ..., A;, and distinct
events Aj,...,A;, inC,
P(Ug=14i) = P(UR=14;,). (1.4)

2. Exchangeability of collections of events (and, hence, of o-fields).
For any index set Z, let C; be a collection of sets with C; C F. The
collections C; are exchangeable iff the events in any collection of the form
{4, € C; : i €I} are exchangeable.

3. Exchangeability of Borel functions (and, hence, of random variables,
which are special functions defined below).

For ¢ in some index set Z, the Borel-measurable functions X; are exchange-
able iff 0(X;) for ¢ € T are exchangeable.
(This also defines exchangeability of any generators of o-fields.)

Notice that events being exchangeable requires that they have equal proba-
bilities.

As mentioned following Definition 1.7, we will often consider a sequence
or a process of events, o-fields, and so on. In this case, the collection C in
Definition 1.8 is a sequence, and we may say the sequence {4, } is a sequence
of exchangeable events. Similarly, we speak of exchangeable sequences of col-
lections of events or of Borel functions. As with independence, we also may
abuse the terminology slightly and say that “the sequence is exchangeable”.

For events with equal probabilities, independence implies exchangeability,
but exchangeability does not imply independence.

Theorem 1.3

Let (2, F, P) be a probability space and suppose C C F is a collection of inde-
pendent events with equal probabilities. Then C is an exchangeable collection
of events.

Proof. Exercise. |
The next example shows that exchangeability does not imply indepen-
dence.

Example 1.2 independence and exchangeability
A simple urn example may illustrate the difference in exchangeability and
independence. Suppose an urn contains 3 balls, 2 of which are red and 1 of
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8 1 Probability Theory

which is not red. We “randomly” draw balls from the urn without replacing
them (that is, if there are n balls to draw from, the probability that any
specific one is drawn is 1/n).

Let R; be the event that a red ball is drawn on the it draw, and RS be
the event that a non-red ball is drawn. We see the following

PI‘(Rl) = PI‘(RQ) = PI‘(Rg) = 2/3

and
Pr(RS) = Pr(R5) = Pr(R5) = 1/3.

Now
PI‘(Rl n RQ) = 1/3,

hence, R; and Ry are not independent. Similarly, we can see that R; and Rj
are not independent and that Ry and R3 are not independent. Hence, the col-
lection { Ry, Ra, R3} is certainly not independent (in fact, Pr(R; N RN R3) =
0). The events Rj, Ro, and R3 are exchangeable, however. The probabilities
of singletons are equal and of course the probability of the full set is equal to
itself however it is ordered, so all we need to check are the probabilities of the
doubletons:

PI‘(Rl U RQ) = PI‘(Rl U Rg) = PI‘(RQ U Rg) =1.
|

Using a binomial tree, we could extend the computations in the preceding
example for an urn containing n balls m of which are red, with the events
R; defined as before, to see that the elements of any subset of the m R;s is
exchangeable, but that they are not independent.

While, of course, checking definitions explicitly is necessary, it is useful to
develop an intuition for such properties as independence and exchangeabil-
ity. A little simple reasoning about the urn problem of Example 1.2 should
provide heuristic justification for exchangeability as well as for the lack of
independence.

1.1.2 Random Variables

In many applications of probability concepts, we define a measurable function
X, called a random variable, from (2, F) to (R, B%):

X (Q,F) (]Rd,Bd) . (1.5)
The random variable, together with a probability measure, P, on the measur-
able space (€, F) determines a new probability space (IRd, B, PoX1).

We can study the properties of the probability space (€2, F, P) through
the random variable and the probability space (RY, B4, P o X~1), which is
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1.1 Some Important Probability Facts 9

easier to work with because the sample space, X[Q], is R? or some subset of
it, rather than some abstract set (2. In most applications, it is more natural
to begin with 2 as some subset, X, of RY, to develop a vague notion of some
o-field on X, and to define a random variable that relates in a meaningful way
to the problem being studied.

The mapping of the random variable allows us to assign meaning to the
elements of {2 consistent with the application of interest. The properties of
one space carry over to the other one, subject to the random variable, and we
may refer to objects of either space equivalently. Random variables allow us
to develop a theory of probability that is useful in statistical applications.

Definition 1.9 (random variable)

A measurable function, X (w) or just X, from a measurable space (2, F) to
the measurable space (IR?,B%) is called a random variable, or, to be more
specific, a d-variate random variable. |

This definition means that “Borel function” (see page 719) and “random
variable” are synonymous. Notice that the words “random” and “variable” do
not carry any separate meaning.

Many authors define a random variable only for the case d = 1, and for
the case of d > 1, call the Borel function a “random vector”. I see no reason
for this distinction. Recall that T use “real” to refer to an element of IR? for
any positive integer d. My usage is different from an alternate usage in which
“real” means what I call a “real scalar”; in that alternate usage, a random
variable takes values only in IR.

We often denote the image of X, that is, X[Q], as X. If B € B(X), then
X-'B]eF.

Although we define the random variable X to be real, we could form a
theory of probability and statistics that allowed X to be a function into a
general field. Complex-valued random variables are often useful, especially,
for example, in harmonic analysis of such things as electrical signals, but we
will not consider them in any detail in this text.

Notice that a random variable is finite a.s. If this were not the case, certain
problems would arise in the definitions of some useful functions of the random
variable that we will discuss below.

A random variable could perhaps more appropriately be defined as an
equivalence class of real-valued measurable functions that are equal almost
surely; that is, a class in which if X 2 YV, then X and Y are the same
random variable.

Note that a real constant is a random variable. If ¢ is a real constant and
if X = ¢, then we call X a degenerate random variable; that is, any constant
¢ is a degenerate random variable. We call a random variable that is not a
degenerate random variable a nondegenerate random variable.

Another comment on a.s. may be in order here. The expression “X # ¢
a.s.” means the measure of Q. = {w : X(w) = ¢} is 0. (That is, the expression
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10 1 Probability Theory

does not mean the there is some set with positive measure on which X (w) # ¢.)
Similar interpretations apply to other expressions such as “X > c a.s.”.

Simple Random Variables

Some useful random variables assume only a finite number of different values;
these are called simple random variables because they are simple functions.

Definition 1.10 (simple random variable)
A random variable that has a finitely-countable range is called a simple ran-
dom variable. |

This is just the same as a simple function, Definition 0.1.28 on page 719.

We will also speak of “discrete” random variables. A discrete random vari-
able has a countable range. A simple random variable is discrete, but a discrete
random variable is not necessarily simple.

o-Fields Generated by Random Variables

A random variable defined on (€, F) determines a useful sub-o-field of F.
First, we establish that a certain collection of sets related to a measurable
function is a o-field.

Theorem 1.4
If X : Qw— X CIR? is a random variable, then o(X " 1[B(X)]) is a sub-o-field
of F.

Proof. Exercise. (Note that instead of B(X) we could write B%.) |
Now we give a name to that collection of sets.

Definition 1.11 (o-field generated by a random variable)
Let X : Q — R? be a random variable. We call o(X ' [B%]) the o-field gener-
ated by X and denote it as o(X). |

Theorem 1.4 ensures that o(X) is a o-field and in fact a sub-o-field of F.

If X and Y are random variables defined on the same measurable space,
we may write o(X,Y), with the obvious meaning (see equation (0.1.5) on
page 704). As with o-fields generated by sets or functions discussed in Sec-
tions 0.1.1 and 0.1.2, it is clear that o(X) C (X, Y"). This idea of sub-o-fields
generated by random variables is important in the analysis of a sequence of
random variables. (It leads to the ideas of a filtration; see page 125.)

Random Variables and Probability Distributions

Notice that a random variable is defined in terms only of a measurable space
(€2, F) and a measurable space defined on the reals (X, B%). No associated
probability measure is necessary for the definition, but for meaningful appli-
cations of a random variable, we need some probability measure. For a random

Theory of Statistics (©2000-2020 James E. Gentle



1.1 Some Important Probability Facts 11

variable X defined on (€, F) in the probability space (2, F, P), the probability
measure of X is P o X~1. (This is a pushforward measure; see page 712. In
Exercise 1.9, you are asked to show that it is a probability measure.)

A probability space is also called a population, a probability distribution,
a distribution, or a law. The probability measure itself is the final component
that makes a measurable space a probability space, so we associate the distri-
bution most closely with the measure. Thus, “P” may be used to denote both
a population and the associated probability measure. We use this notational
convention throughout this book.

For a given random variable X, a probability distribution determines
Pr(X € B) for B C X. The underlying probability measure P of course
determines Pr(X~! € A) for A € F.

Quantiles

Because the values of random variables are real, we can define various special
values that would have no meaning in an abstract sample space. As we develop
more structure on a probability space characterized by a random variable, we
will define a number of special values relating to the random variable. Without
any further structure, at this point we can define a useful value of a random
variable that just relies on the ordering of the real numbers.

For the random variable X € IR and given 7 €0, 1[, the quantity x,
defined as

xy = inf{z, s.t. Pr(X < z) >} (1.6)
is called the 7 quantile of X.

For the random variable X € IR?, there are two ways we can interpret
the quantiles. If the probability associated with the quantile, 7, is a scalar,
then the quantile is a level curve or contour in X € IR%. Such a quantile is
obviously much more complicated, and hence, less useful, than a quantile in a
univariate distribution. If 7 is a d-vector, then the definition in equation (1.6)
applies to each element of X and the quantile is a point in IRY.

Multiple Random Variables on the Same Probability Space
If two random variables X and Y have the same distribution, we write

x<y. (1.7)
We say that they are identically distributed. Note the difference in this and
the case in which we say X and Y are the same random variable. If X and Y
are the same random variable, then X =" Y. It is clear that

X2y =x2y, (1.8)

but the implication does not go the other way. (A simple example, using
notation to be developed later, is the following. Let X ~ U(0,1), and let

Y =1-X. Then X £V but clearly it is not the case that X = Y.)
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12 1 Probability Theory
Support of a Random Variable

Definition 1.12 (support of a distribution or of a random variable)
The support of the distribution (or of the random variable) is the smallest
closed set Xg in the image of X such that P(X~1[Xg]) = 1. |

We have seen that a useful definition of the support of a general measure
requires some structure on the measure space (see page 710). Because the
range of a random variable has sufficient structure (it is a metric space), in
Definition 1.12, we arrive at a useful concept, while avoiding the ambiguities
of a general probability space.

Product Distribution

If X; and X5 are independent random variables with distributions P; and P,
we call the joint distribution of (X7, Xs) the product distribution of P; and
b,

Parameters, Parameter Spaces, and Parametric Families

We often restrict our attention to a probability family or a family of distribu-
tions, P = { Py}, where 0 is some convenient index.

Definition 1.13 (parametric family of probability distributions)

A family of distributions on a measurable space (€2, F) with probability mea-
sures Py for § € © is called a parametric family if © C R” for some fixed
positive integer k£ and 6 fully determines the measure. We call 8 the parame-
ter and © the parameter space. |

If the dimension of © is large (there is no precise meaning of “large”
here), we may refrain from calling 6 a parameter, because we want to refer
to some statistical methods as “nonparametric”. (In nonparametric methods,
our analysis usually results in some general description of the distribution,
rather than in a specification of the distribution.)

We assume that every parametric family is identifiable; that is, P =
{Py,6 € O} is an identifiable parametric family if it is a parametric fam-
lly and for 91,92 € 0 if 6; 7§ 0 then Pgl 7§ P92.

A family that cannot be indexed in this way might be called a nonpara-
metric family. The term “nonparametric” is most commonly used to refer to
a statistical procedure, rather than to a family, however. In general terms, a
nonparametric procedure is one that does not depend on strict assumptions
about a parametric family.

Example 1.3 a parametric family
An example of a parametric family of distributions for the measurable space
(2 = {0, 1}, F = 2%) is that formed from the class of the probability measures
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1.1 Some Important Probability Facts 13

P.({1}) = 7 and Pr({0}) = 1 — m. This is a parametric family, namely, the
Bernoulli distributions. The index of the family, 7, is called the parameter of
the distribution. The measures are dominated by the counting measure. 11

Example 1.4 a nonparametric family

An example of a nonparametric family over a measurable space (IR, B) is
P.={P : P < v}, where v is the Lebesgue measure. This family contains
all of the parametric families of Tables A.2 through A.6 of Appendix A as
well as many other families. |

There are a number of useful parametric distributions to which we give
names. For example, the normal or Gaussian distribution, the binomial dis-
tribution, the chi-squared, and so on. Each of these distributions is actually a
family of distributions. A specific member of the family is specified by speci-
fying the value of each parameter associated with the family of distributions.

For a few distributions, we introduce special symbols to denote the dis-
tribution. We use N(u,0?) to denote a univariate normal distribution with
parameters g and o2 (the mean and variance). To indicate that a random
variable has a normal distribution, we use notation of the form

X ~ N(p,0?),

which here means that the random variable X has a normal distribution with
parameters p and o2. We use
Na(p, )

to denote a d-variate normal distribution with parameters g and X
We use
U(64,62)

to denote a uniform distribution with support [61,62]. The most common
uniform distribution that we will use is U(0, 1).

In some cases, we also use special symbols to denote random variables with
particular distributions. For example, we often use x2 to denote a random
variable with a chi-squared distribution with v degrees of freedom.

In Chapter 2 I discuss types of families of probability distributions, and
in Tables A.1 through A.6 beginning on page 838 of Appendix A we give
descriptions of some parametric families.

The Cumulative Distribution Function (CDF)

The cumulative distribution function provides an alternative expression of
a probability measure on IR?. This function gives a clearer picture of the
probability distribution, and also provides the basis for defining other useful
functions for studying a distribution.
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14 1 Probability Theory

Definition 1.14 (cumulative distribution function (CDF))
If (RY, B%, P) is a probability space, and F is defined by

F(z) = P(]—00,2]) YzeR’ (1.9)
then F is called a cumulative distribution function, or CDF. |

The CDF is also called the distribution function, or DF.

There are various forms of notation used for CDFs. The CDF of a given
random variable X is often denoted as F'x. A CDF in a parametric family Py
is often denoted as Fy, or as F(x;0).

If the probability measure P is dominated by the measure v, then we also
say that the associated CDF F' is dominated by v.

The probability space completely determines F', and likewise, F' completely
determines P a.s.; hence, we often use the CDF and the probability measure
interchangeably. More generally, given the probability space (2, F, P) and the
random variable X defined on that space, if F' is the CDF of X, the basic
probability statement for an event A € F given in equation (1.2) can be

written as
P(A):/ dP:/ dr. (1.10)
A X[A]

If the random variable is assumed to be in a family of distributions indexed
by 6, we may use the notation Fy(x) or F(x;0).

For a given random variable X, F'(x) = Pr(X < z). We sometimes use the
notation Fx(z) to refer to the CDF of the random variable X.

For a given CDF F, we define F called the tail CDF by

F(z)=1- F(x). (1.11)

This function, which is also denoted by F©, is particularly interesting for
random variables whose support is IR ;.

The CDF is particularly useful in the case d = 1. (If X is a vector-valued
random variable, and x is a vector of the same order, X < z is interpreted to
mean that X; < x; for each respective element.)

Theorem 1.5 (properties of a CDF)
If F is a CDF then

1. limy) oo F'(z) = 0.

2. limg1o0 F(z) = 1.

3. F(ZEl) < F({EQ) fol < T2.

4. im0 F(x +¢€) = F(x). (A CDF is continuous from the right.)

Proof. Each property is an immediate consequence of the definition. |

These four properties characterize a CDF, as we see in the next theorem.

Theorem 1.6
If F is a function defined on IR that satisfies the properties of Theorem 1.5,
then F is a CDF (for some probability space).
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Proof. Exercise. (Hint: Given (R%, B%) and a function F' defined on IR sat-
isfying the properties of Theorem 1.5, define P as

P(]—o0,z]) = F(z) VazeR?

and show that P is a probability measure.) |

Because the four properties of Theorem 1.5 characterize a CDF, they can
serve as an alternate definition of a CDF, without reference to a probability
distribution. Notice, for example, that the Cantor function (see Section 0.1.5)
is a CDF if we extend its definition to be 0 on | — 0o, 0] and to be 1 on |1, oo|.
The distribution associated with this CDF has some interesting properties;
see Exercise 1.12.

One of the most useful facts about an absolutely continuous CDF is its
relation to a U(0, 1) distribution.

Theorem 1.7
If X is a random wvariable with absolutely continuous CDF F then F(X) ~
U(0,1).

Proof. If X is a random variable with CDF F then

0 t<0
Pr(F(X)<t)=<t 0<t<l
1 1<+t
This set of probabilities characterize the U(0, 1) distribution. |

Although Theorem 1.7 applies to continuous random variables, a discrete
random variable has a similar property when we “spread out” the probability
between the mass points.

The Quantile Function: The Inverse of the CDF

Although as I indicated above, quantiles can be defined for random variables
in R? for general positive integer d, they are more useful for d = 1. I now
define a useful function for that case. (The function could be generalized, but,
again, the generalizations are not as useful.)

Definition 1.15 (quantile function)
If (R, B, P) is a probability space with CDF F, and F~! is defined on ]0, 1]
by

F~Y(p) = inf{z, s.t. F(x) > p}, (1.12)

then F~!is called a quantile function. |

Notice that if F' is strictly increasing, the quantile function is the ordinary
inverse of the cumulative distribution function. If F' is not strictly increasing,
the quantile function can be interpreted as a generalized inverse of the cumu-
lative distribution function. This definition is reasonable (at the expense of
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Figure 1.1. CDFs and Quantile Functions

overloading the notation “-~1”) because, while a CDF may not be an invertible

function, it is monotonic nondecreasing.
Notice that for the random variable X with CDF F'| if

Ty = F~ (), (1.13)

then x, is the m quantile of X as defined in equation (1.6). Equation (1.13)
is usually taken as the definition of the 7 quantile.

The quantile function, just as the CDF, fully determines a probability
distribution.

Theorem 1.8 (properties of a quantile function)
If F~1 is a quantile function and F is the associated CDF,

1. F7Y(F(z)) < x.

2. F(F~'(p)) = p.

3. F7Yp) <z <= p< F(x).

4. F~Np1) < F~H(p2) if p1 < po.

5. limejo F~1(p—€) = F~(p).
(A quantile function is continuous from the left.)

6. If U is a random wvariable distributed uniformly over ]0,1[, then X =
F~Y(U) has CDF F.

Proof. Exercise. |
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The first five properties of a quantile function given in Theorem 1.8 char-
acterize a quantile function, as stated in the following theorem.

Theorem 1.9
Let F be a CDF and let G be function such that

1 GF@) <,
2. F(G(p)) = p,

3. G(p) <z <= p< F(x),

4. G(p1) < G(p2) if p1 < p2, and
5. lime o G(p —€) = G(p).

Then G is the quantile function associated with F, that is, G = F~1.

Proof. Exercise. (The definitions of a CDF and a quantile function are suffi-
cient.) |

As we might expect, the quantile function has many applications that
parallel those of the CDF. For example, we have an immediate corollary to
Theorem 1.7.

Corollary 1.7.1
If F is a CDF and U ~ U(0,1), then F~Y(U) is a random variable with CDF
F.

Corollary 1.7.1 is actually somewhat stronger than Theorem 1.7 because no
modification is needed for discrete distributions. One of the most common
applications of this fact is in random number generation, because the basic
pseudorandom variable that we can simulate has a U(0, 1) distribution.

The Probability Density Function: The Derivative of the CDF

Another function that may be very useful in describing a probability distribu-
tion is the probability density function. This function also provides a basis for
straightforward definitions of meaningful characteristics of the distribution.

Definition 1.16 (probability density function (PDF))

The derivative of a CDF (or, equivalently, of the probability measure) with
respect to an appropriate measure, if it exists, is called the probability density
function, PDF. |

The PDF is also called the density function.

There are various forms of notation used for PDFs. As I mentioned on
page 14, common forms of notation for CDFs are Fx, Fy, and F(x;0). Of
course, instead of “F”, other upper case letters such as G and H are often
used similarly. The common notation for the associated PDF parallels that of
the CDF and uses the corresponding lower case letter, for example, fx, fo, and
f(z;0). T will use the standard forms of mathematical notation for functions
for denoting CDF's and PDFs. (Other statisticians often use a sloppy notation,
called “generic notation”; see page 21.)
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18 1 Probability Theory

Theorem 1.10 (properties of a PDF)
Let F be a CDF defined on R® dominated by the measure v. Let f be the PDF
defined as

dF(x
oy = )
Then over R?
f(z) >0 ae. v, (1.14)
f(z) <o ae. v, (1.15)
and
fdv =1. (1.16)

Rd
If Xs is the support of the distribution, then

0< f(z)<oo VxeXs.

Proof. Exercise. |
A characteristic of some distributions that is easily defined in terms of the
PDF is the mode.

Definition 1.17 (mode of a probability distribution)
If ¢ is a point in the support Xg of a distribution with PDF f such that

f(xo) = f(x), Ve s,

then xg is called a mode of the distribution. |

If the mode exists it may or may not be unique.

Dominating Measures

Although we use the term “PDF” and its synonyms for either discrete random
variables and the counting measure or for absolutely continuous random vari-
ables and Lebesgue measure, there are some differences in the interpretation
of a PDF of a discrete random variable and a continuous random variable. In
the case of a discrete random variable X, the value of the PDF at the point x is
the probability that X = z; but this interpretation does not hold for a contin-
uous random variable. For this reason, the PDF of a discrete random variable
is often called a probability mass function, or just probability function. There
are some concepts defined in terms of a PDF, such as self-information, that
depend on the PDF being a probability, as it would be in the case of discrete
random variables.

The general meaning of the term “discrete random variable” is that the
probability measure is dominated by the counting measure; and likewise for
a “absolutely continuous random variable” the general meaning is that the
probability measure is dominated by Lebesgue measure. Any simple CDF
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has a PDF wrt the counting measure, but not every continuous CDF has a
PDF wrt Lebesgue measure (the Cantor function, see page 723, is a classic
counterexample — see Exercise 1.12b), but every absolutely continuous CDF
does have a PDF wrt Lebesgue measure.

The “appropriate measure” in the definition of PDF above must be o-
finite and must dominate the CDF. For a random variable X = (Xy,..., Xq)
with CDF Fx(x) dominated by Lebesgue measure, the PDF, if it exists, is
OFx (x)/0zy - - - Oxq.

In most distributions of interest there will be a PDF wrt a o-finite measure.
Many of our definitions and theorems will begin with a statement that includes
a phrase similar to “a distribution with a PDF wrt a o-finite measure”. In
the case of a discrete random variable, that o-finite measure is the counting
measure (Definition 0.1.20 on page 708), and in the case of an absolutely
continuous random variable, it is the Lebesgue measure (see page 717).

Parameters and PDFs

In addition to being functions of points x in the support, the PDFs of the
distributions within a given parametric family Py, are also functions of 6.
There may also be other constants in the PDF that can be separated from
the functional dependence on x. It is often of interest to focus on the PDF
solely as a function of . (This may be because in applications, the “inverse”
problem of deciding on the form of the PDF is simpler if we consider only the
role of the observable z.) Given a PDF fy(z), a useful decomposition is

fo(x) = g(0)k(x), (1.17)

where 0 < g and 0 < k, and k(x) encodes all of the dependence of fp(x) on
x. In this decomposition, we call k(z) the “kernel”.
From equation (1.16), we have

1
M:/w k(z)dv(z). (1.18)

The function (g())~! is called the “normalizing function” or the “partition
function”. (The latter name comes from statistical physics, and in many areas
of application, the partition function is a meaningful characteristic of the
problem. Both or either of these names is sometimes applied to g(6).)

The Likelihood; A Function of the Parameters

It is often useful to consider the PDF (or CDF) as a function of the param-
eter instead of the range of the random variable. We call such a function, a
likelihood function, and for the parametric PDF fp(x) with support Xg and
parameter space ©, we denote the corresponding likelihood function as L(0; x):
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20 1 Probability Theory
L(0;z) = fo(x), VO €O, Va € Xg. (1.19)

(Actually, any positive scalar multiple of L(6; ) in (1.19), is called a likelihood
function corresponding to fp(x). I will discuss likelihood functions later in
more detail, particularly in Chapter 6, where their use in statistical inference
is discussed.)

While the likelihood and the PDF are the same, at any two fixed points x
and 6, they differ fundamentally as functions.

Example 1.5 likelihood in the exponential family
Consider the exponential family of distributions with parameter . The PDF
is

px(z;0) =0"1e Ty (2), (1.20)

for § € IR4. Plots of this PDF for # =1 and 6 = 5 are shown on the left side
of Figure 1.2.
Given a single observation z, the likelihood is

L(O; x) =0"Le /0T, (0). (1.21)

Plots of this likelihood for x = 1 and z = 5 are shown on the right side of

Figure 1.2. |
PDF px(x,;0) Likelihood L (©;x)

Figure 1.2. PDF and Likelihood for Exponential Distribution

The log of the likelihood, called the log-likelihood function,
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105 x) =log L(0; ), (1.22)

is also useful. We often denote the log-likelihood without the “L” subscript.
(The notation for the likelihood and the log-likelihood varies with authors. My
own choice of an uppercase “L” for the likelihood and a lowercase “I” for the
log-likelihood is long-standing, and not based on any notational optimality
consideration. Because of the variation in the notation for the log-likelihood,
I will often use the “I;,” notation because this expression is suggestive of the
meaning. )

In cases when the likelihood or the log-likelihood is differentiable wrt the
parameter, the derivative is of interest because it indicates the sensitivity of
the parametric family to the parameter when it is considered to be a variable.
The most useful derivative is that of the log-likelihood, dlL(0;z)/06. The
expectation of the square of this appears in a useful quantity in statistics, the
Cramér-Rao lower bound, inequality (3.39) on page 234.

Parametric Families

As mentioned above, if a specific CDF is Fy, we often write the corresponding

PDF as fo: 4
Fy
fo= P (1.23)

There may be some ambiguity in the use of such subscripts, however, because
when we have defined a specific random variable, we may use the symbol
for the random variable as the identifier of the CDF or PDF. The CDF and
the PDF corresponding to a given random variable X are often denoted,
respectively, as F'x and fx. Adding to this confusion is the common usage by
statisticians of the “generic notation”, that is, for given random variables X
and Y, the notation f(x) may refer to a different function than the notation
f(y). T will not use the “generic” notation for CDFs and PDFs.

We assume that every parametric family is identifiable; that is, if Fy and
fo are the CDF and PDF for distributions within the family and these are
dominated by the measure v, then over the parameter space © for 6 # 65,

v({ : Fo,(2) # Foy(@)}) > 0 (1.24)
and

v({z ¢ fo,(x) # fo.(x)}) > 0. (1.25)
Dominating Measures

The dominating measure for a given probability distribution is not unique,
but use of a different dominating measure may change the representation of
the distribution. For example, suppose that the support of a distribution is
S, and so we write the PDF as
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D) _ go(@ise) (1.26)
If we define a measure A by
AA) = /AISdV VA e F, (1.27)
then we could write the PDF as
CL_I;\}) = go. (1.28)

Mixtures of Distributions

If Fi, F5, ... are CDFs and w1, 7, ... > 0 are real constants such that Zl T =
1, then

F =) mF (1.29)

is a CDF (exercise). If each F; in equation (1.29) is dominated by Lebesgue
measure, then F' is dominated by Lebesgue measure. Likewise, if each Fj is
dominated by the counting measure, then F' is dominated by the counting
measure.

The PDF corresponding to F' is also the same linear combination of the
corresponding PDFs.

It is often useful to form mixtures of distributions of continuous random
variables with distributions of discrete random variables. The e-mixture dis-
tribution, whose CDF is given in equation (2.45) on page 194, is an example.

A mixture distribution can also be thought of as a random variable X
whose distribution, randomly, is the same as that of some other random vari-
able X1, Xo, .. .; that is,

X £ X,
where I is a random variable taking values in the index set of X7, X5,.... In

terms of the m; in equation (1.29), we can define the random variable of the
mixture X by

x4 X, with probability ;.

We must be careful not to think of the linear combination of the CDFs or
PDF's as applying to the random variables; the random variable of the mixture
is not a linear combination of the constituent random variables.

Joint and Marginal Distributions

For a random variable consisting of two components, (X1, Xs), we speak of its
distribution as a “joint distribution”, and we call the separate distributions the
“marginal distributions”. We might denote the PDF of the joint distribution
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as fx, x, and the PDF for X; alone as fx,. We call fx, x, a joint PDF and
fx, a marginal PDF.
We have the simple relationship

fx, (@1) :/le,X2($1,$2)d332- (1.30)

Independence and Exchangeability of Random Variables

We have defined independence and exchangeability in general. We now give
equivalent definitions for random variables.

Definition 1.18 (independence of random variables)
The random variables X1, ..., X; on (2, F, P) are said to be independent iff
for any sets By, ..., By in the o-field of the image space,

k
P(Xy € By,..., Xy € By) = [[ P(Xi € By).

i=1
|

Notice that this definition is essentially the same as Definition 1.7.3 on
page 5, and it corresponds to the definition of independence of events; that is,
independence of X; '[B;] (Definition 1.7.1). These are not just separate defi-
nitions of independence of various objects. The following theorem (which we
could have stated analogously following Definition 1.7) relates Definition 1.18
above to Definition 1.7.2.

Theorem 1.11
The random variables X1, ..., Xi on (Q,F, P) are independent iff the o-fields
o(X1),...,0(Xk) are independent.

Proof. Exercise. |
The following factorization theorem is often useful in establishing inde-
pendence of random variables.

Theorem 1.12
If X1 and Xo are random variables with joint PDF fx, x, and marginal PDFs
fx, and fx,, then X1 and Xo are independent iff

le,X2($1,$2) = le(xl)fX2($2)- (131)

Proof. Exercise. |
We are often interested in random variables that have the same distribu-
tions. In that case, exchangeability of the random variables is of interest.
The following definition of exchangeability is essentially the same as Def-
inition 1.8.3, and similar comments relating to exchangeability of random
variables, sets, and o-fields as made above relating to independence hold.
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Definition 1.19 (exchangeability of random variables)

The random variables X7,..., X on (Q,F, P) are said to be exchangeable
iff the joint distribution of Xi,..., Xj is the same as the joint distribution
of T({X1,...,Xk}), for any II, where IT(A) denotes a permutation of the
elements of the set A. |

As we have seen, exchangeability requires identical distributions, but, given
that, it is a weaker property than independence.

Example 1.6 Polya’s urn process

Consider an urn that initially contains r red and b blue balls. One ball is
chosen randomly from the urn, and its color noted. The ball is then put back
into the urn together with ¢ balls of the same color. (Hence, the number of
total balls in the urn changes. We can allow ¢ = —1, in which case, the drawn
ball is not returned to the urn.) Now define a binary random variable R; =1
if a red ball is drawn and R; = 0 if a blue ball is drawn. (The random variable
R; in this example is the indicator function for the event R; in Example 1.2.)
The sequence R, Ra, ... is exchangeable, but not independent. |

An interesting fact about infinite sequences of exchangeable binary random
variables, such as those in Example 1.6 with ¢ > 0, is that they are mixtures
of independent Bernoulli sequences; see page 75. This provides a link between
exchangeability and independence. This connection between exchangeability
and independence does not necessarily hold in finite sequences, as in the urn
process of Example 1.2.

Random Samples

If the random variables X, ..., Xi are independent and

x;, 4.4,
we say Xi,..., X are identically and independently distributed, which we
denote as iid. A set of iid random variables is called a simple random sample,
and the cardinality of the set is called the “size” of the simple random sample.
The common distribution of the variables is called the parent distribution of
the simple random sample. We also often use the phrase “excangeable random
sample”, with the obvious meaning.

There are many situations in which a sample is generated randomly, but
the sample is not a simple random sample or even an exchangeable random
sample. Two of the most common such situations are in finite population
sampling (see Section 5.5.2) and a process with a stopping rule that depends
on the realizations of the random variable, such as sampling from an urn until
a ball of a certain color is drawn or sampling from a binary (Bernoulli) process
until a specified number of 1s have occurred (see Example 3.12).

Despite the more general meaning of random sample, we often call a simple
random sample just a “random sample”.
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In statistical applications we often form functions of a random sample,
and use known or assumed distributions of those functions to make inferences
abput the parent distribution. Two of the most common functions of a random
sample are the sample mean and the sample variance. Given a random sample
X1, ..., X, the sample mean is defined as

X = iXi/n, (1.32)

and if n > 2, the sample variance is defined as

n

S = "(Xi = X)*/(n—1). (1.33)

=1

(Notice that the divisor in the sample variance is n — 1.)

If the parent distribution is N(y, 02), the sample mean and sample variance
have simple and useful distributions (see page 187).

For functions of a random sample such as the sample mean and variance,
we often include the sample size in the notation for the function, as X,, or
52, and we may be interested in the properties of these functions as n gets

n?

larger (see Example 1.23).

The Empirical Distribution Function

Given a random sample X7, ..., X,,, we can form a conditional discrete dis-
tribution, dominated by a counting measure on {1,...,n}, with CDF
F.(z) =#{X;| X; <z}/n, fori=1,...,n. (1.34)

The simple CDF F,, is called the empirical cumulative distribution function
(ECDF) for the sample. It has at most n + 1 distinct values.
The ECDF has wide-ranging applications in statistics.

1.1.3 Definitions and Properties of Expected Values

First we define the expected value of a random variable.

Definition 1.20 (expected value of a random variable)

Given a probability space (2, F, P) and a d-variate random variable X defined
on F, we define the expected value of X with respect to P, which we denote
by E(X) or for clarity by Ep(X), as

E(X) = X P, (1.35)

if this integral exists. 1
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For the random variable X, E(X), if it exists, is called the first moment of X.
Although by properties following immediately from the definition, Pr(—oco <
X < 00) = 1, it could happen that fle X dP = oco. In that case we say the ex-
pected value, or first moment, is infinite. It could also happen that fle XdP
does not exist (see Definition 0.1.41 on page 728), and in that case we say the
expected value does not exist. Recall, however, what we mean by the expres-
sion “integrable function”. This carries over to a random variable; we say the
random variable X is integrable (or Ly integrable) iff —co < [+ X dP < oco.

Example 1.7 existence and finiteness of expectations
Let the random variable X have the PDF
1
=—1 . 1.36
We have

x

= (10g(1+3:)—|— 1i$>

= OQ.

o0

0

That is, E(X) is infinite. (Although E(X) ¢ IR, and some people would say

that it does not exist in this case, we consider E(X) “to exist”, just as we speak

of the existence of infinite integrals (page 727). Just as we identify conditions

in which integrals do not exist because of indeterminancy (page 728), however,

we likewise will identify situations in which the expectations do not exist.)
Let the random variable Y have the PDF

1

fr(y) = A+ 0) (1.37)

We have

e = e

o0

1
= 5 log(1 + 2%)

— 00

That is, E(Y) is not infinite; it does not exist.

The random variable X has the same distribution as the ratio of two
standard exponential random variables, and the random variable Y has the
same distribution as the ratio of two standard normal random variables, called
a Cauchy distribution. (It is an exercise to show these facts.) |
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It is clear that E is a linear operator; that is, for random variables X and
Y defined on the same probability space, and constant a,

E(aX +Y) = aE(X) + E(Y), (1.38)

if E(X) and E(Y) are finite.

Look carefully at the integral (1.35). It is the integral of a function, X,
over ) with respect to a measure, P, over the o-field that together with
forms the measurable space. To emphasize the meaning more precisely, we
could write the integral in the definition as

E(X) = | X(0)dP().

The integral (1.35) is over an abstract domain Q. We can also write the
expectation over the real range of the random variable and an equivalent
measure on that range. If the CDF of the random variable is F'; we have, in
the abbreviated form of the first expression given in the definition,

E(X) :/ xdF, (1.39)
R4
or in the more precise form,
E(X) :/ x dF(z).
Rd
If the PDF exists and is f, we also have
E(X) :/ zf(x)dx.
Ra

An important and useful fact about expected values is given in the next
theorem.

Theorem 1.13
Let X be a random variable in R? such that E(||X||2) < co. Then

E(X) = argminE(|| X — al|2). (1.40)
a€lR?
Proof. Exercise. Also, see equation (0.0.101). |

In statistical applications this result states that E(X) is the best prediction
of X given a quadratic loss function in the absence of additional information
about X.

We define the expected value of a Borel function of a random variable in
the same way as above for a random variable.
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Definition 1.21 (expected value of a Borel function)
If g is a Borel function of the random variable X with CDF F', then the
expected value of g(X) is defined as

Bo(X) = [ o(@)aFa) (141)

Theorem 1.14
If X and Y are random variables defined over the same probability space and
g s a Borel function of the random variable X, then

X>Yas. = EX)>E®Y), (1.42)
and

g(X)>0as. = E(gX))>0. (1.43)
Proof. Each property is an immediate consequence of the definition. |

Expected Values of Probability Density Functions

Expected values of PDF's or of functionals of PDFs are useful in applications
of probability theory. The expectation of the negative of the log of a PDF,
—log(f(X)), is the entropy (Definition 1.26 on page 41), which is related to
the concept of “information”. We have also mentioned the expectation of the
square of dlog(f(X;8@))/00, which appears in the Cramér-Rao lower bound.
The expectation of dlog(f(X;6))/00 is zero (see page 230).

There are several interesting expectations of the PDFs of two different
distributions, some of which we will mention on page 36.

Expected Values and Quantile Functions of Univariate Random
Variables

As we mentioned earlier, the quantile function has many applications that
parallel those of the CDF.

If X is a univariate random variable with CDF F', then the expected value
of X is

E(X) = /0 F~Y(z)da. (1.44)

See Exercise 1.25.
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Expected Value and Probability

There are many interesting relationships between expected values and proba-
bilities, such as the following.

Theorem 1.15
If X is a random variable such that X > 0 a.s., then

E(X) = /0 T Pr(X > 1)dt. (1.45)

Proof. This is a simple application of Fubini’s theorem, using the CDF F' of
X:

E(X) = /OooxdF(x)

:/ / dtdF(x)

0 10,z

:/ / dF (z)dt
0 Jt,00][

:/ (1 — F(t))dt
0

:/ Pr(X > t)dt
0

Theorem 1.15 leads in general to the following useful property for any
given random variable X for which E(X) exists:

E(X) _/Ooo(l—F(t))dt—/O F(t)dt. (1.46)

— 00

It is an exercise to write a proof of this statement.
Another useful fact in applications involving the Bernoulli distribution
with parameter 7 is the relationship

EX)=Pr(X=1)=m.

Expected Value of the Indicator Function

We define the indicator function, I4(z), as

lifze A
La(e) = { 0 otherwise. (1.47)

(This is also sometimes called the “characteristic function”, but we use that
term to refer to something else.) If X is an integrable random variable over
A, then I4(X) is an integrable random variable, and
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Pr(A) = E(Ly(X)). (1.48)

It is an exercise to write a proof of this statement. When it is clear from the
context, we may omit the X, and merely write E(I4).

Expected Value over a Measurable Set

The expected value of an integrable random variable over a measurable set
ACRYis
E(XIs(X)) = / X dP. (1.49)
A

It is an exercise to write a proof of this statement. We often denote this as
E(XI4).

Expected Value of General Measurable Functions

A real-valued measurable function g of a random variable X is itself a random
variable, possibly with a different probability measure. Its expected value is
defined in exactly the same way as above. If the probability triple associated
with the random variable X is (2, F, P) and Y = g(X), we could identify a
probability triple associated with Y. Being measurable, the relevant measur-
able space of g(X) is (2, F), but the probability measure is not necessarily
P. If we denote the probability triple associated with the random variable Y
is (2, F,Q), we may distinguish the defining integrals with respect to dP and
dQ by Ep and EQ.

We can also write the expected value of Y in terms of the CDF of the origi-
nal random variable. The expected value of a real-valued measurable function
g of a random variable X with CDF F is E(g(X)) = [ g(z)dF ().

Moments of Scalar Random Variables

The higher-order moments are the expected values of positive integral powers
of the random variable. If X is a scalar-valued random variable, the " raw
moment of X, if it exists, is E(X"). We often denote the r*"' raw moment as
.. There is no requirement, except notational convenience, to require that r
be an integer, and we will often allow it non-integral values, although “first
moment”, “second moment”, and so on refer to the integral values.

For r > 2, central moments or moments about E(X) are often more useful.
The 7" central moment of the univariate random variable X, denoted as .,
is E(X —E(X))"):

o = [ =y dra). (1.50)

if it exists. We also take p; to be i, which is also ). For a discrete distribution,
this expression can be interpreted as a sum of the values at the mass points
times their associated probabilities.
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Notice that the moment may or may not exist, and if it exists, it may or
may not be finite. (As usual, whenever I speak of some property of a moment,
such as that it is finite, I am assuming that the moment exists, even though
I may not make a statement to that effect.)

The first two central moments are usually the most important; u; is called
the mean and po is called the wariance. The variance of X is denoted by
V(-). Because (X — E(X))? > 0 a.s., we see that the variance is nonnegative.
Further, unless X *=" E(X), the variance is positive.

The square root of the variance is called the standard deviation.

E(]X]) is called the first absolute moment of X; and generally, E(|X|") is
called the 7" absolute moment.

Theorem 1.16
If the ' absolute moment of a scalar random wvariable is finite, then the
absolute moments of order 1,2,...,r — 1 are finite.

Proof. For s <r, |z]* <1+ |z|". |

Example 1.8 moments of random variables in the ¢ family
Consider the ¢ family of distributions (page 841) with PDF

_ v+ 1)/2)

in which the parameter v is called the degrees of freedom. By direct integra-
tion, it is easy to see that the " absolute moment moment exists iff » < v —1.

(1 4y /v)"HD2,

We define the r*® standardized moment as

T = /Lr/,u;/2- (151)

The first raw moment or the mean, is an indicator of the general “location”
of the distribution. The second central moment or the variance, denoted as
p2 or o2 is a measure of the “spread” of the distribution. The nonnegative
square root, o, is sometimes called the “scale” of the distribution. The third
standardized moment, 73, is an indicator of whether the distribution is skewed;
it is called the skewness coefficient. If ns3 # 0, the distribution is asymmetric,
but 73 = 0 does not mean that the distribution is symmetric.

The fourth standardized moment, n4 is called the kurtosis coefficient. It
is an indicator of how “peaked” the distribution is, or how “heavy” the tails
of the distribution are. (Actually, exactly what this standardized moment
measures cannot be described simply. Because, for the random variable X, we

have )
X —
m=V (%) +1,
g

it can be seen that the minimum value for 74 is attained for a discrete dis-
tribution with mass points —o and o. We might therefore interpret 74 as a
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measure of variation about the two points —¢ and o. This, of course, leads
to the two characteristics mentioned above: peakedness and heaviness in the
tails.)

The sequence of (raw) moments is very useful in characterizing a distri-
bution of a scalar random variable, but often the central moments are to be
preferred because the second and higher central moments are invariant to
change in the first moment (the “location”).

Uniqueness of Moments of Scalar Random Variables

An interesting question is whether the full set of moments fully determines a
distribution of a scalar random variable.

It seems reasonable to guess that this would not be the case if not all
moments of all orders exist; and, indeed, it is a simple matter to construct
two different distributions whose moments beyond the k*! are infinite but
whose first £ moments are the same. The question of interest, therefore, is
whether the full set of moments fully determine a distribution, given that
moments of all orders are finite. In general, they do not.

Example 1.9 different distributions with equal finite moments of all
orders
Consider the complex integral related to the gamma function,

/ "ttt = BT (),
0

where @ > 0 and 8 = 1/(y +i§) with v > 0. Now, make a change of variable,
P =t for 0 < p < 1/2; and for a nonnegative integer k, choose a = (k+1)/p,
and £/ = tan(pr). Noting that (1 + itan(pr))**+1/? is real, we have that
the imaginary part of the integral after substitution is 0O:

/ 2*e ™" sin(£x)dz = 0. (1.52)
0

Hence, for all |a| < 1, the distributions over IR, with PDF
p(z) = ce ™ (1 + asin(€a”))Ig, (2), (1.53)

where v > 0 and 0 < p < 1/2 have the same moments of all orders k =
0,1,2,.... |

We could in a similar way develop a family of distributions over IR that
have the same moments. (In that case, the p is required to be in the range
] —1,1[.) The essential characteristic of these examples is that there exists o,
such that for v > 0,

p(x) >e =" for x> x, (1.54)
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because we can add a function all of whose moments are 0. (Such a function
would necessarily take on negative values, but not sufficiently small to make
p(z) plus that function be negative.)

A distribution all of whose moments are the same as some other distribu-
tion is called a moment-indeterminant distribution. The distributions within a
family of distributions all of which have the same moments are called moment-
equivalent distributions. In Exercise 1.28, you are asked to show that there
are other distributions moment-equivalent to the lognormal family of distri-
butions.

So can we identify conditions that are sufficient for the moments to char-
acterize a probability distribution? The answer is yes; in fact, there are several
criteria that ensure that the moments uniquely determine a distribution. For
scalar random variables, one criterion is given in the following theorem.

Theorem 1.17
Let vg,v1, ... € IR be the moments of some probability distribution. (The mo-
ments can be about any origin.) The probability distribution is uniquely deter-

mined by those moments if
o0

vt
> 4 (1.55)
i=0 7
converges for some real nonzero t.

A simple proof of this theorem is based on the uniqueness of the character-
istic function, so we defer its proof to page 49, after we have discussed the
characteristic function.

Corollary 1.17.1 The moments of a probability distribution with finite sup-
port uniquely determine the distribution.

The following theorem, which we state without proof, tells us that the
moments determine the distribution if the central moments are close enough
to zero.

Theorem 1.18

Let po, pt1, - . . be the central moments of some probability distribution. If the
support of the probability distribution is IR, it is uniquely determined by those
moments if

=1
> 77 (1.56)
j=0 Haj

diverges. -
If the support of the probability distribution is R4, it is uniquely deter-
mined by those moments if

=1
ZW (1.57)
i=0 Hj

diverges.
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Corollary 1.18.1
If a probability distribution has a PDF p(x) with support R, then the moments
uniquely determine p(x) if

p(x) < Mz te™11” for 2 > x, (1.58)

where M, X,y >0 and p > 1. B
If a probability distribution has a PDF p(x) with support Ry, then the
moments uniquely determine p(x) if

p(x) < Ma* e ™" forz >0, (1.59)
where M, A\, >0 and p > 1/2.

The conditions in Theorem 1.18 are called the Carleman criteria (after Torsten
Carleman). Compare the conditions in the corollary with inequality (1.54).

Within a specific family of distributions, the full set of moments can usu-
ally be expected to identify the distribution. For narrowly-defined families of
distributions, such as the normal or gamma families, often only one or two
moments completely identify the family.

Cumulants of Scalar Random Variables

Another useful sequence of constants for describing the distribution of a scalar
random variables are called cumulants, if they exist. Cumulants, except for
the first, are also invariant to change in the first moment. The cumulants and
the moments are closely related, and cumulants can be defined in terms of

raw moments, if they exist. For the first few cumulants, k1, ko, ..., and raw
moments, 1], th, ..., of a scalar random variable, for example,

Py = K1

ph = Ko + K3 (1.60)

Wy = K3 + 3Kkak1 + K.

The expressions for the cumulants are a little more complicated, but can be
obtained easily from the triangular system (1.60).

Factorial Moments of Discrete Scalar Random Variables

A discrete distribution with support x1, xa, ... € IR is equivalent to a discrete
distribution with support 0,1, ..., and for such a distribution, another kind
of moment is sometimes useful. It is the factorial moment, related to the P
factorial of the real number y:

Yy =yly—1)(y—(r—1)). (1.61)

(We see that yl¥! = y!. It is, of course, not necessary that y be an integer, but
factorials are generally more useful in the context of nonnegative integers.)
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The r*" factorial moment of the random variable X above is
=Y allp;. (1.62)
i=0

We see that ,ufl] =p) = .
The r** central factorial moment, denoted fi, is the r" factorial moment
about pu.

1.1.4 Relations among Random Variables

In many applications there are two or more random variables of interest. For
a given probability space (€2, F, P), there may be a collection of random vari-
ables, W. If the random variables have some common properties, for example,
if either all are discrete or all are continuous and if all have the same structure,
we may identify the collection as a “space”.

If the random variables have some relationship to each other, that is, if
they are not independent, we seek useful measures of their dependence. The
appropriate measure depends on the nature of their dependence. If they are
quadratically related, a measure that is appropriate for linear relationships
may be inappropriate, and vice versa.

We will consider two ways of studying the relationships among random
variables. The first is based on second-degree moments, called covariances,
between pairs of variables, and the other is based on functions that relate the
CDF of one variable or one set of variables to the CDF's of other variables.
These functions, called copulas, can involve more than single pairs of variables.

Random Variable Spaces

As with any function space, YW may have interesting and useful properties.
For example, W may be a linear space; that is, for X, Y € W and a € R,
aX+Y eWw.

The concept of £P random variable spaces follows immediately from the
general property of function spaces, discussed on page 741. for random vari-
ables in an £P random variable space, the p'" absolute is finite.

The closure of random variable spaces is often of interest. We define various
forms of closure depending on types of convergence of a sequence X,, in the

space. For example, given any sequence X, € W if X, Ly x implies X € W
then W is closed for the r*" moment.

Expectations

We may take expectations of functions of random variables in terms of their
joint distribution or in terms of their marginal distributions. To indicate the
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distribution used in an expectation, we may use notation for the expectation
operator similar to that we use on the individual distribution, as described
on page 23. Given the random variables X; and Xa, we use the notation Ex,
to indicate an expectation taken with respect to the marginal distribution of
X,

We often denote the expectation taken with respect to the joint distribu-
tion as simply E, but for emphasis, we may use the notation Ex, x,.

We also use notation of the form Ep, where P denotes the relevant proba-
bility distribution of whatever form, or Ey in a parametric family of probability
distributions.

Expectations of PDFs and of Likelihoods

If the marginal PDFs of the random variables X; and X9 are fx, and fx,,
we have the equalities

Ex, (%) = Ex, (%) =1 (1.63)

On the other hand,

Ex, (—log(fx, (X1))) < Ex, (=log(fx,(X1))), (1.64)

with equality only if fx, (z) = fx,(z) a.e. (see page 41).

When the distributions are in the same parametric family, we may write
fo with different values of 6 instead of fx, and fx,. In that case, it is more
natural to think of the functions as likelihoods since the parameter is the
variable. From equation (1.63), for example, we have for the likelihood ratio,

Eo, (%) =1. (1.65)

Covariance and Correlation

Expectations are also used to define relationships among random variables.
We will first consider expectations of scalar random variables, and then discuss
expectations of vector and matrix random variables.

For two scalar random variables, X and Y, useful measures of a linear
relationship between them are the covariance and correlation. The covariance
of X and X, if it exists, is denoted by Cov(X,Y), and is defined as

Cov(X,Y)=E((X - EX))(Y —E(Y))) (1.66)
From the Cauchy-Schwarz inequality (B.21) (see page 853), we see that

(Cov(X,Y))? < V(X)V(Y). (1.67)
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The correlation of X and Y, written Cor(X,Y), is defined as

Cor(X,Y) = Cov(X,Y) / VVEX)V(Y) . (1.68)

The correlation is also called the correlation coefficient and is often written
as pxy -
From inequality (1.67), we see that the correlation coefficient is in [—1, 1].
If X and Y are independent, then Cov(X,Y) = Cor(X,Y) = 0 (exercise).

Structure of Random Variables

Random variables may consist of individual IR elements arrayed in some struc-
ture, such as a vector so that the random variable itself is in IR? or as a matrix
so that the random variable is in IRY*™. Many of the properties of random
variables are essentially the same whatever their structure, except of course
those properties may have structures dependent on that of the random vari-
able.

Multiplication is an operation that depends very strongly on the structure
of the operand. If x is a scalar, x2 is a scalar. If z is a is vector, however, there
are various operations that could be interpreted as extensions of a squaring
operation. First, of course, is elementwise squaring. In this interpretation 22
has the same structure as x. Salient relationships among the individual ele-
ments of x may be lost by this operation, however. Other interpretations are
2Tz, which preserves none of the structure of z, and zzT, which is in IR*¢,
The point of this is that what can reasonably be done in the analysis of ran-
dom variables depends on the structure of the random variables, and such
relatively simple concepts as moments require some careful consideration. In
many cases, a third-order or higher-order moment is not useful because of its
complexity.

Structural Moments

For random variables that have a structure such as a vector or matrix, the
elementwise moments are the same as those for a scalar-valued random vari-
able as described above, and hence, the first moment, the mean, has the same
structure as the random variable itself.

Higher order moments of vectors and matrices present some problems be-
cause the number of individual scalar moments is greater than the number of
elements in the random object itself. For multivariate distributions, the higher-
order marginal moments are generally more useful than the higher-order joint
moments. We define the second-order moments (variances and covariances)
for random vectors and for random matrices below.

Definition 1.22 (variance-covariance of a random vector)
The variance-covariance of a vector-valued random variable X is the expec-
tation of the outer product,
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V(X) =E (X —EX)(X —EX)"), (1.69)
if it exists.

For a constant vector, the rank of an outer product is no greater than 1,
but unless X 2 E(X), V(X) is nonnegative definite. We see this by forming
the scalar random variable Y = ¢TX for any ¢ # 0, and writing

(If X 2 E(X), then V(X) = 0, and while it is true that ¢"0c = 0 > 0, we do
not say that the 0 matrix is nonnegative definite. Recall further that whenever
I write a term such as V(X), I am implicitly assuming its existence.)

Furthermore, if it is not the case that X *2° E(X), unless some element
X; of a vector X is such that

X 203 (a; + b;X;),
J#i

then V(X) is positive definite a.s. To show this, we show that V(X) is full
rank a.s. (exercise).

The elements of V(X) are the bivariate moments of the respective elements
of X; the (4, j) element of V(X) is the covariance of X; and X, Cov(X;, X;).

If V(X) is nonsingular, then the correlation matrix of X, written Cor(X)
is

Cor(X) = (E(X —E(X))") (V(X)) "E(X — E(X)). (1.70)

The (7,7) element of Cor(X) is the correlation of X; and X, and so the
diagonal elements are all 1.

Definition 1.23 (variance-covariance of a random matrix)
The wvariance-covariance of a matrixz random wvariable X is defined as the
variance-covariance of vec(X):

V(X) = V(vee(X)) = E (vec(X — E(X))(vec(X — E(X)))T), (1.71)

if it exists.

Linearity of Moments

The linearity property of the expectation operator yields some simple linearity
properties for moments of first or second degree of random variables over the
same probability space.
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For random variables X, Y, and Z with finite variances and constants a,
b, and ¢, we have

V(aX +Y +¢) = a®V(X) + V(Y) 4 2aCov(X, Y); (1.72)
that is, V(-) is not a linear operator (but it simplifies nicely), and

Cov(aX +bY +¢, X +7) = aV(X)+aCov(X, Z)+bCov(X,Y) +bCov (Y, Z);

(1.73)
that is, Cov(-,-) is a bilinear operator. Proofs of these two facts are left as
exercises.

Copulas

A copula is a function that relates a multivariate CDF to lower dimensional
marginal CDFs. The basic ideas of copulas can all be explored in the context
of a bivariate distribution and the two associated univariate distributions, and
the ideas extend in a natural way to higher dimensions.

Definition 1.24 (two-dimensional copula)
A two-dimensional copula is a function C' that maps [0, 1]% onto [0, 1] with the
following properties:

1. for every u € [0, 1],

C(0,u) =C(u,0) =0, (1.74)
and
Cc(1,u) =C(u,1) = u, (1.75)
2. for every (u1,us), (v1,v2) € [0,1]? with uy < vy and uy < vy,
C(ul, 'LLQ) — C(ul, ’UQ) — C(’Ul, 'LLQ) + C(’Ul, 'UQ) Z 0. (176)
|

A two-dimensional copula is also called a 2-copula.

The arguments to a copula C' are often taken to be CDFs, which of course
take values in [0, 1].

The usefulness of copulas derive from Sklar’s theorem, which we state
without proof.

Theorem 1.19 (Sklar’s theorem)
Let Pxy be a bivariate CDF with marginal CDFs Px and Py. Then there
exists a copula C such that for every x,y € IR,

Pxy(z,y) = C(Px (), Py (y))- (1.77)

If Px and Py are continuous everywhere, then C' is unique; otherwise C is
unique over the support of the distributions defined by Px and Py .

Conwversely, if C' is a copula and Px and Py are CDFs, then the function
Pxy (z,y) defined by equation (1.77) is a CDF with marginal CDFs Px(x)
and Py (y).
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Thus, a copula is a joint CDF of random variables with U(0, 1) marginals.
The proof of the first part of the theorem is given in Nelsen (2006), among
other places. The proof of the converse portion is straightforward and is left
as an exercise.

For many bivariate distributions the copula is the most useful way to
relate the joint distribution to the marginals, because it provides a separate
description of the individual distributions and their association with each
other.

One of the most important uses of copulas is to combine two marginal
distributions to form a joint distribution with known bivariate characteristics.

Certain standard copulas are useful in specific applications. The copula
that corresponds to a bivariate normal distribution with correlation coefficient

pis
d(u) p@TH(v)
CNp(u, ’U) = / / (bp(tl; t2) dthtl, (178)

where ®(-) is the standard (univariate) normal CDF, and ¢,(-,-) is the bi-
variate normal PDF with means 0, variances 1, and correlation coefficient p.
This copula is usually called the Gaussian copula and has been widely used
in financial applications.

The association determined by a copula is not the same as that determined
by a correlation; that is, two pairs of random variables may have the same
copula but different correlations.

1.1.5 Entropy

Probability theory is developed from models that characterize uncertainty
inherent in random events. Information theory is developed in terms of the
information revealed by random events. The premise is that the occurrence
of an event with low probability is more informative than the occurrence of
an event of high probability. For a discrete random variable we can effec-
tively associate a value of the random variable with an event, and we quantify
information in such a way that the information revealed by a particular out-
come decreases as the probability increases. Thus, there is more information
revealed by a rare event than by a common event.

Definition 1.25 (self-information)
Let X be a discrete random variable with probability mass function px. The
self-information of X = x is —log,(px ()). |

Self-information is also called Shannon information. The logarithm to the base
2 comes from the basic representation of information in base 2, but we can
equivalently use any base, and it is common to use the natural log in the
definition of self-information.

The logarithm of the PDF is an important function in studying random
variables. It is used to define logconcave families (see page 165). The negative
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of its expected value is called “entropy”, or sometimes, “Shannon entropy” to
distinguish it from other measures of entropy.

Definition 1.26 (entropy)
Let X be a random variable with PDF px with respect to a o-finite measure.
The entropy of the random variable X is

E(—log(px (X)))- (1.79)
1

The expected value of the derivative of the logarithm of the PDF with
respect to a parameter of a distributional family yields another definition of
“information” (see Section 1.1.6), and it appears in an important inequality
in statistical theory (see pages 399 and 854).

The expected value in expression (1.79) is smallest when the it is taken
wrt the distribution with PDF px, as we see in the following theorem, known
as the Gibbs lemma.

Theorem 1.20 (Gibbs lemma)
Let Py and Py be probability distributions with PDFs py and ps respectively.
Then

Ep, (—log(p1(X))) < Ep, (—log(p2(X))), (1.80)
with equality only if p1(x) = pa(x) a.e.

Proof. I give a proof for distributions with PDFs dominated by Lebesgue
measure, but it is clear that a similar argument would hold for other measures.

Let p; and p2 be PDFs dominated by Lebesgue measure. Let X be the set
of = such that pi(z) > 0. Over X

log (p2($)> < pa(z) 1

pi(z)) ~ pi(x)

with inequality iff ps(x) = p1(z). So we have

p2()
pi(z)log (p1($)> < pa(z) — p1(2).
Now
Ep, (—log(p1(X))) — Ep, (—log(p2(X))) = — [ p1(=)log(pi(x))dz
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|

The definitions of information theory are generally given in the context of

a countable sample space, and in that case, we can see that the entropy is the
expected value of the self-information, and equation (1.79) becomes

H(X) =~ px(z)log(px(x)), (1.81)

which is the more familiar form in information theory.

We can likewise define the joint entropy H(X,Y) in terms of the joint
PDF PX)y.-

We can see that the entropy is maximized if all outcomes are equally
probable. In the case of a discrete random variable with two outcomes with
probabilities 7 and 1 —7 (a Bernoulli random variable with parameter 7), the
entropy is

—mlog(m) — (1 — ) log(l — 7).

We note that it is maximized when = = 1/2.

1.1.6 Fisher Information

The concept of “information” is important in applications of probability the-
ory. We have given one formal meaning of the term in Section 1.1.5. We will
give another formal definition in this section, and in Section 1.6.1, we will give
an informal meaning of the term in the context of evolution of o-Fields.

If a random variable X has a PDF f(z;0) wrt a o-finite measure that is
differentiable in 6, the rate of change of the PDF at a given = with respect to
different values of # intuitively is an indication of the amount of information
2 provides. For such distributions, we define the “information” (or “Fisher
information”) that X contains about 6 as

1(8) = Eq ((moggéX;@)) (moggéX;@))T), (1.82)

1.1.7 Generating Functions

There are various functionals of the PDF or CDF that are useful for de-
termining properties of a distribution. One important type are “generating
functions”. These are functions whose derivatives evaluated at specific points
yield important quantities that describe the distribution, such as moments, or
as in the case of discrete distributions, the probabilities of the points in the
support.

We will describe these functions in terms of d-variate random variables,
although, as we discussed on pages 30 through 39, the higher-order moments
of d-variate random variables have structures that depends on d.
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Moment-Generating Functions

Definition 1.27 (moment-generating function)
For the random d-variate X, the moment-generating function (MGF) is

bx(t) =E (etTX) . teN.(0) CRY, (1.83)

if this expectation is finite for some € > 0. |

The moment-generating function is obviously nonnegative.

Many common distributions do not have moment-generating functions.
Two examples are the Cauchy distribution (exercise) and the lognormal dis-
tribution (Example 1.10).

For a scalar random variable X, the MGF yields the (raw) moments di-
rectly (assuming existence of all quantities):

dFex (t)

T = B(X%). (1.84)

t=0

For vector-valued random variables, the moments become tensors, but the
first two moments are very simple:

Vix(t)]i=o = E(X) (1.85)

and
VVYx (t)]i—o = B(XTX). (1.86)

Because of the foregoing and the fact that for Yk > 1, |¢t| > 0,3z¢ > |z| >
zo = ¥ > ¥, we have the following fact.

Theorem 1.21
If for the scalar random variable X the MGF x (t) exists, then E(|X|¥) < oo

and E(X*) = ¢{(0).

The theorem also holds for vector-valued random variables, with the appro-
priate definition of X*.
The converse does not hold, as the following example shows.

Example 1.10 a distribution whose moments exist but whose moment-
generating function does not exist

The lognormal distribution provides some interesting examples with regard
to moments. First, recall from page 33 that the moments do not uniquely
determine a lognormal distribution (see also Exercise 1.28).

The standard lognormal distribution is related to the standard normal
distribution. If Y has a standard normal distribution, then X = e¥ has a
lognormal distribution (that is, the log of a lognormal random variable has a
normal distribution).
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Let Y be a standard normal variable and let X = e¥. We see that the

moments of the lognormal random variable X exist for all orders &k = 1,2, .

E (X*) = E (")

1 o0
= — €
\/27T~/—oo

2
=M /2,

kue=v*/24y

However, for ¢ > 0,
E (etX) =E (etcy)
1 O ey y?
= — ete’' =y /2qy,.
V 27T w/foo i

By expanding e¥ in the exponent of the integrand as 1+y+y?/2+y3 /3! +-

we see that the integrand is greater than exp(t(1 + y + v°/3!)). However,

/ " exp(t(1+ y + 4 /30)dy = oo

— 00

hence, the MGF does not exist.

SR

When it exists, the MGF is very similar to the characteristic function,

which we will define and discuss in Section 1.1.8 beginning on page 45.

Generating Functions for Discrete Distributions

Frequency-generating functions or probability-generating functions (the terms

are synonymous) are useful for discrete random variables.

Definition 1.28 (probability-generating function)

For the discrete random variable X taking values x1, x2, ... with probabili-
ties 0 < p1,p2, . . ., the frequency-generating function or probability-generating

function is the polynomial

P(t) = Zpiﬂti- (1.87)
i=0
|
The probability of z, is
dr+1
i E @) le=o (1.88)
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The probability-generating function for the binomial distribution with pa-
rameters 7w and n, for example, is

P(t)= (mt+ (1 —m))".

For a discrete distribution, there is also a generating function for the fac-
torial moments. We see immediately that the factorial-moment-generating
function is the same as the probability-generating function evaluated at ¢+ 1:

Pt+1)=> pj(t+1)

=0
oo 7 ]

= ij+1 Z (Z.)tl
7=0 =1
= £ » o

=3 =Y i =1 —i+1))
i=0 = j=0
=0

1.1.8 Characteristic Functions

One of the most useful functions determining a probability distribution is the
characteristic function, or CF. The CF is also a generating function for the
moments.

Definition and Properties

Definition 1.29 (characteristic function)
For the random d-variate variable X, the characteristic function (CF), with
t e R, is

ox(t)=E (eitTX) (1.90)
where i = /—1. |

The characteristic function is the Fourier transform of the density with argu-
ment —t/(2m).

The function €* has many useful properties. There are several relationships
to trigonometric functions, series expansions, limits, and inequalities involving
this function that are useful in working with characteristic functions.

We see that the integral in equation (1.83) exists (as opposed to the in-
tegral in equation (1.90) defining the MGF) by use of Euler’s formula (equa-
tion (0.0.67)) to observe that

itTa

e = |cos (t'z) +isin (tTaz)’ = \/cos2 (tTz) +sin? (tTz) = 1.
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Euler’s formula also provides an alternate expression for the CF that is
sometimes useful:

ox(t) =E (cos (t" X)) +iE (sin (1" X)) . (1.91)

Although the CF always exists, it may not have an explicit representation.
The CF for the lognormal distribution, for example, cannot be represented
explicitly, but can be approximated to any tolerance by a divergent series
(exercise).

Note that the integration in the expectation operator defining the CF is
not complex integration; we interpret it as ordinary Lebesgue integration in
the real dummy variable in the PDF (or dF'). Hence, if the MGF is finite
for all ¢ such that |¢| < e for some € > 0, then the CF can be obtained by
replacing ¢ in ¢ x (t) by it. Note also that the MGF may be defined only in a
neighborhood of 0, but the CF is defined over IR.

There are some properties of the characteristic function that are immediate
from the definition:

ex (—t) = px(t) (1.92)
and
ox(0) =1. (1.93)

The CF is real if the distribution is symmetric about 0. We see this from
equation (1.91).
The CF is bounded:
ox ()] < 1. (1.94)

We see this property by first observing that

) = ().

itTa

and then by using Euler’s formula on ’e

The CF and the moments of the distribution if they exist are closely re-
lated, as we will see below. Another useful property provides a bound on the
difference of the CF at any point and a partial series in the moments in terms

of expected absolute moments.
21X jex|n Tt
< E | min [¢X] , [¢X] , (1.95)
n! 7 (n+1)!

ox() -3 U p(xt)
k=0

This property follows immediately from inequality 0.0.71 on page 663.
Another slightly less obvious fact is

Theorem 1.22
The CF is uniformly continuous on IR.
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Proof. We want to show that for any ¢t € R, |px(t + h) — ox(t)] — 0 as
h — 0.

ox(t+h) — ox ()] = ] [t (@ ) dF’

y

By the bounded convergence theorem (Corollary 0.1.25.1 on page 734), the
last integral goes to 0 as h — 0, so we have the desired result. |

RUES 1’ dF

Moments and the CF

As with the MGF, the (raw) moments of X, if they exist, can be obtained
from the derivatives of the CF evaluated at 0. For a scalar random variable
X, if the k' derivative of the CF exists in a neighborhood of 0, then

drox ()

o = (=D)F2B(X"). (1.96)

t=0
For vector-valued random variables, the moments become tensors of course,
but the first two moments are very simple:

Vox (t)]i=0 = iE(X) (1.97)

and
VVex(t)i=o = —E(X"X). (1.98)

Note that these derivatives are wrt a real variable. This means, for example,
that existence of the first derivative in a neighborhood does not imply the
existence of all derivatives in that neighborhood.

There is a type of converse to the statement that includes equation (1.96).

Theorem 1.23
Let X be a scalar random variable. If E(X*) exists and is finite, then the k'b
derivative of the CF of X exists and satisfies equation (1.96).

We will not give a formal proof here; But note that we have the existence
of the derivative of the CF because we can interchange the differentiation
and integration operators. For example, for the first moment (and the first
derivative) we have

d ite d ite
oo>’/xdF’—’/£e ]t_OdF’_IE/e dF|,_,

This is very different from the situation for MGFs; we saw in Example 1.10
that the moment may exist but the MGF, let alone its derivative, may not
exist.

Theory of Statistics (©2000-2020 James E. Gentle



48 1 Probability Theory

The converse of Theorem 1.23 is true for even moments (see Chung (2000)
or Gut (2005), for example); that is, if the CF has a finite even derivative of
even order k at 0, then the random variable has a finite moment of order k.

Perhaps surprisingly, however, the converse does not hold for odd moments
(see Exercise 1.36).

CF and MGF of Multiples and Sums

The CF or MGF for scalar multiples of a random variable or for sums of iid
random variables is easily obtained from the CF or MGF of the underlying
random variable(s). It is easy to see from the definition that if the random
variable X has CF ¢x(t) and Z = aX, for a fixed scalar a, then

pz(t) = px(at). (1.99)

Likewise, if X1, ..., X, are iid with CF ¢x (¢), and Y = X3 4+ - - - + X,,, then
the CF or MGF is just the n*" power of the CF or MGF of Xj:

ey (t) = (px ()" (1.100)

Combining these and generalizing (for independent but not necessarily
identically distributed X;), for W = 3", a; X;, we have

ew (t) = wai (ait). (1.101)

On page 59, we discuss the use of CFs and MGFs in studying general
transformations of random variables.

Uniqueness

The importance of the characteristic function or of the moment-generating
function if it exists is that it is unique to a given distribution. This fact is
asserted formally in the following theorem.

Theorem 1.24 (inversion theorem)
The CF (or MGF if it exists) completely determines the distribution.

We will not prove this theorem here; its proof can be found in a number of
places, for example, Billingsley (1995), page 346. It is essentially the same
theorem as the one often used in working with Fourier transforms.

The limit of a sequence of CFs or MGFs also determines the limiting
distribution if it exists, as we will see in Theorem 1.37. This fact, of course,
also depends on the uniqueness of CFs or MGFs, if they exist.

We now illustrate an application of the CF by proving Theorem 1.17 stated
on page 33. This is a standard result, and its method of proof using analytic
continuation is standard.
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Proof. (Theorem 1.17)
We are given the finite scalar moments vy, 1, ... (about any origin) of some
probability distribution, and the condition that

converges for some real nonzero t. We want to show that the moments uniquely
determine the distribution. We will do this by showing that the moments
uniquely determine the CF.

Because the moments exist, the characteristic function ¢(t) is continuous
and its derivatives exist at ¢ = 0. We have for ¢ in a neighborhood of 0,

p(t) = ZT: (lt;# +R,, (1.102)
j=0 )

where |R,| < vpy1|t|" T/ (r + 1)L

Now because Y v;t7/j! converges, v;t7/j! goes to 0 and hence the right
hand side of equation (1.102) is the infinite series Z;io (lti# if it con-
verges. This series does indeed converge because it is dominated termwise
by > v;t7/j! which converges. Thus, () is uniquely determined within a
neighborhood of ¢ = 0. This is not sufficient, however, to say that o(t) is
uniquely determined a.e.

We must extend the region of convergence to IR. We do this by analytic
continuation. Let ty be arbitrary, and consider a neighborhood of ¢ = {.
Analogous to equation (1.102), we have

[— ; 00

</7(t) _ Z lﬂ(t —.| to)J / pieitorq + ET'
= oo

Now, the modulus of the coefficient of (t — o)’ /4! is less than or equal to v;;
hence, in a neighborhood of ¢, ¢(t) can be represented as a convergent Taylor
series. But tg was arbitrary, and so ¢(t) can be extended through any finite
interval by taking it as the convergent series. Hence, ¢(t) is uniquely defined
over IR in terms of the moments; and therefore the distribution function is
uniquely determined. |

Characteristic Functions for Functions of Random Variables;
Joint and Marginal Distributions

If X € R? is a random variable and for a Borel function g, g(X) € IR™, the
characteristic function of g(X) is

Pg(x)(t) = Ex (e“TW”) , teR™, (1.103)
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where Ex represents expectation wrt the distribution of X. Other generating
functions for g(X) are defined similarly.

In some cases of interest, the Borel function may just be a projection. For a
random variable X consisting of two components, (X7, X2), either component
is just a projection of X. In this case, we can factor the generating functions
to correspond to the two components.

If px (t) is the CF of X, and if we decompose the vector ¢ to be conformable
to X = (X1, X2), then we have the CF of X; as ¢x, (t1) = ¢x(t1,0).

Note that ¢x, (t1) is not (necessarily) the CF of the marginal distribution
of X7. The expectation is taken with respect to the joint distribution.

Following equation (1.31), we see immediately that X; and X, are inde-
pendent iff

ex(t) = ox, (t1)px, (t2). (1.104)

Cumulant-Generating Function

The cumulant-generating function, defined in terms of the characteristic func-
tion, can be used to generate the cumulants if they exist.

Definition 1.30 (cumulant-generating function)
For the random variable X with characteristic function ¢(t) the cumulant-
generating function is

K(t) = log(e(t)). (1.105)
1

(The “K” in the notation for the cumulant-generating function is the Greek
letter kappa.) The cumulant-generating function is often called the “second
characteristic function”.

The derivatives of the cumulant-generating function can be used to evalu-
ate the cumulants, similarly to the use of the CF to generate the raw moments,
as in equation (1.96).

If Z=X+4Y, given the random variables X and Y, we see that

Kz(t) = Kx(t) + Ky (1). (1.106)

The cumulant-generating function has useful properties for working with
random variables of a form such as

Yo = (3 Xi = nu) Vo,

that appeared in the central limit theorem above. If X7, ..., X,, are iid with
cumulant-generating function Ky (t), mean p, and variance 0 < 02 < oo, then
the cumulant-generating function of Y, is

Ky, (1) = —\/Z“t +nKx (ﬁ) . (1.107)
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A Taylor series expansion of this gives

1 K"'(0)
Ky (t) = —=t?
nt) =3t + 61/no3
from which we see, as n — oo, that Ky, () converges to —t?/2, which is the
cumulant-generating function of the standard normal distribution.

4 (1.108)

1.1.9 Functionals of the CDF; Distribution “Measures”

We often use the term “functional” to mean a function whose arguments
are functions. The value of a functional may be any kind of object, a real
number or another function, for example. The domain of a functional is a set
of functions. I will use notation of the following form: for the functional, a
capital Greek or Latin letter, 7", M, etc.; for the domain, a calligraphic Latin
letter, F, G, etc.; for a function, an italic letter, g, F', G, etc.; and for the
value, the usual notation for functions, 7'(G) where G € G, for example.
Parameters of distributions as well as other interesting characteristics of
distributions can often be defined in terms of functionals of the CDF. For ex-

ample, the mean of a distribution, if it exists, may be written as the functional
M of the CDF F:

M(F) = /de(y). (1.109)

Viewing this mean functional as a Riemann—Stieltjes integral, for a discrete
distribution, it reduces to a sum of the mass points times their associated
probabilities.

A functional operating on a CDF is called a statistical functional or sta-
tistical function. (This is because they are often applied to the ECDF, and
in that case are “statistics”.) I will refer to the values of such functionals as
distributional measures. (Although the distinction is not important, “M” in
equation (1.109) is a capital Greek letter mu. I usually—but not always—
will use upper-case Greek letters to denote functionals, especially functionals
of CDFs and in those cases, I usually will use the corresponding lower-case
letters to represent the measures defined by the functionals.)

Many statistical functions, such as M (F') above, are expectations; but not
all are expectations. For example, the quantile functional in equation (1.113)
below cannot be written as an expectation. (This was shown by Bickel and Lehmann
(1969).)

Linear functionals are often of interest. The statistical function M in equa-
tion (1.109), for example, is linear over the distribution function space of CDF's
for which the integral exists.

It is important to recognize that a given functional may not exist at a
given CDF. For example, if

F(y) =1/2+ tan™'((y — a)/B)) /7 (1.110)
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(that is, the distribution is Cauchy), then M (F') does not exist. (Recall that I
follow the convention that when I write an expression such as M (F') or T'(F),
I generally imply the existence of the functional for the given F'. That is, I do
not always use a phrase about existence of something that I implicitly assume
exists.)

Also, for some parametric distributions, such as the family of beta distri-
butions, there may not be a “nice” functional that yields the parameter.

A functional of a CDF is generally a function of any parameters associated
with the distribution, and in fact we often define a parameter as a statistical
function. For example, if 1 and o are parameters of a distribution with CDF
F(y; p,o0) and 7 is some functional, we have

Y(F(y; p,0)) = g(p, 0),

for some function g. If, for example, the M in equation (1.109) above is 7" and
the F is the normal CDF F(y; p,0), then T'(F(y; p,0)) = p.

Moments

For a univariate distribution with CDF F, the r* central moment from equa-
tion (1.50), if it exists, is the functional

pr = My (F)
= [y — ) dF(y).

For general random vectors or random variables with more complicated
structures, this expression may be rather complicated. For r = 2, the matrix
of joint moments for a random vector, as given in equation (1.69), is the
functional

(1.111)

() = -y -w" ). (1.112)

Quantiles

Another set of useful distributional measures for describing a univariate dis-
tribution with CDF F are the quantiles. For 7 €]0, 1], the 7 quantile is given
by the functional = (F):

Zx(F) = inf{y, s.t. F(y) > 7}. (1.113)

This functional is the same as the quantile function or the generalized inverse
CDF,
Z.(F) = FY(n), (1.114)

as given in Definition 1.15.
The 0.5 quantile is an important one; it is called the median. For the
Cauchy distribution, for example, the moment functionals do not exist, but
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the median does. An important functional for the Cauchy distribution is,
therefore, =g 5(F) because that is the location of the “middle” of the distri-
bution.

Quantiles can be used for measures of scale and of characteristics of the
shape of a distribution. A measure of the scale of a distribution, for example,
is the interquartile range:

Zo.75 — Z0.25- (1.115)

Various measures of skewness can be defined as

1

(Elfﬂ' -

05) = (Zo.5 — 5x) (1.116)

— 3

(| [t

=
1—m —T

for 0 < ™ < 0.5. For m = 0.25, this is called the quartile skewness or the
Bowley coefficient. For m = 0.125, it is called the octile skewness. These can
be especially useful with the measures based on moments do not exist. The
extent of the peakedness and tail weight can be indicated by the ratio of
interquantile ranges: _
- om (1.117)

™2

[11] [n)

fln’y N
These measures can be more useful than the kurtosis coefficient based on the
fourth moment, because different choices of m; and 7 emphasize different
aspects of the distribution. In expression (1.117), 73 = 0.025 and 7o = 0.125
yield a good measure of tail weight, and 71 = 0.125 and 72 = 0.25 in expres-
sion (1.117) yield a good measure of peakedness.

Lj Functionals

Various modifications of the mean functional M in equation (1.109) are often
useful, especially in robust statistics. A functional of the form

Ly(F) = / yJ(y) dF(y), (1.118)

for some given function J, is called an L; functional. If J = 1, this is the
mean functional. Often J is defined as a function of F(y).

A “trimmed mean”, for example, is defined by an Lj; functional with
J(y) = (B — @) Mo g(F(y)), for constants 0 < o < § < 1 and where I
is the indicator function. In this case, the L; functional is often denoted as
T, 3. Often 3 is taken to be 1 —a, so the trimming is symmetric in probability
content.

M, Functionals

Another family of functionals that generalize the mean functional are defined
as a solution to the minimization problem
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[ ol M,(F)) 4P ) = i [ p(0.6)aF @), (1.119)

for some function p and where @ is some open subset of IR?. A functional de-
fined as the solution to this optimization problem is called an M, functional.
(Note the similarity in names and notation: we call the M in equation (1.109)
the mean functional; and we call the M, in equation (1.119) the M, func-
tional.)

Two related functions that play important roles in the analysis of M,
functionals are

_ 9y, )

Yy, t) = T (1.120)

and

w0 = [600F @) = o [s0are) iz

If y is a scalar and p(y,0) = (y — 6)? then M,(F) is the mean functional
from equation (1.109). Other common functionals also yield solutions to the
optimization problem (1.119); for example, for p(y, ) = |y — 0|, Zo.5(F) from
equation (1.113) is an M, functional (possibly nonunique).

We often choose the p in an M, functional to be a function of y — 6, and
to be convex and differentiable. In this case, the M, functional is the solution
to

EW(Y —0)) =0, (1.122)

where
Y(y —0) = dp(y — 0)/do,

if that solution is in the interior of &.

1.1.10 Transformations of Random Variables

We often need to determine the distribution of some transformation of a given
random variable or a set of random variables. In the simplest case, we have
a random variable X with known distribution and we want to determine the
distribution of Y = h(X), where h is a full-rank transformation; that is, there
is a function =1 such that X = h=1(Y). In other cases, the function may not
be full-rank, for example, X may be an n-vector, and ¥ =Y | X;.

There are three general approaches to the problem: the method of CDFs;
the method of direct change of variables, including convolutions; and the
method of CFs or MGFs. Sometimes one method works best, and other times
some other method works best.

Method of CDFs

Given X with known CDF Fx and Y = h(X) is invertible as above, we can
write the CDF Fy of Y as
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Example 1.11 distribution of the minimum order statistic in a two-
parameter exponential distribution

Consider a shifted version of the exponential family of distributions, called
the two-parameter exponential with parameter («,6). Suppose the random
variables X, ..., X,, are iid with Lebesgue PDF

Da,o(T) = Hflef(xfa)/gl]ayoo[(x).
We want to find the distribution of the minimum of {Xi,..., X, }. Let us
denote that minimum by Y. (This is an order statistic, for which we use a
general notation, ¥ = X(1y. We discuss distributions of order statistics more
fully in Section 1.1.12.) We have
Pr(Y <t)=1-Pr(Y > ¢)
=1-Pr(X; >tfori=1,...,n)
=1-(Pr(X; >tVX;))"
(e (tfa)/e)n
—1— 7n(t7a)/0'

This is the CDF for a two-parameter exponential distribution with param-
eters o and 0/n. If instead of a two-parameter exponential distribution, we
began with the more common one-parameter exponential distribution with
parameter 6, the distribution of ¥ would be the one-parameter exponential
distribution with parameter 6/n. |

Example 1.12 distribution of the square of a continuous random
variable
Given X with CDF Fx and Lebesgue PDF fx. Let Y = X2. For z < 0,
Y100, z]] =0, and Y [ —oc0, x]] = X [[-\/7, \/Z]], otherwise. Therefore
the CDF Fy of Y is
Fy(z) = Pr(Y~'[] - o0, 2]])

= Pr(X [z, Va]))

= (Fx(Vz) = Fx(—=v2))Ig , (z).
Differentiating, we have the Lebesgue PDF of Y:

f () = %(fx(ﬁ) + (V)T (). (1.123)

Theory of Statistics (©2000-2020 James E. Gentle



56 1 Probability Theory
Method of Change of Variables

If X has density px(z|a,0) and Y = h(X), where h is a full-rank transforma-
tion (that is, there is a function h~! such that X = h=1(Y")), then the density
of Y is

py (e, 0) = px (R (y)]a, 0) [J-1 ()], (1.124)

where Jp-1(y) is the Jacobian of the inverse transformation, and | - | is the
determinant.

Constant linear transformations are particularly simple. If X is an n-vector
random variable with PDF fx and A is an n x n constant matrix of full rank,
the PDF of Y = AX is fx|det(A™1)].

In the change of variable method, we think of h as a mapping of the range
X of the random variable X to the range ) of the random variable Y, and
the method works by expressing the probability content of small regions in Y
in terms of the probability content of the pre-image of those regions in X'.

For a given function h, we often must decompose & into disjoint sets over
each of which A is one-to-one.

Example 1.13 distribution of the square of a standard normal ran-
dom variable
Suppose X ~ N(0,1), and let Y = h(X) = X2. The function h is one-to-one
over | — 0o, 0[ and, separately, one-to-one over [0, —co[. We could, of course,
determine the PDF of Y using equation (1.123), but we will use the change-
of-variables technique.

The absolute value of the Jacobian of the inverse over both regions is
2~ /2. The Lebesgue PDF of X is

hence, the Lebesgue PDF of Y is

1

fr(y) = Ey’”z’e*y/z’lm (v)- (1.125)

This is the PDF of a chi-squared random variable with one degree of freedom
X7 (see Table A.3). |

Sums

A simple application of the change of variables method is in the common
situation of finding the distribution of the sum of two scalar random variables
that are independent but not necessarily identically distributed.

Suppose X is a d-variate random variable with PDF fx, Y is a d-variate
random variable with PDF fy-, and X and Y are independent. We want the
density of U = X + Y. We form another variable V' =Y and the matrix
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(11
a=(%1):
so that we have a full-rank transformation, (U, V)T = A(X,Y)T The inverse
of the transformation matrix is

Iq —1,

-1 _ (4d —1a

ar= (%)

and the Jacobian is 1. Because X and Y are independent, their joint PDF

is fxy(z,y) = fx(x)fy(y), and the joint PDF of U and V is fyy(u,v) =
fx(u —v)fy (v); hence, the PDF of U is

fu(u) = f]Rd fx(w—)fy(v)dv
= f]Rd Jy (u—v) fx (v)do.

We call fy the convolution of fx and fy. The commutative operation of
convolution occurs often in applied mathematics, and we denote it by fu =
fx * fy. We often denote the convolution of a function f with itself by f(*);
hence, the PDF of X; + X, where X, X, are iid with PDF fy is fZ). From
equation (1.126), we see that the CDF of U is the convolution of the CDF of
one of the summands with the PDF of the other:

(1.126)

FU:Fx*fy:Fy*fx. (1127)

In the literature, this operation is often referred to as the convolution of the
two CDFs, and instead of as in equation (1.127), may be written as

FU:Fx*Fy.

Note the inconsistency in notation. The symbol “x” is overloaded. Following
the latter notation, we also denote the convolution of the CDF F' with itself
as F(),

Example 1.14 sum of two independent Poissons
Suppose X is distributed as Poisson(6;) and X5 is distributed independently
as Poisson(6z). By equation (1.126), we have the probability function of the
sum U = X7 + X5 to be
2L 0v vl 9yl
OESY ,

= (u—2)! 0!

1 u
= aeel+02 (91 + 92) .

The sum of the two independent Poissons is distributed as Poisson(f; +65). 1
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Table 1.1. Distributions of the Sums of Independent Random Variables

Distributions of X;
fori=1,...,k Distribution of ) X;

Poisson(6;) Poisson (> 6;)
Bernoulli() binomial(k, )
binomial(n;, ) binomial(}_ n;, )
geometric(m) negative binomial(k, )
negative binomial(n;, 7)| negative binomial(}_ n;, )
normal(u;, o?) normal(Y pi, 3" 07)
exponential(3) gamma(k, 3)
gamma(a;, 3) gamma(d_ oy, )

The property shown in Example 1.14 obviously extends to k£ independent
Poissons. Other common distributions also have this kind of property for sums,
as shown in Table 1.1. For some families of distributions such as binomial,
negative binomial, and gamma, the general case is the sum of special cases.

The additive property of the gamma distribution carries over to the special
cases: the sum of k iid exponentials with parameter 0 is gamma(k, ) and the
sum of independent chi-squared variates with v4, ..., v degrees of freedom is
distributed as XQZ vy

The are other distributions that could be included in Table 1.1 if the
parameters met certain restrictions, such as being equal; that is, the random
variables in the sum are iid.

In the case of the inverse Gaussian(u,\) distribution, a slightly weaker
restriction than iid allows a useful result on the distribution of the sum so long
as the parameters have a fixed relationship. If X3, ..., X} are independent and
X; is distributed as inverse Gaussian(uoai, Aoa?), then Y X; is distributed as
inverse Gaussian(ug > a;, Ao(Y a;)?).

Products

Another simple application of the change of variables method is for finding
the distribution of the product or the quotient of two scalar random variables
that are independent but not necessarily identically distributed.

Suppose X is a random variable with PDF fx and Y is a random variable
with PDF fy and X and Y are independent, and we want the density of
the product U = XY. As for the case with sums, we form another variable
V =Y, form the joint distribution of U and V using the Jacobian of the inverse
transformation, and finally integrate out V. Analogous to equation (1.126),
we have

fulu) = /700 Ix(u/v)fy (v)v~tdo, (1.128)

and for the quotient W = X/Y, we have
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fww) = /700 fx (wv) fy (v)vdo. (1.129)

Example 1.15 the F family of distributions

Suppose Y; and Ys are independent chi-squared random variables with v; and
vo degrees of freedom respectively. We want to find the distribution of W =
Y1/Y,. Along with the PDFs of chi-squared random variables, equation (1.129)
yields

fW(w) o wu1/271 /Oo v(ul+u2)/27167(w+1)v/2dv'
0

This integral can be evaluated by making the change of variables z = (w+1)v.
After separating out the factors involving w, the remaining integrand is the
PDF of a chi-squared random variable with vy 4+ vo — 1 degrees of freedom.
Finally, we make one more change of variables: F' = Wy /vy, This yields

flll/271

fr(f) o (Vg + v f)rtm)/2

(1.130)

This is the PDF of an F random variable with v; and v5 degrees of freedom
(see Table A.3). It is interesting to note that the mean of such a random
variable depends only on vs. |

Method of MGFs or CFs

In this method, for the transformation ¥ = h(X) we write the MGF of Y as
E (etTY) =E (etTh(X)), or we write the CF in a similar way. If we can work

out the expectation (with respect to the known distribution of X), we have
the MGF or CF of Y, which determines its distribution.

The MGF or CF technique is particularly useful in the case when Y is the
sum from a simple random sample. If

Y =X+t Xy,

where Xi,..., X, are iid with CF @x(t), we see from the linearity of the
expectation operator that the CF of Y is

ey () = (px ()" (1.131)

We use this approach in the proof of the simple CLT, Theorem 1.38 on page 87.

The MGF or CF for a linear transformation of a random variable has a
simple relationship to the MGF or CF of the random variable itself, as we
can easily see from the definition. Let X be a random variable in IR?, A be a
d x m matrix of constants, and b be a constant m-vector. Now let

Y = ATX +b.

Then -
oy (t) =€ 'y (At), teIR™. (1.132)
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Example 1.16 distribution of the sum of squares of independent
standard normal radndom variables
Suppose X1,..., X, ~ N(0,1), and let Y = > X?. In Example 1.13, we saw

that Y; = X? < X3. Because the X; are iid, the Y; are iid. Now the MGF of
2 .
ax? is

: 1 19 _ya-
E(etn) :/ 27Ty 1/2,-y(1 2t)/2dy
0 \%
1
=1-2t)"Y% for <3

Hence, the MGF of Y is (1 —2t)"/2 for ¢ < 1/2, which is seen to be the MGF
of a chi-squared random variable with n degrees of freedom.
This is a very important result for applications in statistics. |

1.1.11 Decomposition of Random Variables
We are often interested in the sum of random numbers,
Sp=X1+ -+ Xi. (1.133)

Because the sum may grow unwieldy as k increases, we may work with normed
sums of the form S /ay.

In order to develop interesting properties of S, there must be some com-
monality among the individual X;. The most restrictive condition is that the
X; be iid. Another condition for which we can develop meaningful results is
that the X; be independent, but different subsequences of them may have
different distributions.

The finite sums that we consider in this section have relevance in the limit
theorems discussed in Sections 1.4.1 and 1.4.2.

Infinitely Divisible Distributions

Instead of beginning with the X; and forming their sum, we can think of
the problem as beginning with a random variable X and decomposing it into
additive components. A property of a random variable that allows a particular
kind of additive decomposition is called divisibility.

Definition 1.31 (n-divisibility of random variables)
Given a random variable X and an integer n > 2, we say X is n-divisible if
there exist iid random variables X1, ..., X, such that

XLX 4+ + X,
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Notice that (n 4 1)-divisibility does not imply n-divisibility. We can see
this in the example of a random variable X with a binomial (3, 7) distribution,
which is clearly 3-divisible (as the sum of three Bernoullis). We see, however,
that X is not 2-divisible; that is, there cannot be iid X; and X5 such that
X = X + X3, because if there were, each X; would take values in [0, 3/2]
with Pr(X; = 0) > 0 and Pr(X; = 0) > 0, but in that case Pr(X =3/2) > 0.

Rather than divisibility for some fixed n, a more useful form of divisibility
is infinite divisibility; that is, divisibility for any n > 2.

Definition 1.32 (infinite divisibility of random variables)
A nondegenerate random variable X is said to be infinitely divisible if for

every positive integer n, there are iid random variables X,,1,..., X,n, such
that 4

X=Xu+-+ Xon (1.134)

|

Note that the distributions of the X,,s may be different from each other,
but for a given n, X1, ..., Xn, are identically distributed.

The random variables X,1, ..., X, in the definition above are a special
case of a triangular array in which for given n, the X,1, ..., X, are iid. We
encounter similar, more general triangular arrays in some of the limit theorems
of Section 1.4.2 (on page 106).

Because infinite divisibility is associated with the distribution of the ran-
dom variable, we will refer to other characteristics of an infinitely divisible
random variable, such as the PDF or CDF, as being infinitely divisible. In
the same form as equation (1.131), the characteristic function of an infinitely
divisible random variable for any positive integer n can be written as

ox(t) = (px, ()",

for some characteristic function @x, (t). Furthermore, if the characteristic
function of a random variable X can be expressed in this way for any n,
then X is infinitely divisible.

The normal, the Cauchy, and the Poisson families of distributions are all
infinitely divisible (exercise).

Divisibility properties are particularly useful in stochastic processes.

Stable Distributions

Another type of decomposition leads to the concept of stability. In this setup
we require that the full set of random variables be iid.

Definition 1.33 (stable random variables) ~
Let X, X;,..., X, be iid nondegenerate random variables. If for each n there
exist numbers d,, and positive numbers c,,, such that
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X144+ X, e X +d, (1.135)

then X is said to have a stable distribution (or to be a stable random variable).

This family of distributions is symmetric. We see this by noting that for the
variables X; and X5 in Definition 1.33 or in equations (1.135) or (1.136),
Y = X; — X, has a stable distribution that is symmetric about 0 (exercise).
Because there is a generalization of the stable family of distributions that is
not symmetric (see page 184), the family defined here is sometimes called the
symmetric stable family.

Definition 1.33 is equivalent to the requirement that there be three iid
nondegenerate random variables, X, X, and X5, such that for arbitrary con-
stants a1 and ao, there exists constants ¢ and d such that

a1 X1 + asXo £ X +d. (1.136)

In this case, X is has a stable distribution (or is a stable random variable). It
is an exercise to show that this is the case.

If X is a stable random variable as defined in equation (1.135), then there
exists a number « €]0, 2] such that

¢ =nl/?, (1.137)

(See Feller (1971), Section VI.1, for a proof.) The number « is called the indez
of stability or the characteristic exponent, and the random variable with that
index is said to be a-stable. The normal family of distributions is stable with
characteristic exponent of 2 and the Cauchy family is stable with characteristic
exponent of 1 (exercise).

An infinitely divisible family of distributions is stable (exercise). The Pois-
son family is an example of a family of distributions that is infinitely divisible,
but not stable (exercise).

1.1.12 Order Statistics

In a set of iid random variables X, ..., X, it is often of interest to consider
the ranked values X;, < ... < X; . These are called the order statistics and
are denoted as X(1.n), .- ., X(nm). For 1 <k < n, we refer to X(1.,) as the Eth
order statistic. We often use the simpler notation Xy, assuming that n is
some fixed and known value. Also, many other authors drop the parentheses
in the other representation, Xg.p,.

Theorem 1.25

In a random sample of size n from a distribution with PDF f dominated by a
o-finite measure and CDF F given the k*® order statistic Xy =a, the k-1
random variables less than Xy are iid with PDF
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1

fright (.I) - m

f(x)l]foqa[(x)a

and the n — k random variables greater than X () are iid with PDF

1

flcft (x) = 1—717'(&)

f(x)l]a,OO[(x)-

Proof. Exercise. |

Using Theorem 1.25, forming the joint density, and integrating out all
variables except the k*" order statistic, we can easily work out the density of
the k' order statistic as

P = (3) (F@) " (1-F@) . s

Example 1.17 distribution of order statistics from U(0, 1)
The distribution of the k*® order statistic from a U(0, 1) is the beta distri-
bution with parameters k and n — k + 1, as we see from equation (1.138).

From equation (1.138), the CDF of the k*" order statistic in a sample
from a distribution with CDF F' can be expressed in terms of the regularized
incomplete beta function (equation (C.10) on page 866) as

FX(k)(x) :IF(x)(kan_k+1) (1139)
The joint density of all order statistics is
! ] £@) ey <o <o (@1 - - ) (1.140)
i=1
The joint density of the i*" and ;" (i < j) order statistics is

n!
(-G —i-n—j)

i—1 j—i—1 n—
(Few)  (Few) - Few)  (1-Faw)  few)fe).

(1.141)

Although order statistics are obviously not independent, differences of or-

der statistics or functions of those differences are sometimes independent, as

we see in the case of the exponential family a uniform family in the following

examples. These functions of differences of order statistics often are useful in
statistical applications.

Example 1.18 another distribution from a two-parameter exponen-
tial distribution (continuation of Example 1.11)
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Suppose the random variables X1, Xo, ..., X, 11Ndexponential(oz, ). (Note that
n > 2.) Let Y = X(1) as before and let Y7 = Y (X; — X(1)). We want to find
the distribution of Y.

Note that

Yi =) (Xi-Xu)
=3 X —nXq)
=Y (Xo — X)) -

Now, for k =2,...,n, let

Yi=(n—-k+1) (X(k) — X(kfl)) .

Using the change-of-variables technique, we see that Yy 11Ndexponential(o, 0),
and are independent of X(;). We have independence because the resulting
joint density function factorizes. (This is the well-known exponential spacings
property.)

Now, >, Vi = > (X(;) — X(1)) = Y1, and the distribution of the sum of
n — 1 iid exponentials with parameters 0 and 6, multiplied by 6, is a gamma
with parameters n — 1 and 1. |

Example 1.19 distribution of order statistics from U(6y, 62)

Let X(1),...,X(n) be the order statistics in a sample of size n from the
U(601, 02) distribution. While it is clear that X(;y and X,y are not indepen-
dent, the random variables

_ X =X

Y, = ;
Xy = X

fori=2,...,n—1

3

are independent of both X1y and X(,. (Proving this is Exercise 1.47.) |

Quantiles and Expected Values of Order Statistics

We would expect the k' order statistic in an iid sample of size n to have
some relationship to the k/n quantile of the underlying distribution. Because
of the limited set of values that k/n can take on for any given n, there are
obvious problems in determining a direct relationship between quantiles and
order statistics. For given 0 < m < 1, we call the ([n7])'" order statistic,
X([n=]:m), the sample quantile of order .

The expected value of the k*" order statistic in a sample of size n, if it
exists, should be approximately the same as the k/n quantile of the underlying
distribution; and indeed, this is the case. We will consider this issue for large
n in Theorem 1.48, but for now, the first question is whether E(X.,,)) exists.

For simplicity in the following, let ji(3.n) = E(X(x:n)). It is easy to see that
H(k:n) exists and is finite if E(X) exists and is finite, where the distribution of
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X is the underlying distribution of the sample (exercise). The converse of this
statement is not true, and there are important cases in which ., exists and
is finite, but the E(X) does not exist. For example, in the Cauchy distribution,
H(k:n) exists and is finite unless £ = 1 or n (see Exercise 1.48b).

For the iid random variables X1, Xo, ... if the expectations ., exist, we
have the following relationship:

(n - k),u(kn) + k,u(qul:n) = NH(k:n—1)- (1142)

(See Exercise 1.49.)

1.2 Series Expansions

Series expansions are useful in studying properties of probability distributions.
We may represent a CDF or PDF as a series of some basis functions. For
example, the density may be written as

f(33> = Z Crgr(x)-

r=0

In such an expansion, the basis functions are often chosen as derivatives of
the normal distribution function, as in the Edgeworth expansions discussed
in Section 1.2.4.

1.2.1 Asymptotic Properties of Functions

***The development of the series representation allows us to investigate the
rate of convergence of the moments.

*** Consider a set of iid random variables, Xi,..., X,, and a function
T, of those random variables. Suppose T,, converges in distribution to the
distribution of the normal variate Z. A simple example of such a T;, is the
standardized sample mean n'/?(X,, — p)/o from a sample of size n. If

T, % 7,
then the characteristic function converges:
or, (1) = Be"T) = E(e"7).

***The question is how fast does it converge. At what rate (in n) do the
moments of T,, approach those of Z7
*#*fix Taylor series expansion *** equation (1.108) k3 = K"’(0)
1
Ky(t):—t2—|— F3 t3_|_...

" 2" " 6y/no? ’
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Thus, if the characteristic function for a random variable T, ¢, (t), can
be written as a series in terms involving n, it may be possible to determine
the order of convergence of the moments (because the derivatives of the cf
yield the moments).

expansion of statistical functionals
1.2.2 Expansion of the Characteristic Function
The characteristic function

px(t) = E(c"Y)

is useful for determining moments or cumulants of the random variable X, for
example, ¢'(0) = iE(X) and ¢”(0) = —E(X?).

If T,, = n'/?(X,,—p) /0o, it has an asymptotic standard normal distribution,
and

¢, (t) = E(e"")
_ E(eitnl/2Z)

= (eztt/n')",

where Z is standard normal.
Now the j'' cumulant, x;, of Z is the coefficient of (it)?/j! in a power
series expansion of the log of the characteristic function, so

1 1 .
wz(t) = exp (nlit + 552(#)2 +...4 j—|/£j(it)J +.. ) ,
but also

oz(t) =1+ E(Z)it + %E(ZQ)(it)Q +...+ jl—!E(Zj)(it)j +....

1.2.3 Cumulants and Expected Values

With some algebra, we can write the cumulants in terms of the expected
values as

> _l'nj(it)j =log [1+> %E(zi)(it)j

j>17" j>17°

= S X By

k>1 i>1

Equating coefficients, we get
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k1 = E(Z)

k2 = B(Z2) — (E(Z))* = V(2)
K3 = E((Z - E(2))%)

k1 = B((Z -E(2))") - 3(V(2))®

and so on. (There’s a lot of algebra here!)

One thing to notice is that the cumulant ~; is a homogeneous polynomial
of degree j in the moments (i.e., each term is of degree j).

Now, back to the characteristic function of Ty,: @7, (t) = (@z(t/n'/?))".
Using the fact that Z is standard normal (so k1 = 0 and k2 = 1), we can
write (using the series expansion of the exponential function the last step),

1 1
or, (1) = exp (5(%)2 + nil/ang(it)B +...+

nf(j72)/2_l/£j(it)j +.. ) ,
7!

1
=e " 2exp (n1/2§/§3(it)3 +...+

_ 1 _
n*(J*Q)/2FHj(,L't)J + .. ) ,
= t°/2 (1 + n71/2rl(it)n717"2(it) + ..+

where r; is a polynomial of degree 3j, with real coefficients, and depends on

the cumulants 3, ..., K42, but does not depend on n.
1
ri(x) = 6533:3
and )
ro(x) = ﬂ/@lafl + ingajﬁ

for example. Note that r; is an even polynomial when j is even and is odd
when j is odd.

The relevance of this is that it indicates the rate of convergence of the
moments.

1.2.4 Edgeworth Expansions in Hermite Polynomials

An Edgeworth expansion represents a distribution function as a series in
derivatives of the normal distribution function, or of the density, ¢(x). Tak-
ing successive derivatives of the normal distribution function yields a series of
polynomials that are orthogonal with respect to the normal density.
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If D= %, we have,

D¢(z) = —zd(x),
D*¢(x) = (2% = 1) (),
D’¢(x) = (—a® + 32)¢()

Letting p;(z) = D@ ¢(z), we see that the p;(x) are orthogonal with respect
to the normal density, that is,

o0
[ om0,
— 00
when i # j.

From the polynomial factors of **#i otk " we identify the Her-
mite polynomials

Hy=1
Hi==x
Hy=2"-1
H3:333—33:

which as we discuss on page 753, is a series in Hermite polynomials times ¢(x)
and in the cumulants (or moments). A series using these Hermite polynomials
is often called a Gram-Charlier series Edgeworth series.

The Edgeworth expansion for a given CDF Fx is

Fx(x) = Z CrHr(x)(b(x)'

The series representation is developed by equating terms in the characteristic
functions.

The adequacy of the series representation depends on how “close” the
distribution of the random variable is to normal. If the random variable is
asymptotically normal, the adequacy of the series representation of course
depends on the rate of convergence of the distribution of the random variable
to a normality.

1.2.5 The Edgeworth Expansion
Inverting the characteristic function transform yields a power series for the

distribution function, Frr, . After some more algebra, we can get this series in
the form
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Fr, (x) = () + n ' *pi(2)d(x) + n ' pa(z)p(x) + . . .,

where the p;’s are polynomials containing the cumulants and simple combi-
nations of Hermite polynomials.

This is the Edgeworth expansion of the distribution function of 7;,.

The degree of p; is 3j — 1, and is even for odd j, and odd for even j. This
is one of the most important properties of this representation.

In this expansion, heuristically, the term of order n=1/2 corrects the ap-
proximation for the effect of skewness, and the term of order n~! corrects the
approximation for the effect of kurtosis.

The first few Hermite polynomials are shown in equation (0.1.98) on
page 753.

This is an instance of the more general method of representing a given
function in terms of basis functions, as we discuss beginning on page 749.

1.3 Sequences of Spaces, Events, and Random Variables

Countably infinite sequences play the main role in the definition of the basic
concept of a o-field, and consequently, in the development of a theory of prob-
ability. Sequences of sets correspond to sequences of events and, consequently,
to sequences of random variables. Unions, intersections, and complements of
sequences of sets are important for studying sequences of random variables.
The material in this section depends heavily on the properties of sequences of
sets discussed on page 626 and the following pages.

At the most general level, we could consider a sequence of sample spaces,
{(Qn, Fn, Pn)}, but this level of generality is not often useful. Sequences of
o-fields and probability measures over a fixed sample space, or sequences of
probability measures over a fixed sample space and fixed o-field are often of
interest, however.

Sequences of o-Fields and Associated Probability Measures

Given a sample space (), we may be interested in a sequence of probability
spaces, {(Q, F,, Pn)}. Such a sequence could arise naturally from a sequence
of events {A,} that generates a sequence of o-fields. Beginning with some
base o-field Fy, we have the increasing sequence

FoCFr = o(FoU{A1}) CF = o(F1U{A}) C---. (1.143)
We have a sequence of probability spaces,
{(QFu, Po) | Fo CFL C - CF}, (1.144)

where the domains of the measures P, are evolving, but otherwise the sample
space and the other characteristics of P are not changing. This evolving se-
quence is the underlying paradigm of some stochastic processes, particularly
martingales, that we discuss in Section 1.6.
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Such a sequence of o-fields could of course equivalently be generated by a
sequence of random variables, instead of by a sequence of sets.

The sequence of probability measures exists and the measures are unique,
as the Carathéodory extension theorem ensures (see page 712).

Sequences of Probability Measures

It is also of interest to consider a sequence of probability measures {P,} over
a fixed measurable space (€2, F). Such sequences have important applications
in statistics. Convergent sequences of probability measures form the basis
for asymptotic inference. We will consider the basic properties beginning on
page 78, and then consider asymptotic inference in Section 3.8 beginning on
page 306.

Sequences of Events; lim sup and lim inf

In most of our discussion of sequences of events and of random variables, we
will assume that we have a single probability space, (2, F, P). This assump-
tion is implicit in a phrase such as “a sequence of events and an associated
probability measure”.

We begin by recalling a basic fact about a sequence of events and an
associated probability measure:

lim P(A;) < P(lim A;), (1.145)
and it is possible that

Compare this with the related fact about a useful sequence of intervals
(page 647):

" 1 1 1 1
=1

Consider a sequence of probabilities defined in terms of a sequence of
events, { P(Ay)}. Two important types of limits of such sequences of proba-
bilities are, similar to the analogous limits for sets defined on page 626,

lim sup P(A4,) < inf sup P(A;) (1.146)
n noi>n
liminf P(A,) < sup inf P(4,). (1.147)

Similarly to the corresponding relationship between unions and intersec-
tions of sequences of sets, we have the relationships in the following theorem.
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Theorem 1.26
Let {A,} be a sequence of events in a probability space. Then

P(limsup 4,,) < limsup P(4,) (1.148)
and
P(liminf A,)) > liminf P(A,,). (1.149)
Proof.
Consider
B, =UX A
and
Cn =0nN2, A
We see

B, \, limsup A4,

and likewise
C, / liminf A,.

Now we use the continuity of the measure to get

P(Ay) < P(B,) — P(limsup A,)

and
P(A,) > P(Cy,) — P(liminf A,).

For a sequence of sets {A,}, we recall the intuitive interpretations of
limsup,, A, and liminf, A,:

e An element w is in lim sup,, A, iff for each n, there is some ¢ > n for which
w € A;. This means that w must lie in infinitely many of the A,.

e An element w is in liminf, A, iff there is some n such that for all 1 > n,
w € A;. This means that w must lie in all but finitely many of the A,,.

In applications of probability theory, the sets correspond to events, and
generally we are more interested in those events that occur infinitely often;
that is, we are more interested in lim sup,, A,,. We often denote this as “i.0.”,
and we define

{Api.0.} =limsup A4,,. (1.150)
n
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Sequences of Random Variables; lim sup and lim inf

The lim sup and lim inf of a sequence of random variables {X,,} mean the lim
sup and lim inf of a sequence of functions, which we defined on page 725:

limsup X,, % inf sup X; (1.151)
n n i>n
and et
liminf X,, = sup inf X;. (1.152)

1.3.1 The Borel-Cantelli Lemmas

The analysis of any finite sequence is straightforward, so the interesting be-
havior of a sequence is determined by what happens as n gets large.

Tail Events and the Kolmogorov Zero-One Law

As n gets large, our interest will be in the “tail” of the sequence. In the fol-
lowing, we consider sequences of o-fields that are not necessarily increasing
or increasing, as were the collections of events used in discussing inequali-
ties (1.148) and (1.149).

Definition 1.34 (tail o-field; tail event)
Let {F,} be a sequence of o-fields. The o-field

T - ﬂzozlfn

is called the tail o-field of the sequence.
An event A € 7T is called a tail event of the sequence. |

A tail event occurs infinitely often (exercise).

We are often interested in tail o-fields of sequences of o-fields generated by
given sequences of events or sequences of random variables. Given the sequence
of events {A,}, we are interested in the o-fields F; = o(A;, Ait1,...). A tail
event in the sequence {F;} is also called a tail event of the sequence of events
{An}.

Given the sequence of random variables {X,, }, we are also often interested
in the o-fields O'(Xl', Xi+1, N )

If the events, o-fields, or random variables in the sequence are independent,
the independence carries over to subsequences and sub-o-fields in a useful way.
We will focus on sequences of random variables that define tail events, but
the generating sequence could also be of events or of o-fields.

Lemma 1.27.1
Let {X,} be a sequence of independent random wvariables and let T be
the tail o-field, N2 0(X;, Xit2,...). Then the events A € T and B €
o(X1,...,X;-1) are independent for each i. Furthermore, A is independent
OfO'(Xl,XQ, .. )
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Proof.
Because the random variables X7, X», . . . are independent, 7 and o(X71, ..., X;-1)
are independent and hence the events A € 7 and B € o(X1,...,X;-1) are
independent. (This is the same reasoning as in the proof of Theorem 1.11,
which applies to random.) Therefore, A is independent of o(Xy,...,X;-1)
and hence, also independent of Fy = U2 ,0(X1,...,X;). By Theorem 1.1
then, A is independent of o(X71, Xa,...). |
Lemma 1.27.1 has an interesting implication. Tail events in sequences gen-
erated by independent events or random variables are independent of them-
selves.

Theorem 1.27 (Kolmogorov’s Zero-One Law)
Let {X,,} be a sequence of independent random variables and A be an event

in the tail o-field of the sequence of o-fields generated by {X,}. Then P(A)

1s either zero or one.

Proof. An event A be an event in the tail o-field is independent of itself;
hence

P(A) = P(AU A) = P(A)P(A),

and so P(A) must have a probability of 0 or 1. |

For a sequence of events in a given probability space, the Borel-Cantelli
lemmas address the question implied by the Kolmogorov zero-one law. These
lemmas tell us the probability of the lim sup. Under one condition, we get a
probability of 0 without requiring independence. Under the other condition,
with a requirement of independence, we get a probability of 1.

Theorem 1.28 (Borel-Cantelli Lemma I)
Let { A} be a sequence of events and P be a probability measure. Then

Y P(A;) <o = P(limsupA,) = 0. (1.153)
n=1

n

Proof. First, notice that P(US2, A;) can be arbitrarily small if n is large
enough. From limsup,, A, C U2, A;, we have

P(limsupA,) < P(UZ, A;)
<> P(A)

— 0 asn — oo because Z P(4A,) < oo.

n=1

|
The requirement that > >~ | P(A,) < oo in Theorem 1.28 means that
A, must be approaching sets with ever-smaller probability. If that is not
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the case, say for example, if A, is a constant set with positive probability,
then of course > >, P(A4,) = oo, but we cannot say much about about
P(limsup, A,). However, if the A4,, are disjoint, then > >~ | P(A4,) = 0o may
have a meaningful implication. The second Borel-Cantelli requires that the
sets be independent.

Theorem 1.29 (Borel-Cantelli Lemma IT)
Let {A,} be a sequence of independent events and P be a probability measure.
Then -

Y P(4,) =00 = P(limsupA,)=1. (1.154)
n=1 n

Proof. Applying de Morgan’s law (equation (0.0.21)), we just need to show
that P(liminf,, A%) = 0. We use the fact that for > 0

l—xz<e™
to get, for any n and j,
P(mag) = [0 - P(aw)
k=n

n-+j
< exp (- > P(Ak)> :
k=n

Since >~°° | P(A,,) diverges, the last expression goes to 0 as j — oo, and so

P(N, AS) = lim P (m;g;{A;)

J—00

=0.

1.3.2 Exchangeability and Independence of Sequences

The sequences that we have discussed may or may not be exchangeable or
independent. The sequences in Theorem 1.29 are independent, for example,
but most sequences that we consider are not necessarily independent. When
we discuss limit theorems in Section 1.4, we will generally require indepen-
dence. In Section 1.6, we will relax the requirement of independence, but
will require some common properties of the elements of the sequence. Before
proceeding, however, in this general section on sequences of random vari-
ables, we will briefly consider exchangeable sequences and state without proof
de Finetti’s representation theorem, which provides a certain connection be-
tween exchangeability and independence. This theorem tells us that infinite
sequences of exchangeable binary random variables are mixtures of indepen-
dent Bernoulli sequences.
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Theorem 1.30 (de Finetti’s representation theorem)

Let {X;}22, be an infinite sequence of binary random variables such that for
any n, {X;}_, is exchangeable. Then there is a unique probability measure P
on [0,1] such that for each fized sequence of zeros and ones {e;}1,

1
Pr(Xl =€1,-. ., Xﬂ = en) = / Trk(]‘ - Tr)nikd:u’(w))
0

where k =1 ;.

The converse clearly holds; that is, if a P as specified in the theorem exists,
then the sequence is exchangeable.

A proof of a more general version of de Finetti’s representation the-
orem (for random variables that are not necessarily binary) is given by
Hewitt and Stromberg (1965) and in Schervish (1995).

1.3.3 Types of Convergence

The first important point to understand about asymptotic theory is that there
are different kinds of convergence of a sequence of random variables, {X,}.
Three of these kinds of convergence have analogues in convergence of gen-
eral measurable functions (see Appendix 0.1) and a fourth type applies to
convergence of the measures themselves. Different types of convergence apply
to

e a function, that is, directly to the random variable (Definition 1.35). This
is the convergence that is ordinarily called “strong convergence”.

e expected values of powers of the random variable (Definition 1.36). This
is also a type of strong convergence.

e probabilities of the random variable being within a range of another ran-
dom variable (Definition 1.37). This is a weak convergence.

e the distribution of the random variable (Definition 1.39, stated in terms
of weak convergence of probability measures, Definition 1.38). This is the
convergence that is ordinarily called “weak convergence”.

In statistics, we are interested in various types of convergence of proce-
dures of statistical inference. Depending on the kind of inference, one type
of convergence may be more relevant than another. We will discuss these in
later chapters. At this point, however, it is appropriate to point out that an
important property of point estimators is consistency, and the various types
of consistency of point estimators, which we will discuss in Section 3.8.1, cor-
respond directly to the types of convergence of sequences of random variables
we discuss below.
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Almost Sure Convergence

Definition 1.35 (almost sure (a.s.) convergence)
We say that {X,,} converges almost surely to X if

lim X, = X a.s. (1.155)
We write
X, 5 X.
|

Writing this definition in the form of Definition 0.1.38 on page 726, with X,
and X defined on the probability space (2, F, P), we have

P{w : nlLrIgQXn(w) =X(w)}) =1. (1.156)

This expression provides a very useful heuristic for distinguishing a.s. conver-
gence from other types of convergence.
Almost sure convergence is equivalent to

lim Pr(U_, | Xm — X|| > €) =0, (1.157)

for every € > 0 (exercise).

Almost sure convergence is also called “almost certain” convergence, and
written as X, 5 X.

The condition (1.155) can also be written as

Pr(hm X, — X]| <e) =1, (1.158)

for every € > 0. For this reason, almost sure convergence is also called conver-

gence with probability 1, and may be indicated by writing X, "l x. Hence,
we may encounter three equivalent expressions:

a.s. __  ac. __wpl
= = =5 = =

Almost sure convergence of a sequence of random variables {X,} to a

constant ¢ implies lim sup,, X,, = liminf,, X,, = ¢, and implies {X,, = ci.0.};

by itself, however, {X,, = ¢ i.0.} does not imply any kind of convergence of

{ X}

Convergence in r*" Moment

Definition 1.36 (convergence in r*}

For fixed r > 0, we say that {X,,} converges in r

moment (convergence in L,))
th moment to X if

lim B(|| X, — X||) = 0. (1.159)
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We write .
X, = X.

(Compare Definition 0.1.50 on page 748.)

Convergence in 7" moment requires that E(||X,,||") < oo for each n. Con-
vergence in 7" moment implies convergence in s** moment for s < r (and, of
course, it implies that E(]| X, ||2) < oo for each n). (See Theorem 1.16, which
was stated only for scalar random variables.)

For r = 1, convergence in r'" moment is called convergence in absolute
mean. For r = 2, it is called convergence in mean square or convergence in
second moment, and of course, it implies convergence in mean. (Recall our
notational convention: || X, — X|| = || X, — X||2.)

The Cauchy criterion (see Exercise 0.0.6d on page 689) is often useful for
proving convergence in mean or convergence in mean square, without speci-
fying the limit of the sequence. The sequence {X,,} converges in mean square
(to some real number) iff

lim BE(|X, — X,.||) = 0. (1.160)

Convergence in Probability

Definition 1.37 (convergence in probability)
We say that {X,,} converges in probability to X if for every e > 0,

lim Pr(|| X, — X|| > ¢) =0. (1.161)

We write
X, > X.

(Compare Definition 0.1.51 on page 748 for general measures.)

Notice the difference in convergence in probability and convergence in
r*® moment. Convergence in probability together with uniform integrability
implies convergence in mean, but not in higher r* moments. It is easy to
construct examples of sequences that converge in probability but that do not
converge in second moment (exercise).

Notice the difference in convergence in probability and almost sure con-
vergence; in the former case the limit of probabilities is taken, in the lat-
ter the case a probability of a limit is evaluated; compare equations (1.157)
and (1.161). It is easy to construct examples of sequences that converge in
probability but that do not converge almost surely (exercise).

Although convergence in probability does not imply almost sure converge,
it does imply the existence of a subsequence that does converge almost surely,
as stated in the following theorem.
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Theorem 1.31
Suppose {X,,} converges in probability to X. Then there exists a subsequence
{Xn,} that converges almost surely to X.

Stated another way, this theorem says that if {X,,} converges in probability
to X, then there is an increasing sequence {n;} of positive integers such that
lim X,,, = X.

71— 00
Proof. The proof is an exercise. You could first show that there is an increas-
ing sequence {n;} such that

> Pr(|X,, — X| > 1/i) < oo,
i=1
and from this conclude that X,,, *3 X. |

Weak Convergence

There is another type of convergence that is very important in statistical
applications; in fact, it is the basis for asymptotic statistical inference. This
convergence is defined in terms of pointwise convergence of the sequence of
CDFss; hence it is a weak convergence. We will give the definition in terms of
the sequence of CDFs or, equivalently, of probability measures, and then state
the definition in terms of a sequence of random variables.

Definition 1.38 (weak convergence of probability measures)

Let {P,} be a sequence of probability measures and {F,} be the sequence
of corresponding CDFs, and let F' be a CDF with corresponding probability
measure P. If at each point of continuity ¢ of F,

lim Fu(t) = F(1), (1.162)

we say that the sequence of CDFs {F,} converges weakly to F, and, equiva-
lently, we say that the sequence of probability measures {P,,} converges weakly
to P. We write

F, S F

or
P, — P

Definition 1.39 (convergence in distribution (in law))
If {X,,} have CDFs {F,} and X has CDF F, we say that {X,,} converges in
distribution or in law to X iff F, > F. We write

X, % x
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Because convergence in distribution is not precisely a convergence of the
random variables themselves, it may be preferable to use a notation of the
form

L(Xn) — LX),

where the symbol L(-) refers to the distribution or the “law” of the random
variable.

When a random variable converges in distribution to a distribution for
which we have adopted a symbol such as N(u, 02), for example, we may use
notation of the form

X, = N(p, o).

Because this notation only applies in this kind of situation, we often write it
more simply as just
Xﬂ - N(lua 02)5

or in the “law” notation, £(X,,) — N(u,o?)
For certain distributions we have special symbols to represent a random
variable. In such cases, we may use notation of the form

d 2
Xﬂ—>XU5

which in this case indicates that the sequence {X,} converges in distribution
to a random variable with a chi-squared distribution with v degrees of freedom.
The “law” notation for this would be £(X,,) — L(x2).

Determining Classes

In the case of multiple probability measures over a measurable space, we
may be interested in how these measures behave over different sub-o-fields,
in particular, whether there is a determining class smaller than the o-field of
the given measurable space. For convergent sequences of probability measures,
the determining classes of interest are those that preserve convergence of the
measures for all sets in the o-field of the given measurable space.

Definition 1.40 (convergence-determining class)

Let {P,} be a sequence of probability measures defined on the measurable
space (£2, F) that converges (weakly) to P, also a probability measure defined
on (£, F). A collection of subsets C C F is called a convergence-determining
class of the sequence, iff

Po(A) — P(A) YA €C 5 P(OA) =0 = P,(B) — P(B) VB € F.
1

It is easy to see that a convergence-determining class is a determining
class (exercise), but the converse is not true, as the following example from
Romano and Siegel (1986) shows.
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Example 1.20 a determining class that is not a convergence-deter-
mining class

For this example, we use the familiar measurable space (IR, BB), and construct
a determining class C whose sets exclude exactly one point, and then define
a probability measure P that puts mass one at that point. All that is then
required is to define a sequence {P,} that converges to P. The example given
by Romano and Siegel (1986) is the collection C of all finite open intervals
that do not include the single mass point of P. (It is an exercise to show
that this is a determining class.) For definiteness, let that special point be
0, and let P, be the probability measure that puts mass one at n. Then, for
any A € C, P,(A) — 0 = P(A), but for any interval (a,b) where a < 0 and
0<b<1, P,((a,b)) =0but P((a,b)) =1. |

Both convergence in probability and convergence in distribution are weak
types of convergence. Convergence in probability, however, means that the
probability is high that the two random variables are close to each other,
while convergence in distribution means that two random variables have the
same distribution. That does not mean that they are very close to each other.

The term “weak convergence” is often used specifically for convergence
in distribution because this type of convergence has so many applications in
asymptotic statistical inference. In many interesting cases the limiting dis-
tribution of a sequence {X,,} may be degenerate, but for some sequence of
constants a,,, the limiting distribution of {a, X, } may not be degenerate and
in fact may be very useful in statistical applications. The limiting distribution
of {a, Xy} for a reasonable choice of a sequence of normalizing constants {ay }
is called the asymptotic distribution of {X,,}. After some consideration of the
relationships among the various types of convergence, in Section 1.3.7, we will
consider the “reasonable” choice of normalizing constants and other proper-
ties of weak convergence in distribution in more detail. The relevance of the
limiting distribution of {a,X,} will become more apparent in the statistical
applications in Section 3.8.2 and later sections.

Relationships among Types of Convergence

Almost sure convergence and convergence in r* moment are both strong types

of convergence, but they are not closely related to each other. We have the
logical relations shown in Figure 1.3.

The directions of the arrows in Figure 1.3 correspond to theorems with
straightforward proofs. Where there are no arrows, as between L, and a.s.,
we can find examples that satisfy one condition but not the other (see Ex-
amples 1.21 and 1.22 below). For relations in the opposite direction of the
arrows, we can construct counterexamples, as for example, the reader is asked
to do in Exercises 1.54a and 1.54b.
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L, a.s
L \ a.s
.uniformly P ‘@(

integrable \
d (or w)

Figure 1.3. Relationships of Convergence Types

Useful Sequences for Studying Types of Convergence

Just as for working with limits of unions and intersections of sets where we
find it useful to identify sequences of sets that behave in some simple way
(such as the intervals [a 4+ 1/n, b — 1/n] on page 646), it is also useful to
identify sequences of random variables that behave in interesting but simple
ways.

One useful sequence begins with {U,, }, where U,, ~ U(0, 1/n). We define

X, = nU,. (1.163)

This sequence can be used to show that an a.s. convergent sequence may not
converge in Lj.

Example 1.21 converges a.s. but not in mean

Let {X,,} be the sequence defined in equation (1.163). Since Pr(limy, oo X, =
0) = 1, X, 3 0. The mean and in fact the r* moment (for » > 0) is 0.
However,

1/n
E(|X, —0]") = / n"du =n""1.
0

For r = 1, this does not converge to the mean of 0, and for » > 1, it diverges;
hence {X,} does not converge to 0 in 7** moment for any » > 1. (It does
converge to the correct " moment for 0 < r < 1, however.) |

This example is also an example of a sequence that converges in probability
(since a.s. convergence implies that), but does not converge in 7" moment.

Other kinds of interesting sequences can be constructed as indicators of
events; that is, 0-1 random variables. One such simple sequence is the Bernoulli
random variables { X, } with probability that X,, = 1 being 1/n. This sequence
can be used to show that a sequence that converges to X in probability does
not necessarily converge to X a.s.
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Other ways of defining 0-1 random variables involve breaking a U(0, 1)
distribution into uniform distributions on partitions of |0, 1[. For example, for
a positive integer k, we may form 2* subintervals of 0, 1[ for j = 1,..., 2" as

i—1 J
2k 7 ok |7
As k gets larger, the Lebesgue measure of these subintervals approaches 0
rapidly. Romano and Siegel (1986) build an indicator sequence using random
variables on these subintervals for various counterexamples. This sequence can

be used to show that an Ly convergent sequence may not converge a.s., as in
the following example.

Example 1.22 converges in second moment but not a.s.
Let U ~ U(0,1) and define

X, = 1 if o <U«< o
0 otherwise,

where j, = 1,...,2% and k, — oo as n — co. We see that
E((X, —0)?) = 1/(2"),

hence {X,} converges in quadratic mean (or in mean square) to 0. We see,
however, that lim,,_, . X,, does not exist (since for any value of U, X, takes on
each of the values 0 and 1 infinitely often). Therefore, {X,,} cannot converge
a.s. (to anything!).

This is another example of a sequence that converges in probability (since
convergence in 7" moment implies that), but does not converge a.s.

Convergence of PDFs

The weak convergence of a sequence of CDFs {F,} is the basis for most
asymptotic statistical inference. The convergence of a sequence of PDFs {f,}
is a stronger form of convergence because it implies uniform convergence of
probability on any given Borel set.

Theorem 1.32 (Scheffé)
Let {fn} be a sequence of PDFs that converge pointwise to a PDF f; that is,
at each x

lim f,(x) = f(z).
Then
lim ; | fr(x) — f(x)|de =0 (1.164)

n—oo

uniformly for any Borel set B.
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For a proof see Scheffé (1947).

Hettmansperger and Klimko (1974) showed that if a weakly convergent
sequence of CDFs {F,} has an associated sequence of PDFs {f,}, and if
these PDFs are unimodal at a given point, then on any closed interval that

does not contain the modal point the sequence of PDFs converge uniformly
to a PDF.

Big O and Little o Almost Surely

We are often interested in nature of the convergence or the rate of convergence
of a sequence of random variables to another sequence of random variables.
As in general spaces of real numbers that we consider in Section 0.0.5 on
page 652, we distinguish two types of limiting behavior by big O and little
0. These are involve the asymptotic ratio of the elements of one sequence to
the elements of a given sequence {a,}. We defined two order classes, O(ay,)
and o(ay,). In this section we begin with a given sequence of random variables
{Y,.} and define four different order classes, O(Y;,) a.s., o(Y;,) a.s., Op(Yy),
and op(Y;,), based on whether or not the ratio is approaching 0 (that is, big
O or little o) and on whether the converge is almost sure or in probability.

For sequences of random variables {X,,} and {Y,,} defined on a common
probability space, we identify different types of convergence, either almost
sure or in probability.

e Big O almost surely, written O(Y},) a.s.
X, € O(Yy) as. iff Pr (|| X,] € O(||Ya]) =1
e Little o almost surely, written o(Y},) a.s.
X, € o(Yy,) a.s. iff || X,||/[|Yal 23 0.

Compare X, /Y, 30 for X,, € R” and Y,, € IR.

Big O and Little o Weakly

We also have relationships in which one sequence converges to another in
probability.

e Big O in probability, written Op(Y;,).

Xp, € Op(Yy) iff Ve > 0 3 constant Ce > 0 3 sup Pr(|| X, || > C||Ya]) < €.

If X,, € Op(1), X,, is said to be bounded in probability.
If X, 5 X for any random variable X, then X,, € Op(1). (Exercise.)
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e Little o in probability, written op(Y;,).
X, € op(Yy) iff || X,||/||Yn] 2 0.
If X,, € op(1), then X,, converges in probability to 0, and conversely.

If X,, € op(1), then also X,, € Op(1). (Exercise.)

Instead of a defining sequence {Y;,} of random variables, the sequence of
interest may be a sequence of constants {ay,}.

Some useful properties are the following, in which {X,}, {Y,}, and {Z,}
are random variables defined on a common probability space, and {a,} and
{bn} are sequences of constants.

Xn € oplan) = X,, € Op(ay) 1.165

(1.165)
X, € 0p(1) <= X, — 0. (1.166)

Xn € Op(1/ayn), limb,/a, < co = X,, € Op(m,). (1.167)

X, € Op(an) = XnYy € Op(anYy). (1.168)

Xn € Oplan), Y, € Op(b,) = XY, € Op(anby). (1.169)

X, € Op(an), Y, € Op(bn) = X, + Y, € Op(||lan|| + [|bn]])- (1.170)
X, € 0p(Zy), Yo € 0p(Zn) = X + Yy € 0,(Z,). (1.171)

X, € oplan), Y, € 0p(by) = X,,Y,, € op(anby). (1.172)

X, € oplan), Yy, € op(bn) = X + Y, € op(||lan| + [|bn]])- (1.173)
X, € op(an), Yy € Op(by) = XYy € op(anby). (1.174)

You are asked to prove these statements in Exercise 1.61. There are, of course,
other variations on these relationships. The order of convergence of sequence
of absolute expectations can be related to order of convergence in probability:

an € Ry, E(|X,]) € O(an) = X, € Op(an). (1.175)

Almost sure convergence implies that the sup is bounded in probability. For
any random variable X (recall that a random variable is finite a.s.),

X, "% X = sup|X,,| € O,(1). (1.176)

You are asked to prove these statements in Exercise 1.62.

The defining sequence of interest is often an expression in n; for examples,
Op(n~1), Op(n~='/?), and so on. For such orders of convergence, we have
relationships similar to those given in statement (0.0.59) for nonstochastic
convergence.

Op(n™') C Op(n~12) ete. (1.177)
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Example 1.23 order in probability of the sample mean

Suppose X, is the sample mean (equation (1.32)) from a random sample
Xi,...,X, from a distribution with finite mean, y, and finite variance, o2.
We first note that E(X,,) = p and V(X,,) = 0/n. By Chebyshev’s inequality

(page 848), we have for € > 0,

a?/n
2 3

Pr(|X, —pu[>¢) <
€

which goes to 0 as n — co. Hence, X,, = p or X, — pu € op(1).
Now, rewriting the inequality above, we have, for §(¢) > 0,

= a?/n
— > < .
Pr(vn| X, —p| > d(e)) < 5% /n
Now letting 6(e) = o/+/€, we have X,, — p € Op(n71/2)' i

1.3.4 Weak Convergence in Distribution

Convergence in distribution, sometimes just called “weak convergence”, plays
a fundamental role in statistical inference. It is the type of convergence in
the central limits (see Section 1.4.2) and it is the basis for the definition of
asymptotic expectation (see Section 1.3.8), which, in turn is the basis for most
of the concepts of asymptotic inference. (Asymptotic inference is not based on
the limits of the properties of the statistics in a sequence, and in Section 3.8.3,
beginning on page 311, we will consider some differences between “aysmptotic”
properties and “limiting” properties.)

In studying the properties of a sequence of random variables { X, }, the holy
grail often is to establish that a, X,, — N(u, o?) for some sequence {a,}, and
to determine reasonable estimates of y and 2. In this section we will show how
this is sometimes possible, and we will consider it further in Section 1.3.7, and
later in Section 3.8, where we will emphasize the statistical applications. Weak
convergence to normality under less rigorous assumptions will be discussed in
Section 1.4.

Convergence in distribution of a sequence of random variables is defined in
terms of convergence of a sequence of CDFs. For a sequence that converges to
a continuous CDF F', the Chebyshev norm of the difference between a function
in the sequence and F' goes to zero, as stated in the following theorem.

Theorem 1.33 (Polya’s theorem)
IfF, % F and F is continuous in R”, then

lim sup |F,(t) — F(t)| =0.

Proof. The proof proceeds directly by use of the d-¢ definition of continuity.
|
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Theorem 1.34
Let {F,} be a sequence of CDFs on IR. Let

Gr(z) = Fp(bgnx + agn)

and
Hn(x) - F‘n(bhn'r + ahn);

where {ban} and {bnn} are sequences of positive real numbers and {agn} and
{ann} are sequences of real numbers. Suppose

G, > G

and
H,> H,

where G- and H are nondegenerate CDFs. Then
bgn/bhn — b >0,

(agn — ahn)/bgn — a € R,

and

H(bx +a) =G(z) Yz eRR.

Proof. ** fix |
The distributions in Theorem 1.34 are in a location-scale family (see Sec-
tion 2.6, beginning on page 178).
There are several necessary and sufficient conditions for convergence in
distribution. A set of such conditions is given in the following “portmanteau”
theorem.

Theorem 1.35 (characterizations of convergence in distribution;
“portmanteau” theorem)

Given the sequence of random variables X,, and the random variable X, all de-
fined on a common probability space, then each of the following is a necessary

and sufficient condition that X, 4 x.

(i) E(9(Xy)) — E(9(X)) for all real bounded continuous functions g.
(ii) E(g(X,)) — E(g9(X)) for all real functions g such that g(x) — 0 as |z| —
00.
(iii) Pr(X, € B) — Pr(X € B) for all Borel sets B such that Pr(X € 0B) = 0.
(iv) liminf Pr(X,, € ) > Pr(X € 5) for all open sets S.
(v) limsupPr(X,, € T) < Pr(X € T) for all closed sets T.

Proof. The proofs of the various parts of this theorem are in Billingsley
(1995), among other resources. |

Although convergence in distribution does not imply a.s. convergence, con-
vergence in distribution does allow us to construct an a.s. convergent sequence.
This is stated in Skorokhod’s representation theorem.
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Theorem 1.36 (Skorokhod’s representation theorem)

If for the random wvariables (vectors!) X1, Xo, ..., we have X, 4, X, then
there exist random wvariables Yy 4 X1,Y, 4 Xo,oo, and Y 4 X, such that
Y, Y.

Proof. Exercise. |

Theorem 1.37 (continuity theorem)

Let X1, Xs,--+ be a sequence of random wvariables (not necessarily indepen-
dent) with characteristic functions ©x,, ¢x,, -+ and let X be a random vari-
able with characteristic function ¢x. Then

XngX — px, (t) = px(t) Vt.

Proof. Exercise. |

The <= part of the continuity theorem is called the Lévy-Cramér theorem
and the = part is sometimes called the first limit theorem.

The continuity theorem also applies to MGF's if they exist for all X,.

A nice use of the continuity theorem is in the proof of a simple form
of the central limit theorem, or CLT. Here I will give the proof for scalar
random variables. There are other forms of the CLT, and other important
limit theorems, which will be the topic of Section 1.4. Another reason for
introducing this simple CLT now is so we can use it for some other results
that we discuss before Section 1.4.

Theorem 1.38 (central limit theorem)
If X1,..., X, are iid with mean g and variance 0 < 0% < oo, then Y, =
(>3- Xi —nu)/v/no has limiting distribution N(0, 1).

Proof. It will be convenient to define a function related to the CF: let h(t) =
et px(t); hence h(0) = 1, K'(0) = 0, and h”(0) = o2. Now expand h in a
Taylor series about 0:

M02M®+W®W—%M@W,

for some & between 0 and t. Substituting for ~(0) and 4’(0), and adding and
subtracting o?/2 to this, we have

) (h”({) _ 0’2)t2
2 2 ’
This is the form we will find useful. Now, consider the CF of Y,,:

o) =5 (e (1 (22222 )
“(2( ((52)))
(@)
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From the expansion of h, we have

it \ 2 (W€ —a?)t?
h (ﬁa) 1= m 2no? '

” nit= (1~ £ Q=)

2n 2no?

Now we need a well-known (but maybe forgotten) result (see page 652): If
lim,, , f(n) =0, then

b
lim (1+%—|—M> n=e.

n— oo n

Therefore, because lim, oo h/(£) = h’(0) = 02, lim,_o oy, (1) = e /2,
which is the CF of the N(0,1) distribution. (Actually, the conclusion relies
on the Lévy-Cramér theorem, the <= part of the continuity theorem, The-
orem 1.37 on page 87; that is, while we know that the CF determines the
distribution, we must also know that the convergent of a sequence of CFs
determines a convergent distribution.) |

An important CLT has a weaker hypothesis than the simple one above;
instead of iid random variables, we only require that they be independent (and
have finite first and second moments, of course). In Section 1.6, we relax the
hypothesis in the other direction; that is, we allow dependence in the random
variables. (In that case, we must impose some conditions of similarity of the
distributions of the random variables.)

Tightness of Sequences

In a convergent sequence of probability measures on a metric space, we may
be interested in how concentrated the measures in the sequence are. (If the
space does not have a metric, this question would not make sense.) We refer
to this as “tightness” of the sequence, and we will define it only on the metric
space IRY.

Definition 1.41 (tightness of a sequence of probability measures)
Let {P,} be a sequence of probability measures on (IR?, B%). The sequence is
said to be tight iff for every e > 0, there is a compact (bounded and closed)
set C' € B such that

ingn(C) >1—e

Notice that this definition does not require that {P,} be convergent, but of
course, we are interested primarily in sequences that converge. The following
theorem, whose proof can be found in Billingsley (1995) on page 336, among
other places, connects tightness to convergence.
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Theorem 1.39
Let {P,} be a sequence of probability measures on (R%, BY).
(i) The sequence {P,} is tight iff for every subsequence {P,,} there exists a
further subsequence {Py,} C {Py,} and a probability measure P on (RY, BY)
such that

Py, L P, asj — oc.

(i) If {P,} is tight and each weakly convergent subsequence converges to the
same measure P, then P, ~ P.

Tightness of a sequence of random variables is defined in terms of tightness
of their associated probability measures.

Definition 1.42 (tightness of a sequence of random variables)
Let {X,,} be a sequence of random variables, with associated probability mea-
sures {P,}. The sequence {X,} is said to be tight iff

Ve >03IM < oo dsup Pp(|Xn] > M) <e.

1.3.5 Expectations of Sequences; Sequences of Expectations

The monotonicity of the expectation operator (1.42) of course carries over to
sequences.

The three theorems that relate to the interchange of a Lebesgue integration
operation and a limit operation stated on page 733 (monotone convergence,
Fatou’s lemma, and Lebesgue’s dominated convergence) apply immediately
to expectations:

e monotone convergence
For0 < X; < X5--- a.s.

X, X = E(X,) — EX) (1.178)
e Fatou’s lemma

0< Xpas.¥n = E(liminfX,) < liminf E(X,) (1.179)

e dominated convergence
Given a fixed Y with E(Y) < oo,

X, <YVnand X, 23 X = E(X,)— E(X). (1.180)

These results require a.s. properties. Skorokhod’s Theorem 1.36, however,
often allows us to extend results based on a.s. convergence to sequences that
converge in distribution. Skorokhod’s theorem is the main tool used in the
proofs of the following theorems, which we state without proof.
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Theorem 1.40 4
If for the random variables X1, Xo, ..., we have X,, — X and for each k > 0
E(|X,|¥) < 0o and E(|X|*) < oo, then

E(|Xa|") — E(X["). (1.181)

With additional conditions, we have a useful converse. It requires a limiting
distribution that is not moment-indeterminant (see page 33). In that case, the
converse says that the moments determine the limiting distribution.

Theorem 1.41 Let X be a random variable that does not have a moment-
indeterminant distribution, and let X1, Xa, ... be random variables. If for each
k> 0 E(|X,|*) < oo and E(|X|*) < oo, and if E(|X,|*) — E(|X|¥), then
X, % X,

Another useful convergence result for expectations is the Helly-Bray the-
orem (or just the Helly theorem):

Theorem 1.42 (Helly-Bray theorem)
If g is a bounded and continuous Borel function over the support of {X,},
then

X, 4 X & E(9(X,)) — E(g(X)). (1.182)

With additional conditions there is also a converse of Theorem 1.42.
The properties we have considered so far are all “nice”, “positive” results.
We now consider an unhappy fact: in general,

lim BE(X,) # E( lim X,,), (1.183)

n—oo n—oo
as we see in the following example.

Example 1.24 gambler’s ruin
Let Y7,Y5, ... be a sequence of iid random variables with

1
Pr(Yi=0)=Pr(Y;=2)=5 Vi=12...

Now, let

X, =[] (1.184)
=1

It is intuitive that some Y} will eventually be 0, and in that case X,, = 0 for
any n > k.

*** finish: show that E(X,) = 1 and lim, - X, = 0 a.s.; hence,
lim,, o0 E(X,) = 1 and E(lim,,,» X,,) = 0. |
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1.3.6 Convergence of Functions

In working with sequences of random variables we often encounter a situation
in which members of the sequence may be represented as sums or products
of elements one of which converges to a constant. Slutsky’s theorem provides
very useful results concerning the convergence of such sequences.

Theorem 1.43 (Slutsky’s theorem)
Let X, {Xn}, {Bn}, and {C,} be random variables on a common probability
space, and let b, c € R®. Suppose

X, L X
and
Bngb and Cnic.
Then
BYX, +Ch S0TX + ¢ (1.185)
Proof. Exercise. |

Slutsky’s theorem is one of the most useful results for showing conver-
gence in distribution, and you should quickly recognize some special cases of

Slutsky’s theorem. If X, 4 X, and Y, 5 ¢, then
X, +Y, S X+ (1.186)

vrx, S Tx (1.187)
and, if Y,, € IR (that is, Y,, is a scalar), then

X,/Y, S X/e if c#0. (1.188)

More General Functions

The next issue has to do with functions of convergent sequences. We consider
a sequence X1, Xo,...in IR®. The first function we consider is a simple linear
projection, tTX,, for t € IR¥.

Theorem 1.44 (Cramér-Wold “device”)
Let X1, X5, -+ be a sequence of random variables in R* and let X be a random
variable in R”.

X, 3 x — "X, L¢TXveRF

Proof. Follows from the continuity theorem and equation (1.132). |

Now consider a general function g from (IR*,B*) to (IR™,B™). Given
convergence of {X,}, we consider the convergence of {g(X,)}. Given the
limiting distribution of a sequence {X,}, the convergence of {g(X,)} for a
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general function ¢ is not assured. In the following we will consider the se-
quence {g(X,,)} for the case that g is a continuous Borel function. (To speak
about continuity of a function of random variables, we must add some kind of
qualifier, such as a.s., which, of course, assumes a probability measure.) The
simple facts are given in Theorem 1.45.

Theorem 1.45
Let X and {X,} be random wvariables (k-vectors) and let g be a continuous
Borel function from R to RF.

X, X = g(X,)® g9(X) (1.189)
X, 2 X = g(X,) 2 g(X) (1.190)
X, L X = g(X,) 2 g(X) (1.191)
Proof. Exercise. |

Theorem 1.45 together with Slutsky’s theorem provide conditions under
which we may say that g(X,,Y,) converges to g(X, c).

In the following we will consider normalizing constants that may make
a sequence more useful. We may wish consider, for example, the asymptotic
variance of a sequence whose limiting variance is zero.

1.3.7 Asymptotic Distributions

We will now resume the consideration of weak convergence of distributions
that we began in Section 1.3.4. Asymptotic distributions are the basis for the
concept of asymptotic expectation, discussed in Section 1.3.8 below.

In many interesting cases, the limiting distribution of a sequence {X,}
is degenerate. The fact that {X,} converges in probability to some given
constant may be of interest, but in statistical applications, we are likely to
be interested in how fast it converges, and what are the characteristics the
sequence of the probability distribution that can be used for “large samples”.

In this section we discuss how to modify a sequence so that the convergence
is not degenerate. Statistical applications are discussed in Section 3.8.

Normalizing Constants

Three common types of sequences { X, } of interest are iid sequences, sequences
of partial sums, and sequences of order statistics. Rather than focusing on the
sequence {X,}, it may be more useful to to consider a sequence of linear
transformations of X,,, {X,, — b, }, where the form of b,, is generally different
for iid sequences, sequences of partial sums, and sequences of order statistics.

Given a sequence of constants b, if X,, — b, 4, 0, we may be interested
in the rate of convergence, or other properties of the sequence as n becomes
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large. It may be useful to magnify the difference X,, — b, by use of some
normalizing sequence of constants a:

Yy = an(Xp — by). (1.192)

While the distribution of the sequence {X,, — b,} may be degenerate, the
sequence {an(X, — by,)} may have a distribution that is nondegenerate, and
this asymptotic distribution may be useful in statistical inference. (This ap-
proach is called “asymptotic inference”.) We may note that even though we
are using the asymptotic distribution of {a, (X, —by)}, for a reasonable choice
of a sequence of normalizing constants {a,}, we sometimes refer to it as the
asymptotic distribution of {X,,} itself, but we must remember that it is the
distribution of the normalized sequence, {an (X, — b,)}.

The shift constants generally serve to center the distribution, especially
if the limiting distribution is symmetric. Although linear transformations are
often most useful, we could consider sequences of more general transforma-
tions of X,,; instead of {a, (X, —by)}, we might consider {h, (X, )}, for some
sequence of functions {hy}.

The Asymptotic Distribution of {g(X,)}

Applications often involve a differentiable Borel scalar function g, and we may
be interested in the convergence of {g(X,)}. (The same general ideas apply
when ¢ is a vector function, but the higher-order derivatives quickly become
almost unmanageable.) When we have {X,,} converging in distribution to
X + b, what we can say about the convergence of {g(X,)} depends on the
differentiability of ¢ at b.

Theorem 1.46
Let X and {X,} be random variables (k-vectors) such that

an(Xn — bn) S X, (1.193)
where by, ba, ... is a sequence of constants such that lim,_,. b, = b < 0o, and
ai,asz, ... 18 a sequence of constant scalars such that lim, . a, = co or such

that lim,, o0 an, = a > 0. Now let g be a Borel function from R to R that is
continuously differentiable at each b,,. Then

an(9(Xn) = g(bn)) > (Vg (b)) " X. (1.194)

Proof. This follows from a Taylor series expansion of g(X,) and Slutsky’s
theorem. |

A common application of Theorem 1.46 arises from the simple corollary for
the case when X in expression (1.193) has the multivariate normal distribution
N (0, ) and Vg(b) # 0:

Theory of Statistics (©2000-2020 James E. Gentle



94 1 Probability Theory

an(9(Xn) — g(ba)) > Y, (1.195)

where Y ~ N (0, (Vg(b))TEVg(b)).

One reason limit theorems such as Theorem 1.46 are important is that they
can provide approximations useful in statistical inference. For example, we
often get the convergence of expression (1.193) from the central limit theorem,
and then the convergence of the sequence {g(X,)} provides a method for
determining approximate confidence sets using the normal distribution, so
long as Vg(b) # 0. This method in asymptotic inference is called the delta
method, and is illustrated in Example 1.25 below. It is particularly applicable
when the asymptotic distribution is normal.

The Case of Vg(b) =0

Suppose Vg(b) = 0 in equation (1.194). In this case the convergence in distri-
bution is to a degenerate random variable, which may not be very useful. If,
however, H,(b) # 0 (where H, is the Hessian of g), then we can use a second
order the Taylor series expansion and get something useful:

202 (g(X,) — g(bn)) = XTH, (b) X, (1.196)

where we are using the notation and assuming the conditions of Theorem 1.46.
Note that while a,(g(X,)—g(by)) may have a degenerate limiting distribution
at 0, a2 (g(X,)—g(b,)) may have a nondegenerate distribution. (Recalling that
lim,, o0 @, = 00, we see that this is plausible.) Equation (1.196) allows us also
to get the asymptotic covariance for the pairs of individual elements of X,,.

Use of expression (1.196) is called a second order delta method, and is
illustrated in Example 1.25.

Example 1.25 an asymptotic distribution in a Bernoulli family
Consider the Bernoulli family of distributions with parameter 7. The variance
of a random variable distributed as Bernoulli(r) is g(7) = (1 — 7). Now,

suppose X1, Xo, ... X Bernoulli(r). Since E(X n) = T, we may be interested

in the distribution of T,, = g(X,) = Xn(1 — X,).
From the central limit theorem (Theorem 1.38),

VX, — ) — N0, 7(1 —)), (1.197)

and so if 7 # 1/2, ¢'(w) # 0, we can use the delta method from expres-
sion (1.194) to get

Vn(T, — g(r)) — N0, 7(1 — 7)(1 — 27)?). (1.198)

If 7 =1/2, ¢’(r) = 0 and this is a degenerate distribution, so we cannot
use the delta method. Let’s use expression (1.196). The Hessian is particularly
simple.
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First, we note that in this case, the CLT yields v/n(X —1/2) — N (0, 1).

Hence, if we scale and square, we get 4n(X — 3)? 4 X3, or

An(Ty, — g(m)) S 2
|

We can summarize the previous discussion and the special results of Ex-
ample 1.25 as follows (assuming all of the conditions on the objects involved),

V(T — b,) — N(0,02) 9
g (b) =0 — 2n—(g(T")2_//g(b")) LE (1.199)
g'(0) £0 0" (b)

Higher Order Expansions

Suppose the second derivatives of g(b) are zero. We can easily extend this to
higher order Taylor expansions in Theorem 1.47 below. (Note that because
higher order Taylor expansions of vector expressions can become quite messy,
in Theorem 1.47 we use Y = (Y1, ..., Y})) in place of X as the limiting random
variable.)

Theorem 1.47
LetY and {X,} be random variables (k-vectors) such that

where by, is a constant sequence and a1, az, . .. is a sequence of constant scalars
such that lim,, .o a, = 0o. Now let g be a Borel function from R to R whose
m' order partial derivatives exist and are continuous in a neighborhood of by,
and whose j*1, for 1 < j < m — 1, order partial derivatives vanish at b. Then

k k
am
mlal™ (g(Xn) — g(by)) 4 Z . Z ﬁ Y, ---Y; . (1.200)
9T im

11=1 7 -

Expansion of Statistical Functions

*** refer to functional derivatives, Sections 0.1.13 and 0.1.13.

Variance Stabilizing Transformations

The fact that the variance in the asymptotic distribution in expression (1.198)
depends on 7 may complicate our study of 7, and its relationship to n. Of
course, this dependence results initially from the variance 7(1 — 7) in the
asymptotic distribution in expression (1.197). If g(m) were chosen so that
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(g(m))? = (m(1—m)~1), the variance in an expression similar to (1.198) would
be constant (in fact, it would be 1).

Instead of g(w) = w(1 — ) as in Example 1.25, we can use a solution to
the differential equation

g (r) =71 —m)"Y2

One solution is g(t) = 2arcsin(v/t), and following the same procedure
in Example 1.25 but using this function for the transformations, we have
2/n (arcsin(y/X,,) — arcsin(y/7)) % N(0, 1).

A transformation such as this is called a variance stabilizing transformation
for obvious reasons.

Example 1.26 variance stabilizing transformation in a normal fam-
ily
Consider the normal family of distributions with known mean 0 and variance

o2, and suppose X1, Xa, ... < N(0, 0?). Since E(X?) = 02, we may be inter-

ested in the distribution of T,, = 3~ X2 /n. We note that V(X2) = 20, hence,
the central limit theorem gives

171
=N X2 2 N(0, 204).
ﬁ(n; ; a)e (0,20%)

Following the ideas above, we seek a transformation g(c?) such that
(¢'(02))%0* is constant wrt o2. A solution to the differential equation that
expresses this relationship is g(t) = log(t), and as above, we have

<log< ZX2> log (o )) — N(0,2). (1.201)

Order Statistics and Quantiles

The asymptotic distributions of order statistics Xy, ., are often of interest. The
asymptotic properties of “central” order statistics are different from those of
“extreme” order statistics.

A sequence of central order statistics { X(z.n)} is one such that for given 7 €
10,1, k/n — 7 as n — oco. (Notice that k depends on n, but we will generally
not use the notation k,,.) As we suggested on page 64, the expected value of the
k'™ order statistic in a sample of size n, if it exists, should be approximately the
same as the k/n quantile of the underlying distribution. Under mild regularity
conditions, a sequence of asymptotic central order statistics can be shown to
converge in expectation to z,, the m quantile.
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Sample quantiles (defined on page 64) are the ordinary quantiles in the
sense of equation (1.13) of the discrete distribution defined by the sample,
X1, ..., X,, which has CDF F,,(x), the ECDF, as defined in equation (1.34);
that is, the 7 sample quantile is

rr = F (). (1.202)

Properties of quantiles, of course, are different for discrete and continuous
distributions. In the following, for 0 < 7 < 1 we will assume that F(z,)
is twice differentiable in some neighborhood of z, and F” is bounded and
F'(z) > 0 in that neighborhood. Denote F'(x) as f(z), and let F,(z) be the
ECDF. Now, write the k*" order statistic as

F.(zz)—m
f(zx)

This is called the Bahadur representation, after Bahadur (1966), who showed
that Ry, (m) — 0asn — oo. Kiefer (1967) determined the exact order of R, (),
so equation (1.203) is sometimes called the Bahadur-Kiefer representation.
The Bahadur representation is useful in studying asymptotic properties of
central order statistics.

There is some indeterminacy in relating order statistics to quantiles. In
the Bahadur representation, for example, the details are slightly different if
nm happens to be an integer. (The results are the same, however.) Consider
a slightly different formulation for a set of m order statistics. The following
result is due to Ghosh (1971).

Theorem 1.48

Let X4, ..., X, be itd random variables with PDF f. For k =ny,...,ny, <n,
let A, €]0, 1] be such that ny, = [nAg|+1. Now suppose 0 < Ay < -+ < Ay, < 1
and for each k, f(xx,) > 0. Then the asymptotic distribution of the random
m-vector

X(kin) = T — + Ry (). (1.203)

(n1/2(X(n1:n) - -r)\l)a cey n1/2(X(nm:n) - .I)\m))

is m-variate normal with mean of 0, and covariance matriz whose i, j element

For a proof of this theorem, see David and Nagaraja (2003).

A sequence of extreme order statistics {X(:n)} is one such that k/n — 0 or
k/n — 1 as n — co. Sequences of extreme order statistics from a distribution
with bounded support generally converge to a degenerate distribution, while
those from a distribution with unbounded support do not have a meaningful
distribution unless the sequence is normalized in some way. We will consider
asymptotic distributions of extreme order statistics in Section 1.4.3.
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We now consider some examples of sequences of order statistics. In Ex-
amples 1.27 and 1.28 below, we obtain degenerate distributions unless we
introduce a normalizing factor. In Example 1.29, it is necessary to introduce
a sequence of constant shifts.

Example 1.27 asymptotic distribution of min or max order statis-
tics from U(0,1)

Suppose X1, ..., X, are iid U(0,1). The CDFs of the min and max, X (.,
and X(;,.n), are easy to work out. For z € [0, 1],

Fx,, (@) =1=-Pr(X1>z,...,X; > 1)
=1-(1-a)
and
FX(n:n) (x) ="

Notice that these are beta distributions, as we saw in Example 1.17.
Both of these extreme order statistics have degenerate distributions. For

X(l:n); we have X(l:n) g 0 and

1
n—+1

E (X)) =

and so
lim E (X(.,)) = 0.

n—oo

This suggests the normalization n.X(.,). We have

Pr(nX(1m <z) = 1— (1 _ f)"

n
—1l—-e® x>0. (1.204)

This is the CDF of a standard exponential distribution. The distribution of
nX(1:n) i more interesting than that of X(y.y).

For X (n:m), we have X(5.n) 91 and

n
(Xeum) = 777
and so
lim E (X(m)) = 1,
and there is no normalization to yield a nondegenerate distribution. |

Now consider the asymptotic distribution of central order statistics from
U(0,1).
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Example 1.28 asymptotic distribution of a central order statistic
from U(0,1)
Let X(:n) be the kY™ order statistic from a random sample of size n from
U(0,1) and let

Y = nX(kmn)-

Using Equation (1.138) with the CDF of U(0, 1), we have

fy(y) = (Z) (%)kil(l - %)nikl[o,l] (y)

Observing that

we have for fixed k,

Jim () = e o i 0) (1.205)
that is, the limiting distribution of {nX 4.y} is gamma with scale parameter
1 and shape parameter k. (Note, of course, k! = kI'(k).) For finite values
of n, the asymptotic distribution provides better approximations when k/n
is relatively small. When k is large, n must be much larger in order for the
asymptotic distribution to approximate the true distribution closely.

If k = 1, the PDF in equation (1.205) is the exponential distribution, as
shown in Example 1.27. For k — n, however, we must apply a limit similar to
what is done in equation (1.204). |

While the min and max of the uniform distribution considered in Exam-
ple 1.27 are “extreme” values, the more interesting extremes are those from
distributions with infinite support. In the next example, we consider an ex-
treme value that has no bound. In such a case, in addition to any normaliza-
tion, we must do a shift.

Example 1.29 extreme value distribution from an exponential dis-
tribution

Let X(y:n) be the largest order statistic from a random sample of size n from
an exponential distribution with PDF e™*Iz, () and let

Y = X(n:n) — log(n).

We have -
lim Pr(Y <y)=e ¢’ (1.206)

(Exercise 1.65). The distribution with CDF given in equation (1.206) is called
an eztreme value distribution. There are two other classes of “extreme value
distributions”, which we will discuss in Section 1.4.3. The one in this example,
which is the most common one, is called a type 1 extreme value distribution
or a Gumbel distribution. |
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1.3.8 Asymptotic Expectation

The properties of the asymptotic distribution, such as its mean or variance,
are the asymptotic values of the corresponding properties of T,,. Let {T,}

be a sequence of random variables with E(|T,|) < oo and T, L 7, with
E(|T]) < co. Theorem 1.40 (on page 90) tells us that

E(|Ta|") — B(T1°).

When T, is a normalized statistic, such as X, with variance of the form
0?/n, the limiting value of some properties of T,, may not be very use-
ful in statistical inference. We need an “asymptotic variance” different from
lim,, .. 02 /n.

Because {T,,} may converge to a degenerate random variable, it may be
more useful to generalize the definition of asymptotic expectation slightly. We
will define “an asymptotic expectation”, and distinguish it from the “limiting
expectation”. We will consider a sequence of the form {a,T),}.

Definition 1.43 (asymptotic expectation)
Let {T,,} be a sequence of random variables, and let {a,} be a sequence of
positive constants with lim,, .., a, = oo or with lim, . a, = a > 0, and

such that a,T, > T, with E(|T]) < oo. An asymptotic expectation of {T,,} is
E(T/ay).

Notice that an asymptotic expectation many include an n; that is, the order
of an asymptotic expression may be expressed in the asymptotic expectation.
For example, the asymptotic variance of a sequence of estimators /nT,,(X)
may be of the form V(7T'/n); that is, the order of the asymptotic variance is
nL.

We refer to lim, .o, E(S,,) as the limiting expectation. It is important to
recognize the difference in limiting expectation and asymptotic expectation.
The limiting variance of a sequence of estimators v/nT,,(X) may be 0, while
the asymptotic variance is of the form V(T/n).

Asymptotic expectation has a certain arbitrariness associated with the
choice of {a,}. The range of possibilities for “an” asymptotic expectation,
however, is limited, as the following theorem shows.

Theorem 1.49
Let {T,,} be a sequence of random wvariables, and let {c,} be a sequence of
positive constants with lim, . ¢, = 00 or with lim,, .o ¢, = ¢ > 0, and such

that ey Ty = R, with E(|R]|) < co. Likewise, let {d,} be a sequence of positive
constants with lim,, .o d, = oo or with lim,, ..o d, = d > 0, and such that

AT S, with E(|S|) < oo. (This means that both E(R/cy,) and E(S/dy,)
are asymptotic expectations of T,,.) Then it must be the case that either

(i) B(R) = E(S) =0,
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(ii) either E(R) # 0, E(S) =0, and d,/cn, — 0 or E(R) =0, E(S) # 0, and
en/dn — 0,
or

(i) E(R) # 0, E(S) # 0, and E(R/cy,)/E(S/dy,) — 1.
Proof. Exercise. (Use Theorem 1.3/ on page 86.) |

Multivariate Asymptotic Expectation

The multivariate generalization of asymptotic expectation is straightforward:
Let {X,} be a sequence of random k-vectors, and let {A,} be a sequence of
k x k positive definite matrices such that either lim,, o, A, diverges (that is, in
the limit has no negative diagonal elements and some diagonal elements that
are positively infinite) or else lim,, . A, = A, where A is positive definite

and such that 4, X, > X, with E(|X]) < co. Then an asymptotic expectation
of {X,,} is E(4,1X).

If the asymptotic expectation of { X,, } is B(n)u for some matrix B(n), and
g is a Borel function from R to IR that is differentiable at x, then by Theo-
rem 1.46 on page 93 the asymptotic expectation of {g(X,)} is B(n)J, (1)) p.

1.4 Limit Theorems

We are interested in functions of a sequence of random variables {X;|i =
1,...,n}, as nincreases without bound. The functions of interest involve either
sums or extreme order statistics. There are three general types of important
limit theorems: laws of large numbers, central limit theorems, and extreme
value theorems.

Laws of large numbers give limits for probabilities or for expectations of
sequences of random variables. The convergence to the limits may be weak or
strong.

Historically, the first versions of both laws of large numbers and central
limit theorems applied to sequences of binomial random variables.

Central limit theorems and extreme value theorems provide weak conver-
gence results, but they do even more; they specify a limiting distribution.
Central limit theorems specify a limiting infinitely divisible distribution, often
a normal distribution; and extreme value theorems specify a limiting extreme
value distribution, one of which we encountered in Example 1.29.

The functions of the sequence of interest are of the form

an (zn: X; — bn> (1.207)

or

(227 (X(nn) - bn) ) (1208)
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where {a,} is a sequence of positive real constants and {b,} is a sequence
of real constants. The sequence of normalizing constants {a,} for either case
often have the form a,, = n™P for some fixed p > 0.

For both laws of large numbers and central limit theorems, we will be
interested in a function of the form of expression (1.207), whereas for the
extreme value theorems, we will be interested in a function of the form of
expression (1.208). An extreme value theorem, of course, may involve X 1.y
instead of X(,,.,,). The simplest version of a central limit theorem applies to
sequences of iid random variables with finite variance, as in Theorem 1.38.
The simplest version of the extreme value theorem applies to sequences of
exponential random variables, as in Example 1.29.

For the laws of large numbers and the central limit theorems, we will find
it convenient to define

Sn=>_ X (1.209)

We distinguish different types of sequences of random variables based on
the distributions of the individual terms in the sequence and on the corre-
lational structure of the terms. Most of the results discussed in Section 1.3
did not place any restrictions on the distributions or on their correlational
structure. The limit theorems often require identical distributions (or at least
distributions within the same family and which vary in a systematic way).
Even when different distributions are allowed, the limit theorems that we dis-
cuss in this section require that the terms in the sequence be independent.
We will consider sequences of correlated random variables in Section 1.6.

1.4.1 Laws of Large Numbers

The first law of large numbers was Bernoulli’s (Jakob Bernoulli’s) theorem. In
this case S, is the sum of n iid Bernoullis, so it has a binomial distribution.

Theorem 1.50 (Bernoulli’s theorem (binomial random variables))
If S, has a binomial distribution with parameters n and w, then

lSn 2o (1.210)
n

Proof. This follows from [, (S, /n—m)*dP = n(1 —x)/n, which means S, /n
converges in mean square to 7, which in turn means that it converges in
probability to . |

This is a weak law because the convergence is in probability.

Bernoulli’s theorem applies to binomial random variables. We now state
without proof four theorems about large numbers. Proofs can be found in
Petrov (1995), for example. The first two apply to iid random numbers and
the second two require only independence and finite expectations. Two are
weak laws (WLLN) and two are strong (SLLN). For applications in statistics,
the weak laws are generally more useful than the strong laws.
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A generalization of Bernoulli’s theorem is the weak law of large numbers
(WLLN) for iid random variables:

Theorem 1.51 (WLLN for iid random variables)
Let X1,Xo,... be a sequence of iid random variables (and S, = > i, X;).
There exists a sequence of real numbers ay, as, ... such that Vi

1
nPr(|X;| >n) -0 <= —=S,—b, >0 (1.211)
n

The b,, can be chosen so that b, < n, as b, = E (XiI{|Xi|§n}), for example.

Theorem 1.52 (SLLN for iid random variables)
Let X1, Xo,... be a sequence of iid random variables such that Vi E(|X;]) =

w < oo. Then

1 a.s.
=S, “% . (1.212)
n

A slight generalization is the alternate conclusion

1 n
~ D ai(X; —E(X1) *3 0,
i=1
for any bounded sequence of real numbers a4, as, . . ..
We can generalize these two limit theorems to the case of independence
but not necessarily identical distributions, by putting limits on normalized p'"

moments.

Theorem 1.53 (WLLN for independent random variables)
Let X1, X5, ... be a sequence of independent random variables such for some
constant p € [1,2],

L
Jim = B(X[7) = 0.
=1
Then

% (Sn - iE(XJ) 0. (1.213)

Theorem 1.54 (SLLN for independent random variables)
Let X1, X5, ... be a sequence of independent random variables such for some
constant p € [1,2],

= E(|X;?
Z (1X:17)

- < Q.
1P
i=1
Then
1 " as
- S, — E(X; = 0. 1.214
- ( ; ( )) = ( )
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We notice that the normalizing term in all of the laws of large numbers
has been n~1. We recall that the normalizing term in the simple central limit
theorem 1.38 (and in the central limit theorems we will consider in the next
section) is n~1/2. Since the central limit theorems give convergence to a non-
degenerate distribution, when the normalizing factor is as small as n~ /2, we
cannot expect convergence in probability, and so certainly not almost sure con-
vergence. We might ask if there is some sequence a,, with n='/2 < a,, < n~!,
such that when a, is used as a normalizing factor, we have convergence in
probability and possibly almost sure convergence. The “Law of the Iterated
Logarithm (LIL)” provides a very interesting answer for iid random variables
with finite variance. The sequence involves the iterated logarithm, log(log(n));
specifically, a, = (nlog(log(n)))~'/2.

Without loss of generality we will assume the random variables have mean
0.

Theorem 1.55 (Law of the Iterated Logarithm)
Let X1, X5, ... be a sequence of independent and identically distributed random
variables with B(X;) = 0 and V(X;) = 0% < co. Then

! ! S, 20 (1.215)
ov/2 \/nlog(log(n))
and
lim sup ! ! S, =1 (1.216)
o2 \/nlog(log(n)) ' '

Proof. See Billingsley (1995). |

Further generalizations of laws of large numbers apply to sequences of
random variables in triangular arrays, as in the definition of infinite divisibility,
Definition 1.32. We will use triangular arrays in an important central limit
theorem in the next section.

1.4.2 Central Limit Theorems for Independent Sequences

Central limit theorems give conditions that imply that certain standardized
sequences converge to a normal distribution. We will be interested in sequences
of the form of equation (1.207):

=1

where {a,} is a sequence of positive real constants and {b,} is a sequence of
real constants.

The simplest central limit theorems apply to iid random variables. More
complicated ones apply to independent random variables that are not neces-
sarily identically distributed and/or that are not necessarily independent. In
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this section we consider central limit theorems for independent sequences. On
page 134 we will consider a central limit theorem in which the sequences are
not necessarily independent.

The central limit theorems require finite second moments.

The de Moivre Laplace Central Limit Theorem

The first central limit theorem, called the de Moivre Laplace central limit
theorem followed soon after Bernoulli’s theorem, and like Bernoulli’s theorem,
it applies to S,, that has a binomial distribution with parameters n and 7
(because it is the sum of n iid Bernoullis with parameter 7.

Theorem 1.56 (De Moivre Laplace Central Limit Theorem)
If S, has a binomial distribution with parameters n and w, then

1 1 d

mﬁ(&l nm) — N(0,1). (1.217)

This central limit theorem is a special case of the classical central limit
theorem for iid random variables with finite mean and variance.

Notice that Bernoulli’s theorem and the de Moivre Laplace central limit
theorem, which are stated in terms of binomial random variables, apply to
normalized limits of sums of Bernoulli random variables. This is the usual
form of these kinds of limit theorems; that is, they apply to normalized lim-
its of sums of random variables. The first generalizations apply to sums of
iid random variables, and then further generalizations apply to sums of just
independent random variables.

The Central Limit Theorem for iid Scalar Random Variables with
Finite Mean and Variance

Theorem 1.57
Let X1, X5, ... be a sequence of independent random variables that are iden-
tically distributed with mean p and variance o > 0. Then

%% (zn: Xi— nu) 4 N(0,1). (1.218)

A proof of this uses a limit of a characteristic function and the uniqueness
of the characteristic function (see page 87).

Independent but Not Identical; Triangular Arrays

The more general central limit theorems apply to a triangular array; that is,
to a sequence of finite subsequences. The variances of the sums of the subse-
quences is what is used to standardize the sequence so that it is convergent.
We define the sequence and the subsequences as follows.
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Let {X,;,7 =1,2,...,k,} be independent random variables with &, — oo

as n — 0o. We let .
Ry=> X
j=1

represent “row sums”, as we visualize the sequence in an array:

X1, X2, ... X, Ry
Xo1, Xo9, ... .. X2k2 Ry

X31, X392, 00ennn.. X3k R3 (1219)

There is no requirement that k; > k; when j > 4, but since k,, — oo asn — oo,
that is certainly the trend. Note that within a row of this triangular array, the
elements are independent, but between rows, there is no such requirement.

Let 02 = V(R,,), and assume 0 < o2.

Notice that aside from the finite variance, the only assumption is that
within a row, the elements are independent. There is no assumption regard-
ing different rows; they may be independent and they may or may not have
identical distributions.

In order to say anything about the asymptotic distribution of some func-
tion of {X,,;} we need to impose conditions on the moments. There are three
standard conditions that we consider for sequences satisfying the general con-
ditions on k,, and o2.

e Lyapunov’s condition. Lyapunov’s condition applies uniformly to the
sum of central moments of order (2 + ¢). Lyapunov’s condition is

kn
D E(IXn; — E(X0)|*) € o(a2*?)  for some § > 0. (1.220)

j=1
e Lindeberg’s condition. Lindeberg’s condition is

kn

D B ((Xnj — B(X0j)’1x,,—BxX,, [>eon} (Xnj)) € 0(03) ¥ e >0,

j=1

(1.221)

Instead of a strong uniform condition on a power in terms of a positive
addition § to 2, as in Lyapunov’s condition, Lindeberg’s condition applies
to a fixed power of 2 over an interval controlled by e. Lindeberg’s con-
dition requires that the sum of the second central moments over the full
support minus the squared central differences near the mean is ultimately
dominated by the variance of the sum. (That is to say, the sum of the
tail components of the variance is dominated by the variance of the sum.
This means that the distributions cannot be too heavy-tailed.) The re-
quirement is in terms of an e that tells how much of the central region to
remove before computing the individual central moments.
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Clearly, Lyapunov’s condition implies Lindeberg’s condition.
Although Lyapunov’s condition is more stringent than Lindeberg’s condi-
tion, it is sometimes easier to establish Lyapunov’s condition than Linde-
berg’s condition.

e Feller’s condition. Lindeberg’s condition (or Lyapunov’s condition, of
course) implies Feller’s condition, which is:

2

lim max — = 0. (1.222)

n—oo j<k, 02

This condition comes up in the proof of Lindeberg’s central limit theorem.

A Central Limit Theorem for Independent Scalar Random
Variables with Finite Mean and Variance

A more general central limit theorem is called Lindeberg’s central limit theo-
rem. It is stated in terms of a sequence of the finite subsequences of a triangular
array, as we encountered in the definition of infinite divisibility on page 61.

Theorem 1.58 (Lindeberg’s Central Limit Theorem)
For given n, let {Xp;,j =1,2,...,kn} be independent random variables with
0 < 02, where 02 = V(Z?ll Xn;) and k, — 00 as n — oco. If the Lindeberg

n

condition (1.221) holds, then

k
1 ko
— 3 (Xnj = B(Xn;)) 5 N(0,1). (1.223)
et
Proof. *** From inequality (1.95), we have for each X,;,

ox,, (t) = (—t2V(Xy;)/2)| < E (min (|tXn;]% [tX050°/6)) -

Kok I

Multivariate Central Limit Theorems for Independent Random
Variables with Finite Mean and Variance

The central limit theorems stated above have multivariate extensions that
are relatively straightforward. The complications arise from the variance-
covariance matrices, which must replace the simple scalars o2.

The simplest situation is the iid case where each member of the sequence
{X,} of random k-vectors has the finite variance-covariance matrix X. In that
case, similar to equation (1.218) for iid scalar random variables, we have

Z?_l(X\i/% E(Xi)) gNk(O,E), (1.224)
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Another type of multivariate central limit theorem can be formed by think-
ing of the subsequences in equation (1.223) as multivariate random variables.
Let {k,} be a sequence of constants such that k, — oo as n — oo. Let
X, € R™, where m; < m for some fixed integer m and fori =1,...,k,, be
independent with

iinj Ani > 0,

where \,,; is the smallest eigenvalue of V(X,,;). (Note that this is saying that
variance-covariance matrix is positive definite for every n and ¢; but it’s saying
a little more than that.) Also suppose that for some § > 0, we have

sup V([ Xnil[*+?) < oo.
i,n

Now, let ¢,; be a sequence in IR™ with the property that it is diffuse:

kn
lim <max o2 §j||cm-||2> ~0.
n—oo \ 1<i<k, m1

Then we have something similar to equation (1.223):

1/2
kn /

kn
Zcfi (Xnj —E(Xm—))/ ZV(CEanj) 4 N(0,1). (1.225)

j=1

1.4.3 Extreme Value Distributions

In Theorem 1.48 we saw that the asymptotic joint distribution of a set of
central order statistics obeys the central limit theorem. The asymptotic dis-
tribution of extreme order statistics, however, is not normal. We have already
considered asymptotic distributions of extreme order statistics in special cases
in Examples 1.27 and 1.28 for random variables with bounded ranges and in
Example 1.29 for a random variable with unbounded range. The latter is the
more interesting case, of course.

Given a sequence of random variables {X; |i = 1,...,n}, we are interested
in the limiting distribution of functions of the form in expression (1.208), that
is,

Qn (X(nn) - bn) .

The first question, of course, is what conditions on a,, and b,, will yield a limit-
ing distribution that is nondegenerate. These conditions clearly must depend
on the distributions of the X;, and must take into account any dependencies
within the sequence. We will consider only the simple case; that is, we will
assume that the X; are iid. Let F' be the CDF of each X;. The problem now
is to find a CDF @ for a nondegenerate distribution, such that for each point
of continuity = of G,
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lim F"™(x/an + by) = G(x). (1.226)
Fisher and Tippett (1928) The most general answer to this is given in the
following theorem.

Theorem 1.59 (extreme value distribution)
A CDF satisfying equation (1.226) must have one of the following three forms
in which o > 0:

Glz) = Slj(p(—afo‘), i i 8; (1.227)
G(x) = exp(—e™"); (1.228)
Glz) = P @)Y, 2 <0 (1.229)

1 x> 0.

3

The proof of a version of this theorem was given by Fisher and Tippett
(1928), and a more careful statement along with a proof was given by
Gnedenko (1943). See de Haan and Ferreira (2006) for a proof, and see
David and Nagaraja (2003) for further discussion.

*** Combine these in one express and introduce the extreme value index

*** Give names to the three classes.

domain of attraction

1.4.4 Other Limiting Distributions

Asymptotic distributions are very important in statistical applications be-
cause, while the exact distribution of a function of a finite set of random
variables may be very complicated, often the asymptotic distribution is un-
complicated. Often, as we have seen, the limiting distribution is normal if the
sequence is properly normalized. If a normal distribution can be used, even as
an approximation, there is a wealth of statistical theory that can be applied
to the problem.

The random variables of interest are often functions g(X) of simpler ran-
dom variables X. If we know the limiting distribution of {X,,} we can often
work out the limiting distribution of {g(X,,)}, depending on the nature of the
function g. A simple example of this is equation (1.195) for the delta method.
In this case we start with {X,} that has a limiting normal distribution and
we get that the limiting distribution of {g(X,,)} is also normal.

We also can often get useful limiting distributions from the central limit
theorem and the distributions of functions of normal random variables such
as chi-squared, t, or F, as discussed in Section 2.9.2.
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1.5 Conditional Probability

The concept of conditional distributions provides the basis for the analysis of
relationships among variables.

A simple way of developing the ideas begins by defining the conditional
probability of event A, given event B. If Pr(B) # 0, the conditional probability
of event A given event B is

Pr(AnB)
Pr(A|B) = ———— 1.2
HAB) =~ (1.230)
which leads to the useful multiplication rule
Pr(AN B) = Pr(B)Pr(A|B). (1.231)

We see from this that if A and B are independent
Pr(A|B) =Pr(A).

If we interpret all of this in the context of the probability space (2, F, P),
we can define a new “conditioned” probability space, (2, F, Pg), where we
define Pp by

Pg(A) =Pr(AN B),
for any A € F. From this conditional probability space we could then proceed
to develop “conditional” versions of the concepts discussed in the previous
sections.

This approach, however, is not entirely satisfactory because of the require-
ment that Pr(B) # 0. More importantly, this approach in terms of events
does not provide a basis for the development of conditional probability den-
sity functions.

Another approach is to make use of a concept of conditional expectation,
and that is what we will proceed to do. In this approach, we develop sev-
eral basic ideas before we finally speak of distributions of conditional random
variables in Section 1.5.4.

1.5.1 Conditional Expectation: Definition and Properties

The definition of conditional expectation of one random variable given an-
other random variable is developed in two stages. First, we define conditional
expectation over a sub-o-field and consider some of its properties, and then
we define conditional expectation with respect to another measurable function
(a random variable, for example) in terms of the conditional expectation over
the sub-o-field generated by the inverse image of the function.

A major difference in conditional expectations and unconditional expecta-
tions is that conditional expectations may be nondegenerate random variables.
When the expectation is conditioned on a random variable, relations involv-
ing the conditional expectations must be qualified as holding in probability,
or holding with probability 1.
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Conditional Expectation over a Sub-o-Field

Definition 1.44 (conditional expectation over a sub-o-field)

Let (92, F, P) be a probability space, let A be a sub-o-field of F, and let X be
an integrable random variable over ). The conditional expectation of X given
A, denoted by E(X|.A), is an A-measurable function from (€, F) to (IR, BY)
such that

/E(X|A)dP:/XdP, VA€ A (1.232)
A A

Clearly, if A = F, then E(X|A) = E(X)

Being a real A-measurable function, the conditional expectation is a ran-
dom variable from the space (2, .4, P). Such a random variable exists and is
a.s. unique, as we will see below (Theorem 1.60).

Equation (1.232) in terms of an indicator function is

/ E(X|A)dP = E(XI4), VA€ A (1.233)
A

Another equivalent condition, in terms of bounded .A-measurable func-
tions, is
E(E((X]A)Y)) = E(XY) (1.234)

for all bounded and A-measurable Y for which XY is integrable.

Theorem 1.60

Let (Q,F, P) be a probability space, let A be a sub-o-field of F, and let X be
an integrable random variable from Q into RY. Then there is an a.s. unique
d-variate random variable Y on (Q, A, P4) such that

/YdPA:/XdP, VA€ A
A A

Proof. Exercise. (Use the Radon-Nikodym theorem 0.1.30, on page 739 to
show the existence. For a.s. uniqueness, assume the A-measurable functions
Y1 and Y5 are such that fAYldP :fAYQdPVAG A and show that Y1 = Y5
a.s. A and P.) |

Conditional Expectation with Respect to a Measurable Function

Definition 1.45 (with respect to another measurable function)

Let (2, F, P) be a probability space, let A be a sub-o-field of F, let X be an
integrable random variable over €2, and let Y be a measurable function from
(Q, F, P) to any measurable space (A, G). Then the conditional expectation of
X given Y, denoted by E(X|Y), is defined as the conditional expectation of
X given the sub-o-field generated by Y, that is,
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E(X|Y) = E(X|o(Y)). (1.235)
|

Definition 1.44 provides meaning for the expression E(X|o(Y)) in equa-
tion (1.235).

Sub-o-fields generated by random variables, such as ¢(Y), play an im-
portant role in statistics. We can think of o(Y) as being the “information
provided by Y”. In an important type of time series, Y7, Yo, ..., we encounter
a sequence o(Y7) C o(Yz) C - -+ and we think of each random variable in the
series as providing additional information.

Another view of conditional expectations in statistical applications is as
approximations or predictions; see Section 1.5.3.

1.5.2 Some Properties of Conditional Expectations

Although the definition above may appear rather abstract, it is not too dif-
ficult to work with, and it yields the properties of conditional expectation
that we have come to expect based on the limited definitions of elementary
probability.

For example, we have the simple relationship with the unconditional ex-
pectation:

E(E(X|A)) = E(X). (1.236)

Also, if the individual conditional expectations exist, the conditional ex-
pectation is a linear operator:

Va € R, E(aX + Y]A) = aE(X|A) + E(Y|A) a.s. (1.237)

This fact follows immediately from the definition. For any A € A

E(aX +Y|A) = / aX +YdP

_a/XdP+/YdP

= aB(X|A) + E(Y]A)

As with unconditional expectations, we have immediately from the defini-
tion:

X <Yas. = EX|A) <E®Y]A) as. (1.238)

We can establish conditional versions of the three theorems stated on
page 89 that relate to the interchange of an integration operation and a
limit operation (monotone convergence, Fatou’s lemma, and dominated con-
vergence). These extensions are fairly straightforward.
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e monotone convergence:
for0 < X; < X5--- a.s.

X, X = E(X,|A) 2 EX|A. (1.239)
e Fatou’s lemma:

0<X,¥n = E(liminf X,|A) <liminf E(X,|A) a.s.. (1.240)

e dominated convergence:
given a fixed Y with E(Y|A) < oo,

X, <YVnand X, 23 X = E(X,|A) 3 E(X|A).  (1.241)

Another useful fact is that if Y is A-measurable and | XY| and | X| are inte-
grable (notice this latter is stronger than what is required to define E(X|.A)),
then

E(XY|A) = YE(X|A) a.s. (1.242)

Some Useful Conditional Expectations

There are some conditional expectations that arise often, and which we should
immediately recognize. The simplest one is

E(E(Y]X)) = E(Y). (1.243)

Note that the expectation operator is based on a probability distribution,
and so anytime we see “E”, we need to ask “with respect to what probability
distribution?” In notation such as that above, the distributions are implicit
and all relate to the same probability space. The inner expectation on the left
is with respect to the conditional distribution of Y given X, and so is a func-
tion of X. The outer expectation is with respect to the marginal distribution
of X.

Approaching this slightly differently, we consider a random variable Z that
is a function of the random variables X and Y:

Z = f(X,Y).
We have
E(f(X,Y)) =Ey (Ex)y (f(X,Y)]Y)) = Ex (Eyx(f(X,Y)|X)). (1.244)

Another useful conditional expectation relates adjusted variances to “to-
tal” variances:
V(Y) = V(E(Y|X)) + E(V(Y|X)). (1.245)
This is intuitive, although you should be able to prove it formally. The intuitive
explanation is: the total variation in Y is the sum of the variation of its mean
given X and its average variation about X (or given X). (Think of SST =
SSR + SSE in regression analysis.)
This equality implies the Rao-Blackwell inequality (drop the second term
on the right).
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Exchangeability, Conditioning, and Independence

De Finetti’s representation theorem (Theorem 1.30 on page 75) requires an
infinite sequence, and does not hold for finite sequences. For example, consider
an urn containing one red ball and one blue ball from which we draw the balls
without replacement. Let R; = 1 if a red ball is drawn on the i*" draw and
R; = 0 otherwise. (This is the Polya’s urn of Example 1.6 on page 24 with
r=>b=1and ¢ = —1.) Clearly, the sequence R1, Rs is exchangeable. Because

Pr(Ry=1,Ry=1)=0,

if there were a measure p as in de Finetti’s representation theorem, then we
would have

1
0= / mdu(r),
0

which means that @ must put mass 1 at the point 0. But also
PI‘(Rl = 0, RQ = 0) = 0,

which would mean that

0 :/0 (1 — m)2dpu(r).

That would not be possible if u satisfies the previous requirement. There are,
however, finite versions of de Finetti’s theorem; see, for example, Diaconis
(1977) or Schervish (1995).

An alternate statement of de Finetti’s theorem identifies a random variable
with the distribution P, and in that way provides a more direct connection
to its use in statistical inference.

Theorem 1.61 (de Finetti’s representation theorem (alternate))
The sequence {X;}$2, of binary random variables is exchangeable iff there
is a random wvariable IT such that, conditional on II = m, the {X;}2, are
itd Bernoulli random variables with parameter w. Furthermore, if {X;}52,
is exchangeable, then the distribution of II is unique and X, = Y i, X;/n
converges to I almost surely.

Example 1.30 exchangeable Bernoulli random variables that are
conditionally iid Bernoullis (Schervish, 1995)

Suppose {X,,}22; are exchangeable Bernoulli random variables such that for
each n and for kK =0,1,...,n,

(3 -0) -

=1

Now X,, “3' IT, where IT is as in Theorem 1.61, and so X, 4 I7. To determine
the distribution of IT, we write the CDF of X, as
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_ [nt] +1

Fult) n+1"’

hence, lim F),(t) = ¢, which is the CDF of II. Therefore, IT has a U(0,1)
distribution. The X; are conditionally iid Bernoulli(r) for IT = 7.

The distributions in this example will be used in Examples 4.2 and 4.6 in
Chapter 4 to illustrate methods in Bayesian data analysis. |

Conditional expectations also are important in approximations of one ran-
dom variable by another random variable, and in “predicting” one random
variable using another, as we see in the next section.

1.5.3 Projections

Use of one distribution or one random variable as an approximation of another
distribution or random variable is a very useful technique in probability and
statistics. It is a basic technique for establishing asymptotic results, and it
underlies statistical applications involving regression analysis and prediction.

Given two scalar random variables X and Y, consider the question of
what Borel function g is such that g(X) is closest to ¥ in some sense. A
common way to define closeness of random variables is by use of the expected
squared distance, E((Y — g(X))?). This leads to the least squares criterion for
determining the optimal g(X).

First, we must consider whether or under what conditions, the problem
has a solution under this criterion.

Theorem 1.62
Let X andY be scalar random variables over a common measurable space and

assume E(Y?) < oo. Then there exists a Borel measurable function go with
E((g0(X))?) < oo such that

E((Y = g0(X))?) = inf{E((Y - ¢(X))?) | 9(X) € Go}, (1.246)
where Go = {g(X) | g : R — TR is Borel measurable and E((go(X))?) < oo}.
Proof. ***fix |

Although Theorem 1.62 is stated in terms of scalar random variables,
a similar result holds for vector-valued random variables. The next theorem
identifies a go that minimizes the Ly norm for vector-valued random variables.

Theorem 1.63

LetY be a d-variate random variable such that E(||Y||2) < oo and let G be the
set of all Borel measurable functions from R” into R®. Let X be a k-variate
random variable such that E(|E(Y|X)|2) < co. Let go(X) = E(Y|X). Then

o(X) = argmin (Y ~ g(X)2). (1.247)
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Proof. Exercise. Compare this with Theorem 1.13 on page 27, in which the
corresponding solution is go(X) = E(Y|a) = E(Y). |

By the general definition of projection (Definition 0.0.9 on page 637), we
see that conditional expectation can be viewed as a projection in a linear space
defined by the square-integrable random variables over a given probability
space and the inner product (Y, X) = E(Y X) and its induced norm. (In fact,
some people define conditional expectation this way instead of the way we
have in Definitions 1.44 and 1.45.)

In regression applications in statistics using least squares, as we discuss on
page 438, “}/}”, or the “predicted” Y given X, that is, E(Y|X) is the projection
of Y onto X. For given fixed values of Y and X the predicted Y given X is
the vector projection, in the sense of Definition 0.0.9.

We now formally define projection for random variables in a manner anal-
ogous to Definition 0.0.9. Note that the random variable space is the range of
the functions in G in Theorem 1.63.

Definition 1.46 (projection of a random variable onto a space of random variables)

Let Y be a random variable and let X be a random variable space defined on
the same probability space. A random variable X, € X such that

E(lY = Xpll2) < E(Y = X[l2) VX € & (1.248)

is called a projection of Y onto X. |

The most interesting random variable spaces are linear spaces, and in the
following we will assume that X is a linear space, and hence the norm arises
from an inner product so that the terms in inequality (1.248) involve variances
and covariances.

*** existence, closure of space in second norm (see page 35).

*H% treat vector variables differently: E(||Y — E(Y)||2) is not the vari-
ance**** make this distinction earlier

When X is a linear space, we have the following result for projections.

Theorem 1.64
Let X be a linear space of random variables with finite second moments. Then
X, is a projection of Y onto X iff X, € X and

E((Y - X,)"X)=0VX € x. (1.249)

Proof.
For any X, X,, € X we have

E(Y = X)T(Y = X)) = B((Y - X,,)" (Y — X;))
+2B((Y - X;)" (X, — X))
+HE((Xp - X)T (X, - X))
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If equation (1.249) holds then the middle term is zero and so E((Y — X)T(Y —
X)) >E(Y - X,)T(Y — X,,)) VX € &; that is, X, is a projection of Y onto
X.

Now, for any real scalar a and any X, X, € X', we have

E(Y — X, — aX)T(Y — X, — aX)) ~E((Y — X,)T(Y - X,)) =
—2aE((Y — X,)TX) 4+ a2E(XTX).

If X, is a projection of Y onto &, the term on the left side of the equation is
nonnegative for every a. But the term on the right side of the equation can be
nonnegative for every a only if the orthogonality condition of equation (1.249)
holds; hence, we conclude that that is the case. |

Because a linear space contains the constants, we have the following corol-
lary.

Corollary 1.64.1
Let X be a linear space of random variables with finite second moments. and
let X, be a projection of the random variable Y onto X. Then,

E(X,) =E(), (1.250)
Cov(Y — X,,X)=0VX € X, (1.251)

and
Cov(Y,X) = Cov(X,, X) VX € X. (1.252)

*REfix ** add uniqueness etc. E(Y) = E(X,) and Cov(Y — X, X) =
0vX € A.

Definition 1.47 (projection of a function of random variables)
Let Y7,...,Y, be a set of random variables. The projection of the statistic
T.(Y1,...,Y,) onto the k,, random variables X1, ..., X, is

kn
To = E(To) + Y (B(Tu] X:) ~ E(Tn)) - (1.253)

i=1
|
An interesting projection is one in which the Yi,..., Yy in Definition 1.47
are the same as X1, ..., X,,. In that case, if T}, is a symmetric function of the
X1,..., Xy (for example, the X1,..., X, are iid), then the E(T,|X;) are iid

with mean E(T},). The residual, T}, — T},, is often of interest. Writing
T, — T, =T, — E(T,) — Y _(B(Tu|X;) — E(T,)),
i=1

we see that E(T}, — T},) = 0. Hence, we have
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E(T,) = E(T,), (1.254)
and if V(T,,) < o0
V(T) = nV(E(T,|X;)) (1.255)

(exercise).
If V(E(T,|X;)) > 0, by the central limit theorem, we have

1 ~
(T, — E(T2)) % N(0,1).
nV(E(T,|X;))
We also have an interesting relationship between the variances of T}, and
T,, that is, V(T,,) < V(T,), as the next theorem shows.

Theorem 1.65
If T, is symmetric and V(T,,) < oo for every n, and T, is the projection of
T, onto X1,...,X,, then

E((Tn - Tn)Q) = V(Tn) - V(Tn)-

Proof. Because E(T},) = E(T},), we have

E(T, — T,,)%) = V(T,)) + V(T,,) — 2Cov(T,,, T},). (1.256)
But
Cov(Ty, T,) = E(Th, T.))*
= nE (T, E(T,|X;)) — n(E Tn
= nV(E(T,|X3:))
= V(Tn)a
and the desired result follows from equation (1.256) above. |

The relevance of these facts, if we can show that 7T;, — T, in some appro-
priate way, then we can work out the asymptotic distribution of T},. (The use
of projections of U-statistics beginning on page 413 is an example.)

Partial Correlations

***ﬁX
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1.5.4 Conditional Probability and Probability Distributions

We now are in a position to define conditional probability. It is based on a
conditional expectation.

Definition 1.48 (conditional probability given a sub-o-field)

Let (2, F, P) be a probability space, let A be a sub-o-field of F, and let
B € F. The conditional probability of B given A, denoted by Pr(B|A), is
defined as E(Ig|A). |

The concept of conditional probability given a sub-o-field immediately
yields the concepts of conditional probability given an event and conditional
probability given a random variable. For a probability space (2, F, P) with
A, B € F, the conditional probability of B given A, denoted by Pr(B|A), is
E(lplo(4)).

Furthermore, if X is a random variable defined on (2, F, P), the condi-
tional probability of B given X, denoted by Pr(B|A), is E(Ig|o(X)). This gives
meaning to the concept of a conditional distribution of one random variable
given another random variable.

Conditional Distributions

We start with a probability space (IR™, B™, P;) and define a probability mea-
sure on the measurable space (IR" x IR™,o(B™ x B™). We first need the
existence of such a probability measure (proved in Billingsley (1995), page
439).

For a random variable Y in IR™, its (marginal) distribution is determined
by P, which we denote as Py (y). For B € B" and C' € B™, the condi-
tional distribution is defined by identifying a probability measure, denoted as
Pxy(-ly), on (IR",o(B")) for any fixed y € IR™.

The joint probability measure of (X,Y") over R" x IR™ is defined as

Pxy = /CPX|Y('|y)dPY(y),

where C € B™.
For distributions with PDFs the conditional, joint, and marginal PDFs
have the simple relationship

Ixv(z,y)

fX|Y(33|y): fy(y) )

so long as fy (y) > 0.
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Independence

Theorem 1.66
The random variables X andY are independent iff the conditional distribution
equals the marginal distribution; that is, for the d-variate random variable X,
if

VA CRY, Pr(X € A]Y) = Pr(X € A).

Proof. Exercise. |
This theorem means that we can factor the joint PDF or CDF of indepen-
dent random variables.

Conditional Independence

The ideas of conditional distributions also lead to the concept of conditional
independence.

Definition 1.49 (conditional independence)

X and Y are conditionally independent given Z iff the joint conditional distri-
bution equals the joint marginal distribution; that is, for the d-variate random
variable X, iff

VA C R Pr(X € AY, Z) = Pr(X € A[Y).
|

When two independent random variables are added to a third independent
variable, the resulting sums are conditionally independent, given the third
(common) random variable.

Theorem 1.67

Suppose the random variables X, Y, and Z are independent. Let U = X + Z
and V. =Y + Z. Then U|Z and V|Z are independent; that is, U and V are
conditionally independent given Z.

Proof. Exercise. |

Copulas

One of the most important uses of copulas is to combine two marginal distri-
butions to form a joint distribution with known bivariate characteristics. We
can build the joint distribution from a marginal and a conditional.

We begin with two U(0, 1) random variables U and V. For a given associ-
ation between U and V specified by the copula C(u,v), from Sklar’s theorem,
we can see that

Py v (uv) = (%C(u,vﬂv. (1.257)

We denote %C(u, V)| by Cy(u).
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Conditional Entropy

We define the conditional entropy of X given Y in two ways. The first meaning
just follows the definition of entropy in equation (1.81) on page 42 with the
conditional PDF pxy used in place of the marginal PDF px. This leads to
an entropy that is a random variable or an entropy for a fixed value Y = y.
In the more common usage, we define the conditional entropy of X given Y
(which is also called the equivocation of X about Y) as the expected value of
the term described above; that is,

H(X|Y) == pv(y) Y pxpy(zly) log(px|y (z]y))- (1.258)

As before, the basic definition is made in terms of a PDF derived by a counting
measure, but we extend it to any PDF.
From the definition we see that

H(X|Y)=H(X,Y) - H(Y) (1.259)

or

H(X,Y)=H(X|Y)+ H(Y).

Interpret H(X,Y") as “total entropy”, and compare the latter expression with
equation (1.245).

1.6 Stochastic Processes

Many interesting statistical problems concern stochastic processes, which we
can think of as a measurable function

X : IxQ—RY (1.260)

where 7 is some index set (Z could be any ordered set).

In the expression above, X is a random variable, and for each i € Z, X; is
a random variable. If the stochastic process is viewed as evolving in time, we
usually denote the index by ¢ and we may denote the process as {X;}. In view
of equation (1.260), it is also appropriate and common to use the notation
{X(t,w)}.

The main interest in stochastic processes is the relationship among the
distributions of {X;} for different values of ¢.

The sequences we discussed in Section 1.3 are of course stochastic pro-
cesses. The sequences considered in that section did not have any particular
structure, however. In some cases, we required that they have no structure;
that is, that the elements in the sequence were independent. There are many
special types of interesting stochastic processes with various structures, such
as Markov chains, martingales, and other types of time series. In this section,
we will just give some basic definitions, and then discuss briefly two important
classes of stochastic process.
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States, Times, Notation, and Basic Definitions

The smallest set of measure 1 is called the state space of a stochastic process;
that is, the range of X is called the state space. Any point in the state space
is called a state.

If the index set of a stochastic process is countable, we say the pro-
cess is a discrete time stochastic process. We can index a discrete time pro-
cess by 0,1,2,... especially if there is a fixed starting point, although often

.,—2,—1,0,1,2,...is more appropriate.

In many applications, however, the index of a stochastic process ranges
over a continuous interval. In that case, we often use a slightly different no-
tation for the index set. We often consider the index set to be the interval
[0, T], which of course could be transformed into any finite closed interval. If
the index set is a real interval we say the process is a continuous time stochas-
tic process. For continuous time stochastic processes, we sometimes use the
notation X (t), although we also use X;. We will discuss continuous time pro-
cesses in Section 1.6.2 below and consider a simple continuous time process
in Example 1.32.

A property that seems to occur often in applications and, when it does, af-
fords considerable simplifications for analyses is the conditional independence
of the future on the past given the present. This property, called the Markov
property, can be made precise.

Definition 1.50 (Markov property)
Suppose in the sequence {X,}, for any set tp < t; < --- < t, <t and any =z,
we have

Pr(Xy <z | Xiegy Xty oo, Xe,) = Pr(Xy <z | Xy,). (1.261)

Then {X,} is said to be a Markov sequence or the sequence is said to be
Markovian. The condition expressed in equation (1.261) is called the Markov
property. |

Definition 1.51 (homogeneous process)
If the marginal distribution of X (¢) is independent of ¢, the process is said to
be homogeneous. |

***fix Many concepts are more easily defined for discrete time processes,
although most have analogs for continuous time processes.

Definition 1.52 (stopping time)
Given a discrete time stochastic process ***fix change to continuous time

X :40,1,2,..} xQ— R,

a random variable

T:0~{012,..} (1.262)
is called a stopping time if the event {T =t} depends only on X, ..., X; for
n=01,2,... ]
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Stopping times have several important characteristics, such as the fact
that the Markov property holds at stopping times.

Definition 1.53 (first passage time)
A special stopping time is the first passage time defined (for discrete time

processes) as
T; =min{t > 1 : X, = j}, (1.263)

if this set is nonempty; otherwise, T, = oco. |

There are other types of useful properties that simplify the analyses of
processes with those properties. While a first passage time depends on the
concept, of a beginning point in the process, in the following we will usually
allow the discrete time index to assume the values ..., —2,—1,0,1,2,....

One of the most interesting properties of a stochastic process is the rela-
tionship of terms in the sequence to each other.

Definition 1.54 (autocovariance and autocorrelation)
For the process
{X¢ i t=...,-2,-1,0,1,2,.. .}

E(X¢) = gt < 00, the function

(s,1) = E((Xs — ps) (Xe — )
ey COV(XS&O " (1.264)

if it is finite, is called the autocovariance function.
If the autocovariance exists, the function

(s, 1)
v(s, 8)7(t, 1)

is called the autocorrelation function. The autocorrelation function, which is
generally more useful than the autocovariance function, is also called the ACF.

p(s,t) = (1.265)

|
Definition 1.55 (white noise process)
A process
(X, t=...,-2,-1,0,1,2,..}
with E(X;) =0 and V(X;)= 0% < ooVt and such that p(s,t) =0V s #t
is called white noise. |

A zero-correlated process with constant finite mean and variance is also
sometimes called white noise process even if the mean is nonzero. We denote
a white noise process by X; ~ WN(0, 0?) or X; ~ WN(pu, 0?).

Notice that the terms in a white noise process do not necessarily have
identical distributions.
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Definition 1.56 ((weakly) stationary process)
Suppose
(X i t=...,-2,-1,0,1,2,..}

is such that E(X;) = and V(X;) < ooVt and ~(s,t) is constant for any
fixed value of |s — t|. Then the process {X;} is said to be weakly stationary.

A white noise is clearly stationary.

In the case of a stationary process, the autocovariance function can be
indexed by a single quantity, h = |s — t|, and we often write it as .

It is clear that in a stationary process, V(X;) = V(X,); that is, the variance
is also constant. The variance is 7y in the notation above.

Just because the means, variances, and autocovariances are constant, the
distributions are not necessarily the same, so a stationary process is not nec-
essarily homogeneous. Likewise, marginal distributions being equal does not
insure that the autocovariances are constant, so a homogeneous process is not
necessarily stationary.

The concept of stationarity can be made stricter.

Definition 1.57 (strictly stationary process)
Suppose
(X :t=...,-2,-1,0,1,2,..}

is such that for any k, any set ¢1,...,tx, and any h the joint distribution of
D, R, ¢
is identical to the joint distribution of

Xt1+ha SRR th+h'

Then the process {X;} is said to be strictly stationary. |

A strictly stationary process is stationary, but the converse statement does
not necessarily hold. If the distribution of each X; is normal, however, and if
the process is stationary, then it is strictly stationary.

As noted above, a homogeneous process is not necessarily stationary. On
the other hand, a strictly stationary process is homogeneous, as we see by
choosing k = 1.

Example 1.31 a central limit theorem for a stationary process
Suppose X1, Xa, ... is a stationary process with E(X;) = u and V(X;) = o2.
We have

VWK =) =0+ 1 3 Cov(Xi, X))
i#j=1

2 n
— 42 i _
=0 + - hgil(n ) Yp- (1.266)
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(Exercise.) Now, if limy, .o 2 3°1_, (n — h)y, = 72 < 00, then

V(X — p) = N0, 0% + 7).

1.6.1 Probability Models for Stochastic Processes

A model for a stochastic process posits a sampling sequence over a sample
space ). This yields a path or trajectory, (w1, ws,...). In continuous time we
generally denote a path trajectory as w(t). The sample space for the stochastic
process becomes the set of paths. We denote this by Q7.

We think of a stochastic process in terms of a random variable, X;, and
an associated o-field F; in which X; is measurable.

*F*kfix motivate and prove this ... a sequence of random variables {X,, } for
any n, the joint CDF of Xy,..., X, is **** uniqueness

Theorem 1.68 (Kolmogorov extension theorem)
For any positive integer k and any t1,...,tx € T, let Py, ..
measures on R™ such that for any Borel sets By, ..., B, € R™,

.....

Prrceyy,om) (B X - X B) = Py 4, (Br-1(1) X -+ X Br-1y), (1.267)

for all permutations IT on {1,...,k}, and for all positive integers m,

Ptl »»»»» tk(le"'XBk) :Ptl »»»»» trsthd1ye tk+m(

(1.268)

Then there exists a probability space (Q, F,P) and a stochastic process
{X:} on Q, Xi: Q— IR" such that

tk(BlX"'XBk):P(thGBl,...,theBk) (1269)

for all positive integers k, for allt; € T, and for all Borel sets B;.

Proof.
sk iy I

Evolution of o-Fields

In many applications, we assume an evolution of o-fields, which, under the
interpretation of a o-field as containing all events of interest, is equivalent to
an evolution of information. This leads to the concept of a filtration and a
stochastic process adapted to the filtration.

Definition 1.58 (filtration; adaptation)
Let {(2, F;, P)} be a sequence of probability spaces such that if s < ¢, then
Fs C Fi. The sequence {F;} is called a filtration.

For each t let X; be a real function on €2 measurable wrt ;. The stochastic
process {X;} is said to be adapted to the filtration {F;}. |
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If {X,} is adapted to the filtration {F;}, we often write X, € F;,. We also
call the process {X;} nonanticipating, for obvious reasons.

Definition 1.59 (filtered probability space)
Given a probability space (2, F, P) and a filtration {F;} of sub-o-fields of F,
we form the filtered probability space (0, F,{F: : t € [0,00[}, P). |

1.6.2 Continuous Time Processes

For a stochastic process over a continuous index set Z we must be concerned
about the continuity of the process in time. The problem arises because the
countably-additive property of a measure (equation (0.1.8)) does not carry
over to uncountable unions. For a process X (t,w) where ¢ is in uncountable
index set, say, for example, an interval, we will be faced with the necessity
to evaluate probabilities of sets of the form U;>0A:. Such unions are not
necessarily in the underlying o-field.

** continuation motivation

We can define continuity of X (¢,w) on Z in the usual way at a given point
wp € . Next, we consider continuity of a stochastic process over (2.

Definition 1.60 (sample continuous)
Given a probability space (2, F, P) and a function

X I xQ—1R,

we say X is sample continuous if X(w) : Z — IR is continuous for almost all
w (with respect to P). |

The phrase almost surely continuous, or just continuous, is often used instead
of sample continuous.

*** add more ... examples

The path of a stochastic process may be continuous, but many useful
stochastic processes are mixtures of continuous distributions and discrete
jumps. In such cases, in order to assign any reasonable value to the path
at the point of discontinuity, we naturally assume that time is unidirectional
and the discontinuity occurs at the time of the jump, and then the path evolves
continuously from that point; that is, after the fact, the path is continuous
from the right. The last value from the left is a limit of a continuous function.
In French, we would describe this as continu a droite, limité a gauche; that is
cadlag. Most models of stochastic processes are assumed to be cadlag.

1.6.3 Markov Chains
The simplest stochastic process is a sequence of exchangeable random vari-

ables; that is, a sequence with no structure. A simple structure can be im-
posed by substituting conditioning for independence. A sequence of random
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variables with the Markov property is called a Markov process. A Markov
process in which the state space is countable is called a Markov chain. (The
term “Markov chain” is also sometimes used to refer to any Markov process,
as in the phrase “Markov chain Monte Carlo”, in applications of which the
state space is often continuous.)

The theory of Markov chains is usually developed first for discrete-time
chains, that is, those with a countable index set, and then extended to
continuous-time chains.

If the state space is countable, it is equivalent to X = {1,2,...}. If X is a
random variable from some sample space to X', and

7 = Pr(X =1i), (1.270)

then the vector m = (71, 7o, . . .) defines a distribution of X on X'. Formally, we
define a Markov chain (of random variables) Xo, X1, ... in terms of an initial
distribution 7 and a conditional distribution for X;,; given X;. Let X, have
distribution 7, and given X; = j, let X, 1 have distribution (p;;;¢ € X); that
is, ps; is the probability of a transition from state j at time ¢ to state 7 at time
t+1, and K = (p;;) is called the transition matriz of the chain. The initial
distribution 7 and the transition matrix K characterize the chain, which we
sometimes denote as Markouv(m, K). It is clear that K is a stochastic matrix,
and hence p(K) = ||K|| = 1, and (1, 1) is an eigenpair of K.

If K does not depend on the time (and our notation indicates that we are
assuming this), the Markov chain is stationary.

A discrete-time Markov chain {X;} with discrete state space {z1,x2,...}
can be characterized by the probabilities p;; = Pr(Xi11 = z; | X¢ = x;j).
Clearly, > ;.7 pij = 1. A vector such as p,; whose elements sum to 1 is called
a stochastic vector or a distribution vector.

Because for each j, > .7 pi; =1, K is a right stochastic matriz.

The properties of a Markov chain are determined by the properties of the
transition matrix. Transition matrices have a number of special properties,
which we discuss in Section 0.3.6, beginning on page 818.

(Note that many people who work with Markov chains define the transition
matriz as the transpose of K above. This is not a good idea, because in ap-
plications with state vectors, the state vectors would naturally have to be row
vectors. Until about the middle of the twentieth century, many mathematicians
thought of vectors as row vectors; that is, a system of linear equations would
be written as tA = b. Nowadays, almost all mathematicians think of vectors
as column vectors in matriz algebra. Even in some of my previous writings,
e.g., Gentle (2007), I have called the transpose of K the transition matriz,
and I defined a stochastic matrix in terms of the transpose. The transpose of
a right stochastic matriz is a left stochastic matriz, which is what is commonly
meant by the unqualified phrase “stochastic matriz”. I think that it is time to
adopt a notation that is more consistent with current matriz/vector notation.
This is merely a change in notation; no concepts require any change.)
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If we assume that X; is a random variable taking values in {z1,zo,...}
and with a PDF (or probability mass function) given by

Pr(X, = z;) =", (1.271)
and we write 7(t) = (wgt), wgt), ...), then the PDF at time ¢ + 1 is
D = ga®, (1.272)

Many properties of a Markov chain depend on whether the transition matrix
is reducible or not.

Because 1 is an eigenvalue and the vector 1 is the eigenvector associated
with 1, from equation (0.3.70), we have

lim K* =1, (1.273)

where 75 is the Perron vector of K7T.
This also gives us the limiting distribution for an irreducible, primitive
Markov chain,
lim 7 = Ts.
t—o0
The Perron vector has the property 7, = K ', of course, so this distribution
is the invariant distribution of the chain.
The definition means that (1,1) is an eigenpair of any stochastic matrix.
It is also clear that if K is a stochastic matrix, then ||K||oc = 1, and because
p(K) < ||K]|| for any norm and 1 is an eigenvalue of K, we have p(K) = 1.
A stochastic matrix may not be positive, and it may be reducible or irre-
ducible. (Hence, (1,1) may not be the Perron root and Perron eigenvector.)
If the state space is countably infinite, the vectors and matrices have in-
finite order; that is, they have “infinite dimension”. (Note that this use of
“dimension” is different from our standard definition that is based on linear
independence.)
We write the initial distribution as 7(?). A distribution at time t can be
expressed in terms of () and K:

7 = Ktr(©), (1.274)

K is often called the t-step transition matriz.

The transition matrix determines various relationships among the states of
a Markov chain. State 7 is said to be accessible from state j if it can be reached
from state j in a finite number of steps. This is equivalent to (K*);; > 0 for
some t. If state ¢ is accessible from state j and state j is accessible from
state i, states ¢ and j are said to communicate. Communication is clearly an
equivalence relation. The set of all states that communicate with each other is
an equivalence class. States belonging to different equivalence classes do not
communicate, although a state in one class may be accessible from a state
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in a different class. If all states in a Markov chain are in a single equivalence
class, the chain is said to be irreducible.

The limiting behavior of the Markov chain is of interest. This of course can
be analyzed in terms of lim; ., K*. Whether or not this limit exists depends
on the properties of K.

Galton-Watson Process

An interesting class of Markov chains are branching processes, which model
numbers of particles generated by existing particles. One of the simplest
branching processes is the Galton-Watson process, in which at time ¢ each
particle is assumed to be replaced by 0,1, 2,... particles with probabilities
M0, M1, T2, - - ., Where m, > 0, mp + 1 < 1, and > 7, = 1. The replacements
of all particles at any time ¢ are independent of each other. The condition
mo + 71 < 1 prevents the process from being trivial.
*** add more

Continuous Time Markov Chains

In many cases it seems natural to allow the index of the Markov process to
range over a continuous interval. The simplest type of continuous time Markov
chain is a Poisson process.

Example 1.32 Poisson process
Consider a sequence of iid random variables, Y7, Vs, . . . distributed as exponential(0, 6),
and build the random variables T} = Zle Y;. (The Y;s are the exponential
spacings as in Example 1.18.)

*** prove Markov property

*** complete |

birth process
k% 1]
K(t) = et
***fix R intensity rate. 74 nonpositive, r;; for i # j nonnegative, Y, ;7 rij =
0 for all j.

1.6.4 Lévy Processes and Brownian Motion

Many applications of stochastic processes, such as models of stock prices, focus
on the increments between two points in time. One of the most widely-used
models makes three assumptions about these increments. These assumptions
define a Lévy process.

Definition 1.61 (Lévy process)
Given a filtered probability space (Q, F, {Ft}o<t<oo, P). An adapted process
{X(t) : t€0,00[} with X(0) 22 0 is a Lévy process iff
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(i) X(t) — X(s) is independent of Fg, for 0 < s <t < o0.
X(s) 2

(il) X(t) (s)=X({t—s)for0<s<t<o0.

X
X(t) —
(iii) X(t) 2 X(s) as t — s.

One of the most commonly used Lévy processes is Brownian motion also
called a Bachelier- Wiener process (see Section 0.2.1 on page 766).

Definition 1.62 (Brownian motion)

(i) X (t) is continuous in ¢ almost surely.
(i) E(X:) = X(0).
(iii) X (t) — X(s) for 0 < s <t has a normal distribution with variance ¢ — s.

A Bachelier-Wiener process is also called a Brownian motion.
*** properties: covariance, etc.; existence, ete.

1.6.5 Brownian Bridges

*** definition, properties
Doob’s transformation: If {Y(¢)} is a Brownian bridge and

X(t) =1+ OY(t/1+1) fort>0, (1.275)

then {X(¢)} is a Brownian motion.

1.6.6 Martingales

Martingales are an important class of stochastic processes. The concept of
conditional expectation is important in developing a theory of martingales.
Martingales are special sequences of random variables that have applications
in various processes that evolve over time.

Definition 1.63 (martingale, submartingale, supermartingale)
Let {F:} be a filtration and let {X;} be adapted to the filtration {F;}. We
say the sequence {(X;, F;) : t € T} is a martingale iff
E(X¢|Fi_1) 2 X1 (1.276)
We say the sequence {(Xy, Fy) : t € T} is a submartingale iff
E(X|Fi_1) > X1 (1.277)
We say the sequence {(Xy, Fy) : t € T} is a supermartingale iff
E(X|Fi_1) < X1 (1.278)
|
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We also refer to a sequence of random variables {X; : t € T} as a (sub, su-
per)martingale if {(X;,0({Xs:s <t})):¢t € T} is a (sub, super)martingale;
that is, the martingale is the sequence {X,} instead of {(X¢, F;)}, and a cor-
responding sequence {F;} is implicitly defined as {o({X, : s <t})}.

This is consistent with the definition of {(X¢, F;) : t € T} as a (sub,
super)martingale because clearly

o{Xs : s<r}), Co({Xs : s<t}) ifr<t

(and so {c({X;s : s <t}).} is a filtration), and furthermore {X;} is adapted
to the filtration {oc({X, : s < t})}.

We often refer to the type of (sub, super)martingale defined above as a
forward (sub, super)martingale. We define a reverse martingale analogously
with the conditions F; D Fyy1 D -+ and B(X;_1|F) 2 X,.

The sequence of sub-o-fields, which is a filtration, is integral to the defini-
tion of martingales. Given a sequence of random variables {X;}, we may be
interested in another sequence of random variables {Y;} that are related to
the Xs. We say that {Y;} is a martingale with respect to {X;} if

EYi{X: : 7<s}) =Y, Vs <t (1.279)

We also sometimes define martingales in terms of a more general sequence
of o-fields. We may say that {X; : ¢ € T} is a martingale relative to the
sequence of o-fields {D; : ¢t € T} in some probability space (2, F, P), if

X, = E(X,|Dy) for s > t. (1.280)

Submartingales and supermartingales relative to {D; : t € 7 } may be defined
analogously.

Example 1.33 Polya’s urn process

Consider an urn that initially contains r red and b blue balls, and Polya’s
urn process (Example 1.6 on page 24). In this process, one ball is chosen
randomly from the urn, and its color noted. The ball is then put back into the
urn together with ¢ balls of the same color. Let X,, be the number of red balls
in the urn after n iterations of this procedure, and let Y,, = X,,/(nc + r + b).
Then the sequence {Y,,} is a martingale (Exercise 1.82).

Interestingly, if ¢ > 0, then {Y,,} converges to the beta distribution with
parameters r/c and b/c; see Freedman (1965). Freedman also discusses a vari-
ation on Polya’s urn process called Friedman’s urn process, which is the same
as Polya’s, except that at each draw in addition to the c¢ balls of the same
color being added to the urn, d balls of the opposite color are added to the
urn. Remarkably, the behavior is radically different, and, in fact, if ¢ > 0 and
d > 0, then Y, % 1/2. |
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Example 1.34 likelihood ratios

Let f and g be probability densities. Let X7, Xo,... be an iid sequence of
random variables whose range is within the intersection of the domains of f
and g. Let

n

Yo = [[o(X0)/F(X0). (1.281)

i=1
(This is called a “likelihood ratio” and has applications in statistics. Note
that f(z) and g(z) are likelihoods, as defined in equation (1.19) on page 20,
although the “parameters” are the functions themselves.) Now suppose that
f is the PDF of the X;. Then {Y,, : n = 1,2,3,...} is a martingale with
respect to {X,, : n=1,2,3,...}. |

The martingale in Example 1.34 has some remarkable properties. Robbins
(1970) showed that for any € > 1,

Pr(Y, > efor somen > 1) <1/e. (1.282)

Robbins’s proof of (1.282) is straightforward. Let N be the first n > 1 such
that [T, 9(Xi) > e[[;—, f(X;), with N = oo if no such n occurs. Also, let
gn(t) =TT;=1 9(t:) and fu(t) = [T;=; f(t3)-

Pr(Y, > e for somen > 1) = Pr(N < o)

> [t

< %Z/I{n}(N)gn(t)dt

1
<=
€

Another important property of the martingale in Example 1.34 is
Y, 3 0. (1.283)
You are asked to show this in Exercise 1.83.

Example 1.35 Bachelier-Wiener process
If {W(t) : t € [0,00[}is a Bachelier-Wiener process, then W2(t) — t is a
martingale. (Exercise.) |

Example 1.36 A martingale that is not Markovian and a Markov
process that is not a martingale

The Markov property is based on conditional independence of distributions
and the martingale property is based on equality of expectations. Thus it is
easy to construct a martingale that is not a Markov chain beginning with
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Xo has any given distribution with V(Xy) > 0. The sequence {X; : EX; =
EX;_1,VX, = 3, _ VX3.} is not a Markov chain.

A Markov chain that is not a martingale, for example, is {X; : X 4
2X;_1}, where Xy has any given distribution with E(Xj) # 0. |

A common application of martingales is as a model for stock prices. As
a concrete example, we can think of a random variable X; as an initial sum
(say, of money), and a sequence of events in which Xo, X3, ... represents a
sequence of sums with the property that each event is a “fair game”; that
is, E(X2]X1) = X1 a.s,, E(X3|X1, X2) = X5 as.,.... We can generalize this
somewhat by letting D,, = (X3, ..., X,,), and requiring that the sequence be
such that E(X,|Dn_1) =& X, 1.

Doob’s Martingale Inequality

A useful property of submartingales is Doob’s martingale inequality. This
inequality is a more general case of Kolmogorov’s inequality (B.11), page 849,
and the Hajek-Reényi inequality (B.12), both of which involve partial sums
that are martingales.

Theorem 1.69 (Doob’s Martingale Inequality)

Let {X; : t €[0,T]} be a submartingale relative to {Dy : t € [0,T)} taking
nonnegative real values; that is, 0 < X, < E(Xy|D;) for s,t. Then for any
constant € >0 and p > 1,

1
Pr( sup X; > e) < —E(|X7[?). (1.284)
0<t<T 2

Proof. ***fix |
Notice that Doob’s martingale inequality implies Robbins’s likelihood ratio
martingale inequality (1.282).

Azuma’s Inequality

extension of Hoeffding’s inequality (B.10), page 848

1.6.7 Empirical Processes and Limit Theorems

For a given random sample, the relationship of the ECDF F,, to the CDF
F of the underlying distribution is of interest. At a given x, the normalized
difference

Gn(z) = Vn(Fu(z) - F(z)) (1.285)

is called an empirical process. The convergence of this process will be studied
below.
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Martingale Central Limit Theorem

Most of the central limit theorems we discussed in Section 1.4.2 required
identical distributions, and all required independence. Can we relax the inde-
pendence assumption?

We focus on partial sums as in equation (1.223).

Theorem 1.70 (Martingale Central Limit Theorem)
Let
kn .
Zj:l(an - E(an)) it n <k,
Yn = (1.286)
SE (X, — E(Xk, ) i 0> ke

Now, assume {Y,} is a martingale.
Nezxt, starting with a fized value for each subsequence, say Xno = 0, assume
the sum of the normalized conditional variances converge to 1:

2
1 En
— ZE ((an - E(an))2|Xn1, . -aXn,jfl) 21,

g
n =2

where, as before, 02 = V(Zk" Xn;). Then we have

n

k
Ui S (Xnj — B(Xa))) = N(0,1). (1.287)

The addends in Y, are called a triangular array as in the buildup to Linde-
berg’s Central Limit Theorem (see page 106), and the result (1.287) is the
same as in Lindeberg’s Central Limit Theorem on page 107.

Proof. ***fix |

Convergence of Empirical Processes

Although we may write the ECDF as F), or F,(z), it is important to remember
that it is a random variable. We may use the notation F,(z,w) to indicate
that the ECDF is a random variable, yet to allow it to have an argument just
as the CDF does. I will use this notation occasionally, but usually I will just
write F,(z). The randomness comes in the definition of F,,(z), which is based
on the random sample.

The distribution of nF, (z) (at the fixed point x) is binomial, and so the
pointwise properties of the ECDF are easy to see. From the SLLN, we see
that it strongly converges pointwise to the CDF, and from the CLT, we have,
at the point x,

Vi(Fu(x) = F(x)) % N(0, F(z)(1 - F(x))). (1.288)
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Although the pointwise properties of the ECDF are useful, its global rela-
tionship to the CDF is one of the most important properties of the ECDF. Our
interest will be in the convergence of F;,, or more precisely, in the convergence
of a metric on F,, and F. When we consider the convergence of metrics on
functions, the arguments of the functions are sequences of random variables,
yet the metric integrates out the argument.

An important property of empirical processes is a stochastic bound on its
sup norm that is called the Dvoretzky /Kiefer/Wolfowitz (DKW) inequality,
after the authors of the paper in which a form of it was given (Dvoretzky et al.,
1956). This inequality provides a bound for the probability that the sup dis-
tance of the ECDF from the CDF exceeds a given value. Massart (1990)
tightened the bound and gave a more useful form of the inequality. In one-
dimension, for any positive z, the Dvoretzky /Kiefer/Wolfowitz/Massart in-
equality states

Pr(sup (vl P, w) = F(2)]) > 2) < 22" (1.289)

This inequality is useful in proving various convergence results for the ECDF.
For a proof of the inequality itself, see Massart (1990).

A particularly important fact regards the strong convergence of the sup
distance of the ECDF from the CDF to zero; that is, the ECDF converges
strongly and uniformly to the CDF. This is stated in the following theorem.
The DKW inequality can be used to prove the theorem, but the proof below
does not use it directly.

Theorem 1.71 (Glivenko-Cantelli) If X;,..., X, are éd with CDF' F and
ECDF F,, then sup,(|Fy(z,w) — F(z)|) B,

Proof. First, note by the SLLN and the binomial distribution of F,,, V (fixed) «,
F(z,w) pLs F(z); that is,

nlingo F,(z,w) = F(x)
Va, except x € A,, where Pr(A,) =0.

The problem here is that A, depends on x and so there are uncountably
many such sets. The probability of their union may possibly be positive. So
we must be careful.

We will work on the CDF and ECDF from the other side of 2 (the discon-
tinuous side). Again, by the SLLN, we have

lim F,(z—,w)=F(z—)

n—oo

Yz, except x € By, where Pr(B,) = 0.
Now, let
o) =inf{z; u < F(x)} for0<u<l1.
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(Notice F(¢p(u)—) < u < F(¢p(u)). Sketch the picture.)

Now consider z,, , = ¢(k/m) for positive integers m and k with 1 < k <
m. (There are countably many x,, i, and so when we consider Fy,(m k,w) and
F(xpm,), there are countably many null-probability sets, A, , and B, ,,
where the functions differ in the limit.)

We immediately have the three relations:

F(@mp—) — F(zmgp_1) <m™*

F(zmi—) < m!

and
F(zmm) >1— m~t,

and, of course, F' is nondecreasing.
Now let Dy, (w) be the maximum over all k =1,...,m of

[ En(m e w) = F ()|

and
| Fn (@ = w) — F(Tmk—)|-

(Compare D, (w).)
We now consider three ranges for x:

] — 00, xm,l[
[Tmk—1, Tmi| fork=1,....m
[Tm,m 5 o0

Consider © € [Ty k—1, Tm,k[- In this interval,

Fo(z,w) < Fp(zmp—,w)
S F(xm,k_) + Dm,n(w)
<Fx)+m™ '+ Dypn(w)

and

Fn( ) F, (xmk 1,(.«))
F( )_Dm,n(w)
F

(z ) = D (W)

IV IV IV

Hence, in these intervals, we have
Dipn(w) +m™" > sup |Fy(z,w) — F(z)|
=D, (w).

We can get this same inequality in each of the other two intervals.
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Now, Vm, except on the unions over k of A, , and By, ., lim, Dy, ,(w) =
0, and so lim, D,(w) = 0, except on a set of probability measure 0 (the
countable unions of the A, , and B, ,.) Hence, we have the convergence
wpl; i.e., a.s. convergence. |

The sup norm on the empirical process always exists because both func-
tions are bounded. Other norms may not be finite.

Theorem 1.72 If X1,..., X, are iid with CDF F € L' and ECDF F,, then
wpl
[Fn(z,w) = F(z)], = 0.
Proof. ******* yge relationship between Lp norms |
Forlooioeiiork add stuff Donsker’s theorem

Notes and Further Reading

Probability theory is the most directly relevant mathematical background for
mathematical statistics. Probability is a very large subfield of mathematics.
The objective of this chapter is just to provide some of the most relevant
material for statistics.

The CDF

I first want to emphasize how important the CDF is in probability and statis-
tics.

This is also a good point to review the notation used in connection with
functions relating to the CDF. The meaning of the notation in at least two
cases (inverse and convolution) is slightly different from the usual meaning of
that same notation in other contexts.

If we denote the CDF by F,

Flo) = 1- F(z);

F~1(p) = inf{z, s.t. F(x) > p} for p €]0,1];

FO(z) = FxF(z) = [ F(x — t)dF(t);

F,(z) is the ECDF of an iid sample of size n from distribution with CDF
F.

o f(z)=dF(x)/dz.

Foundations

I began this chapter by expressing my opinion that probability theory is an
area of pure mathematics: given a consistent axiomatic framework, “beliefs”
are irrelevant. That attitude was maintained throughout the discussions in
this chapter. Yet the literature on applications of probability theory is replete
with interpretations of the meaning of “probability” by “frequentists”, by “ob-
jectivists”, and by “subjectivists”, and discussions of the relative importance
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of independence and exchangeability; see, for example, Hamaker (1977) and
de Finetti (1979), just to cite two of the most eloquent (and opinionated) of
the interlocutors. While the airing of some of these issues may just be furious
sound, there are truly some foundational issues in application of probability
theory to decisions made in everyday life. There are various to statistical in-
ference that differ in fundamental ways (as alluded to by Hamaker (1977) and
de Finetti (1979)) in whether or not prior “beliefs” or “subjective probabili-
ties” are incorporated formally into the decision process.

While the phrase “subjective probability” is current, that concept does not
fall within the scope ot this chapter, but it will be relevant in later chapters
on statistical applications of probability theory.

There are, however, different ways of developing the concept of probability
as a set measure that all lead to the same set of results discussed in this
chapter. I will now briefly mention these alternatives.

Alternative Developments of a Probability Measure

Probability as a concept had been used by mathematicians and other sci-
entists well before it was given a mathematical treatment. The first major
attempt to provide a mathematical framework was Laplace’s Théorie Ana-
Iytique des Probabilités in 1812. More solid advances were made in the lat-
ter half of the 19th Century by Chebyshev, Markov, and Lyapunov at the
University of St. Petersburg, but this work was not well known. (Lyapunov
in 1892 gave a form of a central limit theorem. He developed this in the
next few years into a central limit theorem similar to Lindeberg’s, which
appeared in 1920 in a form very similar to Theorem 1.58.) Despite these de-
velopments, von Mises (v. Mises) (1919a) said that “probability theory is not
a mathematical science” (my translation), and set out to help to make it
such. Indicating his ignorance of the work of both Lyapunov and Lindeberg,
von Mises (v. Mises) (1919a) gives a more limited central limit theorem, but
von Mises (v. Mises) (1919b) is a direct attempt to give a mathematical mean-
ing to probability. In the “Grundlagen” he begins with a primitive concept of
collective (or set), then defines probability as the limit of a frequency ratio,
and formulates two postulates that essentially require invariance of the limit
under any selections within the collective. This notion came to be called “sta-
tistical probability”. Two years later, Keynes (1921) developed a concept of
probability in terms of the relative support one statement leads to another
statement. This idea was called “inductive probability”. As Kolmogorov’s ax-
iomatic approach (see below) came to define probability theory and statistical
inference for most mathematicians and statisticians, the disconnect between
statistical probability and inductive probability continued to be of concern.
Leblanc (1962) attempted to reconcile the two concepts, and his little book is
recommended as a good, but somewhat overwrought, discussion of the issues.

Theory of Statistics (©2000-2020 James E. Gentle



Notes and Further Reading 139

Define probability as a special type of measure

We have developed the concept of probability by first defining a measurable
space, then defining a measure, and finally defining a special measure as a
probability measure.

Define probability by a set of axioms

Alternatively, the concept of probability over a given measurable space could
be stated as axioms. In this approach, there would be four axioms: nonnega-
tivity, additivity over disjoint sets, probability of 1 for the sample space, and
equality of the limit of probabilities of a monotonic sequence of sets to the
probability of the limit of the sets. The axiomatic development of probability
theory is due to Kolmogorov in the 1920s and 1930s. In Kolmogorov (1956),
he starts with a sample space and a collection of subsets and gives six axioms
that characterize a probability space. (Four axioms are the same or similar
to those above, and the other two characterize the collection of subsets as a
o-field.)

Define probability from a coherent ordering

Given a sample space €2 and a collection of subsets A, we can define a total
ordering on 4. (In some developments following this approach, 4 is required
to be a o-field; in other approaches, it is not.) The ordering consists of the
relations “<”, “=<7 “~7 “-" and “>”. The ordering is defined by five axioms
it must satisfy. (“Five” depends on how you count, of course; in the five
laid out below, which is the most common way the axioms are stated, some
express multiple conditions.) For any sets, A, A;, B, B; € A whose unions and
intersections are in A (if A is a a o-field this clause is unnecessary), the axioms
are:

1. Exactly one of the following relations holds: A >~ B, A~ B, or A < B.

2. Let Al,AQ, Bl, BQ be such that Al ﬂAQ = @, Bl n BQ = @, Al j Bl, and

A2 =< Bs. Then Al @] A2 = By U Bs. Furthermore, if either Al < By or

A2 =< BQ, then Al UAQ ~< By UBs.

< Aand @< Q.

If Ay D A3 D --- and for each i, A; = B, then N;A; = B.

5. Let U ~ U(0,1) and associate the ordering (<, <, ~, =, =) with Lebesgue
measure on [0, 1]. Then for any interval I C [0, 1], either A > I, A~ I, or
A<

Ll

These axioms define a linear, or total, ordering on A. (Exercise 1.89).

Given these axioms for a “coherent” ordering on €2, we can define a proba-
bility measure P on A by P(A4) < P(B) iff A < B, and so on. It can be shown
that such a measure exists, satisfies the Kolmogorov axioms, and is unique.

At first it was thought that the first 4 axioms were sufficient to define
a probability measure that satisfied Kolmogorov’s axioms, but Kraft et al.
(1959) exhibited an example that showed that more was required.
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A good exposition of this approach based on coherency that includes a
proof of the existence and uniqueness of the probability measure is given by
DeGroot (1970).

Define probability from expectations of random variables

Although the measurable spaces of Sections 1.1.1 and 0.1 (beginning on
page 692) do not necessarily consist of real numbers, we defined real-valued
functions (random variables) that are the basis of further development of
probability theory. From the axioms characterizing probability (or equiva-
lently from the definition of the concept of a probability measure), we devel-
oped expectation and various unifying objects such as distributions of random
variables.

An alternate approach to developing a probability theory can begin with
a sample space and random variables defined on it. (Recall our definition
of random variables did not require a definition of probability.) From this
beginning, we can base a development of probability theory on expectation,
rather than on a probability measure as we have done in this chapter. (This
would be somewhat similar to our development of conditional probability from
conditional expectation in Section 1.5.)

In this approach we could define expectation in the usual way as an in-
tegral, or we can go even further and define it in terms of characterizing
properties. We characterize an expectation operator E on a random variable
X (and X; and X3) by four axioms:

1. If X >0, then E(X) > 0.

If ¢ is a constant in IR, then E(cX; + X3) = cE(X7) + E(X3).

E(1) =1.

If a sequence of random variables { X, } increases monotonically to a limit
{X}, then E(X) = lim,, 0 E(X,,).

Ll

(In these axioms, we have assumed a scalar-valued random variable, although
with some modifications, we could have developed the axioms in terms of
random variables in ]Rd.) From these axioms, after defining the probability of
a set as

Pr(A) = E(Ia(w)),

we can develop the same probability theory as we did starting from a charac-
terization of the probability measure. According to Hacking (1975), prior to
about 1750 expectation was taken as a more basic concept than probability,
and he suggests that it is more natural to develop probability theory from
expectation. An interesting text that takes this approach is Whittle (2000).
We have already seen a similar approach. This was in our development of
conditional probability. In order to develop an idea of conditional probability
and conditional distributions, we began by defining conditional expectation
with respect to a o-field, and then defined conditional probability. While the
most common kind of conditioning is with respect to a o-field, a conditional
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expectation with respect to a o-lattice (see Definition 0.1.6 on page 695) can
sometimes be useful; see Brunk (1963) and Brunk (1965).

Transformations of Random Variables

One of the most common steps in application of probability theory is to work
out the distribution of some function of a random variable. The three meth-
ods mentioned in Section 1.1.10 are useful. Of those methods, the change-of-
variables method in equation (1.124), which includes the convolution form, is
probably the one that can be used most often. In that method, we use the Ja-
cobian of the inverse transformation. Why the inverse transformation? Think
of the density as a differential; that is, it has a factor dz, so in the density for
Y, we want a factor dy. Under pressure you may forget exactly how this goes,
or want a quick confirmation of the transformation. You should be able to
construct a simple example quickly. An easy one is the right-triangular distri-
bution; that is, the distribution with density px(z) = 2z, for 0 < z < 1. Let
y=2x,50T = %y Sketch the density of Y, and think of what transformations
are necessary to get the expression py (y) = %y, for 0 <y <2.

Structure of Random Variables

Most useful probability distributions involve scalar random variables. The ex-
tension to random vectors is generally straightforward, although the moments
of vector random variables are quite different in structure from that of the ran-
dom variable itself. Nevertheless, we find such random vectors as multivariate
normal, Dirichlet, and multinomial very useful.

Copulas provide useful methods for relating the distribution of a multivari-
ate random variable to the marginal distributions of its components and for
understanding, or at least modeling, the relationships among the components
of the random variable. Balakrishnan and Lai (2009) use copulas extensively
in discussions of a large number of bivariate distributions, many of which
are extensions of familiar univariate distributions. Nelson (2006) provides an
extensive coverage of copulas.

The recent popularity of copulas in certain fields, such as finance, has
probably led to some inappropriate use in probability models. See Mikosch
(2006) and the discussion that follows his article.

Most approaches to multivariate statistical analysis are based on random
vectors. There are some cases in which random matrices are useful. The most
common family of random matrices is the Wishart, whose range is limited
to symmetric nonnegative definite matrices. An obvious way to construct a
random matrices is by an iid random sample of random variables. The random
sample approach, of course, would not increase the structural complexity of
the covariance. If instead of a random sample, however, the random matrix
would be constructed from random vectors that are not iid, its covariance
would have a complicated structure. Kollo and von Rosen (2005) use random
matrices, rather than random vectors, as the basis of multivariate analysis.
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Characteristic Functions

Characteristic functions play a major role in probability theory. Their use
provides simple proofs for important facts, such as Geary’s theorem. (The
proof given for this theorem given on page 189 is based on one by Lukacs.
The theorem, with the additional requirement that moments of all orders
exist, was first proved by Geary (1936), using methods that are much more
complicated.)

Gnedenko and Kolmogorov (1954) utilize characteristic functions through-
out their development of limiting distributions. Lukacs (1970) provides a thor-
ough exposition of characteristic functions and their various applications, in-
cluding use of methods of differential equations in characteristic function the-
ory, as in the proof of Geary’s theorem.

The Problem of Moments

Thomas Stieltjes studied the problem of determining a nondecreasing function
F, given a sequence of numbers vy, v1, Vs, . .. such that

yk:/ 2fdF(z), k=0,1,2,...
0

Stieltjes called this the “moment problem”. It is now often called the “Stieltjes
problem”, and the related problem with limits of integration 0 and 1 is called
the “Hausdorff problem” and with limits —oo and oo is called the “Hamburger
problem”. These problems and the existence of a solution in each case are
discussed by Shohat and Tamarkin (1943). (Although this is an older mono-
graph, it is readily available in various reprinted editions.) In applications in
probability, the existence of a solution is the question of whether there exists
a probability distribution with a given set of moments.

After existence of a solution, the next question is whether the solution is
unique, or in our formulation of the problem, whether the moments uniquely
determine the probability distribution.

Many of the results concerning the moment problem involve probability
distributions that are not widely used. Heyde (1963) was the first to show
that a particular interesting distribution, namely the lognormal distribution,
was not uniquely determined by its moments. (This is Exercise 1.28.)

Corollary 1.18.1 is due to Thomas Stieltjes who proved it without use of
Theorem 1.18. Proofs and further discussion of the theorem and corollary can
be found in Shohat and Tamarkin (1943).

Sequences and Limit Theorems

The various forms of the central limit theorem have a long history of both
both the theory and the applications. Petrov (1995) provides an extensive
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coverage. Dudley (1999) discusses many of the intricacies of the theorems and
gives extensions of the theory.

The most important seminal result on the limiting distributions of extreme
values was obtained by Fisher and Tippett (1928). von Mises (de Mises) (1939)
and Gnedenko (1943) cleaned up some of the details, and Theorem 1.59 is es-
sentially in the form stated in Gnedenko (1943). The limiting distributions of
extreme values are discussed at some length by David and Nagaraja (2003),
de Haan and Ferreira (2006), and Galambos (1978); and as mentioned in the
text, a proof of Theorem 1.59, though not the same as given by Gnedenko is
given by de Haan and Ferreira.

De Finetti’s theorem allows the extension of certain results for independent
sequences to similar results for exchangeable sequences. Taylor et al. (1985)
prove a number of limit theorems for sums of exchangeable random variables.

A quote from the Preface of Gnedenko and Kolmogorov (1954) is appro-
priate:

In the formal construction of a course in the theory of probability,
limit theorems appear as a kind of superstructure over elementary
chapters, in which all problems have finite purely arithmetical char-
acter. In reality, however, the epistemological value of the theory of
probability is revealed only by limit theorems. Moreover, without limit
theorems it is impossible to understand the real content of the primary
concept of all our sciences — the concept of probability. In fact, all
epistemologic value of the theory of probability is based on this: that
large-scale random phenomena in their collective action create strict,
nonrandom regularity. The very concept of mathematical probability
would be fruitless if it did not find its realization in the frequency of
occurrence of events under large-scale repetition of uniform conditions

Approximations and Expansions

The central limit theorems provide a basis for asymptotic approximations in
terms of the normal distribution. Serfling (1980) and Bhattacharya and Ranga Rao
(1976) discuss a number of approximations.

Other useful approximations are based on series representations of the
PDF, CDF, or CF of the given distributions. Most of these series involve the
normal PDF, CDF, or CF. Bhattacharya and Ranga Rao (1976) discuss a
number of these series approximations. Hall (1992), especially Chapters 2 and
3, provides an extensive coverage of series expansions. Power series expansions
are not now used as often in probability theory as they once were.

Cadlag Functions

We referred to the common assumption for models of stochastic processes that
the functions are cadlag with respect to the time argument. The term cadlag
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also applies to functions of arguments other than time that have this property.
A CDF is a cadlag (or “calag”) function. Analysis of continuous CDFs is
relatively straightforward, but analysis of CDFs with discrete jumps is more
challenging. Derivation and proofs of convergence properties of CDFs (such
as may be encountered it central limits of stochastic processes) are sometimes
difficult because of the discontinuities from the left. General results for a space
of cadlag functions with a special metric have been developed. The space is
called a Skorokhod space and the metric is called a Skorokhod metric. (Cadlag
is synonymous with the English-derived acronyms RCCL, “right continuous
[with] left limits”, and corlol, “continuous on [the] right limit on [the] left”,
but there seems to be a preference for the French-derived acronym.)

Markov Chains

There are many other interesting properties of Markov chains that follow
from various properties of nonnegative matrices (see Gentle (2007)). For more
information on the properties of Markov chains, we refer the interested reader
to the second edition of the classic text on Markov chains, Meyn and Tweedie
(2009).

There are many special Markov chains that are motivated by applications.
Branching process, for example, have applications in modeling such distinct
areas biological populations and elementary particles. Harris (1989) developed
many properties of such processes, and Athreya and Ney (1972) extended the
theory. Some Markov chains are martingales, but of course not all are; con-
versely, not all martingales are Markov chains (see Example 1.36).

Martingales

Many of the basic ideas in martingale theory were developed by Joseph Doob,
who gave this rather odd name to a class of stochastic processes after a type
of betting system. Doob (1953) is still the classic text on stochastic processes
generally and martingales in particular. Hall and Heyde (1980) cover many
important limit theorems about martingales. Some of the most important ap-
plications of martingale theory are in financial modeling, in which a martin-
gale model is equivalent to a no-arbitrage assumption. See Baxter and Rennie
(1996) for applications of martingale theory in options pricing.

Empirical Processes

The standard texts on empirical processes are Shorack and Wellner (2009)
and, especially for limit theorems relating to them, Dudley (1999).

Massart (1990) *** a tight constant in the Dvoretzky-Kiefer-Wolfowitz
inequality.
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Additional References for Chapter 1

Among the references on probability in the bibliography beginning on page 873,
some have not been mentioned specifically in the text. These include the gen-
eral references on probability theory: Ash and Doleans-Dade (1999), Athreya and Lahiri
(2006), Barndorff-Nielson and Cox (1994), Billingsley (1995), Breiman (1968),
Chung (2000), Dudley (2002), Feller (1957) and Feller (1971), Gnedenko
(1997), Gnedenko and Kolmogorov (1954), Gut (2005), and Pollard (2003).

The two books by Feller, which are quite different from each other but
which together provide a rather comprehensive coverage of probability theory,
the book by Breiman, and the book by Chung (the first edition of 1968) were
among the main books I used in learning about probability years ago. They
may be somewhat older than the others in the bibliography, but I'd probably
still start out with them.

Exercises

1.1. For the measurable space (IR, B), show that the collection of all open
subsets of IR is a determining class for probability measures on (IR, B).

1.2. Prove Theorem 1.1.

1.3. For any theorem you should think carefully about the relevance of the
hypotheses, and whenever appropriate consider the consequences of weak-
ening the hypotheses. For the weakened hypotheses, you should construct
a counterexample that shows the relevance of the omitted portion of the
hypotheses. In Theorem 1.1, omit the condition that Vi € Z, A, B € C; =
AN B € (C;, and give a counterexample to show that without this, the
hypothesis is not sufficient.

1.4. Prove Theorem 1.3.

1.5. Let 2 ={1,2,...} and let F be the collection of all subsets of {2. Prove
or disprove:

An{l,....,n})

3

P(A) = nlirgo inf # -
where # is the counting measure, is a probability measure on ({2, F).
1.6. Let A, B, and C be independent events. Show that if D is any event in
o({B,C}) then A and D are independent.
1.7. Prove Theorem 1.4.
1.8. Let X and Y be random variables. Prove that o(X) C ¢(X,Y).
1.9. Given a random variable X defined on the probability space (2, F, P),
show that P o X! is a probability measure.
1.10. Show that X 2y = X £V,
1.11. Write out a proof of Theorem 1.6.
1.12. Let F(z) be the Cantor function (0.1.30) (page 723) extended below the
unit interval to be 0 and extended above the unit interval to be 1, as
indicated in the text.
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a) Show that F(z) is a CDF.
b) Show that the distribution associated with this CDF does not have a
PDF wrt Lebesgue measure. (What is the derivative?)
¢) Does the distribution associated with this CDF have a PDF wrt count-
ing measure?
d) Is the probability measure associated with this random variable dom-
inated by Lebesgue measure? by the counting measure?
Let X be a random variable with this distribution.
) What is Pr(X = 1/3)?
) What is Pr(X <1/3)7
) What is Pr(1/3 < X <2/3)?
) Show that F' in equation (1.29) is a CDF.
) Show that if each F; in equation (1.29) is dominated by Lebesgue
measure, then F' is dominated by Lebesgue measure.
¢) Show that if each F; in equation (1.29) is dominated by the counting
measure, then F' is dominated by the counting measure.
1.14. Write out a proof of Theorem 1.8.
1.15. Write out a proof of Theorem 1.9.
1.16. Write out a proof of Theorem 1.10.
1.17. Write out a proof of Theorem 1.11.
1.18. Write out a proof of Theorem 1.12.
1.19. a) Show that the random variables Rj, Ro, R3, R4 in Example 1.6 are
exchangeable.
b) Use induction to show that the sequence Ri, Ro, ... in Example 1.6 is
exchangeable.
1.20. Give an example in which the linearity of the expectation operator (equa-
tion (1.38)) breaks down.
1.21. Write out a proof of Theorem 1.13.
1.22. Show that if the scalar random variables X and Y are independent, then
Cov(X,Y) = Cor(X,Y) = 0.
1.23. a) Let X be a random variable such that it is not the case that X = E(X)
a.s. Prove V(X) > 0.
b) Let X = (Xi,...,Xq) such that V(X;) < oo, and assume that it is
not the case that X; = E(X;) a.s. for any ¢ nor that Ja;,b; for any
element X; of the vector X such that

Xi = Z(aj + ijj) a.s.
J#i
Prove that V(X) is full rank.
1.24. Show that the second raw moment E(X?) for the Cauchy distribution
(equation (1.37)) does not exist.
1.25. Expected values and quantile functions.
a) Write a formal proof of equation (1.44).
b) Extend equation (1.44) to E(X), where g is a bijective Borel function
of X.

e
f

1.13.

T 09

Theory of Statistics (©2000-2020 James E. Gentle



Exercises 147

1.26. Expected values.
a) Write a formal proof that equation (1.46) follows from the conditions
stated.
b) Write a formal proof that equation (1.48) follows from the conditions
stated.
¢) Write a formal proof that equation (1.49) follows from the conditions
stated.
1.27. Let X be a random variable. Show that the map

Px : B— Pr(X € B),

where B is a Borel set, is a probability measure on the Borel o-field.
1.28. Let X be a random variable with PDF

px(e) = Z= exp(—(log(@)*/DIm, (2). (1290)

and let Y be a random variable with PDF

py (y) = px(y)(1 + asin(2rlog(y))) Ik, (¥),

where « is a constant and 0 < |a| < 1.

Notice the similarity of the PDF of Y to the PDF given in equation (1.53).

a) Show that X and Y have different distributions.

b) Show that for r = 1,2, ..., E(X") = E(Y").

¢) Notice that the PDF (1.290) is that of the lognormal distribution,
which, of course, is an absolutely continuous distribution. Now con-
sider the discrete random variable Y, whose distribution, for given
a > 0, is defined by

Pr(Y, = ae®) = caefk2/2/ak, fork=0,1,2,...,

where ¢, is an appropriate normalizing constant. Show that this dis-
crete distribution has the same moments as the lognormal.
Hint: First identify the support of this distribution. Then multiply the
reciprocal of the 7** moment of the lognormal by the r*" of Y.

1.29. a) Prove equation (1.72):

V(X +Y) =a*V(X) + V(Y) + 2aCov(X,Y).
b) Prove equation (1.73):
Cor(aX+Y,X+Z2) =aV(X)+aCov(X, Z)+Cov(X,Y)+Cov(Y, 2).

1.30. Prove the converse portion of Sklar’s theorem (Theorem 1.19).

1.31. Let X and Y be random variables with (marginal) CDFs Px and Py
respectively, and suppose X and Y are connected by the copula Cxy.
Prove:
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Pr(maX(X, Y) S t) = ny(Px(t), Py(t))

and
Pr(min(X,Y) <t) = Px(t) + Py (t) — Cxy (Px(t), Py (t)).

1.32. a) Let X be a random variable that is normally distributed with mean
p and variance o2. Determine the entropy of X.

b) Let Y be a random variable that is distributed as beta(c, ). Deter-
mine the entropy of Y in terms of the digamma function (page 865).
Make plots of the entropy for various values of @ and 3. An R function
that evaluates the entropy is

entropy<-function(a,b){
lbeta(a,b)-
(a-1)*(digamma(a)-digamma (a+b))-
(b-1) *(digamma (b) -digamma (a+b))
}

1.33. a) For the scalar random variable X prove equations (1.84) and (1.96).
b) For the random variable X prove equations (1.97) and (1.98).

¢) Given the random variables X and Y with CF ¢x vy (t1,t2) write out
Cov(X,Y) in terms of derivatives of the CF.

1.34. a) Show that the moment-generating function does not exist for a Cauchy

distribution.

b) Determine the characteristic function for a Cauchy distribution, and
show that it is not differentiable at 0.

1.35. In Example 1.10 we showed that the moment-generating function does not
exist for a lognormal distribution. Determine the characteristic function
for a lognormal distribution. Simplify the expression.

1.36. Consider the the distribution with PDF

p(r) =

c

327 Tog(a]) I{12.43,..3(2).
Show that the characteristic function has a finite first derivative at 0, yet
that the first moment does not exist (Zygmund, 1947).

1.37. Write an expression similar to equation (1.96) for the cumulants, if they
exist, in terms of the cumulant-generating function.

1.38. Show that equations (1.99), (1.100), and (1.101) are correct.

1.39. Show that equation (1.107) is correct.

1.40. a) Let X and Y be iid N(0,1). Work out the PDF of (X —Y)?/Y?2.
b) Let Xi,...,X, and Y7,...,Y, be iid N(0,1). Work out the PDF of

(X — Y25, VR

1.41. Show that the distributions of the random variables X and Y in Exam-
ple 1.7 are the same as, respectively, the ratio of two standard exponential
random variables and the ratio of two standard normal random variables.

1.42. Show that equation (1.132) is correct.

1.43. Stable distributions.
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1.45.
1.46.

1.47.

1.48.

1.49.

1.50.

1.51.

Exercises 149

a) Show that an infinitely divisible family of distributions is stable.

b) Show that the converse of the previous statement is not true. (Hint:
Show that the Poisson family is a family of distributions that is in-
finitely divisible, but not stable.)

¢) Show that the definition of stability based on equation (1.136) is equiv-
alent to Definition 1.33.

d) Let X, X1, X5 be as in Definition 1.33. Show that Y = X; — X, has a
stable distribution, and show that the distribution of Y is symmetric
about 0. (Y has a symmetric stable distribution).

e) Show that the normal family of distributions is stable with character-
istic exponent of 2.

f) Show that the standard Cauchy distribution is stable with character-
istic exponent of 1.

Prove Theorem 1.25.

Provide a heuristic justification for equation (1.138).

Show that the PDF of the joint distribution of all order statistic in equa-

tion (1.140) is equal to the PDF of the joint distribution of all of the

(unordered) random variables, [] f(z;).

Show that the Y; in Example 1.19 on page 64 are independent of both

X(l) and X(n).

a) Let X(1),..., X ) be the order statistics in a sample of size n, let
Kkin) = E(X(k:n)), and let X be a random variable with the distribu-
tion of the sample. Show that ji(;.,) exists and is finite if E(X) exists
and is finite.

b) Let n be an odd integer, n = 2k + 1, and consider a sample of size n
from a Cauchy distribution with PDF fx = 1/(7(1+ (z —6)?)). Show
that the PDF of X(;41), the sample median, is

ool (11 a2)’ 1
fX(k+1) = W Z - ﬁ(arctan(x - )) m
What is fi(x:n) in this case?

a) Prove equation (1.142).
b) Prove the following generalization of equation (1.142):

(n = K)E (Xfy,0y) + KE (XD, ) = B (X)) -

See David and Nagaraja (2003).

Given the sequence of events Aj, Ao, ..., show that a tail event of {A,}
occurs infinitely often.
Given the random variables X, X5,... and X on a common probability

space. For m = 1,2,.. ., and for any € > 0, let A,, . be the event that
| Xm — X]|| > €. Show that almost sure convergence of {X,} to X is
equivalent to

lim Pr(Us_,Am.e) =0,

n—oo
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for every € > 0.
Hint: For j = 1,2, ..., consider the events
Bj =Upl, Ny fn,l/j-

1.52. Show that a convergence-determining class is a determining class.

1.53. a) Show that the collection of all finite open intervals in IR that do not
include 0 (as in Example 1.20) is a determining class for probability
measures on (IR, B). (Compare Exercise 1.1.)

b) Show that the collection of all finite open intervalsin IR is a convergence-
determining class for probability measures on (IR, B).

1.54. a) Give an example of a sequence of random variables that converges in
probability to X, but does not converge to X a.s.

b) Give an example of a sequence of random variables that converges in
probability to X, but does not converge to X in second moment.

1.55. Prove Theorem 1.31.

1.56. a) Weaken the hypothesis in Theorem 1.31 to X, 4 x , and give a
counterexample.

b) Under what condition does convergence in distribution imply conver-
gence in probability?

1.57. Let X1,..., X, "SBernoulli(r). Let ¥;, = 37, X;. Show that as n — oo

and 7 — 0 in such a way that nm — 6 > 0, Y, <, Z where Z has a Poisson
distribution with parameter 6.
1.58. Given a sequence of scalar random variables {X,,}, prove that if

B((Xn —¢)?) =0

then X, converges in probability to c.

1.59. A sufficient condition for a sequence X,, of random variables to converge
to 0 a.s. is that, for every € > 0, > > Pr(|X,| > ¢) < oo. Let U be
uniformly distributed over (0,1) and define

1if U< 1
Xn = { 0 otherwise.

Use this sequence to show that the condition Y~ Pr(|X,| > €) < oo is
not a necessary condition for the sequence X,, to converge to 0 a.s.

1.60. a) Show that if X, 4 X for any random variable X, then X,, € Op(1).
b) Show that if X,, € op(1), then also X,, € Op(1).

1.61. Show the statements (1.165) through (1.174) (page 84) are correct.

1.62. Show the statements (1.175) and (1.176) are correct.

1.63. Show that the relationship in statement (1.177) is correct.

1.64. Show that equation (1.196) for the second-order delta method follows from
Theorem 1.47 with m = 2.

1.65. a) Prove equation (1.206).
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1.67.

1.68.

1.69.

1.70.
1.71.
1.72.

1.73.
1.74.

1.75.

Exercises 151

b) Show that the expression in equation (1.206) is a CDF.
Prove Theorem 1.49.
Show that Lindeberg’s condition, equation (1.221), implies Feller’s condi-
tion, equation (1.222).
The inequalities in Appendix B are stated in terms of unconditional prob-
abilities and expectations. They all hold as well for conditional probabili-
ties and expectations. In the following, assume the basic probability space
(Q, F, P). Assume that A is a sub-o-field of F and Z is a random variable
in the given probability space. Prove:
a) An extension of Theorem B.3.1:

For € >0, k>0, and r.v. X 3 E(|X|*) exists,

1
Pr(IX| > | A) < ZE(IX]*]4).

b) An extension of Theorem B.4.1:
For f a convex function over the support of the r.v. X (and all expec-
tations shown exist),

FEX | 2)) <E(f(X)]2).

¢) An extension of Corollary B.5.1.4:
If the second moments of X and Y are finite, then

(Cov(X,Y | 2))* < V(X | Z2) V(Y| Z).

a) Show that the alternative conditions given in equations (1.232), (1.233),
and (1.234) for defining conditional expectation are equivalent.

b) Show that equation (1.242) follows from equation (1.236).

Show that if E(X) exists, then so does E(X|B) for any event B such that

Pr(B) # 0.

Let X and Y be random variables over the same probability space. Show

that o(X1]Y) C 0(X). (Compare equation (0.1.7).)

Prove Theorem 1.60.

Modity your proof of Theorem 1.13 (Exercise 1.21) to prove Theorem 1.63.

Let T}, be a function of the iid random variables X1, ..., X, with V(X;) <

00, V(T,,) < oo, and V(E(T,,|X;)) > 0. Now let T}, be the projection of

T, onto X1,...,Xp. Derive equations (1.254) and (1.255):

and
V(T) = nV(E(T, X))

Prove: The random variables X and Y are independent iff the conditional
distribution of X given Y (or of Y given X) equals the marginal distribu-
tion of X (or of Y) (Theorem 1.66).
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1.76.
1.77.

1.78.
1.79.

1.80.

1.81.
1.82.

1.83.

1.84.

1.85.

1.86.

1.87.

1 Probability Theory

Prove Theorem 1.67.

Let X be a nonnegative integrable random variable on (£2, F, P) and let
A C F be a o-field. Prove that E(X|A) = [;° Pr(X > t|A)dt a.s.

Show that equation (1.266) is correct.

Let {X,, : n=1,2,...} be a sequence of iid random variables with mean
0 and finite variance o2. Let S, = X; + - - + X,,, and let

a.s.
Y, = 82 —no?.

Prove that {Y,,} is a martingale with respect to {S, : n=1,2,...}.
Let {Z;} be an iid sequence of Bernoulli(7) random variables. Let Xy = 0,
and forn =1,2,..., let

X, = Xy +27, — 1,
and let
Y, = ((1=m)/m)¥.

Show that {Y,, : n = 1,2,3,...} is a martingale with respect to {X,, :
n=1,2,3,...}. (This is sometimes called de Moivre’s martingale.)

Show that {X,, : n=1,2,3,...} of equation (1.184) is a martingale.
Show that {Y,, : n =1,2,3,...} of Polya’s urn process (Example 1.33,
page 131) is a martingale with respect to {X,}.

Show that the likelihood-ratio martingale, equation (1.281), converges al-
most surely to 0.

Hint: Take logarithms and use Jensen’s inequality and equation (1.63).
Show that if {W(t) : t € [0,00[} is a Bachelier-Wiener process, then
W?2(t) — t is a martingale.

Show that Doob’s martingale inequality (1.284) implies Robbins’s likeli-
hood ratio martingale inequality (1.282).

Let {M,} be a martingale, and let {C),} be adapted to {o(M; : t < n)}.
Let Mg =0, and for n > 1, let

n

Mn = ZCj(Mj — Mjfl).

j=1

Show that M, _is a martingale.

The sequence M, is called the martingale transform of {M,} by {C,}.
Let X1,X5,... be a sequence of independent random variables over a
common probability space such that for each E(X?) < co. Show that the
sequence of partial sums

is a martingale.
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1.88. Let X be a random variable that is normally distributed with mean p and
variance o2. Show that the entropy of X is at least as great as the entropy
of any random variable with finite mean p and finite variance 02 and hav-
ing a PDF that is dominated by Lebesgue measure. (See Exercise 1.32a.)

1.89. Show that the axioms for coherency given on page 139 define a linear
ordering, that is, a total ordering, on A. (See page 620.)
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Distribution Theory and Statistical Models

Given a measurable space, (€, F), different choices of a probability measure
lead to different probability triples, (Q,F, P). A set of measures P = {P}
associated with a fixed (2, F) is called a family of distributions. Families can
be defined in various ways. For example, for ) a real interval and F = Bq, a
very broad family is P, = {P : P < v}, where v is the Lebesgue measure. An
example of a very specific family for Q = {0, 1} and F = 2% is the probability
measure P;({1}) = 7 and P;({0}) = 1 — w. The probability measures in this
family, the Bernoulli distributions, are dominated by the counting measure.

Certain families of distributions have proven to be very useful as models
of observable random processes. Familiar families include the normal or Gaus-
sian family of distributions, the Poisson family of distributions, the binomial
family of distributions, and so on. A list of some of the important families of
distributions is given in Appendix A, beginning on page 835. Occasionally, as
part of a parametric approach, transformations on the observations are used
so that a standard distribution, such as the normal, models the phenomena
better.

A semi-parametric approach uses broader families whose distribution func-
tions can take on a much wider range of forms. In this approach, a differential
equation may be developed to model a limiting case of some discrete frequency
model. The Pearson system is an example of this approach (in which the basic
differential equation arises as a limiting case of a hypergeometric distribution).
Other broad families of distributional forms have been developed by Johnson,
by Burr, and by Tukey. The objective is to be able to represent a wide range of
distributional properties (mean, variance, skewness, shape, etc.) with a small
number of parameters, and then to fit a specific case by proper choice of these
parameters.

Statistical inference, which is the main topic of this book, can be thought
of as a process whose purpose is to use observational data within the context of
an assumed family of probability distributions P to infer that the observations
are associated with a subfamily Py C P, or else to decide that the assumed
family is not an adequate model for the observed data. For example, we may
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assume that the data-generating process giving rise to a particular set of data
is in the Poisson family of distributions, and based on our methods of inference
decide it is the Poisson distribution with 8 = 5. (See Appendix A for how 6
parameterizes the Poisson family.)

A very basic distinction is the nature of the values the random variable
assumes. If the set of values is countable, we call the distribution “discrete”;
otherwise, we call it “continuous”.

With a family of probability distributions is associated a random variable
space whose properties depend on those of the family. For example, the ran-
dom variable space associated with a location-scale family (defined below) is
a linear space.

Discrete Distributions

The probability measures of discrete distributions are dominated by the count-
ing measure.

One of the simplest types of discrete distribution is the discrete uniform.
In this distribution, the random variable assumes one of m distinct values
with probability 1/m.

Another basic discrete distribution is the Bernoulli, in which random vari-
able takes the value 1 with probability 7 and the value 0 with probability
1 — 7. There are two common distributions that arise from the Bernoulli:
the binomial, which is the sum of n iid Bernoullis, and the negative binomial,
which is the number of Bernoulli trials before r 1’s are obtained. A special ver-
sion of the negative binomial with r = 1 is called the geometric distribution.
A generalization of the binomial to sums of multiple independent Bernoullis
with different values of 7 is called the multinomial distribution.

The random variable in the Poisson distribution takes the number of events
within a finite time interval that occur independently and with constant prob-
ability in any infinitesimal period of time.

A hypergeometric distribution models the number of selections of a certain
type out of a given number of selections.

A logarithmic distribution (also called a logarithmic series distribution)
models phenomena with probabilities that fall off logarithmically, such as
first digits in decimal values representing physical measures.

Continuous Distributions

The probability measures of continuous distributions are dominated by the
Lebesgue measure.

Continuous distributions may be categorized first of all by the nature of
their support. The most common and a very general distribution with a finite
interval as support is the beta distribution. Although we usually think of
the support as [0, 1], it can easily be scaled into any finite interval [a, b]. Two
parameters determine the shape of the PDF. It can have a U shape, a J shape,
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a backwards J shape, or a unimodal shape with the mode anywhere in the
interval and with or without an inflection point on either side of the mode. A
special case of the beta has a constant PDF over the support.

Another distribution with a finite interval as support is the von Mises
distribution, which provides useful models of a random variable whose value
is to be interpreted as an angle.

One of the most commonly-used distributions of all is the normal or Gaus-
sian distribution. Its support is | — 0o, co[. There are a number of distributions,
called stable distributions, that are similar to the normal. The normal has a
multivariate extension that is one of the simplest multivariate distributions,
in the sense that the second-order moments have intuitive interpretations. It
is the prototypic member of an important class of multivariate distributions,
the elliptically symmetric family.

From the normal distribution, several useful sampling distributions can be
derived. These include the chi-squared, the t, the F, and the Wishart, which
come from sample statistics from a normal distribution with zero mean. There
are noncentral analogues of these that come from statistics that have not been
centered on zero. Two other common distributions that are related to the
normal are the lognormal and the inverse Gaussian distribution. These are
related by applications. The lognormal is an exponentiated normal. (Recall
two interesting properties of the lognormal: the moments do not determine
the distribution (Exercise 1.28) and although the moments of all orders exist,
the moment-generating function does not exist (Example 1.10).) The inverse
Gaussian models the length of time required by Brownian motion to achieve a
certain distance, while the normal distribution models the distance achieved
in a certain time.

Two other distributions that relate to the normal are the inverted chi-
squared and the inverted Wishart. They are useful because they are conjugate
priors and they are also related to the reciprocal or inverse of statistics formed
from samples from a normal. They are also called “inverse” distributions, but
their origins are not at all related to that of the standard inverse Gaussian
distribution.

Continuous Distributions with Point Masses

We can form a mixture of a continuous distribution and a discrete distribution.
Such a distribution is said to be continuous with point masses. The probability
measure is not dominated by either a counting measure or Lebesgue measure.
A common example of such a distribution is the e-mixture distribution, whose
CDF is given in equation (2.45) on page 194.

Entropy

It is often of interest to know the entropy of a given probability distribution. In
some applications we seek distributions with maximum or “large” entropy to
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use as probability models. It is interesting to note that of all distributions with
given first and second moments and having a PDF dominated by Lebesgue
measure, the one with maximum entropy is the normal (Exercise 1.88).

Characterizing a Family of Distributions

A probability family or family of distributions, P = {Py,0 € ©}, is a set
of probability distributions of a random variable that is defined over a given
sample space (2. The index of the distributions may be just that, an arbitrary
index in some given set ©® which may be uncountable, or it may be some
specific point in a given set © in which the value of 6 carries some descriptive
information about the distribution; for example, # may be a 2-vector in which
one element is the mean of the distribution and the other element is the
variance of the distribution.

The distribution functions corresponding to the members of most inter-
esting families of distributions that we will discuss below do not constitute a
distribution function space as defined on page 754. This is because mixtures of
distributions in most interesting families of distributions are not members of
the same family. That is, distributions defined by convex linear combinations
of CDFs generally are not members of the same family of distributions. On
the other hand, often linear combinations of random variables do have distri-
butions in the same family of distributions as that of the individual random
variables. (The sum of two normals is normal; but a mixture of two normals
is not normal.) Table 1.1 on page 58 lists a number of families of distributions
that are closed under addition of independent random variables.

Likelihood Functions

The problem of fundamental interest in statistics is to identify a particular
distribution within some family of distributions, given observed values of the
random variable. Hence, in statistics, we may think of 6 or Py as a variable.
A likelihood function is a function of that variable.

Definition 2.1 (likelihood function)
Given a PDF fp, which is a function whose argument is a value of a random
variable x, we define a likelihood function as a function of 6 for the fixed x:

L0 |x) = fo(x).
1

The PDF fy(z) is a function whose argument is a value of a random variable
x for a fixed 0; the likelihood function L(6|x) is a function of 6 for a fixed «;
see Figure 1.2 on page 20.

In statistical applications we may be faced with the problem of choosing
between two distributions Py, and Fy,. For a given value of x, we may base
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our choice on the two likelihoods, L(6; | z) and L(fs | z), perhaps using the

likelihood ratio
L0y | x)

L(0y | )
We have seen in equation (1.65) that the expectation of the likelihood
ratio, taken wrt to distribution in the denominator, is 1.

)\(91, 92|$) =

Parametric Families, Parameters, and Parameter Spaces

In Definition 1.13, we say that a family of distributions on a measurable space
(Q, F) with probability measures Py for 6 € O is called a parametric family if
© C R for some fixed positive integer d and 6 fully determines the measure.
In that case, we call 8 the parameter and © the parameter space.

A family that cannot be indexed in this way is called a nonparametric
family. In nonparametric methods, our analysis usually results in some general
description of the distribution, such as that the CDF is continuous or that the
distribution has finite moments or is continuous, rather than in a specification
of the distribution.

The type of a family of distributions depends on the parameters that
characterize the distribution. A “parameter” is a real number that can take on
more than one value within a parameter space. If the parameter space contains
only one point, the corresponding quantity characterizing the distribution is
not a parameter.

In most cases of interest the parameter space © is an open convex subset of
R?. In the N(y, 02) family, for example, ® = R x R. In the binomial(n, 7)
family © =|0, 1] and n is usually not considered a “parameter” because in
most applications it is assumed to be fixed and known. In many cases, for a
family with PDF pg(z), the function dpg(x)/00 exists and is an important
characteristic of the family (see page 168).

An example of a family of distributions whose parameter space is neither
open nor convex is the hypergeometric(N, M, n) family (see page 838). In this
family, as in the binomial, n is usually not considered a parameter because
in most applications it is assumed known. Also, in most applications, either
N or M is assumed known, but if they are both taken to be parameters,
then © = {(4,7) : i=2,3,...,5 = 1,...,i}. Obviously, in the case of the
hypergeometric family, the function dpg(z)/00 does not exist.

Many common families are multi-parameter, and specialized subfamilies
are defined by special values of one or more parameters. As we have men-
tioned and illustrated, a certain parameter may be referred to as a “location
parameter” because it identifies a point in the support that generally locates
the support within the set of reals. A location parameter may be a boundary
point of the support of it may be the mean or a median of the distribution.
Another parameter may be referred to as a “scale parameter” because it is
associated with scale transformations of the random variable. The standard
deviation of a normal random variable, for example, is the scale parameter of
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that distribution. Other parameters may also have some common interpreta-
tion, such as “shape”. For example, in the “three-parameter gamma” family
of distributions there are three parameters, v, called the “location”; 3, called
the “scale”; and «, called the “shape”. Its PDF is

(D)1 87 (@ =) e /01, ().

This family of distributions is sometimes called the three-parameter gamma,
because often 7 is taken to be a fixed value, usually 0.

Specific values of the parameters determine special subfamilies of distri-
butions. For example, in the three-parameter gamma, if « is fixed at 1, the
resulting distribution is the two-parameter exponential, and if, additionally, v
is fixed at 0, the resulting distribution is what most people call an exponential
distribution.

(Oddly, teachers of mathematical statistics many years ago chose the two-
parameter exponential, with location and scale, to be “the exponential”, and
chose the two-parameter gamma, with shape and scale, to be “the gamma”.
The convenient result was that the exponential could be used as an example of
a distribution that is not a member of the exponential class but is a member
of the location-scale class, and the gamma could be used as an example of a
distribution that is a member of the exponential class but is not a member
of the location-scale class. This terminology is not nonstandard, and it seems
somewhat odd to choose to include the location parameter in the definition of
the exponential family of distributions and not in the definition of the more
general gamma family of distributions. As noted, of course, it is just so we
can have convenient examples of specific types of families of distributions.)

Notation in Parametric Families

I use notation of the form “N(u,0?)” or “gamma(a, 3,7)” to represent a para-
metric family. The notation for the parameters is positional, and follows the
notations of the tables in Appendix A beginning on page 838. I generally use
a Greek letter to represent a parameter. Sometimes a distribution depends on
an additional quantity that is not a parameter in the usual sense of that term,
and I use a Latin letter to represent such a quantity, as in “binomial(n, 7)”
for example. (The notation for the hypergeometric, with parameters N and
M, one of which is usually assigned a fixed value, is an exception.)

As noted above, if a parameter is assigned a fixed value, then it ceases
to be a parameter. If a parameter is fixed at some known value, I use a
subscript to indicate that fact, for example “N(u, 02)” may represent a normal
distribution with variance known to be of. In that case, of is not a parameter.
(A word of caution, however: I may use subscripts to distinguish between two
distributional families, for example, N(u1,0%7) and N(ua,03).)

Whether or not a particular characteristic of a distribution is a parameter
is important in determining the class of a particular family. For example,
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the three-parameter gamma is not a member of the exponential class (see
Section 2.4); it is a member of the parametric-support class (see Section 2.5).
The standard two-parameter gamma, however, with v fixed at 0, is a member
of the exponential class. If 7 is fixed at any value 7y, the gamma family is a
member of the exponential class. Another example is the normal distribution,
N(p, 0?), which is a complete family (see Section 2.1); however, N(juq, 0?) is
not a complete family.

Types of Families

A reason for identifying a family of distributions is so that we can state inter-
esting properties that hold for all distributions within the family. The state-
ments that specify the family are the hypotheses for important theorems.
These statements may be very specific: “if X;, Xo,... is a random sample
from a normal distribution...”, or they may be more general: “if X7, Xo,...is
a random sample from a distribution with finite second moment...”

Some simple characterization such as “having finite second moment” is
easy to state each time its need arises, so there is little to be gained by
defining such a class of distributions. On the other hand, if the characteristics
are more complicated to state in each theorem that refers to that family of
distributions, it is worthwhile giving a name to the set of characteristics.

Because in statistical applications we are faced with the problem of choos-
ing the particular distributions Py, from a family of distributions, P = {P :
6 € ©}, the behavior of the CDFs or PDFs as functions of § are of interest. It
may be important, for example, that the PDFs in this family be continuous
with respect to 6 or that derivatives of a specified order with respect to 6
exist.

We identify certain collections of families of distributions for which we
can derive general results. Although I would prefer to call such a collection a
“class”, most people call it a “family”, and so I will too, at least sometimes.
Calling these collections of families “families” leads to some confusion, be-
cause we can have a situation such as “exponential family” with two different
meanings.

The most important class is the exponential class, or “exponential family”.
This family has a number of useful properties that identify optimal procedures
for statistical inference, as we will see in later chapters.

Another important type of family of distributions is a group family, of
which there are three important instances: a scale family, a location family,
and a location-scale family.

There are various other types of families characterized by their shape or by
other aspects useful in specific applications or that lead to optimal standard
statistical procedures.
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Parametric Modeling Considerations

In statistical applications we work with families of probability distribu-
tions that seem to correspond to observed frequency distributions of a data-
generating process. The first considerations have to do with the nature of the
observed measurements. The structure of the observation, just as the struc-
ture of a random variable, as discussed on page 37, is one of the most relevant
properties. As a practical matter, however, we will emphasize the basic scalar
structure, and attempt to model more complicated structures by imposition of
relationships among the individual components. Another important property
is whether or not the measurement is within the set of integers. Often the
measurement is a count, such as the number of accidents in a given period of
time or such as the number of defective products in a batch of a given size. A
PDF dominated by a counting measure would be appropriate in such cases.
On the other hand, if the measurement could in principle be arbitrarily close
to any of an uncountable set of irrational numbers, then a PDF dominated
by Lebesgue would be more appropriate.

The next consideration is the range of the measurements. This determines
the support of a probability distribution used as a model. It is convenient to
focus on three ranges, | — o0, 00|, [a, oo[, and [a, b] where —o0 < a < b < oo. For
integer-valued measurements within these three types of ranges, the Poisson
family or the binomial family provide flexible models. Both the Poisson and
the binomial are unimodal, and so we may need to consider other distributions.
Often, however, mixtures of members of one of these families can model more
complicated situations.

For continuous measurements over these three types of ranges, the normal
family, the gamma family, and the beta family, respectively, provide flexible
models. Mixtures of members of one of these families provide even more flex-
ibility. The generality of the shapes of these distributions make them very
useful for approximation of functions, and the most common series of orthog-
onal polynomials are based on them. (See Table 0.2 on page 752.)

2.1 Complete Families

A family of distributions P is said to be complete iff for any Borel function h
that does not involve P € P

E(h(X)) =0YPeP = h(t)=0ac. P.

A slightly weaker condition, “bounded completeness”, is defined as above,
but only for bounded Borel functions h.

Full rank exponential families are complete (exercise). The following ex-
ample shows that a nonfull rank exponential family may not be complete.
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Example 2.1 complete and incomplete family
Let

P, = {distributions with densities of the form (v27o) " exp(z?/(20?))}.

(This is the N(0,0?) family.) It is clear that E(h(X)) = 0 for h(z) = z, yet
clearly it is not the case that h(t) = 0 a.e. A\, where A is Lebesgue measure.
Hence, this family, the family of normals with known mean, is not complete.
This example of course would apply to any symmetric distribution with known
mean.

With some work, we can see that the family

P, = {distributions with densities of the form (v27o) ! exp((x—pu)?/(20%))}
is complete. |

Notice in the example that P; C Ps; and Ps is complete, but P; is not.
This is a common situation.
Going in the opposite direction, we have the following theorem.

Theorem 2.1

Let Py be the family of distributions wrt which the expectation operator is de-
fined and assume that Py is complete. Now let Py C Py, where all distributions
in P1 have common support. Then the family Py is complete.

Proof. Exercise. |

2.2 Shapes of the Probability Density

The general shape of a probability density may determine properties of sta-
tistical inference procedures. We can easily identify various aspects of a prob-
ability distribution that has a continuous density function. For discrete dis-
tributions, some of the concepts carry over in an intuitive fashion, and some
do not apply.

In the following, we will assume that X is a random variable (or vector)
with distribution in the family

P={P:0c0OCR"}
that is dominated by a o-finite measure v, and we let
fg (:E) = dPg/dI/.

First of all, we consider the shape only as a function of the value of the
random variable, that is, for a fixed member of the family the shape of the
PDF.

In some cases, the shape characteristic that we consider has (simple) mean-
ing only for random variables in IR.
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Empirical Distributions and Kernels of Power Laws

Many important probability distributions that we identify and give names to
arise out of observations on the behavior of some data-generating process. For
example, in the process of forming coherent sentences on some specific topics
there is an interesting data-generating process that yields the number of the
most often used word, the number of the second most often used word and so
on; that is, the observed data are z1, xs, ..., where x; is the count of the word
that occurs as the 7" most frequent. The linguist George Kingsley Zipf studied
this data-generating process and observed a remarkable empirical relationship.
In a given corpus of written documents, the second most commonly-used word
occurs approximately one-half as often as the most common-used word, the
third most commonly-used word occurs approximately one-third as often as
the second most common-used word. (This general kind of relationship had
been known before Zipf, but he studied it more extensively.) A probability-
generating function that expresses this empirical relationship has the kernel

where a > 1.

The salient characteristic, which determines the shape of the PDF, is that
the relative frequency is a function of the value raised to some power. This kind
of situation is observed often, both in naturally occurring phenomena such
as magnitudes of earthquakes or of solar flares, and in measures of human
artifacts such as sizes of cities or of corporations. This is called a “power
law”. Use of the kernel above leads to a Zipf distribution, also called a zeta
distribution because the partition function is the (real) zeta function, {(s) =
Yoo, 2% (The Riemann zeta function is the analytic continuation of series,
and obviously it is much more interesting than the real series.) The PDF, for
a>1,is

fl@)=———27% 2x=1,2,...

power law distribution Pareto distribution Benford distribution power func-
tion distribution (not power series distribution)

f(x) =cla, Oz 0", 2=1,2,...

Symmetric Family

A symmetric family is one for which for any given 6 there is a constant 7 that
may depend on 6, such that

fo(r+z) = fo(r —x), V.

In this case, we say the distribution is symmetric about 7.
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In a symmetric family, the third standardized moment, 73, if it exists is
0; however, skewness coefficient. If n3 = 0, the distribution is not necessarily
symmetric.

The characteristic function of distribution that is symmetric about 0 is
real, and any distribution whose characteristic function is real must have
symmetries about 0 within the periods of the sine function (see equation (1.91)
on page 46).

Unimodal Family

A family of distributions is said to be unimodal if for any given 6 the mode
of the distribution exists and is unique. This condition is sometimes referred
to as strictly unimodal, and the term unimodal is used even with the mode of
the distribution is not unique.

A family of distributions with Lebesgue PDF p is unimodal if for any given
0, fo(x) is strictly concave in = (exercise). This fact can be generalized to fam-
ilies with superharmonic Lebesgue PDF's (see Definition 0.0.14 on page 659).

Theorem 2.2
A probability distribution with a Lebesgue PDF' that is superharmonic is uni-
modal.

Proof. Exercise. |

If the PDF is twice differentiable, by Theorem 0.0.15 unimodality can
be characterized by the Laplacian. For densities that are not twice differ-
entiable, negative curvature along the principal axes is sometimes called or-
thounimodality.

Logconcave Family

If log fo(x) is strictly concave in x for any 6, the family is called a logconcave
family. It is also called a strongly unimodal family. A strongly unimodal fam-
ily is unimodal; that is, if log fg(z) is concave in z, then fy(z) is unimodal
(exercise). Strong unimodality is a special case of total positivity (see below).

The relevance of strong unimodality for location families, that is, for fam-
ilies in which fyg(z) = g(x — 0), is that the likelihood ratio is monotone in
x (see below) iff the distribution is strongly unimodal for a fixed value of 6
(exercise).

Heavy-tailed Family

A heavy-tailed family of probability distributions is one in which there is a
relatively large probability in a region that includes | — oo, b[ or ]b, co] for some
finite b. This general characterization has various explicit instantiations, and
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one finds in the literature various definitions of “heavy-tailed”. A standard
definition of that term is not important, but various specific cases are worth
study. A heavy-tailed distribution is also called an outlier-generating distri-
bution, and it is because of “outliers” that such distributions find interesting
applications.

The concept of a heavy tail is equally applicable to the “left” or the “right”
tail, or even a mixture in the case of a random variable over IR when d > 1.
We will, however, consider only the right tail; that is, a region |b, col.

Most characterizations of heavy-tailed distributions can be stated in terms
of the behavior of the tail CDF. It is informative to recall the relationship of
the first moment of a positive-valued random variable in terms of the tail CDF
(equation (1.46)):

E(X) = /Ooo F(t)dt.

If for some constant b, x > b implies
f(x) > cexp(—zT Az), (2.1)

where ¢ is some positive constant and A is some positive definite matrix, the
distribution with PDF f is said to be heavy-tailed.
Equivalent to the condition (2.1) in terms of the tail CDF is

lim ¢* *F(z) = 0o Va > 0. (2.2)
xTr—00
Another interesting condition in terms of the tail CDF that implies a
heavy-tailed distribution is
lim F(x +t) = F(z). (2.3)
xTr—00
Distributions with this condition are sometimes called “long-tailed” distri-
butions because of the “flatness” of the tail in the left-hand support of the
distribution. This condition states that F(log(z)) is a slowly varing function
of x at co. (A function g is said to be slowly varying at co if for any a > 0,
limg 00 glaz)/g(z) = 1.)
Condition (2.3) implies condition (2.2), but the converse is not true (Ex-
ercise 2.3).
Most heavy-tailed distributions of interest are univariate or else product
distributions. A common family of distributions that are heavy-tailed is the
Cauchy family. Another common example is the Pareto family with v = 0.

Subexponential Family

Another condition that makes a family of distributions heavy-tailed is

—_F®
lim 1-F9) _ 2. (2.4)
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A family of distributions satisfying this condition is called a subexponential
family (because the condition can be expressed as lim,_, oo ema'w JF(z) =0).

Condition (2.4) implies condition (2.3), but the converse is not true (Ex-
ercise 2.4).

Monotone Likelihood Ratio Family

The shape of parametric probability densities as a function of both the values
of the random variable and the parameter may be important in statistical
applications. Here and in the next section, we define some families based
on the shape of the density over the cross product of the support and the
parameter space. These characteristics are most easily expressed for the case
of scalar parameters (k = 1), and they are also most useful in that case.

Let y(x) be a scalar-valued function. The family P is said to have a mono-
tone likelihood ratio iff for any 6; # 603, the likelihood ratio,

A0, 02]x) = fo,(x)/ fo, (x)

is a monotone function of = for all values of x for which fp, (z) is positive.
We also say that the family has a monotone likelihood ratio in y(x) iff the
likelihood ratio is a monotone function of y(z) for all values of x for which
fo, () is positive.
Some common distributions that have monotone likelihood ratios are
shown in Table 2.1. See also Exercise 2.5.

Table 2.1. Some Common One-Parameter Families of Distributions with Monotone
Likelihood Ratios

normal(p, o)

uniform (6o, #), uniform(6, 6 + 6o)

exponential(f) or exponential(ag, 6)

double exponential(#) or double exponential(uo, )
binomial(n, 7) (n is assumed known)

Poisson(6)

A subscript on a symbol for a parameter indicates that the symbol represents a known
fized quantity. See Appendiz A for meanings of symbols.

Families with monotone likelihood ratios are of particular interest because
they are easy to work with in testing composite hypotheses (see the discussion
in Chapter 7 beginning on page 520).

The concept of a monotone likelihood ratio family can be extended to fam-
ilies of distributions with multivariate parameter spaces, but the applications
in hypothesis testing are not as useful because we are usually interested in
each element of the parameter separately.
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Totally Positive Family

A totally positive family of distributions is defined in terms of the total posi-
tivity of the PDF, treating it as a function of two variables, § and x. In this
sense, a family is totally positive of order r iff for all z; < --- < z, and
01 < - <Oy,

Jo,(x1) -+ fo,(xn)
. . : >0 Vn=1,...,nr (2.5)

fou(wr) -+ fo ()

A totally positive family with » = 2 is a monotone likelihood ratio family.

2.3 “Regular” Families

Conditions that characterize a set of objects for which a theorem applies are
called “regularity conditions”. I do not know the origin of this term, but it
occurs in many areas of mathematics. In statistics there are a few sets of reg-
ularity conditions that define classes of interesting probability distributions.

We will often use the term “regularity conditions” to refer to continuity
and differentiability of the PDF wrt the parameter.

2.3.1 The Fisher Information Regularity Conditions

The most important set of regularity conditions in statistics are some that
allow us to put a lower bound on the variance of an unbiased estimator (see
inequality (B.25) and Sections 3.1.3 and 5.1). Consider the family of distribu-
tions P = {Py; 0 € O} that have densities fp.

There are generally three conditions that together are called the Fisher
information regularity conditions:

The parameter space © C IR* is convex and contains an open set.
For any z in the support and 6 € ©°, dfy(x)/00 and 9% fo(x)/06? exist
and are finite, and 92 fy(x)/96? is continuous in 6.

e The support is independent of 8; that is, all Py have a common support.

The latter two conditions ensure that the operations of integration and dif-
ferentiation can be interchanged twice.

Because the Fisher information regularity conditions are so important,
the phrase “regularity conditions” is often taken to mean “Fisher information
regularity conditions”. The phrase “Fisher regularity conditions” is also used
synonymously, as is “FI regularity conditions”.
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2.3.2 The Le Cam Regularity Conditions

The Le Cam regularity conditions are the first two of the usual FI regularity
conditions plus the following.

e The Fisher information matrix (see equation (1.82)) is positive definite for
any fixed 6 € O.

e There exists a positive number ¢y and a positive function hg such that
E(he(X)) < 0o and

9% log f ()
dv(0y)*

where fg(z) is a PDF wrt a o-finite measure, and “a.e.” is taken wrt the
same measure.

< hg(x) a.e. (2.6)
F

sup
yillv—0ll<co

2.3.3 Quadratic Mean Differentiability

The Fisher information regularity conditions are often stronger than is needed
to ensure certain useful properties. The double exponential distribution with
Lebesgue PDF %eﬂy*m/ 9 for example, has many properties that make it a
useful model, yet it is not differentiable wrt p at the point © = p, and so the
FI regularity conditions do not hold. A slightly weaker regularity condition
may be more useful.

Quadratic mean differentiability is expressed in terms of the square root of
the density. As with differentiability generally, we first consider the property
at one point, and then we apply the term to the function, or in this case,
family, if the differentiability holds at all points in the domain.

Consider again a family of distributions P = {Py;# € © C IR*} that have
densities fp. This family is said to be quadratic mean differentiable at 6 iif
there exists a real k-vector function n(z,6p) = (n1(z, 60o), - .., nk(z,0p)) such
that

* *fzx/ (s % % % #%)° dz € o(|h|?) as|h| — 0.

Compare quadratic mean differentiability with Fréchet differentiability (Def-
inition 0.1.57, on page 760).

If each member of a family of distributions (specified by 6) is quadratic
mean differentiable at 6, then the family is said to be quadratic mean differ-
entiable, or QMD.

2.4 The Exponential Class of Families

The exponential class is a set of families of distributions that have some partic-
ularly useful properties for statistical inference. The important characteristic
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of a family of distributions in the exponential class is the way in which the pa-
rameter and the value of the random variable can be separated in the density
function. Another important characteristic of the exponential family is that
the support of a distribution in this family does not depend on any “unknown”
parameter.

Definition 2.2 (exponential class of families)
A member of a family of distributions in the exponential class is one with
densities that can be written in the form

po(a) = exp ((n(0)) " T(x) - £(6)) h(=), (2.7)
where 6 € ©, and where T'(z) is not constant in z. |

Notice that all members of a given family of distributions in the exponen-
tial class have the same support. Any restrictions on the range may depend
on z through h(zx), but they cannot depend on the parameter.

Many of the common families of distributions used as probability models
of data-generating processes are in the exponential class. In Table 2.2, T list
some families of distributions in the exponential class.

Table 2.2. Some Common Families of Distributions in the Exponential Class

Discrete Distributions
binomial(n, ) (n is assumed known)
multinomial(n, 7) (n is assumed known)
negative binomial(n, ) (n is assumed known)
Poisson(0)
power series(6, {hy}) ({hy} is assumed known)

Continuous Distributions
normal(u, 02), normal(po, o2), or normal(u, o3)
log-normal(p, o2), log-normal(po, o), or log-normal(, o)
inverse Gaussian(u, \)
beta(a, 3)
Dirichlet ()
exponential(f) or exponential(ao, 6)
double exponential(6) or double exponential(ug, 6)
gamma(a, 3) or gamma(a, 3, Y0)
gamma(ao, 3) (which includes the exponential)
gamma(a, Bo) (which includes the chi-squared)
inverted chi-squared(vy)
Weibull(«, 5o)
Pareto(a, y0)
logistic(u, 3)

A subscript on a symbol for a parameter indicates that the symbol represents a known
fized quantity. See Appendiz A for meanings of symbols.
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Note that the binomial, negative binomial, and Poisson families in Ta-
ble 2.2 are all special cases of the general power series distributions whose
PDF may be formed directly from equation (2.7); see page 175.

In Table 2.3, I list some common families of distributions that are not in
the exponential class. Notice that some families listed in Table 2.2, such as
Pareto(a, 7o), for which some measure of the distribution is considered to be
a fixed constant are no longer in the exponential class if we consider that
fixed constant to be a parameter, as in the case of the two-parameter Pareto
Pareto(a, ).

Table 2.3. Some Common Families of Distributions Not in the Exponential Class

exponential(«, 0)
gamma(a, 3,7)
Weibull(a, 3)
uniform(61,02)

double exponential(yu, 0)

Cauchy(y, 8), Cauchy(70, 3), or Cauchy(j3)
Pareto(a, )

t(10)

A family of distributions in the exponential class is called an exponential
family, but do not confuse an “exponential family” in this sense with the
“exponential family”, that is, the parametric family with density of the form
%e*m/b Ljo,00[(#). (This is the usual form of the exponential family, and it is a
member of the exponential class. In courses in mathematical statistics, it is
common to define the exponential family to be the two-parameter family with
density te~@=®/bT, _(z). This two-parameter form is not used very often,
but it is popular in courses in mathematical statistics because this exponential
family is not an exponential family(!) because of the range dependency.)

The form of the expression for the PDF depends on the o-finite dominating
measure that defines it. If the expression above results from

_dPy
Po = 4
and we define a measure X\ by A(4) = [, hdv VA € F, then we could write

the PDF as dP
P _ exp (0(0)™T() - €00)). (2.8)

Whatever the particular form of the PDF, an essential characteristic of it
is the form of the decomposition as in equation (1.17). Formed from equa-
tion (2.7), this is

po(x) = exp(=£(9)) exp ((n(9)) " T(x)) h(); (2.9)
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that is, the kernel has the form k(z) = exp ((n(6))*T(z)) h(z). The im-
portant thing to note is that the elements of the parameter vector n(f) =
(n(0)1,...,m(0)) appear in the kernel only in an exponential and as a linear
combination of functions of z.

In the notation of equation (2.9), we see that the partition function is

exp(£(6)) = / exp ((7(6))"T () h(x)d.

The form of the expression also depends on the parametrization; that is,
the particular choice of the form of the parameters. First, notice that the only
identifiable parameters must be in the elements of (). The other function of
the parameters, £(6), which forms the partition, cannot introduce any more
identifiable parameters; in fact, it can be written simply as

£(6) = log ( [ e (o)) h(x)dx) .

The expression
1= By (T(2)) (2.10)

is called the mean-value parameter, and use of u for n(f) is called the mean-
value parametrization. We can develop an explicit expression for Eq(T(z))
as

E(T(X)) = ¢£'(0)/n'(6).

(See Section 2.4.7.)
If a family of distributions has parameters a and 3, we could equivalently
say the family has parameters o and vy, where v = « + 3; that is,

a 10| ([«
v) [11]\B)"
In this case of course we would have to replace T'(z) = (T4 (z), Tz(z))

T(z) = (T1(z) - To(x), To(x)).

In fact, if 7(8) € RY, and D is any nonsingular d x d matrix, then with
7 = Dn(0), we can write an equivalent form of (1n(6))TT(x). To do so of
course, we must transform T'(z) also. So ((0))YT(z) = 77T (), where T(z) =
(D)7 ().

A PDF of the form f(x;0)I(z;¢) with respect to a o-finite measure A
(where I(z;0) is an indicator function such that for some given xg, 36,02 €
O 3 I(z;601) = 0,I(z;602) = 1) cannot be put in the form cexp(g(z;8))h(zx)
because cexp(g(z;0)) > 0 A-a.e. (because the PDF must be bounded M-a.e.).
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2.4.1 The Natural Parameter Space of Exponential Families

In the expression for the density, it might be more natural to think of the

parameter as 7 rather than 6; that way we would have an expression of form
nTT(z) rather than (1(0))TT(z). We call the form

po(x) = exp (0" T(z) — ((n)) h() (2.11)

the canonical exponential form, and we call
H={n: /e”TT(m)h(x)dx < oo} (2.12)

the natural parameter space. (Notice that H is the upper-case form of 7.) The
conditions in equation (2.12) are necessary to ensure that a {(n) exists such
that pp(x) is a PDF. Another characterization of H is

H={n:n=n(0),0 06}

(under the assumption that © is properly defined, of course).

2.4.2 The Natural Exponential Families

An interesting subclass of exponential families is the class of exponential fam-
ilies in which T'(z) in the defining expression (2.7) is linear. This subclass
is variously called the “natural exponential families”, the “linear exponential
families”, or the “canonical exponential families”.

Given a random variable X whose distribution is in any exponential family,
the random variable Y = T'(X) has a distribution in the natural exponential
family.

The cumulant-generating and probability-generating functions of natu-
ral exponential families have several simple properties (see Brown (1986) or
Morris and Lock (2009)).

2.4.3 One-Parameter Exponential Families

An important subfamily of exponential families are those in which n(6) € IR,
that is, those whose parameter is a scalar (or effectively a scalar). This family
is called a one-parameter exponential.

Theorem 2.3
Suppose a PDF p(x|0) can be written as exp(g(z; 0))h(x). where

g(z;0) = n(0)T(x) — £(0),

with n(0) € R, and Let x1, T2, x3, 4 be any values of x for which p(z|0) > 0.
Then a necessary and sufficient condition that the distribution with the given
PDF is in a one-parameter exponential family is that
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g(z1;0) — g(x2;0)
9(w3;0) — g(z4;0)

(2.13)

is constant with respect to 6.

Proof.
It is clear from the definition that this condition is sufficient.
To show that it is necessary, first observe

9(wi;0) — g(x;;0) = n(0)(T(x:) — T(x;))

Now, for 3 and x4 such that g(xs3;0) # g(x4;0), we see that the ratio (2.13)
must be constant in 0, because n() € IR. |

An example of an application of Theorem 2.3 is to show that the one-
parameter Cauchy family of distributions is not in the exponential class. (In
these distributions the scale parameter 8 = 1.)

Example 2.2 the Cauchy family is not an exponential family
The PDF of the Cauchy is

1
™ (1 + (z — 7)2)
= exp (— log(m) — log (1 + (3:7)2)) .

p(zly) =

Thus,
g(w;0) = ~log(r) — log (1+ (= 7)°)

and for the four distinct points x1, zs, T3, 24,

g(z1;0) — g(w0;0) 108 (1 o 7)2) log (1 (w2 - 7)2)
9(z3;0) — g(24;0) B —log (1 + (23 — 7)2) + log (1 + (x4 — 7)2)

is not constant in v; hence the one-parameter Cauchy family of distributions
is not in the exponential class. |

We often express the PDF for a member of a one-parameter exponential
family as

() = Bm)e™ h(z). (2.14)
In some cases if the support is IR, we can write the PDF as
pa() = Bn)e’™. (2.15)

One-parameter exponential families are monotone likelihood ratio families
(exercise), and have useful applications in statistical hypothesis testing.
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2.4.4 Discrete Power Series Exponential Families

Various common discrete distributions can be formed directly from the general
form of the PDF of one-parameter exponential families. In the notation of
equation (2.14), let # = €", and suppose T'(z) = z. If h(x) (or hy) is such that

D het" =c(f) <o, forfe®C Ry,
x=0

we have the probability mass function

= —0"1 2.16

po(z) (0) {0,1,.3(@), ( )

where 6 € ©. A family of distributions with PDF's of the form (2.16) is called

a discrete power series family. Many of the common discrete families of dis-

tributions, such as the Poisson, the binomial, and the negative binomial, are
of the power series class (Exercise 2.13).

2.4.5 Quadratic Variance Functions

An interesting class of exponential families are those whose variance is at most
a quadratic function of its mean. For example, in the binomial distribution
with parameters n and 7, the mean is g = nm and the variance is nw(1 — ).
The variance as a function of p is

nr(L =) = —/n+ = v(n)

As another example, in the normal distribution N(yu,0?), the variance is at
most a quadratic function of the mean because, in fact, it is constant with re-
spect to the mean. In the Poisson distribution, the variance is a linear function
of the mean; in the gamma with parameters « and 3, we have v(u) = pu?/a;
and in the negative binomial distribution with parameters r and 7, we have
o(p) = @ /n+ p.

The normal, Poisson, gamma, binomial, negative binomial distributions,
and one other family are in fact the only univariate natural exponential fam-
ilies with quadratic variance functions. (The other family is formed from hy-
perbolic secant distributions, and is not often used.) The quadratic variance
property can be used to identify several other interesting properties, including
infinite divisibility, cumulants, orthogonal polynomials, large deviations, and
limits in distribution.

2.4.6 Full Rank and Curved Exponential Families

We say the exponential family is of full rank if the natural parameter space
contains an open set.
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An exponential family that is not of full rank may also be degenerate,
meaning that there exists a vector a and a constant r such that

/ po(x)dz = 1.
aTz=r

(The term “degenerate” in this sense is also applied to any distribution,
whether in an exponential family or not.) The support of a degenerate distri-
bution within IR? is effectively within IR® for & < d. An example of a nonfull
rank exponential family that is also a degenerate family is the family of multi-
nomial distributions (page 838). A continuous degenerate distribution is also
called a singular distribution.

An example of a family of distributions that is a nonfull rank exponential
family is the normal family N(u, u?).

A nonfull rank exponential family is also called a curved exponential family.

2.4.7 Properties of Exponential Families

Exponential families have a number of useful properties. First of all, we note
that an exponential family satisfies the Fisher information regularity condi-
tions. This means that we can interchange the operations of differentiation
and integration, a fact that we will exploit below. Other implications of the
Fisher information regularity conditions allow us to derive optimal statistical
inference procedures, a fact that we will exploit in later chapters.

In the following, we will use the usual form of the PDF,

fo(x) = exp(n(0)" T (x) — £(6))h(x),

and we will assume that it is of full rank.
We first of all differentiate both sides of the identity, wrt 6,

/fe(x) dz =1 (2.17)

Carrying the differentiation on the left side under the integral, we have

[ (3u10)7() = 9e0)) exp(n®)T (@) ~ €(6)) hex) do =0

Hence, because by assumption J,(6) is of full rank, by rearranging terms under
the integral and integrating out terms not involving x, we get the useful fact

E(T(X)) = (J,(0)) 7' V(). (2.18)

We now consider E(T'(X)). As it turns out, this is a much more difficult
situation. Differentiation yields more complicated objects. (See Gentle (2007),
page 152, for derivatives of a matrix wrt a vector.) Let us first consider the
scalar case; that is, 7(0) and T'(x) are scalars, so n(0)TT(z) is just n(0)T(z).
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In this case, differentiating a second time with respect to 8, we get

/ T(x) (1 (O)T () €' () exp(n(O)T () ~€£(0)) () dz = £"(O)n' (8)/ (0 (8))*~€'(0)n" (6)/ (1 (6))*,
1 (0)E((T(X))?) = €' (O)E(T (X)) = &"(60)/n'(0) — €' (0)n" (6)/ (' (6))?
E((T(X))?) = (£(0))*/(n'(0))* — £"(0)/ (/' (8))* — €' (0)n" (8)/ (n/ (8))°.

Finally, collecting terms, we have

VIT(X)) = E(T(X))?) - (B(T(X)))?
£0) _ €O)n"(0) 2.19)

ICIORENCIOE

proposition 3.2 in shao, page 171. look at two parameteriza-
tions; natural and mean.

Kokokok ok Kok kok

V(T(X)) = He (1) % s s s sk sk sk sk sk sk ok ok ok ok ok ok ok ok ok % 8

where Hc(n) is the matrix of second derivatives of ¢ with respect to 7.

It is often a simple matter to determine if a member of the exponential
class of distributions is a monotone likelihood ratio family. If () and T'(x)
in equation (2.7) for the PDF of a distribution in the exponential class are
scalars, and if n(¢) is monotone in 6, then the family has a monotone likelihood
ratio in T'(z).

2.5 Parametric-Support Families

Parametric-support families have simple range dependencies, that is, these are
distributions whose supports depend on parameters. A distribution in any of
these families has a PDF in the general form

po(x) = f(x,0)1(1,(0). (00 (T)- (2.20)

These families are also called “truncation families”, but most people use the
term “truncated family” to refer to a family that is artificially truncated
(for example, due to censoring; see Section 2.10.1). For example, to refer to
the three-parameter gamma as a truncated distribution would be to confuse
it with the more standard terminology in which a truncated gamma is the
distribution formed from a two-parameter distribution with PDF

xaileim/ﬁl{nym] (CE),

() 5
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where c is just the normalizing constant, which is a function of «, 3, 71, and 7».
In applications, the truncation points, 71 and 79, are often known fixed values.
If they are treated as parameters, of course, then the truncated distribution
is a parametric-support family.

Parametric-support families, such as the family of two-parameter exponen-
tials, are not exponential families; likewise, exponential families, such as the
family of one-parameter exponentials, are not parametric-support families.

In some cases the parameters can be separated so some apply to the sup-
port and others are independent of the support. If the parameters are func-
tionally independent, various properties of the distribution may be identified
with respect to some parameters only. Also different statistical methods may
be used for different parameters. For example, in the three-parameter gamma

with PDF 1

T(a)fe "

some aspects of the distribution are those of a family in the exponential class,
while other aspects can be related to a simple uniform distribution, U(0, 6).

aflefm/ﬁl[%oo[(x),

2.6 Transformation Group Families

“Group” families are distributions that have a certain invariance with respect
to a group of transformations on the random variable. If g is a transformation
within a group G of transformations (see Example 0.0.4 on page 630), and X
is a random variable whose distribution is in the family Pg and if the random
variable g(X) also has a distribution in the family Pg, the family Pg is said
to be invariant with respect to G.

Transformations on the Sample Space and the Parameter Space

Let G be a group of transformations that map the probability space onto
itself. For g € G X and g(X) are random variables that are based on the same
underlying measure, so the probability spaces are the same; the transformation
is a member of a transformation group, so the domain and the range are equal
and the transformations are one-to-one.

g:X— X, 1:1andonto

For given g € G above, let g be a 1:1 function that maps the parameter
space onto itself, g : © — O, in such a way that for any set A,

Pro(g(X) € A) = Prjp) (X € A). (2.21)

If this is the case we say § preserves ©. Any two functions that preserve the
parameter space form a group of functions that preserve the parameter space.
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The set of all such g together with the induced structure is a group, G. We
write

3(0) = 4. (2.22)
g:©+— 0, 1:1andonto

We may refer to 5 as the induced group under G. The group g~ is transitive in
the sense defined on page 755.

Example 2.3 Transformations in a binomial distribution

Suppose X is a random variable with a distribution in the binomial(n, )
family. In applications, the random variable is often taken as the sum of binary
variables in which the 0 value is interpreted as one value of a binary state (“off-
on”, “good-bad”, etc.). If the meaning of the binary state were changed, the
binomial model for the application would remain unchanged. Instead of the
original random variable, however, we would have g(X) = n — X. A further
transformation g(m) = 1 — 7 establishes the effect on the parameter space
occasioned by the transformation on the probability space.

In the notation above G in G = (G, o) is given by

G={g(z)=z,9(x)=n—ax : 2€{0,...,n}},
and G in G is given by
G={jlx)=z,4(x)=1—= : z €]0,1[}.

It is easy to see that both G and G are groups (exercise). |

Formation of Transformation Group Families

A group family can be formed from any family of distributions. (Notice that
the preceding statement does not mean that any family is a group family;
that depends on what variable parameters define the family.) The usual one-
parameter exponential family of distributions, which is of the exponential
class, is a transformation group family where the transformation is a scale
(multiplicative) transformation, but is not a transformation group family
where the transformation is a location and scale transformation. This family
can be made into a location-scale group family by adding a location parame-
ter. The resulting two-parameter exponential family is, of course, not of the
exponential class.

The random variable space associated with a transformation group of prob-
ability distributions is closed with respect to that class of transformations.

2.6.1 Location-Scale Families

The most common group is the group of linear transformations, and this yields
a location-scale group family, or just location-scale family, the general form of
which is defined below.
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Given a d-variate random variable X, a d x d positive-definite matrix X
and a d-vector y, it is clear that if F'(x) is the CDF associated with the random
variable X, then |X~1V/2|F(X~2(2 — 1)) is the CDF associated with Y. The
class of all distributions characterized by CDFs that can be formed in this
way is of interest.

Definition 2.3 (location-scale families)

Let X be a random variable on IR”, let V C IR*, and let M;, be the collection
of k x k symmetric positive definite matrices. The family of distributions of
the random variables of the form

Y =X'"2X 4y, forpeV, X e My (2.23)

is called a location-scale family. The group of linear transformations y = g(x)
in equation (2.23) is also called the location-scale group.

The random variable space associated with a location-scale family is a
linear space.

If the PDF of a distribution in a location-scale family is f(z), the PDF
of any other distribution in that family is |2~/2|f(2~1/2(x — u)). In the
case of a scalar x, this simplifies to f((z — u)/0o)/o. Thus, in a location-scale
family the kernel of the PDF is invariant under linear transformations (see
Definition 0.1.103 on page 755). The probability measure itself is invariant to
the location transformation and equivariant to the scale transformation.

We often use

(@ = w)/o)/o (2.24)
generically to represent the PDF of a distribution in a location-scale family.

While we can always form a location-scale family beginning with any dis-
tribution, our interest is in which of the usual families of distributions are
location-scale families. Clearly, a location-scale family must have enough pa-
rameters and parameters of the right form in order for the location-scale
transformation to result in a distribution in the same family. For example,
a three-parameter gamma distribution is a location-scale family, but a two-
parameter gamma (without the range dependency) is not.

In Table 2.4, T list some common distribution families in which we can
identify a location parameter. While the usual form of the family has more
than one parameter, if all but one of the parameters are considered to be fixed
(that is, effectively, they are not parameters), the remaining parameter is a
location parameter.

An interesting property of a location family is that the likelihood function
is the same as the PDF. Figure 1.2 on page 20 illustrates the difference in a
likelihood function and a corresponding PDF. In that case, the distribution
family was exponential(0, 8), which of course is not a location family. A sim-
ilar pair of plots for exponential(«, 6p), which is a location family, would be
identical to each other (for appropriate choices of o on the one hand and x
on the other, of course).
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Table 2.4. Some Common One-Parameter Location Group Families of Distributions

normal(p, o)
exponential(«, o)

double exponential(u, 6o)
gamma(ao, Bo,7)
Cauchy(y, fo)

logistic(u, Bo)

uniform(6 — 6o, 6 + 0o)

A subscript on a symbol for a parameter indicates that the symbol represents a known
fized quantity. See Appendiz A for meanings of symbols.

Table 2.5. Some Common One-Parameter Scale Group Families of Distributions

normal(po, o?)

inverse Gaussian(u, \)
exponential (o, 0)

double exponential(uo, 0)
gamma(ao, 8,70)
Cauchy(vo, 8)
logistic(uo, B)

uniform(6y — 0, 6y + 0)

A subscript on a symbol for a parameter indicates that the symbol represents a known
fized quantity. See Appendiz A for meanings of symbols.

Often, a particular parameter in a parametric family can be identified as a
“location parameter” or as a “scale parameter”, and the location-scale trans-
formation affects these two parameters in the obvious way. In some cases,
however, a location transformation or a scale transformation alone affects
more than one parameter. For example, a scale transformation ¢ X on a ran-
dom variable with distribution inverse Gaussian(p, A) results in a random
variable with distribution inverse Gaussian(ou,o)). (There is an alternative
parametrization of the inverse Gaussian with A = A and i = +/A/p. In that
notation, the scaling affects only the 5\)

Many of the common parametric families are both location and scale fam-
ilies; that is, they are location-scale group families. The families in both Ta-
bles 2.4 and 2.5 can be combined into two-parameter families that are location-
scale group families. The normal(u, o2), for example, is a location-scale group
family.

Some standard parametric families that are not location-scale group fam-
ilies are the usual one-parameter exponential family, the binomial family, and
the Poisson family.

Theory of Statistics (©2000-2020 James E. Gentle



182 2 Distribution Theory and Statistical Models

Note that the only families of distributions that are in both the exponential
class and the transformation group class are the normal, the inverse Gaussian,
and the gamma.

We have used the term “scale” to refer to a positive (or positive definite)
quantity. There are other group families formed by a larger transformation
group than those of equation (2.23). The transformations

h(z) = a + Bz, (2.25)

where B is a nonsingular matrix (but not necessarily positive definite), forms
a transformation group, and the multivariate normal family Ng(u, X) is a
group family with respect to this group of transformation. Notice that the
transformations in the group G = {h : h(xz) = a + Bz, B nonsingular} can
be formed by a smaller group, such as the same transformations in which B is
a nonsingular lower triangular matrix (that is, one with nonnegative diagonal
elements).

2.6.2 Invariant Parametric Families

Our interest in group families is often motivated by a certain symmetry in the
sample space and the parameter space. That symmetry is expressed in the
relationships between G the group of transformations that map the probability
space onto itself and G the induced group under G.

Definition 2.4 (invariant class of families)

Let P = {pp : 6 € ©} be a parametric family of distributions on (X, B). Let
X be a random variable with CDF Py, € P. Let G be a group of transfor-
mations on X. If for each g € G there is a 1:1 function g on © such that the
random variable g(X) has CDF Pj,) € P, then P is said to be an invariant
parametric family under G. |

Some common families of distributions that are in the invariant parametric
class under the location-scale group with their regular parametrization include
the normal, the double exponential, the exponential, the uniform (even with
parametric ranges), and the Cauchy.

As suggested above, an invariant class under some transformation group
can be generated by any distribution. This is not always possible for a specified
group of transformations, however. For example, the (usual single-parameter)
exponential family is not a member of a location invariant class.

Other Invariant Distributions

Given independent random variables X and Y, the distributions of X and
Y may be such that there is a nontrivial transformation involving X and
Y that yields a random variable that has the same distribution as X. that
is, the distribution of X and ¢g(X,Y") is the same. For this to be the case,
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clearly g must be a many-to-one map, so it is not an arbitrary member of a
transformation group.

An important property of the U(0, 1) distribution is the following. If a
random variable is distributed as U(0, 1) and is scaled or convolved with a
random variable that has any uniform distribution whose range includes [0, 1],
and then reduced modulo 1, the resulting random variable has a U(0, 1) dis-
tribution. To state this more clearly, let X ~ U(0,1) and Y be distributed
independently as U(a, b) where a < 0 and b > 1 and let ¢ > 1. Now let

Z=(cX+Y) mod 1.

Then Z £ X.

Another example of a distribution and transformation that is invariant (or
nearly so) is the distribution of first digits and a positive scaling transforma-
tion. The digital representation of a random variable X is

X = Dib5 4 Db 2 4 Dgp™ 3

where b > 3 is a fixed integer, K is an integer-valued random variable, D;
is a nonnegative integer-valued random variable less than b, and D; > 0.
If X has a uniform distribution over (b¥~1 %) the distribution of the first
digit D; is not uniform over {1,...,b— 1} as one might guess at first glance.
With a larger range of X, remarkably, the distribution of D; is invariant
to scale transformations of X (so long as the range of the scaled random
variable includes a range of powers of b. (Note that the first digit in the
digital representation of aX is not necessarily aD;.)

A wellknown example of this type of distribution and transformation is
known as “Benford’s law”. See Exercise 2.10.

2.7 Infinitely Divisible and Stable Families

The concept of divisibility was put forth in Definitions 1.31 and 1.32 on
page 60. Distributions that are infinitely divisible are of most interest because
they yield tractable models with a wide range of applications, especially in
stochastic processes.

If {X; : t €]0,00[}is a Lévy process, then any random variable X(¢) is
infinitely divisible.

Stable Families

Stability of random variables was defined in Definition 1.33 on page 61.

Stable families are closely related to infinitely divisible families. All sta-
ble families are infinitely divisible, but an infinitely divisible family is not
necessarily stable. The Poisson family is an example (exercise).
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Most members of the stable family do not have PDFs or CDFs that can be
represented in a closed form. The family is defined by a cumulant-generating
function of the form

K(t) =iut — |ot|* (1 —iFsign(t)w(a, 1)), (2.26)

where w(a,t) = (2/7)log(]t]) for « = 1 and ¢t # 0, and w(a,t) = tan(an/2)
for a # 1. The parameters are analogous to parameters in other distributions
that represent the mean, standard deviation, skewness, and kurtosis, although
except in some special cases by the usual definitions of such measures of a
distribution (based on expectations) these quantities do not exist or else are
infinite in the stable family of distributions. The parameters are

e « €]0,2]: stability coefficient of equation (1.137)

e [ € [—1,1]: skewness parameter (not necessarily related to a third mo-
ment)

e o0 € IR;: scale parameter (not necessarily related to a second moment)

e 1 € IR: location parameter (not necessarily related to a first moment)

If 8 = 0 the distribution is symmetric (and note if also p = 0, the cumulant-
generating function and hence, the characteristic function, is real).

The symmetric a-stable families, as o ranges from 1, which is the Cauchy
distribution, to 2, which is the normal, has progressively lighter tails.

2.8 Families of Distributions with Heavy Tails

Exponential power family of distributions, also called the generalized error
family of distributions.
Kernel
k(z) = o~ l=/Bl*

The Pareto distribution has relatively heavy tails; for some values of the
parameter, the mean exists but the variance does not. A “Pareto-type” dis-
tribution is one whose distribution function satisfies the relationship

P(z) = 1— 2 7g(a),

where g(z) is a slowly varying function; that is, for fixed ¢ > 0,

. g(tz)

The Burr distribution with the CDF given in (2.54) is of the Pareto type,
with v = aB.

The stable family of distributions is a flexible family of generally heavy-
tailed distributions. This family includes the normal distribution at one ex-
treme value of one of the parameters and the Cauchy distribution at the other
extreme value. There are various parameterizations of the stable distributions.

=1
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Depending on one of the parameters, «, the index of stability, the charac-
teristic function (equation (??), page ??) for random variables of this family
of distributions has one of two forms:

ot | a,0,B,u)= exp(—ao‘|t|a(1 — iBsign(t) tan(rar/2)) + i,ut) if a#1,
or
o(t]1,0,B, 1) = exp(—a|t| (1 + 2iBsign(t) log(t)/x) + mt) ifa=1

for 0 < o < 2,0 < o0,and -1 < B < 1. For a = 2, this is the normal
distribution (in which case B is irrelevant), and for « = 1 and B = 0, this is
the Cauchy distribution.

The member of the stable family with « = 1 and B = 1 is called the
Landau distribution, which has applications in modeling fluctuation of energy
loss in a system of charged particles.

2.9 The Family of Normal Distributions

The normal distribution is probably the most important probability distribu-
tion. The normal family is in the exponential class. It is a complete family, a
regular family, a group family, an infinitely divisible family, a stable family,
and an elliptical family. One reason that the family of normal distributions is
so important in statistical applications is the central limit theorem that gives
the normal as the limiting distribution of properly normalized sequences of
random variables with other distributions.

The family of normal distributions has a number of interesting and useful
properties. One involves independence and covariance. It is easy to see that
if the scalar random variables X and Y are independent, then Cov(X,Y") =
Cor(X,Y) = 0, no matter how X and Y are distributed. An important prop-
erty of the normal distribution is that if X and Y have a bivariate normal
distribution and Cov(X,Y) = Cor(X,Y) = 0, then X and Y are indepen-
dent. This is also easy to see by merely factoring the joint PDF. In addition
to the bivariate normal, there are various other bivariate distributions for
which zero correlation implies independence. Lancaster (1959) gave necessary
and sufficient conditions for this implication.

Interestingly, X and Y having normal marginal distributions and zero
correlation is not sufficient for X and Y to be independent. This, of course,
must mean that although the marginals are normal, the joint distribution
is not bivariate normal. A simple example of this is the case in which X ~
N(0,1), Z is a random variable such that Pr(Z = —1) = Pr(Z = 1) = 1,
and Y = ZX. Clearly, Y ~ N(0, 1) and Cor(X,Y) =0, yet X and Y are not
independent. We also conclude that X and Y cannot be jointly normal.

There are a number of interesting and useful properties that only the
normal distribution has; that is, these properties characterize the normal dis-
tribution. We will consider some of these properties in the next section.
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Some properties of the normal family of distributions form the basis for
many statistical methods, such as the use of the Student’s ¢ for testing hy-
potheses or setting confidence limits, or the use of the F' distribution in the
analysis of variance. Many statistical methods depend on an assumption of a
normal distribution.

2.9.1 Multivariate and Matrix Normal Distribution

The d-variate normal distribution, which we denote as Ng4(u, ), has the PDF

1 o (@) Z @) /2
(2m)d/2| X|1/2 ’
where € R? and X = 0 € R™,

Notice that the exponent in this expression could alternatively be written
as

—tr(Z7 (2 — )@ — 1)")/2.

This form is often useful.

As we noted above, each element of a random d-vector X may have a
marginal normal distribution, yet X itself may not have a d-variate normal
distribution.

Generally, a “multivariate distribution” refers to the distribution of a ran-
dom vector. If the random object has some other structure, however, a dis-
tribution that recognizes the relationships within the structure may be more
useful. One structure of interest is a matrix. Some random objects, such as a
Wishart matrix (see page 841), arise naturally from other distributions. An-
other useful random matrix is one in which all elements have a joint normal
distribution and the columns of the matrix have one correlational structure
and the rows have another correlational structure. This is called a multivari-
ate matrix distribution, which we denote as MN,, x,,, (M, ¥, X). The PDF for
the random n x m random matrix X is

1 o=t (7 (X M) 57N (X M) /2
(27T)nm/2|gp|n/2|2|m/2 ’

where M € R™*™, ¥ = 0€ R™™, and ¥ = 0 € R"™".

The variance-covariance matrix of X is V(X) = V(vec(X)) =¥ ® X. The
variance-covariance matrix of each row of X is ¥, and the variance-covariance
matrix of each column of X is X

The multivariate matrix normal distribution of the matrix X with PDF

as given above is related to the ordinary multivariate normal for the vector
vec(X) with PDF

1 —vee(X—M)T (FO5) " vee(X—M)/2
(27T>nm/2 |Lp ® E|nm/2
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Complex Multivariate Normal Distribution
Consider the random d-vector Z, where

Z =X +1iY.
The vector Z has a complex d-variate normal distribution if (X,Y") has a real

2d-variate normal distribution. The PDF of Z has the form

1

o @) @p)/2
(2m) 42| [1/2 ’

where p € €% and ¥ > 0 € ©9*9,

2.9.2 Functions of Normal Random Variables

One reason that the normal distribution is useful is that the distributions of
certain functions of normal random variables are easy to derive and they have
nice properties. These distributions can often be worked out from the CF of
the normal distribution N(u, 0?), which has a particularly simple form:

<P(t> _ ei,utfcr2t2/2'

Given n iid N(p, 02) random variables, Xi, Xo, ..., X,,, the sample mean
and sample variance

X= iXi/n (2.27)

and
n

2= (Xl- - ZXMTL) /(n—1) (2.28)

i=1
are important functions.
Using the CF and equations (1.99) and (1.100), it is easy to see that

X ~ N(u,0?/n). (2.29)

In Example 1.16, we saw that the sum of squares of n iid standard normal
random variables is chi-squared with n degrees of freedom. Using properties
of sums of independent normal random variables and of chi-squared random
variables we see that X and S? are independent and furthermore that

(n—1)8%/02 L2 .. (2.30)

Another way to establish the independence of X and S? and to get the
distribution of S? is by use of the elegant Helmert transformation. We first
define
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Yi=Xx—X, k=1,...,n—1 (2.31)
and
Yo=Y — - =Y, 1. (2.32)
The joint density of X,Y7,...,Y,, is proportional to
exp (—n(z — p)*)/20%) exp (—(y + -+ +y5)/207) ; (2.33)
hence, we see that X is independent of Y7, ...,Y},, or any function of them,

including S2.
The Helmert transformations are

Wi = V21 +3iYs + -+ 1Y,)
Wy = \/g(Yz+§Y3,+~~+§Yn71)
Wy = /4 (G4 Dt o+ 1Y) (2.34)
Wit = /:75Yn1
We have o
S WE=(n—-1)8% (2.35)
k=1

Because the joint density of Wy,..., W,,_1 is the same as n — 1 iid N(0, o%)
random variables (exercise), we have that (n—1)5?/0? is distributed as x2_;.

If X is distributed as Ng(u, I4), and for i = 1,...k, A; is a d X d symmetric
matrix with rank r; such that Zl A; = I;, then we can write

XTX =XTA X+ + XTALX,

and the X 4; X have independent noncentral chi-squared distributions x2 (4;)
with §; = uTA;p if and only if Y, 7; = d. This result is known as Cochran’s
theorem. This form of the theorem and various preliminary forms leading up
to it are proved beginning on page 430.

From the family of central chi-squared distributions together with an inde-
pendent normal family, we get the family of t distributions (central or noncen-
tral, depending on the mean of the normal). From the family of chi-squared
distributions (central or noncentral) we get the family of F distributions (cen-
tral, or singly or doubly noncentral; see Example 1.15 on page 59 for the
central distributions).

The expectations of reciprocals of normal random variables have interest-
ing properties. First of all, we see that for X ~ N(0, 1), E(1/X) does not exist.
Now, for X ~ Ng4(0, I) consider

B (@) . (2.36)

For d < 2, this expectation is infinite (exercise). For d > 3, however, this
expectation is finite (exercise).
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2.9.3 Characterizations of the Normal Family of Distributions

A simple characterization of a normal distribution was proven by Cramér in

1936:

Theorem 2.4
Let X1 and X5 be independent random variables. Then X1 and X5 have nor-
mal distributions if and only if their sum X1 + X has a normal distribution.

Proof. ***fix |

The independence of certain functions of random variables imply that
those random variables have a normal distribution; that is, the independence
of certain functions of random variables characterize the normal distribution.

Theorem 2.5 (Bernstein’s theorem)

Let X7 and X5 be iid random variables with nondegenerate distributions, and
let Y1 =X+ X3 and Yo = X1 — Xo. If Y1 and Ys are also independent then
X1 and X5 have normal distributions.

Proof. ***fix |
An extension of Bernstein’s theorem is the Darmois theorem, also called
the Darmois-Skitovich theorem.

Theorem 2.6 (Darmois theorem)
Let X1, ..., X, be iid random variables with nondegenerate distributions, and

let .
Y| = Z bi X;
i=1

and

where the b; and c; are nonzero real constants. If Y1 and Ys are also indepen-
dent then X1, ..., X, have normal distributions.

The proof of the Darmois theorem proceeds along similar lines as that of
Bernstein’s theorem.

The following theorem is a remarkable fact that provides a characterization
of the normal distribution in terms of the sample mean X and the sample
variance S2.

Theorem 2.7 (Geary’s theorem)

Let X1,Xs,...,X, be iid with PDF f with finite variance, 0. A necessary
and sufficient condition that the parent distribution be a normal distribution
is that the sample mean and the sample variance be independent.
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Proof. First, we note that the sufficiency can be established directly quite

easily.
Now for the necessity. Assume that
n
i=1
and

are independent.

We will work with various characteristic functions, all of which are deter-
mined by Ex (see page 49). We will adopt a simple notation for these CFs.
Our main interest will be the CF of the joint distribution of X and S2, so we
denote it simply as ¢(t1, t2); that is,

p(t1,t2) = o5 g2 (L1, t2)
= /eitljﬁqt252 Hf(a:l)dxl

We denote the separate CFs as o1 (t1) and ¢a(t2):

p1(t1) = ox(t1) = ¢x.52(t1,0)

and
p2(t2) = ps2(tz) = vz 52(0, t2).
Finally, we let
px (1)
be the CF of each Xj.
From equation (1.131) (after dividing Y by n), we have

e1(t1) = (px (t/n))".
From equation (1.104), the independence of X and S? implies that
P(t1,t2) = p1(t1)p2(t2),

and we have

D2 (t2)
Ota

Op(ty,ta2)
Ota

= p1(t1)

ta=0 ta=0

Dpa(t2)

= (px(t/n))" oty (2.37)

ta=0

Directly from the definition of ¢(t1, t2), we have
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dp(ts, ta) / 2 it) 2
—_ = =1/ s%et?® z;)dx;. 2.38
ot s 11 s (2.38)
Now, substituting s> = g(z1,...,7,) and & = h(x1,...,x,) into this latter
equation, we get
dp(ts, ta)

G2 et /myr [ et )

to=0
ittt/ ( | xe“”/"f(x)dx>2- (2.39)

Furthermore, because E(S?) = o?

D2 (t2)
Ota

, we have

io?. (2.40)

ta=0
Now, substituting (2.39) and (2.40) into (2.37) and writing ¢t = t1/n, we
have

extt) [ flaae - ( | xei“f(x)dx>2 —(ox(®)Pe? (241)

Note that i¥ times the integrals in this latter equation are of the form
dkpx (t)/dt*, so we may re express equation (2.41) as the differential equation

— ox(e% () + (Px ()" = (px(1))*0™. (2.42)

Now, solving this differential equation with the initial conditions

ex(0)=1, and ¢x(0)=ipy,

where p = E(X), we have
px(t) = ethte "2, (2.43)

(The ordinary differential equation (2.42) is second order and second degree,
so the solution is difficult. We can confirm that equation (2.43) is the solution
by differentiation and substitution.)

Equation (2.43) is the characteristic function of the normal distribution
N(u, %), and so the theorem is proved. |

This theorem can easily be extended to the multivariate case where the X;
are d-vectors. Because only first and second moments are involved, the details
of the proof are similar (see Exercise 2.31).
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2.10 Generalized Distributions and Mixture
Distributions

Probability distributions used in statistical applications are chosen both for
their general properties that determine the properties of the statistical meth-
ods used and for their similarities to the frequency of observed data. Statistical
methods based on a distributional family in the exponential, for example, can
yield optimal unbiased procedures. On the other hand, statistical inference
based on a family of distributions whose moments correspond to the sample
moments of observed data would have greater credence than inference based
on an assumption of a probability distribution with properties that differ from
the frequencies observed.

Various families of probability distributions have been identified that are
useful models of observed frequency distributions. The only specific family
that we consider in this chapter is the normal family studied in Section 2.9.
We list other important families in Appendix A. In this section, we consider
general modifications of distributions that may yield more realistic models
of observed data. We may find, for example, that a normal distribution fits
observed data well over some ranges but not over others. The data may be
censored (Section 2.10.1). On the other hand, it may be that the data fall
into different groups, some of which have frequencies corresponding to one
normal probability distribution, and others have frequencies corresponding to
a different normal distribution or even to a distribution in a different family
(Section 2.10.2). Another possibility is that frequencies of the observational
data are quite similar to a normal distribution, but that they are skewed one
way or another (Section 2.10.3).

Given a well-studied family of distributions such as the gamma or some
other family in Appendix A, we may seek to generalize the family by incorpo-
rating another parameter. (A simple example for the two-parameter gamma
family is just to add a “starting” parameter, as in Table A.6.)

More generally, we make seek to define a distribution with given properties,
such as skewness or kurtosis. We may define a PDF or CDF that matches given
quantiles, for example. We discuss some of these approaches in Section 2.10.4.

The need to develop a probability distribution that models the frequency
distribution of observed data has led to many useful distributions. Another
motivation to developing useful and tractable probability distributions is to
have meaningful prior distributions in Bayesian analysis (see Chapter 4).

2.10.1 Truncated and Censored Distributions

Often the support of a standard family is truncated to yield a family whose
support is a proper subset of the standard family’s. The infinite support of a
normal distribution may be truncated to a finite interval, for example, because
in a given application, no data will be, or can be, observed outside of some
finite interval. Another common example is a truncated Poisson (also called
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2.10 Generalized Distributions and Mixture Distributions 193

“positive Poisson”) in which the point 0 has been removed from the support.
This may be because a realization of 0 does not make sense in the particular
application.

The kernel of the PDF of a truncated distribution over its support is the
same as kernel of the original distribution over its support. The partition func-
tion is adjusted as appropriate. The PDF of the positive Poisson distribution,

for example, is
1 6

f(z) = HEI{LZW}(:E); (2.44)

The support of a distribution may also be changed by censoring. “Cen-
soring” refers what is done to a random variable, so strictly speaking, we do
not study a “censored distribution”, but rather the distribution of a random
variable that has been censored.

There are various types of censoring. One type is similar to the truncation
of a distribution, except that if a realization of the random variable occurs
outside of the truncated support, that fact is observed, but the actual value
of the realized is not known. This type of censoring is called “type I” fixed
censoring, and in the case that the support is an interval, the censoring is
called “right” or “left” if the truncated region of the support is on the right
(that is, large values) or on the left (small values). A common situation in
which type I fixed censoring occurs is when the random variable is a survival
time, and several observational units are available to generate data. Various
probability distributions such as exponential, gamma, Weibull, or lognormal
may be used to model the survival time. If an observational unit survives
beyond some fixed time, say t., only that fact is recorded and observation of
the unit ceases.

In another kind of fixed censoring, also illustrated by observation of failure
times of a given set of say m units, the realized failure times are recorded
until say r units have failed. This type of censoring is called “type II” fixed
censoring.

If an observational unit is removed prior to its realized value being observed
for no particular reason relating to that unobserved value, the censoring is
called “random censoring”.

Censoring in general refers to a failure to observe the realized value of
a random variable but rather to observe only some characteristic of that
value. As another example, again one that may occur in studies of survival
times, suppose we have independent random variables 77 and T with some
assumed distributions. Instead of observing 77 and T3, however, we observe
X = min(7Ty,T») and G, an indicator of whether X = T or X = T5. In this
case, 17 and Ty are censored, but the joint distribution of X and G may be
relevant, and it may be determined based on the distributions of 77 and T5.
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2.10.2 Mixture Families

In applications it is often the case that a single distribution models the ob-
served data adequately. Sometimes two or more distributions from a single
family of distributions provide a good fit of the observations, but in other
cases, more than one distributional family is required to provide an adequate
fit. In some cases most of the data seem to come from one population but
a small number seem to be extreme outliers. Some distributions, such as a
Cauchy, are said to be “outlier-generating”, but often such distributions are
difficult to work with (because they have infinite moments, for example). Mix-
tures of distributions, such as the e-mixture distribution (see page 601), are
often useful for modeling data with anomalous observations.

A mixture family can be defined in terms of a set of CDFs Py. The CDF of
a mixture is > w; P;, where P; € Py, 0 < w; <1, and > w; = 1. The set P of
all such mixture CDFs is called a distribution function space (see page 754).
If each the probability measure associated with each P; is dominated by the
measure v, then the probability measure associated with Y w; P; is dominated
by the v.

One family that is useful in robustness studies is the e-mixture distribution
family, which is characterized by a given family with CDF P that we refer
to as the reference distribution, together with a point x. and a weight €. The
CDF of a e-mixture distribution family is

Py o(x) = (1 —€)P(x) + el oof(T), (2.45)

where 0 < € < 1. The point x. may be thought of as a “contaminant” in the
distribution with CDF P. In a common example of this kind of mixture, the
probability measure associated with P is dominated by the Lebesgue measure
1, and in that case the probability measure associated with P, . is dominated
by p + 6., where d,, is the dirac measure concentrated at z..

Another type of mixture family is composed of two distributions dominated
by Lebesgue measure that have CDFs P; and P, such that at the point z.,
Pi(z.) < Pz2(x.) and whose CDF is given by

P = {3 2L 240

The probability measure associated with P is dominated by p + d5..
Finally, we consider a mixture family formed by censoring. Let Y3,...,Y,
be iid with CDF P, and let

n. (2.47)

Y, iY;>c .
Xi—{c 1le<c ’L—l,...,

If the distribution of the Y; is dominated by Lebesgue measure, then the
distribution of the X; is dominated by u + 0.
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2.10.3 Skewed Distributions

Most of the common skewed distributions, such as the gamma, the log normal,
and the Weibull, have semi-infinite range. The common distributions that have
range (—00,00), such as the normal and the t, are symmetric.

There are several ways to form a skewed distribution from a symmetric
one. Two simple ways are

e CDF-skewing: take a random variable as the maximum (or minimum) of
two independent and identically symmetrically distributed random vari-
ables, or

o differential scaling: for some constant £ # 0, scale a symmetric random
variable by £ if it is less than its mean and by 1/£ if it is greater than its
mean.

In each case, it may be desirable to shift and scale the skewed random variable
so that it has a mean of 0 and a variance of 1. (We can then easily shift and
scale the random variable so as to have any desired mean and variance.)

CDF-Skewing

If a random variable has PDF f(z) and CDF F(z), from equation (??), the
PDF of the maximum of two independent random variables with that distri-
bution has the PDF

2F (z) (). (2.48)

Intuitively, we see that the maximum of two symmetrically distributed random
variables has a skewed distribution.
We can generalize this form by scaling the argument in the CDF,

2F (ax) f(x). (2.49)

A negative scaling, that is, @ < 0 yields a negative skewness. (In the case
of the normal distribution, the value & = —1 is equivalent to the minimum
of two independent normal random variables.) Values of « larger in absolute
value yield greater degrees of skewness. The scaling also changes the kurtosis,
with larger absolute values of a yielding a larger kurtosis.
Specifically, for the standard normal distribution, we form the PDF of a
skewed normal as
foxy (@3 @) = 20(a)d(x), (2.50)

¢(z) denotes the PDF of the standard normal distribution and ®(x) denotes
the CDF.

Obviously, CDF-skewing can be applied to other distributions, such as the
t or the generalized error distribution, and of course including normals as in
equation (2.50) with other means and variances.
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Differential Scaling

Another way of forming a skewed distribution is by scaling the random vari-
able differently on different sides of the mean or some other central point.
Specifically, for the normal distribution, we can form the PDF of a skewed

normal as
9 d(x/€) forxz < 0
Jon, (2:€) (2.51)

:§+% ¢(&x) forxz >0,

where, as before, ¢(x) denotes the PDF of the standard normal distribution.
Values of £ less than one produce a positive skew, and values greater than one
produce a negative skew. In either case, the excess kurtosis is positive.

The dividing point for differential scaling obviously could be chosen arbi-
trarily. To form a skewed distribution from a unimodal symmetric distribution,
an obvious dividing point would be the mode of the distribution.

Distributions formed by differential scaling are sometimes called “two piece
distributions”.

2.10.4 Flexible Families of Distributions Useful in Modeling

Some of the useful families of probability distributions arise from simple pro-
cesses of “random” events. This is one way we naturally define the Bernoulli
or binomial family, the hypergeometric family. the Poisson family, or the ex-
ponential family, as examples. These discrete families can be generalized by
developing a differential equation that models a limiting case of the discrete
frequency model. The Pearson system is an example of this approach (in which
the basic differential equation arises as a limiting case of a hypergeometric dis-
tribution). Other broad families of distributional forms have been developed
by Johnson, by Burr, and by Tukey. The objective is to be able to represent a
wide range of distributional properties (mean, variance, skewness, shape, etc.)
with a small number of parameters, and then to fit a specific case by proper
choice of these parameters.

A special type of mixture distribution is a probability-skewed distribution,
in which the mixing weights are the values of a CDF. The skew-normal dis-
tribution is a good example.

The (standard) skew-normal distribution has density

9(z) = ——e—"*28(\z) for —o0 < T < 00 (2.52)

vors - '
where ®(-) is the standard normal CDF, and A is a constant such that —oo <
A < o0. For A = 0, the skew-normal distribution is the normal distribution,
and in general, if |A| is relatively small, the distribution is close to the normal.
For larger |\|, the distribution is more skewed, either positively or negatively.

Other distributions symmetric about 0 can also be skewed by a CDF in
this manner. The kernel of the probability density is
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k(z) = p(z)P(Az),

where p(-) is the density of the underlying symmetric distribution, and P(-) is
a CDF. (It is not necessary that the CDF be for the same distribution.) The
idea also extends to multivariate distributions.

In most cases, if |A| is relatively small, generation of random variables from
a probability-skewed symmetric distribution using an acceptance/rejection
method with the underlying symmetric distribution as the majorizing density
is entirely adequate. For larger values of |)|, it is necessary to divide the
support into two or more intervals. It is still generally possible to use the
same majorizing density, but the multiplicative constant can be different in
different intervals.

Some commonly used ones are the Pearson family, the Johnson family,
the generalized lambda family, and the Burr family. The Pearson family is
probably the best known of these distributions. A specific member of the
family is determined by the first four moments, so a common way of fitting
a distribution to an observed set of data is by matching the moments of the
distribution to those of the sample.

Another widely used general family of distributions is the Johnson family.
A specific member of this family is also determined by the first four or five
moments, depending on the parametrization.

A generalized lambda family of distributions was described by Ramberg
and Schmeiser (1974). This system, which is a generalization of a system
introduced by John Tukey, has four parameters that can be chosen to fit a
variety of distributional shapes. They specify the distribution in terms of the
inverse of its distribution function,

urs — (1 —u)M
A2

The distribution function itself cannot be written in closed form, but the
inverse allows deviates from this distribution to be generated easily by the
inverse CDF method; just generate u and apply equation (2.53).

Albert, Delampady, and Polasek (1991) defined a family of distributions
that is very similar to the lambda distributions and is particularly useful in
Bayesian analysis with location-scale models.

Another family of distributions that is very flexible and that can have a
wide range of shapes is the Burr family of distributions (Burr, 1942). One of
the common forms (Burr and Cislak, 1968) has the CDF

1
(1+ z>)B

P~ u) =\ + (2.53)

P(z)=1- for 0 <z < o0; a,B >0, (2.54)
which is easily inverted. Other forms of the Burr family have more parameters,
allowing modeling of a wider range of empirical distributions.

Fleishman (1978) suggested representing the random variable of interest as
a polynomial in a standard normal random variable, in which the coefficients
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are determined so that the moments match specific values. If Z has a N(0, 1)
distribution, then the random variable of interest, X, is expressed as

X=co+aZ+ -+ 2" (2.55)

If m moments are to be matched to prespecified values, then k£ can be chosen
as m — 1, and the cs can be determined from m equations in m unknowns
that involve expectations of powers of a N(0,1) random variable. Fleishman
used this representation to match four moments; hence, he used a third-degree
polynomial in a standard normal random variable.

The motivation for some of the early work with general families of distribu-
tions was to use them as approximations to some standard distribution, such
as a gamma, for which it is more difficult to generate deviates. As methods for
the standard distributions have improved, it is more common just to generate
directly from the distribution of interest. The general families, however, often
provide more flexibility in choosing a distribution that better matches sample
data. The distribution is fit to the sample data using either percentiles or
moments.

2.11 Multivariate Distributions

While our previous discussions have generally applied to multivariate distri-
butions, the dimensionality of the range of a random variable may limit our
studies or in other ways may have major effects on the properties of the dis-
tribution that affect statistical analysis.

2.11.1 Marginal Distributions

Characterizations of families of multivariate probability distributions are often
more difficult or less intuitive. The covariance matrix is the common measure
that relates the individual components of a random variable to each other in
a pairwise manner. This is a very useful distribution measure for multivariate
normal families, but it is much less useful for other multivariate families; con-
sider, for example, a multivariate gamma family characterized by vectors «
and (3 (generalizing the univariate parameters) and some variance-covariance
matrix. It is not clear what that matrix would be and how it would be in-
corporated in a simple manner into the PDF. In applications, copulas are
often used in an ad hoc sense to express the relationship of the individual
components of a random variable to each other.

2.11.2 Elliptical Families

Spherical and elliptical families are important in multivariate statistics. A d-

variate random variable X is said to have a spherical distribution iff QT X dx
for every d x d orthogonal matrix Q.
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Because QT@Q = I, the density function must depend on X = z only
through zxT. Spherical distributions include multivariate normals with di-
agonal variance-covariance matrices and multivariate t distributions formed
from iid scalar t variates.

If the k-variate random variable Y has a spherical distribution, and for
d <k, pis a fixed d-vector and A is a fixed d x k matrix of full rank, then

X =p+AY

is said to have an elliptical distribution.

Any elliptical family is a location-scale family.

General multivariate normal distributions, multivariate t distributions,
and multivariate Cauchy distributions are members of elliptical families.

2.11.3 Higher Dimensions

Another problem with multivariate distributions arises from the properties of
R? as d increases. A simple instance of this can be seen in the multivariate
normal distribution as d increases from 2 to 3 (see page 273). We can state a
general result nontechnically: in a nondegenerate multivariate family, as the
dimension increases, every observation becomes an outlier. See Exercise 2.27
for a specific example of this result.

Notes and Further Reading

Distribution Theory

In many applications of probability theory in statistics, the first step is to asso-
ciate a phenomenon of interest with a random variable. The statistical analysis
then becomes a study of the distribution of the random variable. The “study”
involves collecting or assimilating data, exploration of the data, transforma-
tions of the data, comparisons of the observed data with regions and quantiles
of probability distributions or families of distributions, and finally inference
about some specific distribution or family of distributions. “Statistics” is the
science of the methods of the study.

Study of the characteristics of the probability distributions used in statis-
tical analysis is part of the subject of probability theory.

Although we do not want to draw a hard line between probability and
statistics — drawing hard lines between any disciplines impedes the advance-
ment of science — distribution theory per sé€ is within the domain of prob-
ability theory, rather than of statistical theory. That is why, for example,
discussion of the exponential class of distributions is included in this chapter
on probability, rather than placed in a later chapter on statistical theory.
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Regular Families

When some interesting properties apply to certain cases but not others, those
cases for which the properties hold may be referred to as “regular” cases. The
regularity conditions are essentially the hypotheses of a theorem that states
that the particular properties hold. A theorem can seem more important if its
conclusions hold for all except “irregular” cases.

In statistics, the most common usage of the phrase “regularity conditions”
or “regular families of distributions” is in connection with Fisher information.)

Quadratic mean differentiable families play important roles in much of the
asymptotic theory developed by Lucien Le Cam. Properties of these families
are considered at some length by Le Cam and Yang (2000) and in TSH3,
Chapter 12.

The Exponential Class

Extensive discussions of exponential families are provided by Barndorff-Nielson
(1978) and Brown (1986). Morris (1982) defined the natural exponential fam-
ily with quadratic variance function (NEF-QVF) class of distributions and
showed that much theory could be unified by appeal to the quadratic vari-
ance property. (See also Morris and Lock (2009).)

Heavy-Tailed Families

Various types of heavy-tailed distributions have been extensively studied, of-
ten because of their applications in financial analysis.

Some of the basic results of subexponential families were developed by
Teugels (1975), who also considered their applications in renewal theory. Mul-
tivariate subexponential families with somewhat similar properties can be
identified, but their definition is not as simple as the convergence of the ratio
in expression (2.4) (see Cline and Resnick (1992)).

Infinitely Divisible and Stable Families

Steutel and van Harn (2004) provide a general coverage of infinitely divisible
distributions in IR. Infinitely divisible distributions arise often in applications
of stochastic processes. Janicki and Weron (1994) discuss such distributions
in this context and in other areas of application such as density estimation.
Steutel (1970) considers mixtures of infinitely divisible distributions.

The discussion of stable distributions in this chapter generally follows
the development by Feller (1971), but is also heavily influenced by Breiman
(1968). Stable distributions also provide useful models for heavy-tailed pro-
cesses. Samorodnitsky and Taqqu (1994) provide an extensive discussion of
stable distributions in this context. Stable distributions are useful in studies
of the robustness of statistical procedures.
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Exercises

2.1. Prove Theorem 2.2.

2.2. State the conditions on the parameters of a beta(c, §) distribution for its
PDF to be
a) subharmonic

) superharmonic

) harmonic

) Show that condition (2.3) on page 166 implies condition (2.2).

)

)

o

¢]

2.3.

T o

Find a counterexample to show that the converse is not true.
Show that condition (2.4) on page 166 implies condition (2.3); that is,
a subexponential family is a long-tailed family.
Hint: Note that condition (2.3) is lim, o, F(z +t)/F(z) = 1. (See
Athreya and Ney (1972) page 148, and Pitman (1980).)
b) Find a counterexample to show that the converse is not true.
2.5. a) Show that the following families of distributions are monotone likeli-
hood ratio families.
i. The one-parameter exponential class, with PDF

exp (n(0)T(x) —£(0)) h(z),

with 6 €]a, b[C IR, where a and b are known and may be infinite,
and 7(#) is a monotone scalar function of 6.
ii. U(0,0), with PDF

2.4.

53

1
51[0,9] ().

iii. U(6,0 + 1), with PDF
Lig,04+11 ().

b) Show that the one-parameter Cauchy family is not a monotone likeli-
hood ratio family. The Lebesgue PDF is

1
mB(1 +x/8)*

2.6. Show that a totally positive family with r = 2 (see equation (2.5)) is a
monotone likelihood ratio family.
2.7. Assume that logpg(z), where pg(z) is a PDF, is strictly concave in z.
a) Show that py(z) is unimodal. Now, generalize this result (beyond the
log function) and prove the generalization.
b) Give an example of a family of distributions that is (strictly) unimodal
but not strongly unimodal.
¢) Now for 6 € IR, show that pg(x) is a monotone likelihood ratio family
in 6.
2.8. Write the likelihood rato for each of the one-parameter families of distri-
butions in Table 2.1, and show that it is monotone in the relevant variable.
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2.9.

2.10.

2.12.

2.13.

2 Distribution Theory and Statistical Models

Show that the Cauchy(y, 8y) family (with Gy known and fixed) does not
have a monotone likelihood rato.

Benford’s law is used as a model of the probability distribution of the dig-
its, particularly the first digit, in the decimal representation of “naturally
occurring” numbers, such as the lengths of rivers of the world, the areas
of countries, and so on. By Benford’s law, the probability that the first
digitisd=1,2,...,9is

p(d) =log;o(d + 1) —logyo(d), d=1,2,...,9.

This law has been used to detect artificially constructed data because
data generated by a person tends to have first digits that are uniformly
distributed over {1,2,...,9}.

a) There are many instances in which this law does not apply, of course.
If all data in some specific area are between 300 and 500, say, then
obviously the law would not be applicable. What is needed to know
the distribution of the number being represented.

Derive the probability function p(d) for the case that d is the first digit
in the decimal representation of the realization of a random variable
with distribution U(0, 1).

b) Of course, if this law is to correspond to naturally occurring numbers

such as lengths of rivers, it must be invariant to the unit or measure-
ment. To show exact invariance would require an assumption about
the distribution of the number being represented (the lengths of rivers,
for example). This in itself is not a straightforward task.
Rather than making specific statements about the underlying distribu-
tions, develop a heuristic argument that the Benford’s law probability
function is approximately invariant to unit of measurement, and that
it is the unique probability function with this approximate invariance
property. (These approximate properties are often stated as facts (the-
orems), and a heuristic argument, probably similar to yours is given
as their “proofs”.)

a) Write the PDF of each family of distributions listed in Table 2.2 in
the form of equation (2.7).

b) Write the PDF of each family of distributions listed in Table 2.2 in
the form of equation (2.11), and identify the natural parameter space
H.

¢) Which of the families of distributions listed in Table 2.2 are natural
(linear) exponential families?

Show that each of the distributions listed in Table 2.3 is not a member of

the exponential class.

Represent the probability mass functions of the Poisson, the binomial,
and the negative binomial distributions as members of the discrete power
series class; that is, for each of these distributions, identify 6, h,., and ¢(9)
in equation (2.16).
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2.14.

2.15.

2.16.

2.17.
2.18.

2.19.

2.20.

2.21.
2.22.
2.23.

2.24.
2.25.

2.26.

2.27.
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Show that the positive Poisson family, with PDF as given in equa-
tion (2.44), is of the discrete power series class, and hence of the ex-
ponential class.

Suppose that Xi,..., X, are iid as a discrete power series(#) distribu-
tion, with given series {h,} and normalizing constant c(¢). Show that
T = Z?Zl X, has a discrete power series distribution, and identify the
corresponding terms in its probability mass function.

Consider the family of 2-variate distributions with PDF

1
W exp (—(33 — )ty e - N)/2) )

where p is a 2-vector of constants and X' is a 2 X 2 positive definite matrix

of constants.

Show that this family is of the exponential class, and express the density

in the canonical (or natural) form of the exponential class.

Show that both G and G in Exmaple 2.3 on page 179 are groups.

a) Show that each of the distributions listed in Table 2.4 is a location
family.

b) Show that each of the distributions listed in Table 2.5 is a scale family.

Show that the likelihood function and the PDF for a location familiy are

the same function. Produce graphs similar to those in Figure 1.2 for the

exponential(«, fy) family.

Show that these distributions are not location-scale families:

the usual one-parameter exponential family, the binomial family, and the

Poisson family.

Show that a full rank exponential family is complete.

Prove Theorem 2.1.

Show that the normal, the Cauchy, and the Poisson families of distribu-

tions are all infinitely divisible.

Show that the Poisson family of distributions is not stable.

Show that the normal and the Cauchy families of distributions are stable,

and show that their indexes of stability are 2 and 1 respectively.

Express the PDF of the curved normal family N(u, 42) in the canonical

form of an exponential family.

Higher dimensions.

a) Let the random variable X have a uniform distribution within the
ball |lz||2 < 1 in IR%. This is a spherical distribution. Now, for given
0 < § < 1, show that

Pr(|X|| >1—-6) — 1

as d increases without bound.
b) Let the random variable X have a d-variate standard normal distri-
bution distribution, N4(0, I;). Determine

dlim Pr(|| X > 1).
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204 2 Distribution Theory and Statistical Models

2.28. a) Show that the joint density of X, Y7, ..., Y, given in equations (2.27),
(2.31), and (2.32) is proportional to

exp (—n(z — p)?)/20°%) exp (—(y; + -+ y2)/207) .

b) Show that the joint density of W1, ..., W,,_1 given in equation (2.35)
is the same as n — 1 iid N(0, 0?) random variables.
2.29. Higher dimensions. Let X ~ Ng4(0, ) and consider

® ()

a) Show that for d < 2, this expectation is infinite.
b) Show that for d > 3, this expectation is finite. What is the value of
this expectation as d — oo?
2.30. Prove Theorem 2.4.
2.31. Work through the details of the proof of Geary’s theorem (Theorem 2.7)
for the case that X3, ..., X, are iid d-vectors.
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Basic Statistical Theory

The field of statistics includes various areas, such as descriptive statistics in-
cluding statistical graphics, official statistics, exploratory data analysis includ-
ing data mining and statistical learning, and statistical inference, including
forecasting or predictive inference. Statistical learning generally involves pre-
dictive inference, so in that sense it is also part of the broad area of statistical
inference. Mathematical statistics is generally concerned with the theory un-
derlying statistical inference. Most of the important advances in mathematical
statistics have been driven by real applications.

In probability theory, we develop models of probability distributions and
consider the characteristics of random variables generated by such models. The
field of statistics is concerned with an inverse problem; we have realizations
of random variables from which we want to infer characteristics of the models
of probability distributions.

We develop methods of statistical inference using probability theory. Sta-
tistical inference, as I describe it, requires data. Some people describe any
probabilistic reasoning as “statistical inference”, and they actually use the
term “no-data problem” to describe such a process of computing expected
values under various scenarios.

Data are the observable output from some data-generating process. The
data-generating process can often be described in terms of a physical model.
For statistical analysis, however, the data-generating process is described by
an abstract probability distribution P, and this model may involve unob-
servable quantities such as parameters or latent variables. The objective in
statistical inference is to make decisions about unknown aspects of either the
data-generating process itself or the probability distribution P. Whether we
emphasize the data-generating process or the assumed probability distribu-
tion may affect our methods of inference. An issue that will arise from time
to time is whether or not all aspects of the data-generating process should
affect the inference about P, or whether the inference should be based solely
on the data and the assumed probability distribution P. If we have only the
data and no knowledge of the process by which it was generated (that is, we
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206 3 Basic Statistical Theory

lack “metadata”), then we may be limited in the methods of inference that
we can use.

The Canonical Problems in Statistical Inference

The basic problem in statistical inference is to develop more precise models
of the data-generating process that gave rise to a set of observed data. The
problem we generally address, however, is that of refining the probability
distribution P by making decisions about unknown aspects of this assumed
distribution. The models themselves are probability distributions or classes
of probability distributions. Formal statistical inference (which I will just call
“statistical inference”) focuses on the probability distribution.

Statistical inference is the process of using observational data from a pop-
ulation that is in an assumed family of distributions P to identify another
family Pg that “more likely” contains the population from which the data
arose. In a restricted form of this problem, we have two families Pg, and Py, ,
and based on available data, we wish to decide which of these gave rise to the
data. (This setup follows the Neyman-Pearson paradigm of hypothesis test-
ing; there are various approaches, however.) In another restricted form of this
problem, we have a single hypothesized family Pp,, and based on available
data, we wish to determine the plausibility that this family gave rise to the
data. (This setup follows the Fisherian paradigm of significance testing; there
are various approaches, however.)

The assumed family P must be broad enough to allow reasonable inferences
from observational data. The choice of P may be somewhat subjective. It
is based on whatever may be known or assumed about the data-generating
process being studied. Generally, Py is a subfamily, Py C P, but it may be
the case that the data indicates that the original family P is not rich enough
to contain a family of distributions that matches the observational data.

Another way of describing the problem is to assume that we have a family
of probability distributions P = {Pe}, where © may be some parameter
in a real-valued parameter space © (“parametric inference”), or @ may just
be some index in an index set 7 to distinguish one distribution, Pg,, from
another, Pg, (“nonparametric inference”). The parameter or the index is not
observable; however, we assume Pg, # Po, if ©1 # O3 a.s. (This assumption
guarantees “identifiability”. The almost sure condition is given so as not to
exclude the possibility that © is a function.)

Often the observable variable of interest has associated covariates. The
inference problems described above involve development of probability models
that include the covariates. When there are covariates, there are two related
problems of statistical inference. One is to use use a set of observed data to
develop a model to predict some aspect of future observations for a given value
of the covariates. Another is to develop a rule to “estimate” an unobservable
random variable, given observed covariates. (A common instance of this latter
problem is called “classification”.)
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3 Basic Statistical Theory 207
How Does Py Differ from P?

What we know about @, or more to the point, what we assume about @
determine some of the details of the inference procedures. We may, for exam-
ple, assume that © = 6, some fixed but unknown real quantity. In that case,
whether we view © as a parameter space or some more general index set, we
may state our objective in statistical inference as to move from

P={P|6coO (3.1)

to
Pu={Py|0€Oy} (3.2)

by using observed data. On the other hand, we may assume that © is some
Borel-measurable function. If © is a random variable, our interest may be in
its distribution. In that case, the canonical problem in statistical inference,
begins with a class of populations

P={Ps |0 ~Qc Q}, (3-3)

where © is a random variable and Q)¢ is some “prior distribution”, and, using
observed data, arrives at the class of populations

Pu ={Pe |0 ~Qu € Q}, (3-4)

where @y is some “posterior distribution” conditional on the observations.

As we mentioned above, the choice of P, whether in the form of (3.1)
or (3.3), is rather subjective. The form of equation (3.3) is “more subjective”,
in the sense that Qg allows direct incorporation of prior beliefs or subjective
evidence. Statistical inference in the paradigm of equations (3.3) and (3.4)
is sometimes referred to as “subjective inference”, and is said to based on
“subjective probability”. We will consider this approach in more detail in
Chapter 4.

Confidence, Significance, and Posterior Conditional Distributions

Statistical inference is a process of making decisions in the face of uncertainty.
If there is no uncertainty, statistical inference is not a relevant activity. Given
the uncertainty, the decision that is made may be “wrong”.

Statistical inference must be accompanied by some quantification of how
“likely” the decision is to be “correct”. Exactly how this should be done is
a very deep question whose answers may involve careful consideration of the
philosophical foundations of statistical inference. In this book we will not get
involved in these foundations. Rather, we will consider some specific ways of
trying to come to grips with the question of quantifying the uncertainty in our
decisions. Two ways this is done involve the paradigm of repetitive sampling
from a stationary data-generating process, which leads to the concepts of
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“confidence” and “significance”. The formulation of the problem of statistical
inference as in equations (3.3) and (3.4) avoids a direct confrontation of the
question of how likely the decision is to be correct or incorrect. The conclusion
in that kind of setup is the simple statement that the conditional distribution
of © is Qp, given that its marginal distribution is ¢y and the conditional
distribution of the data is Pg.

Examples

As an example of the approach indicated in equations (3.1) and (3.2), assume
that a given sample y1, ..., y, is taken in some prescribed manner from some
member of a family of distributions

P ={N(u,0%) | p € R,0° € Ry}

Statistical inference in this situation may lead us to place the population
giving rise to the observed sample in the family of distributions

73H = {N([L, 02) | 1 € [lula,uQ]a 02 S ]I{+}

(think confidence intervals!). The process of identifying the subfamily may be
associated with various auxiliary statements (such as level of “confidence”).

As another example, we assume that a given sample y1,...,y, is taken
independently from some member of a family of distributions

P={P|P<)}

where A is the Lebesgue measure, and our inferential process may lead us to
decide that the sample arose from the family

t

PH—{P|P<<)\and/

— 00

dP_.5:>t20}

(think hypothesis tests concerning the median!).

Notice that “P” in the example above is used to denote both a population
and the associated probability measure; this is a notational convention that
we adopted in Chapter 1 and which we use throughout this book.

Statistical inference following the setup of equations (3.3) and (3.4) can
be illustrated by observable data that follows a Bernoulli distribution with a
parameter II which, in turn, has a beta marginal distribution with parameters
a and . (That is, in equation (3.3), © is I, Py is a Bernoulli distribution with
parameter I, and Qo is a beta distribution with parameters o and (3.) Given
the single observation X = x, we can work out the conditional distribution of
II to be a beta with parameters x + « and 1 —z + (.

It is interesting to note the evolutionary nature of this latter example.
Suppose that we began with Qo (of equation (3.3)) being a beta with pa-
rameters 1 + o« and 1 — z1 + 3, where z; is the observed value as described
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above. (That is, the marginal “prior” is in the same parametric family of
distributions as the original conditional “posterior”.) Now, given the single
observation X = x2, we can work out the conditional distribution of I to be
a beta with parameters 1 + x2 +«a and 2 —x1 —xo + 3, which of course would
be the same conclusion we would have reached if we had begun as originally
described, but had observed a sample of size 2, {z1, z2}.

Covariates

Often a problem in statistical inference may involve other observable quanti-
ties. In that case, we may represent the family of distributions for an observ-
able random variable Y (which, of course, may be a vector) in the form

P = {P9,m}a

where # C IR? is an unobservable parameter or index and z is an observable
concomitant variable.

There are two common types of interesting problems when we have ob-
servable covariates. In one case, we have a model of the form

Y =g(z;0) + E,

where g is a function of known form, and our objective is to make inferences
concerning 6.

The other common problem is to predict or “estimate” Y for a given .
If we assume an additive model such as that above, predictive inference on
Y is based on the inferences concerning 6. In other situations, such as in the
problem of classification, the random variable Y represents some class of data,
and given x, the objective is to “estimate” Y.

Asymptotic Considerations

Statistical inference is based on an observed sample of the random variable
of interest along with observed values of any concomitant variable. Often the
precision with which we can state conclusions depends on the dimensions of
the parameter and any concomitant variables (that is on the structure of P),
as well as on the size of the sample. For any statistical procedure, it is of
interest to know how the precision improves with increasing sample size.
Although we cannot have an infinite sample size, we often carry the math-
ematical analysis to the limit. This may give us an indication of how well the
statistical methods perform with increasing sample sizes. Another reason that
we often consider limiting cases is that asymptotic properties are often more
mathematically tractable than properties for finite samples, and we use the
asymptotic properties as approximations for the actual finite case.
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Statistical Reasoning

We have indicated above that there may be a difference in inference regarding
a data-generating process of interest and inference regarding an assumed prob-
ability distribution governing the data-generating process, or at least some
aspects of that process.

Statistical inference leads us to select a subfamily of distributions. The
particular subfamily may depend on how we formulate the inference problem
and how we use a standard method of statistical inference. We must ensure
that the formulation of the problem will lead to a reasonable conclusion.

An example in which the usual conclusions of a statistical inference proce-
dure may not be justified is in common types of tests of statistical hypotheses.
We must be careful in the specification of the alternative hypotheses. The two
sample Wilcoxon statistic or the Mann-Whitney statistic is often used to test
whether one population has a larger median than another population. While
this test does have a connection with the medians, the procedure actually tests
that the distributions of two populations are the same versus the alternative
that a realization from one distribution is typically smaller (or larger) than a
realization from the other distribution. If the distributions have quite different
shapes, a typical value from the first population may tend to be smaller than
a typical value from the second population, and the relationships between the
medians may not affect the results of the test. See Example 5.22 for further
discussion of these issues.

ok KRRk

Data-generating process versus a given probability distribution

SRR AR AR KK

waiting time paradox

Renewal process paradox

SRR AR AR A K

An example in which clear statistical reasoning may not follow the lines
of “common sense” is the Monte Hall problem. The name of this problem is
derived from the host of a television game show that was first aired in 1963.
While the problem itself does not involve statistical inference, it illustrates

use of a probability model to make a decision.
SRR AR AR KK

Subjective Statistical Inference

In Chapter 1, I referred to the role of “beliefs” in applications of probabil-
ity theory and the differing attitudes of “objectivists” and “subjectivists”.
The two different starting points of statistical inference expressed in equa-
tions (3.1) and (3.3) establish the different attitudes. These differences lead
to differences in the fundamental ways in which statistical inference is ap-
proached. The differences involve how prior beliefs are incorporated into the
inference process. The differences also lead to differences in how the concept
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of probability (however it is interpreted) is used in the interpretation of the
results of statistical analyses. In an objective approach, we may speak of the
probability, given a data-generating process, of observing a given set of values.
In a subjective approach, given a set of values, we may speak of the probabil-
ity that the data-generating process has certain properties. This latter setting
may lead to the use of the phrase “inverse probability”, although this phrase
is often used in different ways.

The objective and subjective approaches also differ in how the overall
data-generating process affects the inferences on the underlying probability
distribution P. (This difference is associated with the “likelihood principle”,
which I shall mention from time to time.) In this chapter I give a brief overview
of statistical inference without much emphasis on whether the approach is
“objective” or “subjective”.

Ranks of Mathematical Objects

In statistical inference we deal with various types of mathematical objects. We
would like to develop concepts and methods that are independent of the type
of the underlying objects, but that is not always possible. Occasionally we
will find it necessary to discuss scalar objects, rank one objects (vectors), and
rank two objects (matrices) separately. In general, most degree-one properties,
such as expectations of linear functions, can be considered uniformly across
the different types of mathematical objects. Degree-two properties, such as
variances, however, must usually be considered separately for scalars, vectors,
and matrices.

Matrices often require special consideration because of the richness of that
kind of structure. Sometimes we must consider the special cases of symmetric
matrices, full-rank matrices, and positive-definite matrices.

3.1 Inferential Information in Statistics

In statistics, we generally assume that we have a random sample of obser-
vations X1, ..., X, on a random variable X. We usually assume either that
they are independent or that they are exchangeable, although we may assume
other relations among the variables that depend on the sampling design.

We will often use X to denote a random sample on the random variable
X. (This may sound confusing, but it is always clear from the context.) The
common distribution of the variables is called the parent distribution of the
random sample, and a common objective in statistics is to use the sample to
make inferences about properties of the parent distribution.

In many statistical applications we also have covariates associated with
the observations on the random variable of interest. In this case, in order to
conform to common usage in statistics, I will use Y to represent the random
variable of interest and X or x to represent the covariates or concomitant

Theory of Statistics (©2000-2020 James E. Gentle



212 3 Basic Statistical Theory

variables. Both the random variable of interest and any covariates are assumed
to be observable. There may also be unobservable variables, called “latent
variables”, associated with the observed data. Such variables are artifacts of
the statistical model and may or may not correspond to phenomena of interest.

When covariates are present our interest usually is in the conditional dis-
tribution of Y, given X. For making statistical inferences, we generally assume
that the conditional distributions of Y1| X1, ..., Y, |X,, are either conditionally
independent or at least conditionally exchangeable.

A statistic is any function T' of the observables that does not involve any
unobservable values. We often use a subscript 7, to indicate the number of
observations, but usually a statistic is defined as some formula that applies to
a general number of observations (such as the sample mean). While we most
often work with statistics based on a random sample, that is, an iid set of
variables, or at least based on an exchangeable sample, we may have a statistic
that is a function of a general set of random variables, Xi,..., X,,. We see
that if the random variables are exchangeable, then the statistic is symmetric,
in the sense that T'(Xk,, ..., Xk,) = T(X1,...,X,) for any indices k1, ..., ky
such that {k1,...,kn} ={1,...,n}.

Statistical Models

We assume that the sample arose from some distribution Py, which is a mem-
ber of some family of probability distributions P. The family of probability
distributions P is a statistical model. We fully specify the family P (it can be
a very large family), but we assume some aspects of Py are unknown. (If the
distribution Py that yielded the sample is fully known, while there may be
some interesting questions about probability, there are no interesting statisti-
cal questions.) Our objective in statistical inference is to determine a specific
Py € P, or some subfamily Py C P, that could likely have generated the
sample.

The distribution may also depend on other observable variables. In general,
we assume we have observations Y7,...,Y, on Y, together with associated ob-
servations on any related variable X or z. We refer to the associated variables
as “covariates”. In this context, a statistic, which in our common use of the
term is a function that does not involve any unobserved values, may also
involve the observed covariates.

A general statistical model that includes covariates is

Y = f(z: 0)+E, (3.5)

where Y and x are observable variables, f is some unknown function, 6 is an
unknown parameter, and F is an unobservable random variable with unknown
distribution P, independent of other quantities in the model. In the usual
setup, Y is a scalar random random variable, and x is a p-vector. Given
independent observations (Y1,x1), ..., (Ya,x,), we often use the notation Y’
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to represent an n-vector, X to represent an n X p matrix whose rows are the
x¥, and E to represent an n-vector of iid random variables. A model such
as (3.5) is often called a regression model.

A common statistical model that expresses a relationship of an observable

random variable and other observable variables is the linear model
Y =gtz + F, (3.6)

where Y is the observable random variable, x is an observable p-vector of
covariates, § is an unknown and unobservable p-vector of parameters, and F
is an unobservable random variable with E(E) = 0 and V(E) = ¢%I. The
parameter space for 5 is B C IRP.

A random sample may be written in the vector-matrix form

Y = XB+E, (3.7)

where Y and E are n-vectors, X is an n x p matrix whose rows are the =}, and
(3 is the p-vector above. (The notation “4T2” in equation (3.6) and “X3” in
equation (3.7) is more natural in the separate contexts. All vectors are consid-
ered to be column vectors. We could of course write “zT3” in equation (3.6).)

Because the linear model is familiar from applications of statistics, we will
refer to it from time to time, but we will not study it systematically until
Section 5.5.1.

In statistical inference, we distinguish observable random variables and
“parameters”, but we are not always careful in referring to parameters. We
think of two kinds of parameters; “known” and “unknown”. A statistic is a
function of observable random variables that does not involve any unknown
parameters.

Algorithmic Statistical Models

There are various types of models that may have different purposes. A common
form of a model is a mathematical equation or a system of equations. If the
purpose of the model is to enhance the understanding of some phenomenon,
there would be a large premium on simplicity of the model. If the model is very
complicated, it may correspond very well to the reality being studied, but it is
unlikel