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AN ABSTRACT OF THE THESIS OF David Joseph Hagerty for the Master of 

Science in Electrical Engineering presented May 7, 1993. 

Title: Designing and Simulating a Multistage Sampling Rate Conversion System 

Using a Set of PC Programs 

APPROVED BY THE MEMBERS OF THE THESIS COMMITTEE: 

The thesis covers a series of PC programs that we have written that will 

enable users to easily design FIR linear phase lowpass digital filters and multistage 

sampling rate conversion systems. The first program is a rewrite of the McClellan

Parks computer program with some slight modifications. The second program uses 

an algorithm proposed by Rabiner that determines the length of a lowpass digital 

filter. Rabiner used a formula proposed by Herrmann et al. to initially estimate the 

filter length in his algorithm. The formula, however, assumes unity gain. We 

present a modification to the formula so that the gain of the filter is normalized to 

accommodate filters that have a gain greater than one (as in the case of a lowpass 

filter used in an interpolator). We have also changed the input specifications from 

digital to analog. Thus, the user supplies the sampling rate, passband frequency, 
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stopband frequency, gain, and the respective maximum band errors. The program 

converts the specifications to digital. Then, the program iteratively estimates the 

filter length and interacts with the McClellan-Parks Program to determine the 

actual filter length that minimizes the maximum band errors. Once the actual length 

is known, the filter is designed and the filter coefficients may be saved to a file. 

Another new finding that we present is the condition that determines when 

to add a lowpass filter to a multistage decimator in order to reduce the total 

number of filter taps required to implement the system. In a typical example, we 

achieved a 34% reduction in the total required number of filter taps. 

The third program is a new program that optimizes the design of a 

multistage sampling rate conversion system based upon the sum of weighted 

computational rates and storage requirements. It determines the optimum number 

of stages and the corresponding upsampling and downsampling factors of each 

stage of the design. It also determines the length of the required lowpass digital 

filters using the second program. 

Quantization of the filter coefficients may have a significant impact on the 

frequency response. Consequently, we have included a routine within our program 

that determines the effects of such quantization on the allowable error margins 

within the passband and stopband. Once the filter coefficients are calculated, they 

can be saved to files and used in an appropriate implementation. The only 

requirements of the user are the initial sampling rate, final sampling rate, passband 

frequency, stopband frequency, corresponding maximum errors for each band, and 

the weighting factors to determine the optimization factor. 

We also present another new program that implements a sampling rate 

conversion from CD (44.1 kHz) to DAT (48 kHz) for digital audio. Using the 

third program to design the filter coefficients, the fourth program converts an input 
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sequence (either samples of a sine wave or a unit sample sequence) sampled at the 

lower rate to an output sequence sampled at the higher rate. The frequency 

response is then plotted and the output block may be saved to a file. 
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INTRODUCTION 

Sampling rate conversion is an important digital signal processing concept 

that is used in a variety of applications. One such application is in the field of 

professional digital audio. There are three primary rates used, with a need to 

convert from one to another. The three include a broadcasting rate of 32 kHz, a 

consumer product rate (primarily CD) of 44.1 kHz, and a studio rate (primarily 

DAT) of 48 kHz [1]. 

Another application is in the area of digital communications, where a 

variety of coding formats may be used in different parts of a communications 

network [2]. One example is converting delta modulation (DM) format to pulse 

code modulation (PCM) format. Delta modulation is a simple technique that 

encodes the sign of each sample-to-sample difference of a highly over-sampled 

signal in a single bit. In contrast, pulse code modulation requires that each 

quantized sample be encoded inn bits. Intuitively, DM will operate at a higher 

sampling rate than PCM. Hence, there is a need for converting the sampling rates 

when changing formats. 

Schafer and Rabiner [3] have shown that sampling rate changes are 

effected by interpolation and/or decimation and can be efficiently implemented by 

using finite impulse response (FIR) digital filters. Also, Crochiere and Rabiner [4] 

have shown that the computational rates and storage needed for conversion could 

be minimized by using more than one stage to change the sampling rate. Using 

these ideas, our paper presents new thoughts on some old algorithms and two new 

PC programs. One of the new programs allows users to easily design optimum 
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multistage sample rate conversion systems that are based upon minimizing a factor 

which is the weighted sum of the computational rate and the storage. The other 

program uses a set of filter coefficients that is output from the first program to 

simulate a CD-to-DAT sampling rate conversion. 

This paper is divided into seven sections. In the section following the 

introduction, we discuss the design of an FIR linear phase lowpass digital filter 

with a predetermined number of filter taps, using the Parks-McClellan algorithm 

[5]. After a brief explanation of the algorithm, a Turbo Pascal version of the 

McClellan computer program [5] that incorporates the algorithm is used to solve 

an example problem. 

In many cases, however, one does not know the required number of filter 

taps needed to meet the design specifications. Rabiner [ 6] proposed an algorithm 

for solving this problem. His algorithm initially estimates the filter length using 

Hemnann's formula and then uses the Parks-McClellan algorithm to see if the 

maximum band errors have been minimized. If they are not minimized, the 

estimated filter length is increased (or decreased) and the Parks-McClellan 

algorithm is called again. This process repeats until the maximum band errors have 

been minimized. Herrmann's formula and Rabiner's algorithm assume that the gain 

of the lowpass filter is one. However, a lowpass filter that is part of an interpolator 

system will require a gain that is greater than one. Consequently, we present a new 

modification to Herrmann's formula to normalize the gain .. We also propose a 

change to the input requirements for Rabiner's algorithm to include the gain of the 

lowpass filter, along with the sampling rate, passband frequency, and stopband 

frequency in analog terms rather than digital terms to more closely link the input to 

the designer's specifications. A flowchart of the modified algorithm and an example 

are presented. The example demonstrates that when the gain of the filter is greater 



than five, the number of iterations required to determine the length of the filter is 

less than half of the number required using Rabiner's original algorithm. 
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In the fourth section, the primary digital signal processing concepts that are 

incorporated as part of the multistage design program are discussed. They include 

sampling rate conversion, FIR structures for sampling rate conversion, multistage 

design, and errors in the direct form FIR digital filters caused by quantization. We 

also introduce a new finding. This discovery is a condition that determines when to 

add a lowpass filter to a multistage decimator in order to reduce the total number 

of filter taps required to implement the system. In a typical example, we show a 

34% reduction in the total required number of filter taps. 

In the fifth section, the new multistage design program is presented. The 

program is demonstrated by designing a multistage system for CD-to-DAT 

conversion and calculating the lowpass filter coefficients for each stage. The 

program can optimize the design in approximately one second on a 486 machine. 

The user can modify the design or continue analyzing the original design by testing 

different word lengths to represent the filter coefficients. After this, the actual filter 

length and coefficients of each stage are determined and saved to ASCII files for 

further use. Hence, the total time spent designing and analyzing a sampling rate 

conversion system can be reduced from a day or so to minutes. 

The other new program is presented in the sixth section. It tests the designed 

system by simulating a CD-to-DAT sampling rate conversion using the filter 

coefficients that were calculated in the previous program. The program generates a 

sampled sine wave or a unit sample, converts the sampling rate, and plots the 

frequency response of the converted output. All of this can be done in less than 

two minutes on a 486 machine. 

The final section summarizes the results. 



DESIGN OF AN FIR LINEAR PHASE LOWP ASS DIGIT AL FILTER OF 

KNOWN LENGTH 

McClellan and Parks [7] have shown that the method of equiripple design 

based upon Tchebysheff approximation methods is a very effective way of 

designing lowpass as well as other types of FIR linear phase digital filters. The 

filters designed by this technique are optimal in the sense that the maximum 

weighted approximation errors in the frequency bands over the range of interest 

are minimized. 

Suppose that we wish to design a type I FIR linear phase digital filter as in 

Fig. 1. 
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Figure 1. Lowpass filter design. 
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Recall that a type I FIR filter has a symmetric impulse response 

h[ n] = h[ ( N - 1) - n] , O:::;n:::;N-1 

where N is an odd integer. The frequency response is given by 

(1) 



the expression 
N-l 

H(ejro) = I,h[n~-jron 
n=O 

N-l 
-2- N-l 

= I,h[n]e-iCIYI + I,h[n]e-jcm 
n=O N+l n=-

2 

N-l 
-2- 0 

= I,h[n]e-jCIYI + I,h[N-l-n]e-jro(N-I-n) 
n=O N-3 n=-

2 

N-I N-3 - -
2 2 = I,h[n]e-jCIYI + I,h[n]e-jro(N-l-n) 

n=O n=O 

N-I 

= e-jro(llf) {:th[n](ejro(llf-n) +e-jro(llf-n))-h[¥]} 
n=O 
N-I 

2 

= e-iroCJlf) {I,2h[n]cos(ro(¥-n))-h[llyl]} 
n=O 
N-I 

2 
= e-iroCllf) { I,2h[¥-k]cos(rok)-h[¥]} 

k=O 
N-I 

. 1i=l. -2-

= e-;ro( 2 ) I,a[k]cos(rok) 
k=O 

where a[O]=h[Nil] and a[k]=2h[N21-k] for k=l,2,. .. ,N2l· The terms 

cos(rok) can be expressed as the sum of powers of cos(ro) in the form 

cos( rok) = Tk (cos ro) 

where Tk (x) is the k th order Tchebysheff polynomial term, defined by 

~(x)=cos(kcos-1 x). Thus, 
N-1 -2-

H(ejffi) = e-jro(¥) I,a[k](cosro)k. 
k=O 

According to the alternation theorem used by Parks and McClellan [ 5], the 
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(2) 

(3) 

(4) 



frequency response magnitude 
N-1 
-2-

6 

H(ejro) = La[k](cosco)k (5) 
k=O 

will best approximate an ideal lowpass frequency response 

H d ( ejro ) = { 1, o $ co $ co P 

0, (J)s$(J)$7t 

over the compact subset F c [O, 7t], where F = [O, co P] u [cos, 7t], provided that 

the maximum weighted error 

llE(ejro)ll = maxlE(ejro)I 
roeF 

where 

E(ejro) = W(ejro )[ Hd(ejro )- H(ejro)] 

and 
. 1 ~s 

W ( e1ro ) = { K = ~' 0 $ CO $ co P 

1, (J)s $(J)$7t 

exhibits at least N { 1 alternations on F. These alternations are a set of extremal 

frequencies such that co1 < co2 < ... <co¥< co¥ and E(ejro;) = -E(ejroi+I ), for 

(6) 

(7) 

(8) 

(9) 

i = 1,2, ... , Nil. The weighting function will differ from Eq. (9) if other filter types 

are used instead of the type I filter. 

McClellan et al. [5] wrote a FORTRAN program that determines the best 

approximation to an ideal lowpass filter (as well as other types of filters) using the 

equiripple design method that we just described. Since the a[k] 's are initially 

unknown, the program uses a Lagrange interpolation polynomial A(ejro)of order 

N2+
1 that passes through the extremal frequencies to approximate Eq. (5). The 

output to the program includes the extremal frequencies and the FIR linear phase 

digital filter coefficients. We have translated the program into Turbo Pascal for use 

on a PC. 



As an example, consider the design of a 101-point digital filter with a 
ro ro 

passband frequency of 2~ = 0.42, a stopband frequency of 2~ = 0.46, 

and 

Hd (ejro) = { l, 0 s; 2
00
rt s; 0.42 

0, 0.46 s; ~ < 0 5 27t - • 

10~ 
. { -4 ro W(e'ro) = 10-2 = io , o s; 2rt s; 0.42 

1, 0.46 s; ~ < 0 5 27t - • 

Figure 2 shows the format for data entry. The program may require several 

Fi~ure 2. Input for McClellan-Parks program. 

iterations to ensure that the maximum weighted error meets the passband and 

stopband requirements. Consequently, the program may take up a minute or so to 

determine the extremal frequencies and corresponding filter length. 

The filter coefficients and extremal frequencies are not shown here but are 

part of the output. The frequency response is shown on the next page. Figure 3(a) 

shows the error in the passband while Fig. 3(b) shows the dB magnitude response. 

Note that there are N { 1 =51 extremal frequencies. 
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DESIGN OF AN FIR LINEAR PHASE LOWP ASS DIGIT AL FILTER OF 

UNKNOWN LENGTH 

The McClellan computer program requires that the filter length N, the 
(l) (l) 

passband frequency _P , the stopband frequency _s , and the ratio of passband-to-
21t 21t 

stopband error K are known. The program can then determine the polynomial 

with an order related to N that minimizes the maximum errors in the passband and 

stop band. 

In many engineering problems, however, one of the parameters may not be 

known. A major breakthrough occurred when Herrmann et al. [8] discovered a 

mathematical relationship that estimates the filter length in terms of the other four 

filter parameters. Thus, it is possible to design a filter without knowing the length. 

Herrmann's formula is given by 

where 

and 

~ = D00 (0P,OJ 0 0 (COP -cos)+ I 
( -I 2 f ( P' s) 2 

(l)p -(l)s) 1t 1t 

D00 (0p,os) = [a1 (log10 OP)2 +a2 log10 OP +~]log10 Os 

+[a4(log10 Op)2 +a5 lOg10 op +a6], 

f(op,os) = b1 + b2 (log10 op -log10 os), 

a1 =5.309xl0-3 

a2 = 7.114xl0-2 

~ = -4. 761xl0-1 

bl = 11. 01217 

a4 = -2. 660xl0-3 

a5 = -5. 941xl0-2 

a6 = -4.278x10-1 

b2 = 0.51244. 

(10) 

(11) 

(12) 
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Rabiner [6] has written an algorithm that uses Eq. (10) to estimate the filter 

length and then uses the Parks-McClellan algorithm to detennine the actual filter 

length that minimizes the maximum allowable errors in the passband and stop band. 

Figure 4 illustrates the logic for the algorithm. The algorithm is described below. 

(J)P (J)s 0 8 
21f 2,1t Ip Is 
'Estimate N 

using Eq. ( 10) 

j=O 

/" 1~1(1)1 I .... , -------------;N2~ i; K 

Invoke Parks
McClellan Algorithm 

= 

Yes 

Invoke Parks
McClellan Algorithm 

< 

,._,.-_ 
N=N+2 

No 

}=I J=-1 

Fi~ure 4. Rabiner's algorithm [6]. 

Yes 

After estimating the filter length from Eq. (I 0), the direction parameter j is 

/\ 00 00 0 . 
set to 0. The input parameters N, 2~, 2~, and K = o: are used as input to-the 

/\ 

Parks-McClellan algorithm that returns the actual stopband error Os. This value is 

compared to 8
5

• If they are equal (within some tolerance), the algorithm is done. If 
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/\ /\ 

8 s > 8 s, N is incremented by 2. This increases the order of the approximating 

polynomial by 1. If j = -1, the direction of estimation has changed and the 
/\ 

minimum value of N that meets or exceeds the specifications has been reached. In 

that case, the Parks-McClellan algorithm must be invoked again and the algorithm 

is done. If j -:1= -1, it is set to 1 and the Parks-McClellan algorithm is invoked for 

another iteration. 
/\ /\ 

If 8s < 8s and j = 1, the current value of N is the minimum one that meets 
/\ 

or exceeds the specifications and the algorithm is done. Otherwise, N is decreased 

by 2, j is set to 1, and the algorithm repeats. From empirical evidence, Rabiner 

found that for a large number of lowpass filters with unity gain in the passband, the 

filter length could be found after two or three iterations. 

What about the lowpass filters used for interpolation? A gain of L is 

required of such filters. Intuitively, we can see that increasing the gain while 

leaving the other filter parameters unchanged will require a longer filter length. No 

allowance is made for this in Eq. (10), nor is one made in Rabiner's algorithm. 

Consequently, Rabiner's algorithm will require more iterations to arrive at a final 

solution. 

We propose a modification to Eq. (10) to better address such problems. A 

simple approach is to normalize the frequency response in the passband. Thus, we 

can write the new relationship as 

/\ 0 0 
N = D 00 (-f' -t) - f(~ ~) (fp - fJ 

(fp - JJ IF L ' L F + 1 
(13) 

where 

D (~ ~) [ (1 ~)2 1 ~ ] 1 Os 
00 L ' l = al 0g10 L + a2 0g10 L + G3 0g10 T 

+[ a4 (log10 ~ )2 +as log10 ~ + a6]' (14) 

f(~, ~) = h1 +b2 (log10 ~-log10 ~) 



and 

= f(Op,Os), 

a1 = 5.309xI0-3 

a2 = 7.114xl0-2 

a3 = -4. 76 lxl0-1 

b, = 11. 01217 

a4 = -2.660xl0-3 

as = -5. 94 lxl 0-2 

a6 = -4.278x10-1 

b2 = 0.51244. 

The Rabiner algorithm can then be modified as in Fig. 5. In this case, original 

F fpf/Jp8sL 

' Estimate N 
using Eq. ( 13) 

J=O 

------~=:JN 11#1 ~I K 

= Done 

Invoke Parks
McClellan Algorithm 

,. /\ 

N=N+2 

< 

Yes 

12 

(15) 

Done 

Invoke Parks
McClellan Algorithm 

Done 

Yes 

A A 

N=N-2 

J=I J=-l 

Figure 5. Modified algorithm . 
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specifications are stated in terms of frequency and are used to estimate the filter 

length. This feature links the program input more closely to the design problem. 

The following example demonstrates the effectiveness of using Eq. (13) to 

estimate the filter length. Suppose that we want to design a lowpass filter which 

has the following parameters: F = 48 kHz, JP= 20 kHz, fs = 22 kHz, 8P = 10-2
, 

and 8 s = 10-{j. We also want to vary the filter gain L. The test is to compare the 

number of iterations required to arrive at a filter length that meets the design 

specifications using Eqs. (10) and (13). The results are shown in Table I. It is 

L 

1 

2 

5 

10 

TABLE I 

COMPARISON OF EQS. (10) AND (13) FOR ESTIMATING 
THE FILTER LENGTH 

I\ I\ 

Ea. (10) I N Ea. (13) I N 

102 2 98 102 2 98 

102 4 110 115 4 107 

102 11 124 129 4 121 

102 14 130 140 5 130 

obvious that more iterations are required as L increases if Eq. (10) is used. A few 

more examples were tested, resulting in the following conclusions: 

1. If L = 1 or 2, Eq. (13) was either comparable or superior to Eq. (10). 

2. If L > 2, Eq. (13) was always superior to Eq. (10). 

3. The estimations by both Eqs. (10) and (13) became less accurate as L 

increased. 



Perhaps with more research, an estimate superior to Eq. (13) can be found by 

determining new constants. 

We have written a Turbo Pascal PC program for the modified algorithm. 

14 

The program will take from one second to two minutes to arrive at a satisfactory 

filter length, depending upon the other specified filter parameters. Figure 6 shows 

the input for the modified algortihm program. 

Figure 6. Input for the modified algorithm program. 

On the following page, Fig. 7 shows the frequency response. The filter 

coefficients, the extremal frequencies, and some other band data are also available 

as part of the program, but are not shown here. The filter coefficients may be 

saved to a file at the conclusion of the program. 
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Figure 7. Frequency response of the lowpass filter system. 
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REVIEW OF SOME FUNDAMENTAL DIGITAL SIGNAL PROCESSING 

CONCEPTS 

SAMPLING RA TE CONVERSION 

Decimation By An Integer Factor M 

Suppose that we want to reduce the sampling rate of a digital signal by an 

integer factor M. If the initial sampling rate is F, the resulting sampling rate will 

be 

F' = _f_ 
M 

and the corresponding sampling period will be 

l where T= p· 

T'=MT, 

An easy way to understand decimation is to examine the time and 

(16) 

(17) 

frequency domain graphs. Figure 8 illustrates the overall process in a block 

diagram and the time and frequency responses in graphs as the signal is processed. 

---~.,., l~, ''"" 
~~.· 
, , , .. ,... 

....... ~ 'I 

•
1111

1 i -- ..... ,, t:::)/'"·------~ 
i• .. 

;--·-~~~ : 
-~-~ 

... -."-, n,----- ---· ,...., ' - ,., ..... JI ... -.~---.--
__ '11.-- - f ¥ ~ 

0 .. ,. •• •• I .... 

' .... _.II' 

Fi~ure 8. Decimation by an integer factor M [2]. 
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In the frequency domain, the lowpass filter anticipates the sampling rate 

reduction by ensuring that the frequency components above M are negligible. 

The frequency response of the lowpass digital filter approximates the ideal 

characteristic 
FJi 

H,(efe>) = { I, lrol < 2it( /) = ~ 
0, ~ s; jroj s; n 

(19) 

Suppose that the filter is a type I FIR linear phase system as in Eq. (1). The filtered 

output response to an arbitrary input sequence x[n] will be 

i
1 [N-1] [ N-1] w[n]= L.Jh[k]{x[n-k]+x[n-(N-l-k)]}-h -- x n--- . 

k=O 2 2 
(20) 

The sampling rate reduction is achieved by processing the filtered output through a 

sampling rate compressor. The compressor saves every M th sample and discards 

the rest. This process is called downsampling and can be represented 

mathematically by 

y[m] = w[Mm]. 

Substituting Eq. (20) into Eq. (21) results in 

(21) 

Nil [N-l] [ N-1] y[m] = Lh[k]{x[Mm-k]+x[Mm-(N-l-k)]}-h -- x Mm--- . (22) 
k=O 2 2 

The process of lowpass filtering a signal and downsampling the result is called 

decimation. 

Interpolation By An Integer Factor L 

ff we want to increase the sampling rate F of a digital signal by an integer 

factor L, the new sampling rate will be 

F'=LF 

and the corresponding sampling period will be 

T'- T 
- L' 

(23) 

(24) 
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where T =fr. 
Again, we refer to the time and frequency domain graphs as an easy way of 

grasping the concept. Figure 9 illustrates the overall process in a block diagram 

and the time and frequency responses in graphs as the signal is processed. 

SAMPLING RATE 
EXPANDER 

~~L w(m) 

I I ~~ 
F F

1
• LF F' 

~-- ~ ! l', . ,._ ... __ 
x(n)i : \ -... lx(e1"'1: f 

I \ 
I \ 

, ___ ;,, 0 .,,. 217" 

(cl 

----T,, _, n·--·---~ ·--···.-
w(m) , \ -z... IW(e' ii~ \/ 

·····'-,.. r , _ _., 0 17"/L .,,. 2'7' .., 1 

(d) 

.. ~.Tr- h .... , .. 
y(ml; ' 4'z._ IY(eJW'\1 ~ ! • I 

Q '7'/L lr 211" W 

Figure 9. Interpolation by an integer factor L [2]. 

The sampling rate increase is the result of processing the signal through a 

sampling rate expander. The expander inserts L -1 zero-valued samples between 

each pair of samples of x[n], resulting in the sequence 

w[m] = { x[z], m = 0,±L,±2L, ... 
0' otherwise. 

(25) 

This process is called upsampling. 

In addition to having the baseband frequencies of interest (i.e., -27t( ~) to 

27t(~ ), where fc. is the cutoff frequency) in its spectrum, w[m] also has i~ages 
of the baseband in its spectrum. The images are centered at± 2£, 4£ , .... To 

eliminate these undesirable images, w[m] must be filtered through a lowpass digital 

filter that approximates the ideal characteristic 



Hd(ejro) = { L, lro'I < 21t( ~) = ~ 
o. ~ ~ I ro 'I ~ n: 

where ro' = 2n(f.,) = 2n(/p.). The passband gain must be Lin order to 

compensate for the energy lost in filtering out the L -1 hannonic images. The 

process of upsampling followed by lowpass filtering is called interpolation. 
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(26) 

Assume for the moment that the lowpass filter is an FIR system of infinite 

length. The filtered output will be 
00 

y[m] = °Lh[m-k]w[k]. (27) 
k=-oo 

Substituting Eq. (25) into Eq. (27) results in 

00 k 
y[m] = L h[m-k]x[-], (28) 

1c=-oo L 

where x[ ! ] is nonzero when !5:_ is an integer. If we make the substitution 
L L 

k 
-= r, (29) 
L 

we have 
00 

y[m] = °Lh[m-rL]x[r]. (30) 
r=-oo 

We now make another substitution 

r=l~J-n. (31) 

where LuJ is the truncation of u to the next lowest integer. The result is 
00 

y[m] = °Lh[m-lf JL+nL]x[lf J-n] 
n=-oo 

= f h[mE9L+nL]xcl-~J-nl (32) 
n=-oo 

where m EB L denotes the value m modulo L, or the remainder of m divided by L. 

Next, we introduce the notation 

gmeL[n] = h[mEBL+nL] (33) 



20 

to highlight that h[m EB L + nL] is periodic in m with period L. Since gmeL[n] is 

the impulse response of the system at time m to an input at time l ~ J- n, a delay 

of the input will not necesarily result in the same delay of the output. Thus, the 

system is time-varying. Substituting Eq. (33) into Eq.(32) results in 

y[m] = LgmeL[n]x[l£J-n]. (34) 
n=-oo 

Suppose that the filter is an FIR linear phase system having filter length N 

such that N = QL, where Q is an integer. If N is not an integer multiple of L, we 

can pad h[k] with zeros so that the FIR filter length will be N' = QL, yet the 

sequence h[k] will remain unchanged. In either case, Eq. (34) can be expressed as 
Q-1 

y[m]= Lgmedn]x[l-'fJ-n]. (35) 
n=O 

When this form is employed, the number of computations is reduced by a factor of 

_!_ compared to the direct form for each output sample. 
L 

Conversion By A Rational Factor LIM 

If the sampling rate of a digital signal is F and we convert it by a rational 

factor!::._, the resulting sample rate will be 
M 

F' = cf:t )F (36) 

and the corresponding sampling period will be 

T' = ( 1~/)T, (37) 

where T = } . There are two ways of describing such a sampling rate conversion 

system. The first way is to consider the system as the cascade of an interpolation 

subsystem followed by a decimation subsystem. This is shown in Fig. lO(a). Note 

the order of the subsystems. If the order were reversed, there would be fewer 

samples used as a basis for interpolation. As a result, the output signal would be 
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less accurate. The second, more efficient way is to replace the two lowpass filters 

with one as shown in Fig. I O(b ). This is possible since both filters are operating at 

the same sampling rate. 

F F11
• LF F1 • .!:...F 

M 

(a) 

h~M 
__.I 

F ~· LF F" F'• .!:.. F 
M 

( b) 

Figure 10. Two ways of interpreting sampling rate conversion by!:__ [2]. 
M 

In order to fulfill the role of a lowpass digital filter for both interpolator 

and decimator, the filter should approximate the ideal characteristic 

Hd(ejro") = { L, 
0, 

where co"= 2rc(_i_) = 2rc(_!_)(/ ). 
~'' L ~ 

I . ( 1t .JI..) lro" <mm L, M 

. (.E. .1L) ~ 1t mm L. M 

Examining Fig. 1 O(b ), we see that the time domain relationship for the 

interpolator subsystem is the same as Eq. (32). Thus, we have 

v[k] = f h[kffiL+nL]x[lfJ-n]. 
n=-oo 

From Eq. (21), we have 

y[m] = v[Mm]. 

Substituting Eq. (39) into Eq. ( 40) results in 

(38) 

(39) 

(40) 



"" 
y[m] = L,h[MmEBL+nL]x[l ~m J-n]. 

n=-oo 

We now use notation similar to that which we used in Eq. (32); namely, 

gMmedn] = h[MmEBL+nL]. 
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(41) 

(42) 

Again, this is a convenient way of highlighting the periodicity. Also, this notation is 

makes it easy to translate the scrambled coefficients into a two dimensional 

sequential array in a computer program that implements a sampling rate 

conversion. 

If the filter is an FIR linear phase system having filter length N and 

N = QL, where Q is an integer, Eq. (41) can be expressed as 

Q-1 

y[m] = L,gMmedn]x[l ~m J-n]. 
n=O 

When this form is employed, the number of computations is also reduced by a 

factor of ..!._ compared to the direct form for each output sample. 
L 

(43) 

IMPLEMENTATION OF A ONE-ST AGE SAMPLING RA TE CONVERSION 

SYSTEM USING FIR STRUCTURES 

An Efficient FIR Structµre For Decimation By An Integer Factor M 

Consider the decimator model that was developed in the previous section 

and is shown again in Fig. 1 l(a). According to the model, the input sequence is 

first lowpass filtered at the high sampling rate F and then downsampled by the 

sampling rate compressor. The two-step process is described by Eqs. (20) and (21) 

and the equations are repeated here 
N-l 

w[n] = L,h[k]x[n-k] (44) 
k=O 

y[m] = w[Mm]. (45) 
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A realization of these equations is shown in Fig. 11 (b) and is called the direct form 

structure. 

The decimator can be realized more efficiently, however, if we substitute 

Eq. (44) into Eq. (45). The result is Eq. (23), which is repeated for convenience as 

N-1 

y[m] = _Lh[k]x[Mm-k] (46) 
k=O 

A realization of this equation is called the transposed direct form structure and it is 

shown in Fig. 11 ( c). The advantage of this realization is that the filter now 

operates at the low sampling rate !_ and the computational rate is reduced. 
M 

~
y(ml 

(GI 

F F/111 

1Cn I hlOI yVnl 
(bl -, .. 

hU I 

z•I 
hlZI 

z·I 
I 

Z-' t l'CN·ll 

ICnl t'fOI ,C.I 
(CI - -z-1 t'f II 

r• t'fZl 

z-1! __ ......... ! 
~ '"' 

Figure 11. Generation of an efficient direct form structure for realizing 
decimation by an integer factor M [2]. 

Further reduction of the computational rate can be realized if the filter 

coefficients are symmetric. If the filter length is even and the coefficients are 

symmetric, Eq. (46) can be written as 

!!__I 
2 N~ 

y[m] = _Lh[k]x[Mm-k]+ _Lh[k]x[Mm-k] 
k=O k-N 

2 
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!!._1 !!._1 
2 2 

= 2,h[k]x[Mm-k]+ 2,h[N-1-k]x[Mm-(N-l-k)] 
k=O 

!!._1 
2 

k=O 

= 2,h[k]{x[Mm-k]+x[Mm-(N-1-k)]}. (47) 
k=O 

A realization of this form is called the symmetric transposed direct form structure 

and is shown in Fig. 12. This structure requires N multiplications and N -1 
2 

hCOI y(lftl 

tlltl 

r' 

11121 

lllNl2'"11 

I 
z-1 

Figure 12. An efficient direct form structure for realizing decimation 
by an integer factor M that uses symmetry [2]. 

additions for every output sample. Since the compressor discards M - 1 of every 

M input samples, the filter operates at the low sampling rate!__. Consequently, 
M 

only !__(N) multiplications and .!_(N -1) additions are performed every second. 
M 2 M 

If the filter length is odd, it can be shown that ~ ( N; 1) multiplications and 

f_(N -1) additions are performed every second. 
M 

An Efficient FIR Structure For Interpolation By An Integer Factor L 

A model for the interpolator is repeated in Fig. 13. 

•nl .,___JC• , L' 
Figure 13. Block diagram for an interpolator [2]. 
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As we have previously shown, the interpolator can be represented by the 

equation 
Q-1 

y[m]= Lgmedn]x[lfJ-n]. (48) 
n=O 

The direct implementation of this equation is shown in Fig. 14. The sets of 

x1n1 ylrnl 

z'"' 

z-1 

z-1 

F ~ 

Fi~ure 14. Efficient structure for an interpolator [2]. 

coefficients g0 [n],g1[n], ... ,gL_1[n] can be treated as L separate, linear, time-

invariant filters that are decimated (by a factor L) versions of the impulse response 

h[n] and operate at the low sampling rate F. When treated in this way, the sets of 

coefficients g0 [n],g1[n], ... ,gL_1[n] are referred to aspolyphasefilters [2]. The 

structure in Fig. 14 has L branches. Each branch requires Q multiplications and 

Q - 1 additions, summing to a total of LQ = N multiplications and 

L(Q-1) = N - L additions for each input sample. Since each polyphase filter 

operates at the sampling rate F, FN multiplications and F(N - L) additions are 

performed every second. 

An Efficient FIR Structure For Conversion By A Rational factor LIM 

Efficient realizations of the decimator and the interpolator were obtained 

by commuting the filtering operations to occur at the low sampling rates. Such an 

operation is difficult for the model shown in Fig. 15 because the filter is located 

between the expander and compressor. Efficient structures do exist, however. 
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h(k) 

L 
F F·· LF F" F'. M F 

Figure 15. Block diagram for converting the sampling rate by ~ [2]. 
M 

Figure 16 shows how the equation can be implemented using a computer program 

a Cn'I 

~ 
INPUT 
BUFFER 
IM SAMPLES) 

STATE -VARIABLE 
BUFFER 

10 SAMPLES I 

ylm'I 

-L-
OUTPUT 
BUFFER 
IL SAllFLESl 

-o-·-o - .... :-o -
'-------" '-.--' ...._____, 

90 1n'l Q1ln'I 9L_1ln'1 

COU'1CIENT STORAGE 
lL SETS OF Q SAMPLES EAOt 

Figure 16. Block diagram of a program structure for converting 

the sampling rate by ~ [2]. 
M 

whereby a block of M input samples is converted into a block of L output 

samples. The program starts by initializing all buffers to zero. M input samples are 

then shifted into the input buff er and the first of those is shifted into the state 

variable buffer. Next, each of the Q samples of the state variable buffer is 

multiplied by one of the Q samples of the coefficient set g 0 [ n] and the products 

are summed, resulting in y[l]. An additional decision must be made to calculate 

y[ m] when m > 1. If l M; j increases by one, another input sample is shifted into 

the state variable buffer. Otherwise, no change is made to the input buffer. In 

either case, an output sample is then calculated. 

For each output sample, Q = N multiplications and Q - 1 = N -1 additions 
L L 

are required. Since each of the Q-tap FIR lowpass digital filters operates at the 

sampling rate F( ~). F( Z) multiplications and F( N ~ L) are performed every 

second. 



IMPLEMENTATION OF A MULTISTAGE SAMPLING RA TE 

CONVERSION SYSTEM USING FIR STRUCTURES 

Multistage structures have proven to be very efficient when designing 

sampling rate conversion systems [2]. They are particularly useful in cases where 

the sampling rate factors L or M are much greater than one or they are 

approximately equal. 
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If a sampling rate conversion system has more than one stage, the ratio of 

transition band to sampling rate for each stage is greater than it is for a single 

stage. From Eq. ( 13), we can see that this ratio is inversely proportional to the 

estimated length of the lowpass filter. Consequently, the length of the lowpass 

filter for each stage will be less than the length of a lowpass filter for a single stage 

system. In many cases, the sum of the lengths of the lowpassfiltersfor all stages 

will be less than the length of the lowpass filter for a single stage. This can 

significantly reduce the computational rates and required storage. 

To demonstrate the effectiveness of the multistage design, consider the 

following example. Suppose that the input sampling rate is 4 kHz and the desired 

output sampling rate is 200 Hz. The decimation factor is M = 4000 I 200 = 20. 

Assume that the passband of the signal ranges from 0 to 40 Hz and the signal is 

attenuated for frequencies 50 Hz and above. Also, assume that the maximum 

allowable errors in the passband and stopband are 10-2 and 10-6, respectively. We 

will now examine three different system designs. 

Desi~n 1 

The first design is the single stage system as shown in Fig. 17(a). The 

frequency response of the lowpass filter is shown in Fig. 17(b). To estimate 
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x(n) ~ 
I ~ l 2° I 2~m~z ) H 

4 kHz 

N 

(a) 

H~ 
II I 11 Q 4050 2COO f, Hz 

3550 4050 

(b) 

Figure 17. One-stage decimator. 

the lowpass filter length, we refer to Eq. (13). 

~ = D00 (10-
2
,10-6) _ /(10_2 l0-6) (50-40) + l 

(50-40)/ ' 4000 
/4000 

= 1, 734 taps (49) 

The required amount of storage is equal to the number of filter taps. The 

multiplication rate (assuming symmetry) is c200{
11

;
4

) = 173,400 mps 

(multiplications per second). The addition rate is (200)(1734-1) = 346, 600 aps 

(additions per second). 

Design 2 

If we factor M = 20 into descending prime numbers [2], we have the 

structure shown in Fig. 18. In this case, there are three stages and each stage has a 

lowpass filter to prevent aliasing as the sampling rate is decreased. The passband 

Stage l Stage 2 stage 3 

x(n) ~ H, Hi 5 ~ H Hi 2 ~ H Hi 2 I y(m) ) 
2 3 4 kHz 200Hz 

N N N 
1 2 3 

Figure 18. Three-stage decimator. 
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for each lowpass filter is the same; namely, 

05:f 5:fp· (50) 

The stopband region varies depending upon the stage. If Fi-1 is the incoming rate 

and F; is the outgoing rate of the ith stage and we do not want aliasing in the final 

transition band, the stopband region can be described by the inequality 

F;- is 5:f < F;_l. (51) 
2 

Thus, the transition bandwidth is 

/1f'; = F; - fs - fp · 

For the last stage, however, the stopband region must be 

fs5:f<F; 
2 

with the corresponding transition bandwidth 

11F; =Is- fp· 

The frequency responses of the filters are shown on the next page in Fig. 19. 

(52) 

(53) 

(54) 

For a multistage design, the overall passband magnitude response is the 

product of the magnitude responses of the stages [2]. If the lowpass filter of each 

stage i of an I -stage decimator satisfies the condition 

I -BP 5: IH; (ei
2
1tftF; )15: 1 +BP, f e passband, (55) 

and if the responses align precisely in frequency in the passband (peak-to-peak in 

an equiripple design), we would have 

(1-B P )I 5: IHo (ei21tf 1Fo )15: (1 +BP )I' f e passband. (56) 

Since BP is a small number, the above bound can be approximated as in the 

following inequality I ( i21tf!Fo )15: 1 +IBP, 
I-IBP 5: Ho e f e passband. (57) 
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H,~ Stage l Low Pass Filter : : 

._._.._ _____ .;::::w_l ....L.'--111-=l:::-jl I I~ 
2000 

H 
2 

750 

4050 

Ht~ 
4050 

3250 3960 4040 

(a) 

Stage 2 Low Pass Filter 

f, Hz 
350 450 7 60 840 

(b) 

Stage 3 Low Pass Filter 

[j I 

I 

200 350400450 f, Hz 
360 440 

(c) 

Fi&ure 19. Frequency responses of lowpass filters for three-stage 
decimator. 

Clearly, the passband ripple will increase with the number of stages. To 

avoid this increase, we define 

()' =~ 
p I 

and replace o P by o~ in Eq. (55). Thus, we have 

1- o~ :::;; IHi (ei2rrt1F; )j:::;; 1 +a~, f e passband. 

This will guarantee the overall passband specification 

(58) 

(59) 

1-BP :::;;IH0 (ei2
1tf'F

0 )j:::;;1+BP, f e passband. (60) 

The modified error specification for each stage is o~ = 10
-

2 

= 3. 33xl0-3
• A similar 

3 
analysis for an interpolator lowpass filter with gain L is done in the Appendix. 
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Since the lowpass filter stopband ripple is less than one for each stage, any 

overlap of the stop bands will further reduce the overall stop band. Consequently, 

no adjustment is needed for the stopband specification 

-Bs :::; IHo (ej21ff !Fo )j:::; Bs, f e stopband. (61) 

Estimates of the lowpass filter lengths can be determined from Eq. (13). 

We refer to Fig. 18 to determine the sampling rates for each of the lowpass filters. 

We can then use the formulas that we derived in the section on decimation and 

compute the computational rates and storage requirements. The complete 

specifications for the three-stage design are listed in TABLE II on the following 

page. 

Design 3 

If we examine TABLE II, we can see that stage 3 requires the longest 

lowpass filter length. In Design 3, we will show a way that can reduce the length 

by adding another stage consisting of one lowpass filter. 

The filter length of the /th stage of an I - stage sampling rate conversion 

system can be approximated by the following equation when the transition band is 

small compared to the sampling rate: 

(62) 

Suppose we increase the number of stages to I+ 1 by adding a lowpass filter to the 

system. In that case, the filter length of the /th stage is 

(63) 
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TABLE II 

SPECIFICATIONS FOR A THREE-ST AGE DECIMA TOR 

" I Ni M. 
' f';_l F 

' !Pi fsj BP; BS; mps aps 

1 25 5 4,000 800 40 750 3.33xl0-3 10-{i 10,400 19,200 

2 12 2 800 400 40 350 3.33x10-3 10-{i 2,400 4,400 

3 191 2 400 200 40 50 3.33x10-3 10-{i 19,200 38,000 

Overall 228 20 4,000 200 40 50 10-2 10-{i 32,000 61,600 

Note: All frequencies are in Hz. 

and the filter length of the (I+ l)th stage is 

BP ~ 
" D"°(-,us) 

N' I +1 
l+l - (fs- fp)/ . 

/F1 

(64) 

H we add Eqs. (63) and (64), we have 

BP ~ BP ~ 
" " D"°(-,us) D"°(-,us) 

N I N' I +1 I+ 1 
I + l+l = (Fi - fs - fp) I + u: - fp) I 

IFi-1 /Fi 

= D"°(~,Bs)·( F1-1 + Fi )· (65) 
/+l Fi-fs-fp fs-fp 

We want to determine the conditions that will ensure Eq. (65) is less than Eq. (63). 

Thus, we assume that 

D ( BP B ) ( Fi-1 Fi ) D (BP B ) ( Fi-1 ) 
"° I+ 1' s • ~ - Is - fp + fs - fp < "° I' s • fs - fp . 

(66a) 

From Eq. (14), we see that 

BP ~ BP ~ 
D"°(-,us):::: D"°(-,us). 

I !+1 
(66b) 



The inequality can be simplified as follows 

F, F, F 1-1 + I < _.1:::1 

Fi - is - JP ls - fp is - fp 

fs - fp < ~-1 - F1 

Fi - is - JP Fl-1 

Since Fi-1 = D1 • F1 , we have the following inequality 

fs- fp D1Fi-F1 -------- < ___ __.__ _____ 
Fl - is - JP D1Fi 

Is- fp DI -1 _ __.:,.__ < --
Fl - ls- fp DI 

_D_1_,(+ - + )<F'. - + - + 
D -l Js Jp I Js Jp 

I 

(2D1-l)ls-(-l )tp<Fi. 
D -1 D1-l I 
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(66c) 

(66d) 

Thus, Eq. (66d) is a sufficient condition for adding a lowpassfilter to a 

multistage decimator to reduce the total number of filter taps required for the 

system. The percent reduction in the required number of filter taps for the system is 

% Reduction :: I 1 

1-1 ( 8 ) ( F1-1 + F1 ) 'frN; + D_ JfI,B, . F;- f,- f, f,- !, 

1-1 (8p 8 )·--.!H. LNi +D00 J' S J: - Ii 
i=l s p 

· 100% (67) 

As a direct consequence of the reduction in the total number of filter taps, the 

computational rates and storage requirements will also be reduced. 

In our three-stage example, 

( 2D1 - l)ts-(-l )tp <Fi. 
D -1 D1 -1 I 
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( 2·2-1)·50-(-1-)·40 < 200 
2-1 2-1 

110 < 200. 

Therefore, adding a lowpass filter stage to the three-stage system will reduce the 

total number of filter taps. Referring to Eq. (67), we have 

% Reduction:: (1- 26+ 13+ 15+97) 
25+ 12+ 191 · lOO% 

::34%. 

The designer should be aware that an additional lowpass filter may increase the 

group delay. In our example, the group delay increases approximately four samples 

from the three-stage design. See the Appendix for details. The four-stage design is 

shown below in Fig. 20. 

x(n) 
4 kHz 

Stage 1 Stage 2 Stage 3 Stage 4 

i2~ 
-- y(m) 

200Hz 

-----. .----., 
LPF i 5 LPF 

N N N N 
1 2 3 4 

Figure 20. Four-stage decimator. 

The complete specifications for the four-stage design are listed in Table III on the 

next page. 

QUANTIZATION ERRORS IN THE DIRECT FORM FIR LINEAR 

PHASE DIGITAL FILTERS 

Quantization is the process of transforming a sample of signal x[ n], whose 
/\ 

value is one of a continuous set, into x[n], whose value is one of a discrete set and 

closest to the sample value. Quantization levels are usually spaced uniformly. In 
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TABLE III 

SPECIFICATIONS FOR A FOUR-STAGE DECIMATOR 

I\ 

I N; M; F;_l F 
l IP; fsi BP; BS; mps aps 

1 26 5 4,000 800 40 750 2.5x10-3 10-6 10,400 20,000 

2 13 2 800 400 40 350 2.5x10-3 10-6 2,800 4,800 

3 15 2 400 200 40 150 2.5x10-3 10-6 1,600 2,800 

4 97 1 200 200 40 50 2.5x10-3 10-6 9,800 19,200 

Overall 151 20 4,000 200 40 50 10-2 10-6 24,600 46,800 

Note: All frequencies are in Hz. 

some cases, however, the spacing may be non-uniform. In addition, the sample 

values may be rounded or truncated to the nearest quantization level. For our 

discussion, we will assume that the quantization levels are uniformly spaced and 

that rounding is used to arrive at the nearest quantization level. 
I\ 

The difference between the quantized sample x[n] and the actual sample 

x[n] is referred to as quantization error and is defined by the equation 
I\ 

e[n] = x[n]-x[n]. 

The quantization error range is 

Q Q 
--<e[n]~-

2 2' 

where Q is the quantization step size that is defined by 

Q=Xm 
28. 

Xm is the full-scale of the quantizer and B is the number of binary bits. Since 

(68) 

(69) 

(70) 

e[n]is usually not known, a statistical model is useful in representing the effects of 

quantization. The underlying assumptions of this model are [9] 



I.The error sequence e[n] is a sample sequence of a stationary random 
process; i.e., the sequence properties do not vary with time. 

2.The error sequence is uncorrelated with the sequence x[n]. 
3.The random variables of the error process are uncorrelated; i.e., the 

error is a white-noise process. 
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4.The probability distribution of the error is uniform over the range of the 
quantization error. 

There are three types of error which affect the performance of an FIR 

linear phase digital filter [ 10]. The first type occurs when the input samples to the 

filter are quantized. This is known as A-D noise. The second type occurs when the 

filter coefficients are quantized. Quantizing the results of arithmetic operations 

within the filter results is the third type of error, which is known as roundoff noise. 

Let us now examine each of these error types. 

A-D Noise 

Let the error process be defined by the RV (random variable) en with 

auniform distribution over (- Q , Q). The mean of en is the expected value of en 
2 2 

and can be determined as follows 

The variance of en is 

men =e{en} 

Q 
2 1 

= J e(-)de 
_g Q 

= 

2 

Q 

e2 12 

2Q1_g 
2 

=0. 

0"2 = e{(en -0)2} 
eD 

(71) 
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Q 
2 1 

= J e2
(-)de 

_Q Q 
2 

Q 

e3 12 
- -

3Q1_g_ 
2 

= Q2 (72) 
12 

If the input to an FIR N -tap filter is quantized, then the output noise due to the 

error is 
N-1 

Y AD[n] = .'L,h[k]e[n-k] (73) 
k=O 

If y AD is the RV for the output, the mean of y AD is 

my AD = e{y AD} 

N-1 

= e{.'L,h[k]en-k} 
k=O 

N-1 

= _L,E{h[k]en-k} 
k=O 

N-1 

= .'L,h[k]E{e0 _k} 
k=O 

=0. (74) 

The variance of y AD is 

cr2 =e{(YAD-0)2} 
YAD 

N-1 

= e{(_L,h[k]en-k -0)
2

} 

k=O 

N-1 N-1 k-1 

= e{_L, (h[k]en-k )2 + 2 L h[k]en-k (_L,h[I~n-j )} 
k=O k=l j=O 

N-I N-I k-I 

= _L,e{(h[k]e
0

_k )2
} + 2 _L,e{h[k]e0 _k (_L,h[j]en-J )} 

k=O k=I j=O 

N-1 N-1 k-1 

= .'L,E{(h[k]e
0

_k )
2

} + 2 L, _L,e{h[k]e0 _kh[j]e0 ) 

k=O k=l j=O 
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N-I N-I k-I 

= L (h[k])
2
e{e:_k} + 2 L Lh[k]h[j]e{e 0 _ken-j} 

k~ k~~o 

= r(h[k]) 2
• Q

2 

+2r~h[k]h[j]·O 
k=O 12 k=I j=O 

Q2 N-I 

=-L<h[k])2
• (75) 

12 k=O 

Using Parseval's equation [9], we can also state the variance in terms of the 

frequency as 

2 1 7t 2 

cr2 = g_ __ J IH(eiro)I dro. 
YAD 12 27t 

-7t 

(76) 

In many applications, scaling is used as a preventative measure against 

overflow. Two of the most common methods are sum scaling and peak scaling. 

When sum scaling is used the following restriction is put on the filter coefficients 
N-I 

I/h[k])2::; i. (77) 
k=O 

When peak scaling is used, the frequency response is normalized so that 

maxlH(ei00 )I = 1. (78) 

Examining Eqs. (75) and (76), we see that 

cr2 ::; Q1 . 
YAD 12 

(79) 

Filter Coefficient Quantization Noise 

Chan and Rabiner [10] reasoned that a statistical analysis of the filter 

coefficient quantization noise is appropriate even though the quantization of the 

coefficients for a given filter is done only once because of the unpredictability of 

the noise. The assumptions about the error process are the same as those 

previously mentioned; namely, the RV e
0 

has a mean of 0 and a variance of Q
2 

• 
12 

Suppose that we have an N -tap FIR linear phase digital filter, where N is 
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odd. If we quantize the filter coefficients, the frequency response of the error due 

to quantization is 
N-3 

. 2 N-1 N-l 
E(e'ro) = L2e[k]cos[(---k)ro]+e[--]. (80) 

k=O 2 2 

The mean of the frequency response error is 

mE = e{E} 
N-3 

2 N-1 
=e{L2ek cos[(---k)ro]+eN_1 } 

k=O 2 l 
N-3 

2 N-1 
= L2E{ek}cos[(---k)ro]+e{eN-t} 

k=O 2 l 

=0. (81) 

The variance of the frequency response error is 

cr2 =e{(E-0)2
} 

E 

N-3 

2 N-l 
=e{(L2ek cos[(---k)ro]+eN_1 )

2
} 

k=O 2 l 
N-3 

2 N-l 
= e{(L2ek cos[(---k)co])2

} +e{eN_1
2

} 

k=O 2 l 
N-3 

2 N-1 
+e{2(L2ek cos[(---k)co])(eN_1 )} 

k=O 2 l 
N-3 

-2 N 1 Q1 
=e{4 Le; cos2[(----k)ro]}+-

k=o 2 12 

+O 

N-3 

-2 N 1 Q1 
= 4 Le{e~}cos2 [(----k)co]+-

k=o 2 12 



N-3 

-2-Q2 2 N-1 Q1 
=4L-cos [(---k)co]+-

k=o 12 2 12 

N-3 

Q1 -2 2 N-1 Q1 
=-·4Lcos [(---k)co]+-

12 k=O 2 12 
N-3 

Q1 -2 2 N-1 
=-{4Lcos [(--k)ro]+l} 

12 k=O 2 

Using the change of variables 

in Eq. (82) results in 

N-1 
n=---k 

2 

N-1 
Q2 -2-

cr~ =-{4Lcos2 (nro)+l}. 
12 n=l 
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(82) 

(83) 

(84) 

If the number of filter taps is even, we can use similar calculations to derive the 

mean and variance. The results are 

and 

mE=O 

N-1 

Q1-2 N 1 
cr~ =-Lcos2[(----n)ro]. 

3 n=O 2 

We now define a weighting function 
N-1 

I 2 
WN (ro) = { · [ 4 L cos2 (nro) + l]}Yz 

2N-1 n=t 

and substitute Eq. (87) into Eq. (84). The result is 

cr~ = Q
2 

(2N -l)W;(ro). 
12 

The standard deviation of the error is 

Q ~2N-1 _ WN(co). 
CTE =1 3 

To obtain a closed expression for WN ( ro), we rewrite Eq. (87) as 

(85) 

(86) 

(87) 

(88) 

(89) 



N-1 

1 2 1 
WN (ro) = { · [ 4 L-0 + cos(2nro)) + l]}Yz 

2N-1 n=l 2 
N-1 

1 2 
= { ·[(N-1)+2 :Lcos(2nro)+l]}Yz 

2N-1 n=1 

l N-1 

= { [N 2 
j2nro . 

2N-i· +2L( +e-'
2

""' 
n=I 2 )]}M 

1 ej(N+l)ro _ ej2ro 

={ ·[N+----
2 N - 1 ej

2
ro - 1 

e-j(N+l)ro -e-j2ro 

+ ]}Yz 
e-j2ro -1 

1 ej(N-I)ro -1-ej(N+I)ro + ej2ro 

={ ·[N+-------
2N-1 1-ej2ro-e-j2ro+I 

e-j(N-I)ro -l-e-j(N+l)ro +e-j2ro Yz 
+ . ·2 ]} 2 

I-e12ro -e-1 ro + 1 

= { 1 ·[N + 2cos(N-l)ro-2 
2N -1 2 - 2 cos 2ro 

+ -2 cos(N + l)ro + 2 cos 2ro ]}Yi 

2-2cos2ro 

= { 1 . [N _ 1 + 2 sin Nro sin ro ]}Yz 
2N -1 1-cos2ro 

= { 1 . [N - l + 2 sin Nro sin ro ]}Yz 
2N -1 2sin 2 ro 

41 

= { 1 . [N -1 + si~ Nro ]}Yi. (90) 
2N-l smro 

From Eq. (90), we can see that 0<WN(ro)~1 for all N and that WN(ro) = 1 when 

ro = 0 or 7t. Thus, 

0-E::; Q pN-1 
2 3 . 

(91) 

From Eq. (80), we have that Eis a RV that is a linear combination of RVs from 

the error process in the time domain. Since the error process RVs are independent 

and 0 outside a finite interval (- Q, Q), we can justify that E has an approximately 
2 2 

normal distribution for large N, according to the central limit theorem [ 10]. 
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We now return to the equiripple FIR linear phase digital filter design. 

Recall that design specifications consist of a set of disjoint frequency bands 

Qk c [0, 1t], where k = 1, ... ,P (some finite number), and a set of error bounds Bk 

for a polynomial which is equiripple in the frequency bands and approximates 

the desired frequency response H d k ( ejro). Thus, we have 

maxlHd(ejro)-A(ejro)l=Bk, k =1, ... ,P, 
roen1 

where A ( ejro) is the approximating polynomial. If we denote the quantized 

approximate frequency response by AQ(ejro), we have 

maxlHd(ejro)-A (ejro)I = maxlH (ejro)-A(ejro)+ A(ejro)-A (ejro)I 
roen1 Q roen1 d Q 

(92) 

::;; maxlHd(ejro)-A(ejro)j+ maxlA(ejro)-AQ (ejw )I 
roeil1 roenk 

::;; Bk+ maxlE(ejro )I (93) 
roenl 

Since the RV E has an approximately normal distribution, we have 

Pr{E::;; 2crE} = 0.95. (94) 

Therefore, we can state with 95% confidence that 

maxlHd(ejro)-Ao(ejw)I :s;;()k +2aE 
roenk 

< s: QpN-I -Uk+ • 
3 

(95) 

If we restrict the peak-to-peak amplitude of the input signal to be 1, the 

quantization step size will be Q = i-8
• Substituting this value into Eq. (95) will 

allow us to determine the minimum number of bits required to ensure that filter 

coefficient quantization is negligible within a certain percentage range for a given 

frequency band. For example, if we want the filter coefficient quantization effects 

to be negligible within ±1 % , we have 

µN-1 
cBk+Qv~)-Bk =o.ornk 



z-s ~2N3-1 = 0.018, 

28 =100 ~2N-1 
<\ 3 

100 ~2N-1 B = log10 (- ) /log10 2 
bk 3 
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2 + log10 JI¥--log10 bk 

log10 2 
(96) 

Roundoff Noise 

As in our discussion on A-D noise, the output will be affected by the error 

process en, which has mean 0 and variance Q
2 

• If we denote the error at the 
12 

output due to roundoff noise as the RV y Ro, we have a mean 

my =0 
RO 

(97 

by using similar calculations as the ones we used in the A-D noise section. If we 

have a N -tap FIR linear phase filter, where N is odd, and the quantization takes 

place between the multiplications and the additions of the filter, there are N + 1 

2 

white-noise sources at the output. In this case, the variance is 

2 (N+l)Q2 

(J'YRo = -2- 12 . (98) 

If the quantization takes place after the additions and a double-length accumulator 

is used, the variance will be 

0'2 = Q2 • (99) 
YRo 12 

If N is even, there will be N white-noise sources at the output and the variance 
2 

will change accordingly. 
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Conclusions 

The A-D noise and the roundoff noise both can reduced to Q
2 

• The filter 
12 

coefficient quantization noise, however, cannot be reduced to that level as is 

shown in Eq. (88). Consequently, the most significant quantization noise for the 

direct form FIR filter is the noise that results from filter coefficient quantization. 

H we use the transposed direct form structure or the polyphase form 

structure, the A-D noise and roundoff noise will remain unchanged because they 

are constants for a given value of Q [2]. Also, they will not be affected by an 

expander or a compressor. The filter coefficient quantization noise will be 

unchanged because the frequency response of the system is the same as the one 

resulting from the direct form structure. 



A NOVEL PC PROGRAM FOR DESIGNING MULTISTAGE 

SAMPLING RA TE CONVERSION SYSTEMS 

Utilizing the previously discussed digital signal processing concepts, we 

have written a PC program that will determine an optimum multistage design for a 

given sampling rate conversion. The program consists of an input section, an 

analysis section, and an output section. Required data include the following: initial 

sampling rate, final sampling rate, passband frequency, stop band frequency, 

maximum passband error, maximum stopband error, and two weighting factors for 

optimizing the design. 

We will explain the program by way of an example. Suppose that we are in 

the field of professional audio and we want to design a sampling rate conversion 

system for changing the CD sampling rate of 44.1 kHz to the DAT sampling rate 

of 48 kHz. Typical specifications are a passband frequency of 20 kHz, a stopband 

frequency of 22 kHz, a maximum error in the passband of 10-2
, and a maximum 

error of 10-6 in the stop band. 

Once the data has been entered, the program reduces the ratio of the initial 

sampling rate to the final sampling rate until no common factors exist in the 

numerator and denominator. The numerator and denominator are then factored to 

products of prime numbers and arranged so that the numerator factors are 

increasing, since they represent interpolator stages, while the denominator factors 

are decreasing, since they represent decimator stages [2]. This determines the 

maximum number of stages for the system. 
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The optimizing factor is determined by multiplying the first weighting 

factor by the total additions per second and the second weighting factor by the 

total storage and summing them. The total additions per second and storage are 

determined by the filter lengths and operating frequencies of each stage. The filter 

lengths are limited to 400 by the program. 

A new design is created by combining adjacent stages. A new optimizing 

factor is then calculated and compared to the original optimizing factor. If the new 

optimizing factor is less than the old, the new design is the optimum design. 

Othe1wise, the old design is still the optimum design. This process of combining 

stages and comparing optimizing factors continues until further reduction would 

only increase the optimizing factor. This process lasts less than one second on a 33 

MHz 486-based PC and is shown in Fig. 21. 

Figure 21. Input data and optimum design factors. 

A block diagram of the design is shown on the next page in Fig. 22. 
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Stage l Stage 2 Stage 3 
I - - - - - - - - - - - - - - - - - - - - - - - ~ - - - - - - - - - - - - - - - I 
I 

Figure 22. Three-stage CD-to-DAT sampling rate conversion system. 

Once the minimum design is determined, extensive data from the design is 

available to the user as shown in Fig. 23. The user can change the design 

:~· 
:~ 

····~:G: · Multi Stage Alteroesign · 

NUMBER OF COMPUIAIIONS FOR TRANSPOSED FORM 

Sample Rate Conver~ion by L: MPS B In S.R. * H. APS ~ In S.R. * CH-L>. 
Sample Rate Conversion by 1/M: MPS • Out S.R. x N/2 if N is even or <N•1)/2 

if N is odd. APS = Out S.R. * CH-1>. 
Sa~ple Rate Conversion by L/H: MPS = In S.R. * 1/H * N. 

Stage 

1 
2 
3 

Total 

APS = In S.R. * 1/M * <H-L). 

est. <Hz> <Hz> 
N in S.R. L ti out S.R. Hult/sec Adrl/sec 

--- ----
206 44100 2 1 8B200 12612600 12524400 

52 88200 4 1 352800 4586400 4233600 
1?9 3S2B00 20 14? 49000 42960(".) 381600 

17628600 17139600 

If you want to examine the filter coefficient ~1anti2ation 
effects. type Y. If you want to try another design. type H. 
Pi•e&s <EHTER> aftel" you make yom• choice. y 

Stoi-age 

286 
52 

179 

517 

! 
:l 

Type the nurnbet• of hits to quantize the filte1• coefficients 
and p~ess <ENTER>: 24 

..... -.. · .. -.-.·.-...... -.-.. -.-.-.-.-.-.-.-.-.-.-.---.-.-.-.-.·.-.-.-.-.. ·.-.-.·.·.-.-.-.-.-.·.-.-.-.-.-.-.-.-.·.-.-.-.-. II 
Figure 23. Analysis data for optimum design. 

if the optimum one is not satisfactory and a new table will be displayed. If the user 

is satisfied with the initial design, he or she can examine the effects on the 

maximum frequency band errors caused by filter coefficient quantization. This is 

shown on the next page in Fig. 24. 
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,~········································--··----····-············:·t.:toiti .. s1~·g~-·Fiii~~-o~·~i9~···························· ·······································~e: 
. f 

REQUIRED HUMBER OF BITS TO COMPENSATE FOR FILTER COEFFICIENT QUAHTIZAIIOH 

O.-iginal op -= 1.0£-0002 .. 01•iginal os = 1.0E-0006. 
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Figure 24. Effects of filter coefficient quantization. 

The required number of bits ensures that the quantization effects are 

negligible. The user can experiment with different numbers of bits to see the effects 

on the maximum band errors. Note that the overall passband error is maximized 

when the equiripples in the passband from each stage align perfectly. This can only 

occur if all of the filters are the same, which is not possible. Thus, the ripples will 

beat against one another and the overall passband error will less than the 

maximum. The overall stopband error will be less than the lowest frequency 

stopband because all of the stopband errors are less than one. 

If the user finds the filter coefficient quantization effects unacceptable, he 

or she may return to the beginning of the program and modify the specifications or 

the design. Otherwise, the user may examine the lowpass filter design 

specifications as shown in Fig. 25. Note that the stopband frequency of the first 

stage is identical to the overall stopband frequency. 



Fi~ure 25. Lowpass filter design specifications. 

Let us examine the frequency domain to see how the stopbands are 

determined. The passband of the input signal ranges from 0 to 20 kHz, while the 

stopband frequency is 22 kHz. The spectra of the signal are harmonic images of 

the baseband (-22.05 kHz to 22.05 kHz) centered about integer multiples of the 

incoming sampling rate (44.1 kHz) and are shown in Fig. 26. The frequency 

x 

I I \ , 

i22.1 j·l 66.l 88.2 f, kHz 

22 sampling rate 

Fi~ure 26. Spectra of the digital input signal. 
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responses of the lowpass filter stages are shown on the following page. Since our 

program restricts the input stopband frequency to be less than min(~· , F;.,) , 
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Figure 27. Frequency responses of the lowpass filters for a three-stage 
CD-to-DAT sampling rate conversion. 

there is no danger of aliasing after the sampling rate is downsampled. Thus, it is 

unnecessary to factor M into multiple stages. The only decision to be made is 

whether to add a lowpass filter stage or not. In our example, the system stopband 

frequency requirement is met in the first stage. Consequently, no additional 

lowpass filter is needed. This approach is not always the optimum one when 

converting by a rational factor ~, however. See the appendix for the more 
M 

general case. 
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The next screen allows the user to save the filter coefficients to separate 

files. The actual length of each lowpass filter is determined using the algorithm that 

we proposed in Fig. 5. After each determination, the program calculates the filter 

coefficients and saves them to a file. Up until now, the program has re~ponded 

instantaneously to the screen dialog. Calculation of the filter coefficients can take 

from a few seconds to several minutes, depending upon the number of stages and 

the actual filter lengths. The program estimates the time it takes when it is running 

on a 33 MHz 486-based PC. 

Figure 28. Lowpass filter coefficients are saved to files. 

The next screen displays the actual filter lengths and maximum errors, 

along with other quantization data. The user can again analyze the effects of filter 

coefficient quantization for different numbers of bits. 



Figure 29. Actual filter lengths and maximum band errors. 

The final screen allows the user to continue analyzing the quantization 

effects or exit the program. 

Figure 30. Effects of filter coefficient quantization and exit. 
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A PC PROGRAM FOR IMPLEMENTING A CD-TO-DAT 

SAMPLING RA TE CONVERSION 

PROGRAM DESCRIPTION 

In the last section, we designed a system for converting a CD sampling rate 

to a DAT sampling rate. How well does it satisfy our design specifications? To 

answer this question, we have written another PC program that implements the 

conversion using the filter coefficients that are the output of the multistage design 

program. We will step through the program and explain the output as we go. 

The input screen is shown below in Fig. 31. The user can choose from one 

Figure 31. Input for the CD-to-DAT sampling rate conversion program. 



of three input signals to test the conversion. If option 1 is selected, the user must 

enter a frequency from the passband. If option 2 is selected, the user must enter 

two frequencies from the passband. Option 3 is a unit sample sequence. 

The user next decides whether to quantize the input and the filter 

coefficients and output of each stage. Once the user makes a selection, the 

program generates the appropriate signal and samples it at the CD sampling rate 

L 160 
of 44.1 kHz. After 11 blocks of 147 samples (-=-)are collected, the 

M 147 

program converts the sequence to 11 blocks of 160 samples, with a resulting 
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sampling rate of 48 kHz. The frequency response is then plotted on the screen. 

Finally, the user may save the sampled output sequence to a file. The total program 

takes approximately 15 seconds on a 486-based PC with a math coprocessor. 

We will now demonstrate the program through two examples. 

SAMPLING A 10 KHZ SINE WA VE 

Sampling Rate Conversion 

Suppose that we select option 1 as our input, where the frequency of the 

signal is 10 kHz and we choose not to quantize. The program samples the signal at 

44.1 kHz and reads the filter coefficients that were saved to files earlier. The 

sampling rate conversion follows as shown in Fig. 32 on the next page. The first 

stage of the conversion interpolates every input sample by a factor of 2. The 

second stage then interpolates every output sample from the first stage by a factor 

of 4. The process is repeated M = 147 times, so that there are Li· Li· M = 

2 · 4 · 14 7 = 1, 17 6 samples at the beginning of the third stage. The third and final 

stage uses the polyphase implementation to interpolate every 147th sample by a 

factor of 20, resulting in 160 samples. A flowchart of the algorithm is shown on 

the following page in Fig. 33. 
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Figure 3 3. Three-stage sampling rate conversion algorithm. 
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Windowing 

Transparent to the user, the program eliminates the first two blocks of the 

output sequence because of the group delay associated with the system (more 

about that later). The remaining samples of the output sequence are multiplied by a 

4-term Blackman-Harris window sequence [ 11] to smooth the boundaries of the 

sequence and thus reduce spectral leakage in the frequency domain. 

Freguency Response 

A practical tool for analyzing the frequency content of a finite-duration 

sequence is the discrete Fourier transform (DFr), which is given by 

N-1 -j(~)kn 
L/[n]e N , OS:kS:N-1 

X[k] = { n.=O (100) 
0, otherwise. 

The DFT represents samples of the discrete time Fourier transform (DTFT), which 

is continuous and periodic in ro with period 2 7t. 

A requirement of the DFT is that x[n] and X[k] have the same length, N. 

If the length of x[n] is less than the length of X[k], we can always pad x[n] with 

zeroes. If the length of x[n] is greater than the length of X[k], we can use other 

techniques to make them equal [9]. 

If we compute the DFT using Eq. (100), N complex multiplications and 

N -1 complex additions are required to compute each X[k]. The total 

computations required for the DFT sequence of length N is N 2 complex 

multiplications and N · (N -1) additions. If we use symmetry and the periodicity of 
-j( 21t)kn 

e N , we can decompose Eq. (100) into successively smaller DFT computations 

[9]. This technique is known as the decimation-in-time fast Fourier transform 

(FFT) algorithm and results in significantly fewer computations than the direct 

method. In the case where N is an integer power of 2, N log2 N complex 
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multiplications and (N -1) · log 2 N complex additions are required to compute the 

DFf sequence. 

The program uses a 2,048-point FFf to calculate the frequency response. 

Since the windowed sequence has 1,440 points, it is padded with zeroes so that the 

2,048-point FFf can be performed. The frequency response is shown below in Fig. 

34, where we see that the frequency content in the stopband is less than the 

required -120 dB. 
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Fi&ure 34. Frequency response for a 10 kHz signal with no quantization. 

Quantization 

If we had chosen to quantize, we would have had the option to quantize 

the input and the filter coefficients and output of each stage using from 8 to 32 bits 

(including the sign bit). Suppose that we quantize the input using 16 bits, the filter 
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coefficients using 24 bits, and the output using 24 bits. The frequency response is 

shown below in Fig. 35. Again, we see that the frequency content in the stopband 

is less than the required -120 dB. 
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Fi~ure 35. Frequency response for a IO kHz signal with quantization. 

Audio systems typically require a minimum signal-to-noise ratio (SNR) of 

90 dB. One way to estimate the SNR is the following procedure. The total output 

power is given by the expression 

N-1 2 

e{YTotat
2

} = Lly[n]I ' (101) 
n=O 

where y is the RV for expressing the output of the sampling rate conversion 

system. According to Parseval's Equation for the DFf [9], the total output power 

can also be expressed as 
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2 
1 N-1 2 

e{YTota1 } = N t;IY[k]j , (102) 

The program estimates the total noise power by summing the total power except 

for a small number of values centered about and including the tone frequency ( 10 

kHz), averaging that number, and multiplying the average by the total number of 

points ( 1,024) in the spectrum. The result can be used to estimate 

SNR = 10log10 [e{YTota12 }-e ~YNoise2} ]· (103) 
C {YNoise } 

We see in Fig. 35 that the SNR is more than the required 90 dB. 

OVERALL FREQUENCY RESPONSE OF THE THREE-ST AGE SYSTEM 

Samplin~ Rate Conversion 

If we select option 3 as our input, we will obtain the overall frequency 

response of the three-stage system. The frequency response magnitude and phase 

are shown in Figs. 36 - 38. 

Group Delay 

Let us return our attention to the concept of group delay, which is defined by 

the equation [9] 

. d . 
grd[H(e1ro)] = --{arg[H(e1ro)]}. 

dro 
(104) 

For a type I FIR linear phase digital filter defined by 

N-1 
. -jro(N-1)_2_ 

H(e 1ro) = e 2 :La[k]cos(rok), (105) 
k=O 

it is easy to see that the group delay is N - l samples. A type II filter also has the 
2 

same group delay. Since the multistage design program uses either a type I or a 

type II FIR linear phase digital filter, the lowpass filter of each stage will have a 



group delay of N - l samples associated with it. 
2 
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At stage i of a multistage system, upsampling by Li will increase the group 

delay of any lowpass filter preceding it by a factor of Li. In a similar manner, 

downsampling by Mi will decrease the group delay of any lowpass filter preceding 

it by a factor of -
1
-. The group delays of each stage will be additive and the 

Mi 

overall group delay of the system is 

't' = ~ [ t '' + ~ ( t '' + Lz 't" ) l 
= ~[ N3;1 +~( N2;1 +£,( N,;I))] 
= 1~7 r6~-I +20{542-1 +4{28~-1))] 

= 82 samples. (106) 

The group delay vs frequency for the passband is plotted in Fig. 38. The values 

were calculated using Eq. (104) and they are the same as the theoretical value 

calculated in Eq. (106). 

Quantization 

If we quantize the input, filter coefficients, and output as we did before, we 

have the response as shown in Figs. 39 - 41. 
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SUMMARY 

We covered several important topics in this paper. The first topic was the 

evolution of the design of FIR linear phase lowpass digital filters. We started by 

discussing the Parks-McClellan algorithm, which requires the filter parameters 

N, ro P, ro s, and K = ~ as input. Next, we discussed a relationship discovered by 
op 

Herrmann et al. that allows one to estimate the filter length if the other four filter 

parameters are known. This led Rabiner to propose an algorithm that uses 

Herrmann's filter length estimation equation as a starting point to determine the 

actual filter length (or any one of the other filter parameters) by interacting with 

the Parks-McClellan algorithm in an iterative manner. We proposed a modification 

to Herrmann's equation to give a better estimate in the case of an interpolation 

filter. Also, we restated the equation in terms of analog frequency to more closely 

link it to a design problem. We modified Rabiner's algorithm and wrote a PC 

program that will quickly design a filter given F, fp, fs, L, op, and os. 

We reviewed some digital signal processing concepts regarding 

interpolation, decimation, and multistage design, and discovered the condition that 

determines when to add a lowpass filter to a multistage decimator in order to 

reduce the total number of filter taps required to implement the system. The group 

delay, however, may increase. 

We presented the outline of a PC program for designing multistage 

sampling rate conversion systems. We demonstrated the program by designing a 

three-stage CD-to-DAT sampling rate conversion system. The program greatly 



simplifies the design of multistage sampling rate conversion systems and can 

calculate the filter coefficients for each stage very quickly. 

To demonstrate the effectiveness of the multistage design program, we 

wrote an implementation program for the CD-to-DAT sampling rate conversion. 

Included was the algorithm used for the conversion, along with the output from 

several examples. 
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APPENDIX 

On page 31, we addressed the need to modify the passband tolerance 

requirement of each stage in a multistage decimator system design. Otherwise, the 

passband ripple would increase with the number of stages. We will now address 

that issue. 

Suppose that the lowpass filter of each stage i of an I -stage interpolator 

satisfies the condition 

L - ~ < IH ( j21f//F; )I< L + ~ ; up_ ; e _ ; up, f e passband, (107) 

where 
I 

L= IIL;. (108) 
i=l 

If the responses align precisely in frequency in the passband (peak-to-peak in an 

equiripple design), we would have 
I I II (L; - 8 P) ~ IH0 (ej2

1Tf!Fo )j ~II (L; + 5 P), f E passband. (109) 
i=I i=l 

Since 8 P is a small number, the above bounds can be approximated by the 

following inequality 

I L I L 
L-L-.CP ~1H0 (ej21Tf1F0 )I :::;L+ L-.CP, f e passband. (110) 

i=l L; i=l L; 

Clearly, the passband ripple will increase with the number of stages. To avoid this 

increase, we define 

cp 
~' --
u, = ±~ 

i=t L; 

(111) 
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and replace BP by o~ in Eq. (107). Thus, the lowpass filter of each stage satisfies 

L; - 8~ ~ IH; (ei21rflF; )I:::; L; + ()~' f e passband. (112) 

On page 34, we mentioned that adding a lowpass filter stage to a decimator 

system may increase the group delay of the system. In the three-stage design, the 

group delay is given by 

t, = ~[t" +M,t,2 +M1M2tn]' (113) 

where 

M=M1M2M3 • (114) 

In the four-stage system, the group delay is given by 

-r; = t,. + ~ [ t,l +MI t,2 + M,M2 t,J (115) 

Clearly, the group delay of the lowpass filter will not be reduced by the decimation 

factor and may increase the overall group delay. More work needs to be done to 

optimize the decimation design by weighting the total additions per second and 

storage and the group delay in deciding whether to add a lowpass filter or not. 

On page 50, we stated that a .!::._ sampling rate conversion system is 
M 

optimized by addressing the system stopband frequency either in the first or the 

last stage of an I -stage system, where I is greater than one. We now derive the 

condition for determining which alternative should be used. 

H we address the system stopband frequency requirement in the first stage 

of an I -stage system, we have 

, D~(~,B,) 
NI = (ts - fp) I ' 

/Fi 
(116) 

where F0 is the initial sampling rate and~ is the final sampling rate. Also, we have 
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(117) 

If we address the system stopband frequency requirement in the last stage 

of an I+ 1-stage system, we have 

(118) 

(119) 

and 

D~V:1,o,). 
N;+I = (t,- f ~ (120) 

Since 

D~( 0; ,o}D~V;1 ,o.} (121) 

the sum of the lowpass filter lengths from stage 2 through I are approximately 

equal. To optimize based upon storage requirements, if the the filter length 

calculated from Eq. (116) is less than sum of the filter lengths calculated from Eqs. 

(118) and (120), we should meet the overall stopband frequency requirement in the 

first stage, rather than adding a lowpass filter as a final stage. Mathematically, we 

can write 
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n_( 8; ,8,) n_( 1~ 1.8,) n_( 1~ 1 ,~>,) 
~~~< +--.-~~ 

(ts - JP)/ ( Fo - ts - f P) / (ts - fJ / 
/Fi /Fi I~ 

Fi Fi ~ -..::..--- < + _ _____,_ 
(ts - JP) (Fo - ts - JP) (ts- JP) 

Fi ~ Fi -- <-----
(ts - fp) (ts - JP) (Fo - ts - fp) 

f'i - F1 ts - fp 
--------- < . 

Fi Fa - ls - JP 
(122) 

Since F; = Li Fo and F, = ( ~ )Fo, we have 

1 _ _.!:__ < ts - fp . 
LiM Fo - fs- fp 

(123) 

To optimize based upon additions per second, assume that Ni = Q;L;, 

where Q; is an integer, and the lowpass filter has an even number of taps. Thus, we 

have 

n-(~,8,) 
(Is- JP)/ 

/Fi 

<Fo 

<Fo 

D (BP ) 
00 T+l'Bs 

(Fo - fs- JP) ;-Li 
/Fi 

D (BP ) "" T+T'Bs 

(Fo - fs - !) / Li 
/Fi 

n-(1~1 '8•) 

+~I (i,-J-X 

n_( ~,8,) L n_( ~.8,) 
Li I< I (Fo - f,- JP)/ Li + 2M (J, - JP) j 1.(124) 

/Fi I~ 
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We can derive a similar inequality if Li is not an integer multiple of Ni or 

the lowpass filter has an odd number of taps. We can also derive a weighted 

inequality by combining Eqs. (123) and (124). 

Another factor that should be considered when deciding whether to 

attenuate the system stopband frequencies in the first stage or add a lowpass filter 

as a final stage to attenuate the frequencies is group delay. If the attenuation is 

done in the first stage, we have 

1 [ L L ] tg= M tg1+L1tg1-1+ ... +L,£i tg2+L, tg1. (125) 

If the attenuation is done by adding a lowpass filter as a final stage, we have 

t; = t,1+1 + ~ [ t;, + L1 t;1-1 + ... + £i~2 t;2 + ~ t;1 J (126) 

If t g < t;, we may want to optimize by attenuating the system stop band 

frequencies in the first stage. 

An overall optimization factor would be a linear combination of the 

addition rate, storage, and group delay. 
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