Designing a QR Code Reader
Application
Developing an application to be used with an iOS device to read incoming QR Codes.
Author: Trevor Emerick
Date: 3/30/2015
Objective
This application note will show how to design an iOS application to look both
appealing and have the ability to scan different QR Codes.

Introduction

This application note will walk you through the steps of creating a simple iOS
application, which will then be taken a step further to successfully recognize a QR Code.
Historically, these QR codes contain valuable information that can be obtained in
seconds. Comparatively this attached information once obtained could be documented
on paper. However, this becomes a problem in a fast paced environment when one
does not have time to write down obtained information and thus has a higher chance of
forgetting this information. QR codes can help rectify this problem. For this application,
it will be assumed that you will have access to a Macintosh operating system, which is
preloaded on Apple Computers, and Xcode, which is available through the Apple App

Store.
Background

QR, also known as Quick Response, is a newer barcode design that has become

more popular with the increase in mobile device sales. These codes can also be

referred to as 2d barcodes or mobile codes. Many mobile device companies do not
include a native QR reader app but they can be easily downloaded from their respective
application stores. Though the use of QR is not as widely spread as UPC codes it is still
gaining popularity in today’s society. Many of these QR codes can be seen as one goes
throughout any given day. One can find them in various settings from the one
referencing a local party happening this weekend, to renting a car in a big city like San
Francisco, or on a resume to direct a recruiter to your LinkedIn profile. Unlike UPC
codes, the QR code was designed for quick and efficient reading. These codes came to
be in 1994 with the Denso Corporation. Many individuals within the company were very
skeptical of the new code with the high usage of UPC codes in the product and grocery
industry. Even with these doubts the QR codes were on the road to success.

The new QR codes look very different from the traditional UPC codes. Each QR
code is based on a matrix barcode, which can be read by any mobile device with a
camera. These codes are typically in a small white square box with black geometric
shapes inside of it. This is by design and intential in that these codes, due to their
unique design, are eye catching to those walking by. This has also aided in the
increased use QR codes in ones day-to-day life. Unlike traditional UPC codes, QR
codes have the ability to store a wide variety of information. This information usually
would take longer to obtain without these quick response codes. The attributes that can
be stored in these QR codes include phone numbers, websites, pictures, profiles,
names, etc. If one was shown or asked what an UPC code can store, they would
immediately think of price. The ability to have a variety of information comparatively

available has increased the popularity of quick response codes.

Logo

R Code
(design) Q

When Denso first created the code it was considered to be one basic code,
whose shapes could be manipulated slightly, thus making a new code that could then
be produced. In reality, this design was then taken one step further to make multiple
types. These types could be changed by their size, look, orientation or even
background. For example, LogoQ is a type of QR code that uses the same
fundamentals but has a background image that it is placed on top of. This process can
be seen in the figure to the right. The iQR codes can either be square or rectangular.
Once this was decided, the orientation of the code box can be changed to either
horizontal or vertical. From a consumer standpoint, this was a very smart move. It
allowed for the customization of QR codes based on the space available for placement
or the look. This was just one of the innovative moves by the Denso Corporation in the
early stages of QR Codes.

One industry that aided in the increased use of QR Codes was the automotive
industry. The automotive inidustry mainly used these codes for the purpose of tracking
processes in their electronic Kanban, which was a production management system.
This included many tasks from producing all the way to shipping. While this may be very
surprising to some, in actuality it is very counterintuitive. Before the use of QR codes
these processes would be tracked via a paper trail. In the new digital age, one may
realize that paper trails are very hard to follow and cumbersome. Using QR Codes in

their electronic Kanban provided a more efficient workflow and easier to follow.

Quick Response codes have become very popular in other countries such as
Japan however have been slow to come to popularity in the United States. This is
mainly due to the ease of access to information through social media. Instead of looking
for party information on a poster, many people look for an invite on Facebook. Although
the increased use of social media in this country does not help with increasing the
popularity of the QR codes here in America, there is, a potentially large use for it in
industry. For companies that have a large number of visitors, contractors and
distributors, the use of QR codes can be very beneficial in their day to day operations.
Vast majorities of people have smartphones that get email. If the company can email
their visitors, contractors and distributors the QR code prior to their arrival, it can then
be scanned at the entrance, product pick up location, and on exit. This provides peace
of mind for the business with who is on their premise as well as getting the correct
shipment to the correct contractor or distributor. Thus it is a win win on both sides of the
manufacturing production system. Efficiency for the contractors and distributors and
accuracy on the side of the manufacturer. These codes will start appearing more and
more in different industries at the distribution and manufacturing levels of the product

channels.

Using Xcode to Develop a QR Code Reader for iOS

Building the Demo

For those that do not have any previous experience with writing iOS applications,
you will need to obtain a copy of Xcode from the Macintosh App Store. Once the
application has finished downloading and installing, navigate to the application folder in
finder. Then click on the newly installed Xcode icon that will launch it. Once it has
finished loading you will see the window displayed above. You will want to select the
second option, Create a new Xcode Project. After selecting this, you will be directed to
the next window that will ask you to choose a template for your new project.

. -/}‘

%

Welcome to Xcode S

Get started with a playground
“*| Explore new ideas quickly and easily.

k Create a new Xcode project
Start building a new iPhone, iPad or Mac application.

Check out an existing project
2] start working on something from an SCM repository.

Show this window when Xcode launches Open another project...

| Choose a template for your new project:

i0s
Application - eoo 1
Framework & Library
Other Master-Detail Page-Based Single View Tabbed
Application Application Application Application
0s X

Application %

Framework & Library
System Plug-in Game
Other

Single View Application

This template provides a starting point for an application that uses a single view. It provides
a view controller to manage the view, and a storyboard or nib file that contains the view.

Cancal I

When using a QR code reader, there is a loading screen and then a single view that you
see when using the application. Therefore out of all of the options we want to choose
the Single View Application. After being chosen, a Product Name, Organization
Name, and Organization Identifier will need to be entered. These can be seen below

as a guide as to what your screen should look like.

Choose options for your new project:

Product Name: QR Code Reader
Organization Name: Your Name

Organization Identifier: | com.yourname

Bundle Identifier. com.yourname.QR-Code-Reade
Language: Objective-C ﬁ

Devices: Universal]

Use Core Data

Cancel Previcus | [SLCRSN

Setting Up the User Interface

You will first want to navigate to the Main.storyboard file under the QR Code Reader
folder. This will allow us to design what the main page of the app will look at. Under the
third option, which can be seen in the photo to the left, we will want to add a Start
Button, Title, Second View Window, and a Tap to Start message.

Once these are added you should have something that looks similar to the image below.
The beauty of Xcode is that it has auto adjusting built in for use on different iOS device
screens without having to develop multiple application versions for each.

ArcelorMittal QR Reader: Ready | Today at 10:11 PM 2 = o< OO

ArcelorMittal QR Reader) | Main.storyboard) ' Main.storyboard (Base)) [E] View Gontroller Scene) (5 View Controller » [View) || Tooloar |< 4 > D e o0 e
Tootbar

Tap on Start! to read a QR Code

wAny rAny B it E7 8

+I1OH S

Now that we have a layout that can be used by a user we will want to modify it, and
provide it with functionality. Next, you want to navigate to the ViewController.h. We will
need to add IBOutlet methods that can then be connected to the functions that were
created on the Main.storyboard. You will want to add the following lines of code to the
ViewController.h so that we have these functionalities. The last line before @end
provides an action method that will allow for the start and stop of the video capturing.

/4 ViewController.h
ff ArcelorMittal QR Reader

£/ Created by Trever Emerick on 3/23/15.
S/ Copyright (c) 2815 Trevor Emerick. ALl rights reserved.

#import =UIKit/UIKit.h=
#import =AVFoundation/AVFoundation.h=

@interface ViewController : UIViewController
@property (weak, nonatomic) IBOutlet UIView sviewPreview;

@property (weak, nonatomic) IBOutlet UILabel *lblStatus;
@property (weak, nonatomic) IBOutlet UIBarButtonItem =bbitemStart;

— (IBAction)startStopReading: {id)sender;

@end

View Controller
w Triggered Segues
manual
w Outlets
bbitemnStart
IbiStatusa
aasarchDisplayController
wienw
wviewPreview
FPrasenting Segues
relaticnship
ahow
ahow detail
present modally

®

@

popowver prasantation
ambed

push [deprecated)
mdal {deprecated)

custom
¥ Refarencing Outlets
Mew Referemcing Outlet

¥ Referencing Outlet Collections
Mew Referencing Outlet Collection

¥ Received Actions
startStopReading:

Next, go back to the Main.storyboard and right click on the view controller. You will see
a pop up like the one below. Now connect the bbitemStart to the Start button that was
created in the first steps. Now the view controller should look like the one on the right.

QR Code Reader

Since we now have the general design and interface. the next step is to implement the
actual reading of the QR Codes. The most beneficial way to start this process is to use
the IBAction that we wrote earlier which consisted of StartStopReading. This is already
declared and connected to the start bar. In the ViewController.m file you will want to
add the following flags in the private interface section.

@interface ViewController ()

@property (nonatomic) BOOL isReading;

@end
The second line of code is important to note, and it may be obvious when looking at the
statement isReading. If the value of the Boolean statement is No the application is not
scanning for a code. The opposite of this is true when it becomes yes. In the next step,
you will want to give the variables an initial value. In this case we want to make
isReading equal to no so that it is not looking for a barcode everytime on launch. This
initial declaration flag can be initiated inside the viewDidLoad, which can be seen
below.

- (void)viewDidLoad
{

[super viewDidlLoad];

_captureSession = nil;
_isReading = NO;

}
After this has been complete the next thing we want to do is implement the
startStopReading using the IBAction method. In order to do this we will want to add the
following lines of code.

- {IBAction)startStopReading: (id)sender {
if (!_isReading) {
if ([self startReadingl) {
[_bbitemStart setTitle:@"Stop™];
[_lblStatus setText:@"Scanning for OR Code..."];
}
3
elsef
[self stopReading];
[_bbitemStart setTitle:@"Start!"];

}

_isReading = !_isReading;

}

The implementation of this code is to first check if the app is already reading. If it is true
that the application is currently not reading a QR code, we will want to start the
startReading process. If this is the case we will switch the title of the current Start
button to Stop as well as the status message. Another instance of this is if the
application is already scanning a code, the program will jump to the else statement. This
will then set the button to be start. It does not matter what value the isReading currently
has, but at the end we will want to set its value to the exact opposite of what it is
currently.

The next set of values we will want to add will be one of the most important things that
can be added to the top private section of the ViewController.m. These lines of code
are critical to the startReading portion of the application.

@interface ViewController ()
@property (nonatomic, strong) AVCaptureSession *captureSession;
@property (nonatomic, strong) AVCaptureVideoPreviewlLayer svideoPreviewlLayer;

@property (nonatomic) BOOL isReading;

-[(BOOL)startReading;

After completing this step, Xcode may complain about the AVCaptureSession and the
AVCaptureVideoPreviewLayer classes. The reason for this is that the AV Foundation
framework has not yet been imported into the program. This is the reasoning that we
have added _captureSession = nil; in the private section of the m-file earlier. Please
check that you have added this. To correct this problem, you will want to navigate into
the ViewController.h file and add the following line of code #import
<AVFoundation/AVFoundation.h> under #import <UIKit/UIKit.h>. You should now not
receive any errors about the compilier not being able to implement the
AVFoundationFramework. While we are in the ViewController.h file we will want to add
another line of could. You should now have a ViewController.h file that looks like the one
below.

kimpurt <UIKit/UIKit. h>
#import <AVFoundation/AVFoundation.hs

@interface ViewController : UIViewController

@property {weak, nonatomic) IBOutlet UIView sviewPreview;
@property {(weak, nonatomic) IBOutlet UILabel *lblStatus;
@property {weak, nonatomic) IBOutlet UIBarButtonItem *bbitemStart;

- {IBAction)startStopReading: {id)sender;

@end

Now that we have many of the application logistics figured out and imported we will now want
to begin creating the StartReading and StopReading Booleans. This will be done back in the
ViewController.m file. We will want to add the following lines of code to the m-file which will
be used in the StartReading operation. We will first want to declare the AVMediaTypeVideo
option for the media type with the NSError ability Built into the code. The next step will be to
intiate the CaptureSession, by giving it the ability to works as an input and an output device.
Adding the input and output attributes to the captureSession does this. The next lines of code,
which uses the AVCaptureMetadataOutput, and the line after it, will take the QR code that has
been read and convert it into something that a human using the application can interpret. This
could be a url, phone number, or address. The dispatch_queue _t will take the scanned QR code
and create “myQueue” in order for total use by the application tasks. Then the following
metadata calls are used for finding the specific information that we are looking for from the QR

code. Up until this point your m-file should look similar to that of the one below. If there are any
errors you will want to fix them now.

— (BOOL)startReading {
MNSError serror;

AVCaptureDevice *captureDevice = [AVCaptureDewvice defaulitDevicewWithMediaType:AVMediaTypeWVideol] ;
AVCapturebDeviceInput =input = [AVCaptureDeviceInput deviceInputWithDevice:captureDevice error:ferrorl;

if {linput) {

MNSLog(@"%2", [error localizedDescriptiom]):

return NO;
+
_captureSession = [[AVCaptureSession alloc] init];
[_captureSession addInput:inputl;
AvVCaptureMetadataOutput *captureMetadatalutput = [[AVCaptureMetadataOutput alleocl initl;
[_captureSession addOutput:captureMetadatalutputl]:;
dispatch_gueue_t dispatchQueue;
dispatchQueue = dispatch_queue_create("myQueuae' , MULL);
[captureMetadataOutput setMetadataObjectsDelegate:self queuve:sdispatchQueue];
[captureMetadatalutput setMetadatalObjectTypes: [NSArray arrayWithObject:AVMetadatalObjectTypelQRCode]l];
_wideoPreviewLayer = [[AVCaptureVWideoPreviewlLayer alloc] initWithSession:_captureSession];
[_wvideoPreviewLayer setWideoGrawity:A\l yerVideoGravityResizeAspectFilll;
[_wideoPreviewlLayver setFrame:_viewPreview. layver.bounds];
[_wiewPrewview. layer addSublayer:_wideoPrewiewlLawverl;

[_captureSession startRunningl;

return YES;

T
Now that we have configured the output for the metadata, the next thing we want to do is provide
a preview for the user of what they are aiming their camera at. Using the videoPreviewLayer
from the AVFoundations Framework can do this. And then use the last line of code in order to

start the session caputuring. Your startReading section of your m-file should now look like the
one below.

- (BOOL)startReading {
NSError #«error;

AVCaptureDevice wcaptureDevice = [AVCaptureDevice defaultDeviceWithMediaType:AVMediaTypeVideo];
AvVCaptureDeviceInput =input = [AVCaptureDeviceInput deviceInputWithDevice:captureDevice error:&error];

if {tinput) {
NSLog(@"%@", [error localizedDescription]):
return NO;

_captureSession = [[AVCaptureSession alloc] init];

[_captureSession addInput:input];

AVCaptureMetadatalutput scaptureMetadataOutput = [[AVCaptureMetadataOutput alloc] init];
[_captureSession addOutput:captureMetadatalutput];

dispatch_gqueue_t dispatchQueue;

dispatchQueue = dispatch_gueue_create("myQueue", NULL);

[captureMetadatalutput setMetadatalbjectsDelegate: self gueue:dispatchQueue];

[captureMetadatalutput setMetadataObjectTypes: [NSArray arrayWithObject:AVMetadataObjectTypeQRCode]];

_wvideoPreviewlLayer = [[AVCaptureVideoPreviewlLayer alloc] initWithSession:_captureSession];
[wideoPreviewLayer setVideoGravity:AVLayerVideoGravityResizefspectFill];

[videoPreviewLayer setFrame:_ viewPreview.layer.bounds];

[wiewPreview.layer addSublayer:_videoPreviewlLayer];

[_captureSession startRunning];

return YES;

If you were to now compile the application with Xcode and then load it onto your phone, you
would see a preview when you hit the start button. Since we have not written the stopReading
portion, do not expect to be able to read any QR codes or stop the preview without closing the
application entirely. The next session will focus on using the metadata.

The first thing we will want to do when implementing the NSArray with the metadata is to make
sure the array is not equal to nil. When reading a QR code, we are interested in the first part of
the metadata. But once obtained we want to verify that this is the type of metadata that we are
looking for. So when the application returns a true value, this is the data that we will want to read.
Therefore it will cycle through what our if statement contains and process it. The following is
what our CaptureOutput should look like for outputting what the QR code represents.

-(void)captureOutput:(AVCaptureOutput *)captureOutput didOutputMetadataObjects:(NSArray *)metadataObjects
fromConnection:(AVCaptureConnection *)connection {

if (metadataObjects != nil && [metadataObjects count] > 0) {
AVMetadataMachineReadableCodeObject *metadataObj = [metadataObjects objectAtIndex:0];
if ([[metadataObj type] isEqualToString:AVMetadataObjectTypeQRCode]) {

[IblStatus performSelectorOnMainThread:@selector(setText:) withObject:[metadataObj stringValue] waitUntilDone:NO];

[self performSelectorOnMainThread: @selector(stopReading) withObject:nil waitUntilDone:NO];
[bbitemStart performSelectorOnMainThread:@selector(setTitle:) withObject:@"Start!" waitUntilDone:NO];

_isReading = NO;

}
H
H

(@end

With a working reader and preview that can process metadata, a stopReading can be used to
bring the application to a halt. First we will want to declare it in the private section of our m-file.

After doing this we will implement what the stopReading function does. For the private section
you will want to add the following of code, highlighted below.

@interface ViewController ()

-(void)stopReading;
@end

Below startReading outside of the private section we can now implement the stopReading
functionality to the application. The main function of the tasks within stopReading is to end the
processes that are being used by startReading. The capture session will go from currently
reading back to nil. We will then want to remove the preview sessions and end the
captureSession. These commands can be seen below and should be added into your code.

-(void)stopReading {
[_captureSession stopRunning];
_captureSession = nil;

[_videoPreviewLayer removeFromSuperlayer];

}

After this you are now ready to compile the finished code, upload it to your iOS device. Once
these steps you are now ready to start scanning!

