
Chapter 4

Statistics

Statistics is about “educated guessing”. It is about drawing conclusions from incom-
plete information. It is about collecting, organizing and analyzing data, where data
could be thought of as observed values of random variables. One important aspect
of statistics is to do with the idea of gathering together a random sample of data,
calculating a statistic and using this statistic to infer something about, typically, a
parameter of the population, more specifically a parameter from a probability dis-
tribution model describing the population, from which this sample is taken. This is
generally called an inferential statistical analysis and this is what we will be concen-
trating on for the remainder of this course.

4.1 What is Statistics?

Types of data, types of studies and sampling techniques are reviewed in this section.

Types of Data

Data are observed from random variables. Consider the following related definitions.

• population, parameter, sample and statistic

population: set of measurements or observations of a collection of objects.
Sometimes “population” refers to the objects themselves, but more frequently it refers to the mea-

surements or observations of these objects. These measurements or observations are modelled by

approximate distribution functions of random variables.

parameter: numerical quantity calculated from a population.
Parameters are constants in approximate mathematical distribution functions of random variables.

sample selected subset of a population.
Sometimes “sample” refers to the objects themselves, but more frequently it refers to the measurements
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128 Chapter 4. Statistics (LECTURE NOTES 7)

or observations of these objects. This subset of measurements or observations are also modelled by

approximate distribution functions of random variables.

statistic numerical quantity calculated from a sample.
Statistics are functions of a sample of random variables and so are random variables themselves, with

distribution functions. The term “statistic” may refer to the random variable or to the observed value

of this random variable.

• nominal, ordinal, interval or ratio (random) variable or data

nominal variable (data): Variable where data cannot be ordered; data consists
of names or labels.

ordinal (ranked) variable (data): Variable where data can be ordered but
cannot be added or subtracted.

interval variable (data): Variable where data can be both ordered and added
or subtracted, but cannot be divided or multiplied.
When two data points are subtracted from one another, difference between two is an interval, which

explains why this is called interval variable (data).

ratio variable (data): Variable where data can be ordered, added or subtracted,
and also divided or multiplied.
When two data points are divided, a ratio is formed, which explains why this is called ratio variable

(data).

• qualitative (categorical) versus quantitative

qualitative (categorical): nominal and ordinal (ranked) variables (data)

quantitative: interval and ratio variables (data), measurements or counts

• quantitative: discrete versus continuous

discrete variable (data): Discrete variable where quantitative data is finite or
countable infinite.

continuous variable (data): Continuous variable where quantitative data takes
any value in some range.

Types of Studies

Point of many statistical studies is to determine if and how variables, called explana-
tory variables (factors), influence an outcome or response variable.

observational study: subject decides whether or not to be given treatment; subjects
are not changed or modified in any way
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cross-sectional: data collected at one time

retrospective: data collected from the past

prospective: data collected over time, into the future

experiment: experimenter decides who is to be given treatment and who is to be the
control; subjects are changed in this way

factor: explanatory variable

nuisance factor: factors of no interest to researcher

confounding factor: when it is not clear how much each a nuisance factor or
explanatory factor contributes in the prediction of a response variable

lurking factor: a confounding factor unknown to the researcher

block: subset of population with similar characteristics

randomized block design: population divided into blocks, subjects selected from
each block at random to receive treatment

Sampling techniques

A simple random sample (SRS) involves selecting a group of n units out of N popu-
lation units where every distinct sample has an equal chance of being drawn whereas
for a random sample each group is chosen with some given chance but not necessary
equal chance. SRSs produce representative samples of population. Other (sometimes
poor) sampling techniques:

convenience: choose easiest-to-get-at sample

voluntary response: subjects in study decide whether or not to participate

systematic: selecting every kth item from population, where first item is chosen at
random

cluster: involves dividing population into heterogeneous clusters, choosing a subset of
these clusters at random, and then using all items in the selected clusters

stratified: involves dividing population into homogeneous strata and choosing a simple
random sample (SRS) from each/all strata

Exercise 4.1 (What is Statistics?)

1. Types of data: variable and data.
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(a) (i) True (ii) False A data point for (random) variable height of a man
is 5.6 feet tall. Another data point for this variable is 5.8 feet tall.

(b) (i) True (ii) False A data point for (random) variable person’s country
of birth is Sweden. Another data point for this variable is U.S.A.

(c) (i) True (ii) False A data point for variable shoulder height of a cow is
45 inches. Another data point for this variable is “Argentina”.

(d) A data point for variable woman’s length of time of exposure in the sun is
(i) 9/24/98 (ii) 4 hours.

(e) A data point for variable person’s date of exposure to the sun is
(i) 9/24/98 (ii) 4 hours.

(f) (i) True (ii) False Data point “45” could be a particular instance of
the variable age of a elephant. Data point “45” could also be a particular
instance of the variable number of marbles in a bag.

(g) Data point “silver” is a particular instance of variable (circle none, one or
more)

i. length of football field

ii. medal achieved at a track meet

iii. color choice of a car

iv. name of a horse

2. Types of data: population, sample, statistic and parameter (commute distance)
At PNW, 120 students are randomly selected from entire 10,500 and asked
their commute distance to campus. Average of 9.8 miles is computed from 120
selected. We infer from data all students have 9.8 average commute.

(i) True (ii) False. An appropriate analogy here would be to think of a
box of 10,500 tickets where each ticket has commute distance written on it as
population; average of all of these tickets would be value of parameter. A random
sample of 120 tickets taken from this population box would be a sample; average
of sampled tickets would be value of statistic.
“Sample” may also refer to 10,500 tickets themselves, whatever is written on them.

Match columns.
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terms travel example

(a) data point (A) average commute distance for 120 students
(b) variable (B) all students at PNW
(c) parameter (C) commute distances for all students at PNW
(d) population (D) commute distance for any PNW student
(e) sample (E) average commute distance for all students
(f) statistic (F) 120 students

(G) 120 commute distances
(H) 8 mile commute distance for a particular student

terms (a) (b) (c) (d) (e) (f)
travel example

Some items in first column have more than one match; for example, (d) population matches with both (b) all

students at PNW and (c) commute distances for all students at PNW.

3. Types of data: nominal, ordinal (ranked), interval and ratio (milk yield) Mea-
surements are given below on a number of cows taken during a study on effect
of a hormone, given in tablet form, on daily milk yield. Eight variables, in-
cluding “Cow”, “Test Date”, ..., “After Yield”, are listed at top of columns in
table. Seven observations (data points) are listed in seven rows below variables.
Specify milk yield variables (data) as nominal, ordinal, interval or ratio.

Cow Test Date Farm Height Health Tablets Before Yield After Yield
17 9/11/98 M 41 poor 2 100.7 100.3
18 9/11/98 F 40 bad 1 97.8 98.1
14 9/03/98 F 49 fair 3 98.8 99.6
15 9/01/98 M 45 good 3 100.9 100.0
16 9/10/98 F 42 poor 1 101.1 100.1
19 9/25/98 M 45 good 2 100.0 100.4
20 9/25/98 M 37 good 3 101.5 100.8

Match columns.

milk yield example level of measurement

(a) cow ID number (A) nominal
(b) test date of cow (B) ordinal
(c) cow’s farm (C) interval
(d) shoulder height of cow (D) ratio
(e) cow’s health
(f) number of tablets given to cow
(g) milk yield before hormone
(h) milk yield after hormone
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example (a) (b) (c) (d) (e) (f) (g) (h)
variable

4. Types of data: qualitative (categorical) versus quantitative (milk yield)

Cow Test Date Farm Height Health Tablets Before Yield After Yield
17 9/11/98 M 41 poor 2 100.7 100.3
18 9/11/98 F 40 bad 1 97.8 98.1
14 9/03/98 F 49 fair 3 98.8 99.6
15 9/01/98 M 45 good 3 100.9 100.0
16 9/10/98 F 42 poor 1 101.1 100.1
19 9/25/98 M 45 good 2 100.0 100.4
20 9/25/98 M 37 good 3 101.5 100.8

Specify whether the milk yield variables are either quantitative or qualitative.

milk yield example type of variable

(a) cow ID number (A) qualitative
(b) test date of cow (B) quantitative
(c) cow’s farm
(d) shoulder height of cow
(e) cow’s health
(f) number of tablets given to cow
(g) milk yield before study
(h) milk yield after study

example (a) (b) (c) (d) (e) (f) (g) (h)
variable

5. Types of data: discrete versus continuous (milk yield)

Cow Test Date Farm Height Health Tablets Before Yield After Yield
17 9/11/98 M 41 poor 2 100.7 100.3
18 9/11/98 F 40 bad 1 97.8 98.1
14 9/03/98 F 49 fair 3 98.8 99.6
15 9/01/98 M 45 good 3 100.9 100.0
16 9/10/98 F 42 poor 1 101.1 100.1
19 9/25/98 M 45 good 2 100.0 100.4
20 9/25/98 M 37 good 3 101.5 100.8
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Match columns.

milk yield example type of variable

(a) cow ID number (A) discrete
(b) test date of cow (B) continuous
(c) cow’s farm (C) qualitative
(d) shoulder height of cow
(e) cow’s health
(f) number of tablets given to cow
(g) milk yield before hormone
(h) milk yield after hormone

example (a) (b) (c) (d) (e) (f) (g) (h)
variable

6. Types of studies: observational study or experiment.

(a) Effect of air temperature on rate of oxygen consumption (ROC) of four
mice is investigated. ROC of one mouse at 0o F is 9.7 mL/sec for example.

temperature (Fo) 0 10 20 30
ROC (mL/sec) 9.7 10.3 11.2 14.0

Since experimenter (not a mouse!) decides which mice are subjected to
which temperature, this is (choose one)
(i) observational study (ii) designed experiment.

(b) Indiana police records from 1999–2001 on six drivers are analyzed to de-
termine if there is an association between drinking and traffic accidents.
One heavy drinker had 6 accidents for example.

drinking → heavy light
3 1
6 2
2 1

This is an observational study because

i. police decided who was going to drink and drive and who was not.

ii. drivers decided who was going to drink and drive and who was not.

(c) A recent study was conducted to compare academic achievement (mea-
sured by final examination scores) of Internet students with classroom
students. This is an observational study because

i. instructor assigned students to classroom or internet.
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ii. students decided to attend classroom or Internet class.

(d) Effect of drug on patient response. Response from one patient given drug
A is 120 units for example.

drug → A B C
120 97 134
140 112 142
125 100 129
133 95 137

If this is a designed experiment, then

i. experimenter assigns drugs to patients.

ii. patients assigns drugs to themselves.

7. Types of studies (observational): cross-sectional, retrospective, prospective.

(a) Effect of drinking on traffic accidents.
Indiana police records from 1999–2001 are analyzed to determine if there
is an association between drinking and traffic accidents.

drinking heavy drinker 3 6 2
light drinker 1 2 1

If number of traffic accidents of drunk drivers is compared with sober
drivers who both have similar characteristics such as age, gender, health
and so on, this is a

i. cross-sectional observational study

ii. retrospective observational study

iii. prospective observational study

iv. experiment

(b) Explanatory variables influencing traffic accidents.
If a large group of individuals are observed over an extended period of time
to determine explanatory variables contributing to traffic accidents, this is
a (choose one)

i. cross-sectional observational study

ii. retrospective (case-control) observational study

iii. prospective (cohort) observational study

iv. designed experiment

(c) Effect of teaching method on academic achievement.
A recent study compares academic achievement (measured by final exam-
ination scores) of Internet students with classroom students. If data is
collected for one set of exams given at one time, this is a
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i. cross-sectional observational study

ii. retrospective observational study

iii. prospective observational study

iv. experiment

(d) Effect of temperature on mice rate of oxygen consumption.

temperature (Fo) 0 10 20 30
ROC (mL/sec) 9.7 10.3 11.2 14.0

This is a

i. cross-sectional observational study

ii. retrospective observational study

iii. prospective observational study

iv. experiment

8. Types of studies (experimental): explanatory variables, responses, confounding
and lurking variables (mice).

temperature (Fo) 0 10 20 30
ROC (mL/sec) 9.7 10.3 11.2 14.0

(a) Explanatory variable (factor) considered in study is

i. temperature

ii. rate of oxygen consumption

iii. mice

iv. mouse weight

(b) Response is

i. temperature

ii. rate of oxygen consumption

iii. mice

iv. room temperature

(c) Possible explanatory variable not considered in study (choose two!)

i. temperature

ii. rate of oxygen consumption

iii. noise level

iv. mouse weight

(d) Mouse weight is lurking variable if confounded with temperature in, for
example, following way.
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temperature (Fo) 0o 10o 20o 30o

mouse weight (oz) 10 14 18 20
ROC (mL/sec) 9.7 10.3 11.2 14.0

Hotter temperatures are associated with heavier mice. Hottest tempera-
ture, 30o F, is associated with heaviest mouse with weight
(i) 9.7 (ii) 14.0 (iii) 20 ounces

9. Types of studies (experimental): completely randomized, randomized block.
Consider experiment to determine effect of temperature on mice ROC.

(a) Completely Randomized Design.

temperature → 70o F −10o F
10.3 9.7
14.0 11.2
15.2 10.3

This is a completely randomized design with (choose one or more!)

i. one factor (temperature) with two treatments,

ii. three pair of mice matched by age,

iii. mice assigned to temperatures at random.

(b) Randomized Block Design.

age ↓ temperature → 70o F −10o F
10 days 10.3 9.7
20 days 14.0 11.2
30 days 15.2 10.3

This is a randomized block design with (choose one or more!)

i. one factor (temperature) with two treatments,

ii. one block (age) with three levels,

iii. mice assigned to temperatures within each age block at random.

10. Sampling techniques: simple random sample versus random sample (decayed
teeth)

(a) Small number of 20 children with decayed teeth is represented by box of
tickets below. Child 17 is ticket with 3 decayed teeth for example.

0︸︷︷︸
child 1

1︸︷︷︸
child 2

2︸︷︷︸
child 3

9︸︷︷︸
child 4

0︸︷︷︸
child 5

4︸︷︷︸
child 6

0︸︷︷︸
child 7

0︸︷︷︸
child 8

1︸︷︷︸
child 9

5︸︷︷︸
child 10

0︸︷︷︸
child 11

0︸︷︷︸
child 12

0︸︷︷︸
child 13

3︸︷︷︸
child 14

1︸︷︷︸
child 15

1︸︷︷︸
child 16

3︸︷︷︸
child 17

0︸︷︷︸
child 18

10︸ ︷︷ ︸
child 19

2︸︷︷︸
child 20
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Choosing four children at random from the 20 is an example of a
(i) random sample (ii) simple random sample.

(b) Small number of 20 children, broken into 5 batches of 4, with decayed teeth
is represented by box of tickets below.

0︸︷︷︸
child 1

1︸︷︷︸
child 2

2︸︷︷︸
child 3

9︸︷︷︸
child 4

0︸︷︷︸
child 5

4︸︷︷︸
child 6

0︸︷︷︸
child 7

0︸︷︷︸
child 8

1︸︷︷︸
child 9

5︸︷︷︸
child 10

0︸︷︷︸
child 11

0︸︷︷︸
child 12

0︸︷︷︸
child 13

3︸︷︷︸
child 14

1︸︷︷︸
child 15

1︸︷︷︸
child 16

3︸︷︷︸
child 17

0︸︷︷︸
child 18

10︸ ︷︷ ︸
child 19

2︸︷︷︸
child 20

Choosing a batch of children at random from the 5, then using all children
in the batch is an example of a
(i) random sample (ii) simple random sample.

11. Sampling techniques: simple, stratified, cluster or systematic? Match racing
horses examples with sampling technique, “SRS” means “simple random sam-
ple”.

(a) (i) Simple (ii) Stratified (iii) Cluster (iv) Systematic
An SRS is taken from all racing horses.

(b) (i) Simple (ii) Stratified (iii) Cluster (iv) Systematic
All racing horses are listed from lightest to heaviest. Sample consists of
taking every seventh racing horse from this list.

(c) (i) Simple (ii) Stratified (iii) Cluster (iv) Systematic
All racing horses are listed alphabetically, by name. Sample consists of
taking every third racing horse from this list.

(d) (i) Simple (ii) Stratified (iii) Cluster (iv) Systematic
All racing horses are classified as light, middle or heavy weight horses.
Sample consists of taking SRSs from the racing horses in each weight class.

(e) (i) Simple (ii) Stratified (iii) Cluster (iv) Systematic
Horses racing occurs in many cities in the U.S.A. Sample consists of taking
SRSs from the racing horses in New York, Los Angeles and Chicago.

4.2 Summarizing Data

Bar graphs describe qualitative data, whereas histograms describe quantitative data.
Some summary (sample) statistics include:

mean (average)

x̄ =
x1 + x2 + · · ·+ xn

n
=

1

n

n∑
i=1

xi
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with corresponding population mean parameter, µ and where, if xi ∈ {0, 1},
x̄ = p̂, sample proportion

mode: most frequent observation in sample

variance:

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2

with corresponding population variance σ2; also, standard deviation s =
√
s2

and with population standard deviation σ2

range: maximum − minimum value in sample

(100p)th percentile, πp: number which is greater than (100p)% of data values.

calculation: arrange data x1 ≤ x2 ≤ . . . ≤ xn;
if L = np is not an integer, round up to next-larger integer, πp = XL,
otherwise, if it is, then πp = 1

2
(xL + xL+1)

quartiles: 25th, 50th, 75th percentiles are also called first, second and third
quartiles, p1 = π0.25, p2 = π0.50, p3 = π0.75

median: the 25th percentile or second quartile

five-number summary:

{min, p1 = π0.25, median = p2 = π0.50, p3 = π75, max},

graphed using boxplot

percentile rank:

percentile rank of x =
number of data values less than x

total number of data values
× 100%

statistic (sample) versus parameter (population):

statistic (estimator, estimate) parameter
mean X̄, x̄ µ = E [X]

variance S2, s2 σ2 = V ar[X] = E [X2]− µ2

standard deviation S, s σ = SD[X]

proportion P̂ , p̂ p
histogram/barplot pdf/pmf

Exercise 4.2 (Summarizing Data)
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1. Bar graphs: patient health. Health of random sample of twenty patients in a
high blood pressure study are:

good, good, fair, poor, bad, poor, great, fair, good, good,
good, fair, fair, fair, good, poor, poor, bad, good, good.

Distribution table, bar graph and Pareto chart for this data is given below.

health frequency relative
frequency

bad 2 2
20

= 0.10
poor 4 4

20
= 0.20

fair 5 5
20

= 0.25
good 8 8

20
= 0.40

great 1 1
20

= 0.05
total 20 1.0

Figure 4.1: Bar Graphs for Patient Health

health <- c("bad","poor","fair","good","great")

frequency <- c(2,4,5,8,1)

par(mfrow = c(1,2))

barplot(frequency, main="Patient Health", xlab="health", ylab="Frequency",

names.arg=health, col="green")

barplot(frequency/20, main="Patient Health", xlab="health", ylab="Relative Frequency",

names.arg=health, col="red")

par(mfrow = c(1,1))

(a) Review: This qualitative data is
(i) nominal (ii) ordinal (iii) interval (iv) ratio
because this data is ordered.
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(b) Of 20 patients, (i) 2 (ii) 4 (iii) 5 (iv) 8 are in good health, there is
(i) more (ii) less chance of being in good health than other categories.

(c) Frequency means (choose one or more!)
(i) number (ii) count (iii) proportion (iv) percentage (v) category

(d) Relative frequency means (choose two!)

i. number in a particular category

ii. count in a particular category

iii. proportion of observations that fall into each category

iv. percentage of observations that fall into each category

v. proportion of observations that fall into at least two categories

(e) Height of each vertical bar in bar graph corresponds to the relative fre-
quency for each category. For example, vertical bar for “good” category
has a height (or relative frequency) of (i) 0.30 (ii) 0.35 (iii) 0.40.

(f) Adding all heights of vertical bars in five categories together, we get
(i) 0.40 (ii) 0.75 (iii) 1.00.

(g) True (ii) False Although height of each vertical bar gives relative fre-
quency of a particular category of health occurring for twenty patients,
width of each vertical bar has no meaning.

(h) A second random sample would give (i) the same (ii) different patients
with (i) the same (ii) different patient health ratings,
with (i) the same (ii) different bar plot.

(i) In general, every random sample gives (i) the same (ii) different patients
with (i) the same (ii) different patient health ratings,
with (i) the same (ii) different bar plots.

(j) Since each sample of patients is chosen at random, every patient has
(i) the same (ii) a different chance of appearing in any sample but since
there are only five health different health categories, every health rating
has (i) the same (ii) a different chance of appearing in a sample.

2. Histogram, boxplot and summary statistics: patient ages.

32, 37, 39, 40, 41, 41, 41, 42, 42, 43,
44, 45, 45, 45, 46, 47, 47, 49, 50, 51

age class frequency relative
frequency

(30,35] 1 1
20

= 0.05
(35,40] 3 0.15
(40,45] 10 0.50
(45,50] 5 0.25
(50,55] 1 0.05
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Figure 4.2: Histogram and boxplot for patient ages

data <- c(32,37,39,40,41,41,41,42,42,43,44,45,45,45, 46,47,47,49,50,51)

par(mfrow = c(1,2))

hist(data, freq=TRUE, breaks=c(30,35,40,45,50,55), main="Patient Ages", xlab="age (years)",col="green")

boxplot(data, xlab="age (years)",col="green",horizontal=TRUE) # boxplot of patient ages

par(mfrow = c(1,1))

(a) Review: This quantitative data is
(i) nominal (ii) ordinal (iii) interval (iv) ratio
because this data can be divided in a meaningful way.

(b) Review: This quantitative data is
(i) discrete (ii) continuous
because this data can take any value in a (positive) range.

(c) Number of classes is (i) 3 (ii) 4 (iii) 5 (iv) 6.

(d) First class includes (i) 30 (ii) 35

(e) First class excludes (i) 30 (ii) 35

(f) Number of patients in first class is (i) 1 (ii) 2 (iii) 3 (iv) 4.

(g) Percentage of patients in first class is
(i) 5% (ii) 10% (iii) 35% (iv) 40%.

(h) Shape of histogram roughly
(i) symmetric (ii) skewed right (iii) skewed left

(i) Boxplot indicates there (i) is (ii) is no outlier.

(j) A second random sample would give (i) the same (ii) different patients
with (i) the same (ii) different patient ages,
with (i) the same (ii) different histogram and boxplot.
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(k) If each sample of patients is chosen at random, every patient has
(i) the same (ii) a different chance of appearing in any sample but since
there are finite number of discrete ages, every patient age
has (i) the same (ii) a different chance of appearing in a sample.

(l) Summary statistics measuring the “central” age:

sample mean (average) x̄ = 32+37+···+51
20

=
(i) 41.0 (ii) 43.4 (iii) 43.5 (iv) 45.0

sample median is middle age or average of middle two ages:
(i) 41.0 (ii) 43.4 (iii) 43.5 (iv) 45.0

sample mode is most frequent age (choose two):
(i) 41.0 (ii) 43.4 (iii) 43.5 (iv) 45.0
data are bimodal, although this is hidden in histogram

The sample mean x̄ = 43.35 is an example of the value of a
(i) statistic (ii) parameter based on patient ages,
were every random sample gives
(i) the same (ii) a different statistic value x̄; in general,
random variable X̄ has a number of different values x̄ occurring with
(i) the same (ii) different probability.

The median and mode (i) are (ii) are not (random variables) statistics.

md <- function(x) { # function calculating mode

ux <- unique(x)

tab <- tabulate(match(x, ux)); ux[tab == max(tab)]

}

mean(data); median(data); md(data)

[1] 43.35

[1] 43.5

[1] 41 45

(m) Summary statistics measuring “variability” of ages:

sample variance s2 = 1
20−1

∑n
i=1(xi − x̄)2 ≈

(i) 1.0 (ii) 4.6 (iii) 19.0 (iv) 20.9

sample standard deviation s =
√
s2 ≈

(i) 1.0 (ii) 4.6 (iii) 19.0 (iv) 20.9

sample range = maximum − minimum 51− 32 = :
(i) 1.0 (ii) 4.6 (iii) 19.0 (iv) 20.9

The sample variance s2 ≈ 20.9 is an example of the value of a
(i) statistic (ii) parameter based on patient ages; in general,
random variable S2 has a number of different values s2 occurring with
(i) the same (ii) different probability
and is used as an estimator of population parameter
(i) p (ii) µ (iii) σ (iv) σ2.

Sample statistic standard deviation, S, (i) is (ii) is not
used as an estimator for population parameter σ.
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var(data); sd(data); range(data)

[1] 20.87105

[1] 4.568485

[1] 32 51

(n) Five-number summary which gives the boxplot is, since

32︸︷︷︸
min

, 37, 39, 40, 41, 41︸ ︷︷ ︸
p1=π0.25

, 41, 42, 42, 43, 44︸ ︷︷ ︸
p2=π0.50

, 45, 45, 45, 46, 47︸ ︷︷ ︸
p3=π0.75

, 47, 49, 50, 51︸︷︷︸
max

(i) {41, 43.5, 46.5}
(ii) {32, 41, 43.5, 46.5, 51}
(iii) {32, 41, 44, 47, 51}
For example, for p3 = π0.75, since L = np = 20 · 0.75 = 15, average 15th and 16th numbers, πp =
1
2

(xL + xL+1) = 0.5(46 + 47) = 46.5; if L had not been an integer like 15, the rule would be to round
up to next largest integer, πP = xL

quantile(data,c(0.25,0.50,0.75),type=2)

25% 50% 75%

41.0 43.5 46.5

(o) percentile rank of age 47 is
(i) 70% (ii) 75% (iii) 80% (iv) 85%
perc.rank <- function(x, xo) length(x[x < xo])/length(x)*100

perc.rank(data,47)

[1] 75

(p) The five-number summary (minimum, first quartile, second quartile, third
quartile, maximum) and percentile rank calculated for this group of pa-
tients are all values of different
(i) statistics (ii) parameters used to estimate
corresponding population (i) statistics (ii) parameters.

4.3 Maximum Likelihood Estimates

One important aspect of statistics is to do with the idea of gathering together a ran-
dom sample of data, calculating a statistic and using this statistic to infer something
about, typically, a parameter of the population, more specifically a parameter from a
probability distribution model describing the population, from which this sample is
taken.

So a question is: when does a statistic “fit” the parameter, when is a statistic
a “good estimate” of the parameter? One criterion, called unbiasedness, assesses
whether or not a statistic is an appropriate fit for any given parameter from a distri-
bution function. A random variable Θ whose values estimate parameter θ is called
an estimator or θ. A value of Θ, θ̂, is called an estimate of θ and Θ is an unbiased
estimator of θ if

E (Θ) = θ,
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and a biased estimator of θ otherwise.
And another question is: where do statistics come from, how are they created?

One method, called the maximum likelihood estimation (MLE) method, is described
in this section on how to create possible statistics which estimate parameters from
distribution functions. The MLE of θ, denoted θ̂, is the value at which L(θ) is a
maximum,

L
(
θ̂
)
≥ L (θ) ,

for all θ. It is often easier to work with the natural log of L (θ), lnL (θ), rather than
L (θ) itself. In general, let X be a random variable with pdf (pmf) f(x; θ) where
θ is an unknown parameter to be estimated and let x1, x2, . . . , xn be n random and
independent observed values of X. The likelihood function is the product of f(x; θ)
evaluated at each observed value,

L (θ) =
n∏
i=1

f(xi; θ).

Exercise 4.3 (Maximum Likelihood Estimates)

1. Density, f(x), versus likelihood, L(θ): Geometric.
The geometric density is
(i) f(x) = p(1− p)x−1, x = 1, 2, . . .
(ii) L(p) = p(1− p)x−1, 0 ≤ p ≤ 1
given in figure (a) where p = 0.7 (b) where x = 3

whereas the geometric likelihood is
(i) f(x) = p(1− p)x−1, x = 1, 2, . . .
(ii) L(p) = p(1− p)x−1, 0 ≤ p ≤ 1
given in figure (a) where p = 0.7 (b) where x = 3
with maximum value at p̂ ≈ (i) 0.25 (ii) 0.35 (iii) 0.45

1 2 3 4 5

(a) geometric, p = 0.7

x

f(
x
)

0
.0
0

0
.0
5

0
.1
0

0
.1
5

0
.2
0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0
0

0
.0
5

0
.1
0

0
.1
5

(b) geometric, x = 3

p

L
(p
)

Figure 4.3: Geometric density and likelihood
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2. Density, f(x), versus likelihood, L(θ): Binomial.
The binomial density is

(i) f(x) =

(
n
x

)
px(1− p)n−x, x = 0, 1, . . . , n

(ii) L(p) =

(
n
x

)
px(1− p)n−x, 0 ≤ p ≤ 1

given in figure (a) where n = 5, p = 0.7 (b) where n = 5, x = 3

whereas the binomial likelihood is

(i) f(x) =

(
n
x

)
px(1− p)n−x, x = 0, 1, . . . , n

(ii) L(p) =

(
n
x

)
px(1− p)n−x, 0 ≤ p ≤ 1

given in figure (a) where n = 5, p = 0.7 (b) where n = 5, x = 3
with maximum value at p̂ ≈ (i) 0.25 (ii) 0.35 (iii) 0.45

1 2 3 4 5

(a) binomial, n=5, p=0.7

x

f(
x
)

0
.0
0

0
.1
0

0
.2
0

0
.3
0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0
0

0
.0
2

0
.0
4

0
.0
6

0
.0
8

(b) binomial, n=5, x=3

p

L
(p
)

Figure 4.4: Binomial density and likelihood

3. Density, f(x), versus likelihood, L(θ): Normal.
The normal density is
(i) f(x) = 1

σ
√

2π
e−(1/2)[(x−µ)/σ]2, −∞ < x <∞

(ii) L(µ) = 1

σ
√

2π
e−(1/2)[(x−µ)/σ]2, −∞ < µ <∞

(iii) L(σ) = 1

σ
√

2π
e−(1/2)[(x−µ)/σ]2, µ > 0

given in figure
(a) where µ = 167, σ = 20.1
(b) where x = 150, σ = 20.1
(c) where x = 150, µ = 167

whereas the normal likelihood for µ is
(i) f(x) = 1

σ
√

2π
e−(1/2)[(x−µ)/σ]2, −∞ < x <∞

(ii) L(µ) = 1

σ
√

2π
e−(1/2)[(x−µ)/σ]2, −∞ < µ <∞
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(iii) L(σ) = 1

σ
√

2π
e−(1/2)[(x−µ)/σ]2, µ > 0

given in figure
(a) where µ = 167, σ = 20.1
(b) where x = 150, σ = 20.1
(c) where x = 150, µ = 167
with maximum value at µ̂ ≈ (i) 100 (ii) 150 (iii) 200

and the normal likelihood for σ is
(i) f(x) = 1

σ
√

2π
e−(1/2)[(x−µ)/σ]2, −∞ < x <∞

(ii) L(µ) = 1

σ
√

2π
e−(1/2)[(x−µ)/σ]2, −∞ < µ <∞

(iii) L(σ) = 1

σ
√

2π
e−(1/2)[(x−µ)/σ]2, µ > 0

given in figure
(a) where µ = 167, σ = 20.1
(b) where x = 150, σ = 20.1
(c) where x = 150, µ = 167
with maximum value at σ̂ ≈ (i) 15 (ii) 19 (iii) 21
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(a) normal, mu = 167, sigma = 20.1
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(b) normal, x=150, sigma = 20.1
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(c) normal, x=150, mu = 167
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Figure 4.5: Normal density and likelihoods

4. Credit cards: statistic p̂ estimator of parameter p.
Since 54 of 180 randomly selected from all credit card purchase slips are made
with Visa, point estimate p̂ = 54

180
might be used to estimate true (actual,

population) parameter p. Let random variable X represent the number of
purchase slips made with Visa and parameter p be the probability of a purchase
slip made with Visa.

An appropriate probability mass function to model X is the

(i) binomial pmf:

f(x) =

(
n
x

)
px(1− p)n−x, x = 0, 1, . . . , n,
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where n = 180 trials.

(ii) geometric pmf:
f(x) = p(1− p)x−1, x = 1, 2, . . . .

(iii) negative binomial pmf:

f(x) =

(
x− 1
r − 1

)
prqx−r, x = r, r + 1, . . . ,

where r = 180 trials.

The point estimate of p, p̂ = 1
180

∑180
i=1 xi = (i) 0.3 (ii) 54 (iii) 180,

where xi = 1, 0 if purchase slip i made with Visa or not.

Statistic p̂ is an (i) estimator (ii) point estimate of parameter p.

Statistic p̂ is a sensible estimator of p, p̂ is (i) unbiased (ii) biased,

E [p̂] = p,

whereas, for example, 1− p̂ is a poor estimate of p because 1− p̂ is biased,

E [1− p̂] = 1− p 6= p.

5. Average student weight: statistic x̄ estimator of parameter µ.
Average weight of simple random sample of 11 PNW students point estimate
x̄ = 167 pounds (s = 20.1 pounds) might be used to estimate true (actual,
population) parameter µ. Let random variable X represent the weight of a
PNW student and parameter µ represent the mean weight of PNW students.

It is (i) sensible (ii) unsensible to model X with the normal pdf:

f(x) =
1

σ
√

2π
e−(1/2)[(x−µ)/σ]2 .

The point estimate of µ, x̄ = 1
11

∑11
i=1 xi = (i) 11 (ii) 20.1 (iii) 167

where xi is weight of student i.

Statistic x̄ is an (i) estimator (ii) point estimate of parameter µ.

Statistic x̄ is a sensible estimator of µ, x̄ is (i) unbiased (ii) biased,

E
[
X̄
]

= µ,

whereas, for example, x̄+ 1 is a poor estimate of µ because x̄+ 1 is biased,

E
[
X̄ + 1

]
= µ+ 1 6= µ.
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6. Of the two possible estimators (statistics)

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2 or Σ̂2 =
1

n

n∑
i=1

(Xi − X̄)2,

the statistic S2 is generally considered a (i) superior (ii) inferior estimator
to the statistic Σ̂2 for σ2 from the normal distribution because S2 is unbiased
whereas Σ̂2 is biased,

E
[
S2
]

= σ2 but E
[
Σ̂2
]
6= σ2.

7. Geometric distribution, special case. A discrete random variable X is said to
have a geometric distribution if its pmf is f(x; p) = p(1 − p)x−1, x = 1, 2, . . .
where 0 < p < 1 is the parameter. If the values x1 = 2, x2 = 5, and x3 = 7 are
observed, find the (i) likelihood function of p, L(p), and (ii) MLE of p, p̂.

0.0 0.2 0.4 0.6 0.8 1.0

0
e

+
0

0
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e
−

0
4

4
e

−
0

4
6

e
−

0
4

geometric likelihood, x = (2,5,7)

p

L
(p

)

0.0 0.2 0.4 0.6 0.8 1.0

−
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0
−

4
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−
3

0
−

2
0

−
1

0

geometric ln−likelihood, x = (2,5,7)

p

ln
 L

(p
)

Figure 4.6: Likelihood and ln-Likelihood of Geometric, x = (2, 5, 7)

(a) likelihood function, L(p).

L(p) = f(2) · f(5) · f(7) = p(1− p)2−1 · p(1− p)5−1 · p(1− p)7−1 =

(i) p2(1− p)11 (ii) p3(1− p)10 (iii) p3(1− p)11 (iv) p2(1− p)10

(b) maximum likelihood estimate, p̂, version 1. Since

L′(p) =
dL

dp
= 3p2(1−p)11 +p3(11)(1−p)10(−1) = p2(1−p)10(3−14p) = 0

then p = 0, 3
14

or 1, but since L(0) = L(1) = 0, MLE is
p̂ = (i) 2

14
(ii) 3

12
(iii) 3

14
(iv) 3

11
Notice 3

14
≈ 0.21, which is maximum of plot of likelihood above.
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(c) maximum likelihood estimate, p̂, version 2. Since

L(p) = p3(1− p)11

then
lnL(p) = ln

(
p3(1− p)11

)
= 3 ln p+ 11 ln(1− p)

so
d lnL

dp
=

3

p
+ (−1)

11

1− p
= 0,

then MLE is p̂ = (i) 2
14

(ii) 3
12

(iii) 3
14

(iv) 3
11

Notice again 3
14
≈ 0.21, which is maximum of plot of ln-likelihood above.

(d) The MLE is that value of the parameter which maximizes the likelihood
(parameter version of distribution) for observed sample of data.
(i) True (ii) False

8. Geometric distribution, general case. A discrete random variable X with ge-
ometric distribution has f(x; p) = p(1 − p)x−1, x = 1, 2, . . . where 0 < p < 1
is the parameter. For x1, x2, . . . , xn, find the (i) lnL(p) (ii) MLE p̂ and (iii)
whether or not p̂ is unbiased. Recall, mean of geometric is E(X) = E(Xi) = 1

p
.

(a) L(p).

L(p) =
n∏
i=1

p(1− p)xi−1 =

(i) pn(1− p)
∑
xi−n (ii) pnx(1− p)n−

∑
xi (iii) pnx(1− p)n−nx

(b) lnL(p).
lnL(p) = ln

(
pn(1− p)

∑
xi−n

)
=

(i) p
∑
xi(1− p)n−

∑
xi (ii) n ln p+ (

∑
xi − n) ln(1− p)

(c) p̂. Since
d lnL

dp
=
n

p
+ (−1)

∑
xi − n

1− p
= 0,

p̂ = (i) n
p

(ii) n∑
xi

(iii) p∑
xi

(iv)
∑
xi

n
Notice n∑

xi
= 3

2+5+7
= 3

14
, if n = 3, x = (2, 5, 7), which matches previous special case result.

(d) unbiased? First notice

E
(
X̄
)

= E

(
1

n

∑
Xi

)
=

1

n
· n · E(X) =

1

n
· n · 1

p
=

1

p
,

so, since p̂ = n∑
xi

= 1
X̄

is convex, Jensen’s inequality tells us

E (p̂) = E

(
1

X̄

)
>

1

E
(
X̄
) =

1

1/p
= p

and so p̂ is (i) unbiased (ii) biased
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(e) asymptotically unbiased? In fact it can be shown

E (p̂) = p+O

(
1

n

)
,

where

O

(
1

n

)
→ 0, as n→∞,

so p̂ is (i) asymptotically unbiased (ii) asymptotically biased,
becomes more unbiased as sample size n increases.

4.4 Sampling Distributions

A sampling distribution is a probability distribution of a statistic. According to the
central limit theorem (CLT), if X1, X2, . . . , Xn are mutually independent random
variables where each which common µ and σ2, then as n→∞,

X̄n → N

(
µ,
σ2

n

)
,

no matter what the distribution of the population. Often n ≥ 30 is “large enough”
for the CLT to apply. So, for large enough n, X̄n is said to have a normal sampling
distribution. In fact, the CLT applies to statistics other than just X̄. Specifically, let
X be b(n, p), then as n→∞, the sampling distribution of

P̂ =
X

n
→ N

(
p,
p(1− p)

n

)
,

where the approximation is reasonable if np ≥ 5, n(1− p) ≥ 5.
Not all sampling distributions of statistics are normal; for example, the sampling

distribution of the sample variance,

S2 =
1

n− 1

n∑
i=1

(
Xi − X̄n

)2
,

has a chi-square, not normal, distribution, but, even in this case, as n → ∞, this
chi-square distribution tends to a normal. We simulate (numerical approximate) the
sampling distributions of a couple of statistics to demonstrate an important property;
namely,

• sampling (experimental) error: unavoidable differences between distribution pa-
rameter and sample statistic due to random fluctuations.
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Nonsampling errors, on the other hand, are differences due to improperly recorded
collected, recorded or analyzed data.

Exercise 4.4 (Sampling Distributions)

1. CLT and proportion: chance lawyer wins.
Lawyer estimates she wins 40% of her cases (p = 0.4), and currently represents
n = 50 defendants. Let X represent number of wins (of 50 cases) and so p̂ = X

n

proportion of wins (of 50 cases). Use CLT to approximate chance she wins at
least one–half of her cases,

P

(
p̂ >

1

2

)
= P (p̂ > 0.5) .

(a) Check assumptions. Since

np = 50(0.4) = 20 ≥ 5 and np(1− p) = 50(0.4)(1− 0.4) = 12 ≥ 5,

assumptions necessary for approximation are (i) satisfied (ii) violated.

(b) µp̂ = p = (i) 0.3 (ii) 0.4 (iii) 0.5.

(c) σp̂ =
√

p(1−p)
n

=
√

0.4(1−0.4)
50

≈ (i) 0.0012 (ii) 0.0385 (iii) 0.06928.

(d) P (p̂ > 0.5) ≈ 0.07 (ii) 0.11 (ii) 0.13.
1 - pnorm(0.5,0.4,sqrt(0.4*0.6/50)) # normal P(P-hat > 0.5), m = 0.4, sd = sqrt(0.4*0.6/50)

[1] 0.07445734

(e) Since P (p̂ > 0.5) ≈ 0.07 > 0.05, p̂ = 0.5 is (i) typical (ii) unusual.
Anything greater than 0.05 is usually (arbitrarily) considered “typical”.

2. Simulating sample means: game payoffs. Video game payoff points, X, are uni-

form between -3 and 3 points, U(−3, 3), where µ = 3+(−3)
2

= 0, σ2 = (3−(−3))2

12
=

3. The average and variance of 5, 10 and 20 plays of this game are simulated
(numerically approximated) 1000 times and the results are given in the graphs
and table.

n x̄n s2
n

1 -0.041 3.048

5 0.038 0.588 ≈ s2

n
= 3.048

5

10 0.002 0.297 ≈ s2

n
= 3.048

10

20 -0.008 0.146 ≈ s2

n
= 3.048

20

(a) The x̄, for 1000 simulations,
(i) decreases (ii) remains the same (iii) increase as n increases.
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Figure 4.7: Sampling distributions of x̄ for video game.

(b) The average of s2, for 1000 simulations,
(i) decreases (ii) remains the same (iii) increase as n increases
and is approximately equal to σ2

n

(c) Observed values of x̄n are closer to µ = 0 for (i) smaller n (ii) larger n.

(d) Observed values of x̄n are closer to µ = 0 for
(i) smaller (ii) larger σ2 ≈ s2

n.

3. Simulating unbiased x̄, s2 and biased s. Let X be payoff of game with values
$2, $5 and $8 with equal probabilities of f(x) = 1

3
. The mean µ, variance σ2

and SD σ are

µ =
∑

f(x)x =
1

3
(2 + 5 + 8) = 5,

σ2 =
∑

f(x)(x− µ)2 =
1

3

[
(2− 5)2 + (5− 5)2 + (8− 5)2

]
= 6

σ =
√

6.

All possible small samples of size n = 2 are chosen (without replacement) from
the distribution of X with results given in the following table.
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sample x̄ s2 s
2 2 2.0 0.0 0.00
2 5 3.5 4.5 2.12
2 8 5.0 18.0 4.24
5 2 3.5 4.5 2.12
5 5 5.0 0.0 0.00
5 8 6.5 4.5 2.12
8 2 5.0 18.0 4.24
8 5 6.6 4.5 2.12
8 8 8.0 0.0 0.00
mean = 5.0 6.0 1.89

When comparing comparing simulated parameters with actual parameters,

(a) The sample x̄ = 5.0, for 9 simulations, is
(i) less than (ii) equal to (iii) greater than
µ = 5, so x̄ is unbiased.

(b) The sample s2 = 6.0, for 9 simulations, is
(i) less than (ii) equal to (iii) greater than
σ2 = 6, so s2 is unbiased.

(c) The sample s ≈ 1.89, for 9 simulations, is
(i) less than (ii) equal to (iii) greater than
σ =
√

6 ≈ 2.45, so s is biased.

4. Simulating sample variances: temperatures. Temperature X is N(0, 1), where
µ = 0 and σ = 1, on any given winter day. The variance of 5, 10 and 100 winter
days are simulated (numerically approximated) 1000 times and results are given
in the red graphs below. The shape of the histogram for the sample variance, at
least to begin with, for n = 5, 10 (i) is (ii) is not normal, but when n = 100
becomes (i) more (ii) less normal-shaped.



154 Chapter 4. Statistics (LECTURE NOTES 7)

Figure 4.8: Sampling distributions of s2 for temperature
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