
76   ;login: Vol. 37, No. 6

David Beazley is an open
source developer and author of
the Python Essential Reference
(4th Edition, Addison-Wesley,

2009). He is also known as the creator of Swig
(http://www.swig.org) and Python Lex-Yacc
(http://www.dabeaz.com/ply.html). Beazley
is based in Chicago, where he also teaches a
variety of Python courses. dave@dabeaz.com

In most of my past work, I’ve always had a need to solve various sorts of data
analysis problems. Prior to discovering Python, AWK and other assorted UNIX
commands were my tools of choice. These days, I’ll mostly just code up a simple
Python script (e.g., see the June 2012 ;login: article on using the collections
module). Lately though, I’ve been watching the growth of the Pandas library with
considerable interest.

Pandas, the Python Data Analysis Library, is the amazing brainchild of Wes
McKinney (who is also the author of O’Reilly’s Python for Data Analysis). In short,
Pandas might just change the way you work with data. Introducing all of Pandas
in a short article is impossible here, but I thought I would give a few examples to
motivate why you might want to look at it.

Preliminaries
To start using Pandas, you first need to make sure you’ve installed NumPy
(http://numpy.scipy.org). If you’ve primarily been using Python for systems pro-
gramming tasks, you may not have encountered NumPy; however, it gives Python
a useful array object that serves as the cornerstone for most of Python’s science
and engineering modules (including Pandas). Unlike lists, arrays can only consist
of a homogeneous type (integers, floats, etc.). Operations involving arrays also
tend to operate on all of the elements at once. Here is a short example that illus-
trates some differences between lists and arrays:

>>> # Python lists

>>> c = [1,2,3,4]

>>> c * 3

[1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4]

>>> c + [10,11,12,13]

[1, 2, 3, 4, 10, 11, 12, 13]

>>> import math

>>> [math.sqrt(x) for x in c]

[1.0, 1.4142135623730951, 1.7320508075688772, 2.0]

>>>

>>> # numpy arrays

>>> import numpy

>>> d = numpy.array([1,2,3,4])

>>> d * 3

Data Processing with Pandas
D a v i d B e a z l e y

	 ;login: december 2012 Data Processing with Pandas   77

array([3, 6, 9, 12])

>>> d + numpy.array([10,11,12,13])

array([11, 13, 15, 17])

>>> numpy.sqrt(d)

array([1. , 1.41421356, 1.73205081, 2.])

>>>

Once you’ve verified that you have NumPy installed, go to the Pandas Web site
(http://pandas.pydata.org) to get the code before trying the examples that follow.

Analyzing CSV Data
One of my favorite pastimes these days is to play around with public data sets.
Another one of my favorite activities has been riding around on my road bike—
something that was recently curtailed after I hit a huge pothole and had to have my
local bike shop build a new wheel. So, in the spirit of huge potholes, let’s download
the city of Chicago’s pothole database from the data portal at http://data.cityofchi-
cago.org. We’ll save it to a local CSV file so that we can play around with it.

>>> u = urllib.urlopen(“https://data.cityofchicago.org/api/views/7as2-ds3y/

rows.csv”)

>>> data = u.read()

>>> len(data)

27683443

>>> f = open(‘potholes.csv’,’w’)

>>> f.write(data)

>>> f.close()

>>>

As you can see, we now have about 27 MB of pothole data. Here’s a sample of what
the file looks like:

>>> f = open(‘potholes.csv’)

>>> next(f)

‘CREATION DATE,STATUS,COMPLETION DATE,SERVICE REQUEST NUMBER,TYPE OF

SERVICE REQUEST,CURRENT ACTIVITY,MOST RECENT ACTION,NUMBER OF POTHOLES

FILLED ON BLOCK,STREET ADDRESS,ZIP,X COORDINATE,

Y COORDINATE,Ward,Police District,Community Area,LATITUDE,LONGITUDE,LOCATI

ON\n’

>>> next(f)

‘09/20/2012,Completed - Dup,09/20/2012,12-01644985,Pot Hole in Street,,,0,

172 W COURT PL,60602,1174935.20259427,1901041.84281984,42,1,32,

41.883847164125186,-87.63307578849374,”(41.883847164125186,

-87.63307578849374)”\n’

>>>

Pandas makes it extremely easy to read CSV files. Let’s use its read_csv() function
to grab the data:

>>> import pandas

>>> potholes = pandas.read_csv(‘potholes.csv’, skip_footer=True)

>>> potholes

<class ‘pandas.core.frame.DataFrame’>

Int64Index: 116718 entries, 0 to 116717

Data columns:

78   ;login: Vol. 37, No. 6

CREATION DATE	 116718 non-null values

STATUS	 116718 non-null values

COMPLETION DATE	 115897 non-null values

SERVICE REQUEST NUMBER	 116718 non-null values

TYPE OF SERVICE REQUEST	 116718 non-null values

CURRENT ACTIVITY	 94429 non-null values

MOST RECENT ACTION	 94191 non-null values

NUMBER OF POTHOLES FILLED ON BLOCK	 93790 non-null values

STREET ADDRESS	 116717 non-null values

ZIP	 115705 non-null values

X COORDINATE	 116660 non-null values

Y COORDINATE	 116660 non-null values

Ward	 116695 non-null values

Police District	 116695 non-null values

Community Area	 116696 non-null values

LATITUDE	 116660 non-null values

LONGITUDE	 116660 non-null values

LOCATION	 116660 non-null values

dtypes: float64(9), object(9)

>>>

When reading data, Pandas creates what’s known as a DataFrame object. One way
to view a DataFrame is as a collection of columns. In fact, you can easily extract
specific columns or change the data:

>>> addresses = potholes[‘STREET ADDRESS’]

>>> addresses[0:5]

0	 172 W COURT PL

1	 1413 W 17TH ST

2	 11800 S VINCENNES AVE

3	 3499 S KEDZIE AVE

4	 1930 W CULLERTON ST

Name: STREET ADDRESS

>>> addresses[1] = ‘5412 N CLARK ST’

>>>

And there is so much more that you can do. For example, if you wanted to find the
five most reported addresses for potholes, you could use this one-line statement:

>>> potholes[‘STREET ADDRESS’].value_counts()[:5]

4700 S LAKE PARK AVE	 108

1600 N ELSTON AVE	 84

7100 S PULASKI RD	 80

1000 N LAKE SHORE DR	 80

8300 S VINCENNES AVE	 73

>>>

Let’s say you want to find all of the unique values for a column. Here’s how you
do that:

>>> # Get possible values for the ‘STATUS’ field

>>> potholes[‘STATUS’].unique()

array([Completed - Dup, Completed, Open - Dup, Open], dtype=object)

>>>

	 ;login: december 2012 Data Processing with Pandas   79

Here is an example of filtering the data based on values for one of the columns:

>>> fixed = potholes[potholes[‘STATUS’] == ‘Completed’]

>>> fixed

<class ‘pandas.core.frame.DataFrame’>

Int64Index: 94490 entries, 1 to 116717

Data columns:

CREATION DATE	 94490 non-null values

STATUS	 94490 non-null values

...

>>>

In this example, the relation potholes[‘STATUS’] == ‘Completed’ is computed
across all 116,000 records at once and creates an array of Booleans. By using that
array as an index into potholes, we get only those records that matched as True. It’s
kind of a neat trick.

In addition to street addresses, the pothole data also includes the total number of
potholes fixed at each address. Let’s try to refine our analysis so that it takes this
into account. Specifically, we’d like to sum up the total number of potholes fixed at
each address and base our report on that. Here’s how to do it.

First, let’s just pick out data on street addresses and number of potholes:

>>> addr_and_holes = fixed[[‘STREET ADDRESS’,

... ‘NUMBER OF POTHOLES FILLED ON BLOCK’]]

>>> addr_and_holes

<class ‘pandas.core.frame.DataFrame’>

Int64Index: 94490 entries, 1 to 116717

Data columns:

STREET ADDRESS 94489 non-null values

NUMBER OF POTHOLES FILLED ON BLOCK 93558 non-null values

dtypes: float64(1), object(1)

>>>

Next, let’s drop missing values in the data:

>>> addr_and_holes = addr_and_holes.dropna()

>>> addr_and_holes

<class ‘pandas.core.frame.DataFrame’>

Int64Index: 93558 entries, 13 to 116717

Data columns:

STREET ADDRESS 93558 non-null values

NUMBER OF POTHOLES FILLED ON BLOCK 93558 non-null values

dtypes: float64(1), object(1)

>>>

Let’s group the data by street address and calculate totals:

>>> addr_and_totals = addr_and_holes.groupby(‘STREET ADDRESS’).sum()

>>> addr_and_totals[:5]

 NUMBER OF POTHOLES FILLED ON BLOCK

STREET ADDRESS

1 E 100TH PL	 9

1 E 110TH PL	 20

1 E 111TH ST	 10

80   ;login: Vol. 37, No. 6

1 E 11TH ST	 20

1 E 121ST ST	 21

>>>

Finally, let’s sort the results:

>>> addr_and_totals = addr_and_totals.sort(‘NUMBER OF POTHOLES FILLED ON

BLOCK’)

>>> addr_and_totals[-5:]

 NUMBER OF POTHOLES FILLED ON BLOCK

STREET ADDRESS

6300 N RAVENSWOOD AVE	 461

8200 S MARYLAND AVE	 498

3900 S ASHLAND AVE	 575

12900 S AVENUE O	 577

5600 S WOOD ST	 664

>>>

And there you have it—the five worst blocks on which to ride your road bike. It’s left
as an exercise to the reader to take this data and extend it to find the worst overall
street on which to ride your bike (by my calculation it’s Ashland Avenue, which is
probably of no surprise to Chicago residents).

A File System Example
Let’s try an example involving a file system. Define the following function that col-
lects information about files into a list of dictionaries:

import os

def summarize_files(topdir):

 filedata = []

 for path, dirs, files in os.walk(topdir):

 for name in files:

 fullname = os.path.join(path,name)

 if os.path.exists(fullname):

 data = {

 ‘path’ : path,

 ‘filename’ : name,

 ‘size’ : os.path.getsize(fullname),

 ‘ext’ : os.path.splitext(name)[1],

 ‘mtime’ : os.path.getmtime(fullname)

 }

 filedata.append(data)

 return filedata

Now, let’s hook it up to Pandas and use it to analyze the Python source tree:

>>> import pandas

>>> filedata = pandas.DataFrame(summarize_files(“Python-3.3.0rc1”))

<class ‘pandas.core.frame.DataFrame’>

Int64Index: 4207 entries, 0 to 4206

Data columns:

ext	 4207 non-null values

	 ;login: december 2012 Data Processing with Pandas   81

filename	 4207 non-null values

mtime	 4207 non-null values

path	 4207 non-null values

size	 4207 non-null values

dtypes: float64(1), int64(1), object(3)

Let’s see how many files of different types there are:

>>> filedata[‘ext’].value_counts()[:5]

.py	 1618

.c	 479

.rst	 429

.h	 263

.o	 236

>>>

As a final example, let’s generate a few statistics and use maplotlib to make a histo-
gram. Here, we’ll look at the sizes of .py files:

>>> pyfiles = filedata[filedata[‘ext’] == ‘.py’]

>>> pyfiles[‘size’].max()

385802

>>> pyfiles[‘size’].mean()

12964.483930778739

>>> pyfiles[‘size’].std()

23799.089183395961

>>> pyfiles[‘size’].hist(bins=30)

<matplotlib.axes.AxesSubplot object at 0x102f0e290>

>>> import pylab

>>> pylab.show()

If it works, you’ll end up with a plot that looks like Figure 1.

That’s pretty neat—and it didn’t involve much code.

Final Words and In Memoriam
If you’re faced with the task of analyzing data, Pandas is definitely worth a look.
Although all of the problems shown in this example could have been solved by short
Python scripts, Pandas makes it even easier and more succinct.

Finally, in the last example, matplotlib (http://matplotlib.sourceforge.net) was
used to make a plot. matplotlib is one of the most popular extensions to Python that
is in widespread use by scientists and engineers. Sadly, John Hunter, the creator of
matplotlib, passed away suddenly this past August from complications of cancer
treatment, leaving behind his wife and three daughters. If you’ve benefited from
the use of matplotlib, a memorial fund has been established. More information can
be found at http://numfocus.org/johnhunter/.

Figure 1: Histogram created with pyfiles[‘size’].hist(bins=30)
using the matplotlib library

