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1.4 Distribution Functions

Definition 1.8. The probability of the event(X ≤ x) expressed as a function of
x ∈ R:

FX(x) = PX(X ≤ x)

is called thecumulative distribution function (cdf) of the rvX.
�

Example1.7. The cdf of the rv defined in Example 1.5 can be written as

FX(x) =







0, for x ∈ (−∞, 0);
q, for x ∈ [0, 1);
q + p = 1, for x ∈ [1,∞).

�

Properties of cumulative distribution functions are givenin the following theorem.

Theorem 1.4.The functionF (x) is a cdf iff the following conditions hold:

(i) The function is nondecreasing, that is, ifx1 < x2 thenFX(x1) ≤ FX(x2);

(ii) limx→−∞ FX(x) = 0;

(iii) limx→∞ FX(x) = 1;

(iv) F (x) is right-continuous.

Proof. Note that a cdf can be equivalently written as

FX(x) = PX(X ≤ x) = P ({ω ∈ Ω : X(ω) ≤ x}) = P (Ax),

whereAx = {ω ∈ Ω : X(ω) ≤ x}.

(i) For anyxi < xj we haveAxi
⊆ Axj

. Thus by 1.1 part (f), we have

P (Axi
) ≤ P (Axj

) and soFX(xi) ≤ FX(xj).

(ii) Let {xn : n = 1, 2, . . .} be a sequence of decreasing real numbers such that
xn → −∞ asn → ∞. Then, forxn ≥ xn+1 we haveAxn

⊇ Axn+1 and

∞
⋂

n=1

Axn
= ∅.
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Hence, by Theorem 1.3 (b), we get

lim
n→∞

FX(xn) = lim
n→∞

P (Axn
) = P

(

∞
⋂

n=1

Axn

)

= P (∅) = 0.

Since the above holds for any sequence{xn} such that{xn} → −∞, we
conclude thatlimx→−∞ FX(x) = 0.

(iii) Can be proved by similar reasoning as in (ii).

(iv) A functiong : R → R is right continuous iflimδ→0 g(x + δ) = g(x).

Let xn be a decreasing sequence such thatxn → x asn → ∞. Then, by
definition,Ax ⊆ Axn

for all n andAx is the largest set for which it is true.
This gives

∞
⋂

n=1

Axn
= Ax

and by Theorem 1.3 (b), we get

lim
n→∞

FX(xn) = lim
n→∞

P (Axn
) = P

(

∞
⋂

n=1

Axn

)

= P (Ax) = FX(x).

Since the above holds for any sequence{xn} such that{xn} → x, we
conclude thatlimδ→0 FX(x + δ) = FX(x) for all x and soFX is right con-
tinuous.

�

Example1.8. We will show that

FX(x) =
1

1 + e−x

is the cdf of a rvX. It is enough to show that the function meets the requirements
of Theorem 1.4. We have

lim
x→−∞

FX(x) = 0 since lim
x→−∞

e−x = ∞;

lim
x→∞

FX(x) = 1 since lim
x→∞

e−x = 0.

Also, the derivative ofF (x) is

F ′(x) =
e−x

(1 + e−x)2
> 0,

showing thatF (x) is increasing. Furthermore, it is a continuous function, not only
right-continuous.

�
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Now we can define discrete and continuous rvs more formally.

Definition 1.9. A random variableX is continuous ifFX(x) is a continuous func-
tion ofx. A random variableX is discrete ifFX(x) is a step function ofx.

�

1.5 Density and Mass Functions

1.5.1 Discrete Random Variables

Values of a discrete rv are elements of a countable set{x1, x2, . . .}. We associate
a numberpX(xi) = PX(X = xi) with each valuexi, i = 1, 2, . . ., such that:

1. pX(xi) ≥ 0 for all i;

2.
∑∞

i=1
pX(xi) = 1.

Note that
FX(xi) = PX(X ≤ xi) =

∑

x≤xi

pX(x), (1.1)

pX(xi) = FX(xi) − FX(xi−1). (1.2)

The functionpX is called theprobability mass function(pmf) of the random vari-
ableX, and the collection of pairs

{(xi, pX(xi)), i = 1, 2, . . .} (1.3)

is called theprobability distributionof X. The distribution is usually presented in
either tabular, graphical or mathematical form.

Example1.9. Consider Example 1.5, but now, we haven mice and we observe
efficacy or no efficacy for each mouse independently. We are interested in the
number of mice which respond positively to the applied drug candidate. IfXi is
a random variable as defined in Example 1.5 for each mouse, andwe may assume
that the probability of a positive response is the same for all mice, then we may
create a new random variableX as the sum of allXi, that is,

X =

n
∑

i=1

Xi.

X denotesk successes inn independent trials and it has a binomial distribution,
which we denote by

X ∼ Bin(n, p),
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wherep is the probability of success. The pmf of a binomially distributed rvX

with parametersn andp is

P (X = x) =

(

n

x

)

px(1 − p)n−x, x = 0, 1, 2, . . . , n,

wheren is a positive integer and0 ≤ p ≤ 1.

Exercise1.4. Forn = 8 and the probability of successp = 0.4 obtain mathemati-
cal, tabular and graphical form (pmf and cdf) ofX ∼ Bin(n, p).

�

1.5.2 Continuous Random Variables

Values of a continuous rv are elements of an uncountable set,for example a real
interval. A cdf of a continuous rv is a continuous, nondecreasing, differentiable
function. An interesting difference from a discrete rv is that for aδ > 0

PX(X = x) = limδ→0(FX(x + δ) − FX(x)) = 0.

We define theprobability density function(pdf) of a continuous rv as:

fX(x) =
d

dx
FX(x). (1.4)

Hence,

FX(x) =

∫ x

−∞

fX(t)dt. (1.5)

Similarly to the properties of the probability distribution of a discrete rv we have
the following properties of the density function:

1. fX(x) ≥ 0 for all x ∈ X ;

2.
∫

X
fX(x)dx = 1.

Probability of an event thatX ∈ (−∞, a), is expressed as an integral

PX(−∞ < X < a) =

∫ a

−∞

fX(x)dx = FX(a) (1.6)

or for a bounded interval(b, c) as

PX(b < X < c) =

∫ c

b

fX(x)dx = FX(c) − FX(b). (1.7)
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Figure 1.1: Distribution Function and Cumulative Distribution Function for
N(4.5, 2)

Exercise1.5. A certain river floods every year. Suppose that the low-watermark
is set at 1 and a high-water markX has distribution function

FX(x) =

{

0, for x < 1;
1 − 1

x2 , for x ≥ 1.

1. Verify thatFX(x) is a cdf.

2. Find the pdf ofX.

3. Calculate the probability that the high-water mark is between 3 and 4.

1.6 Families of Distributions

Example1.10. Normal distributionN (µ, σ2)
The density function is given by

fX(x) =
1

σ
√

2π
e
−(x−µ)2

2σ2 . (1.8)

There are two parameters which tell us about the position andthe shape of the
density curve.

�

There is an extensive theory of statistical analysis for data which are realizations
of normally distributed random variables. This distribution is most common in
applications, but sometimes it is not feasible to assume that what we observe can
indeed be a sample from such a population. In Example 1.6 we observe time to a
specific response to a drug candidate. Such a variable can only take nonnegative
values, while the normal rv’s domain isR. A lognormal distribution is often used
in such cases.X has a lognormal distribution iflog X is normally distributed.
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Exercise1.6. Recall the following discrete distributions:

1. UniformU(n);

2. Bern(p);

3. Geom(p);

4. Hypogeometric(n, M, N);

5. Poisson(λ).

Exercise1.7. Recall the following continuous distributions:

1. UniformU(a, b);

2. Exp(λ);

3. Gamma(α, λ);

4. Beta(α, β);

Note that all the distributions depend on some parameters, like p, λ, µ, σ or other.
These values are usually unknown, so their estimation is oneof the important
problems in statistical analyzes. These parameters determine some characteristics
of the shape of the pdf/pmf of a random variable. It can be location, spread, skew-
ness etc.

We denote byPθ the distribution function of a rvX depending on the parameter
θ (a scalar or ans-dimensional vector).

Definition 1.10. Thedistribution family is a set

P = {Pθ : θ ∈ Θ ⊆ R
s}

defined on a common measurable space(Ω,A).
�

Example1.11. Assume that in the efficacy Example 1.9 we have 3 mice. Then the
sample spaceΩ consists of triples of “efficacious” or “non-efficacious” responses,

Ω = {(ω1, ω1, ω1), (ω1, ω1, ω2), . . . , (ω2, ω2, ω2)}.

Take theσ-algebraA as the power set onΩ.
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The random variable defined as the number of successes inn = 3 trials has Bino-
mial distribution with probability of successp.

X : Ω → {0, 1, 2, 3}.

Herep is the parameter which together with the distribution function defines the
family on the common measurable space(Ω,A).

Forp = 1

2
we have the symmetric mass function

X = x 0 1 2 3

P (X = x) 1

8

3

8

3

8

1

8

,

while for p = 3

4
the asymmetric mass function

X = x 0 1 2 3

P (X = x) 1

64

9

64

27

64

27

64

.

Both functions belong to the same family of binomial distributions withn = 3.

�

Exercise1.8. Draw graphs of probability density functions of random variables
having Exponential and Gamma distributions, each for several different parameter
values.

�

1.7 Expected Values

Definition 1.11. The expected value of a functiong(X) is defined by

E(g(X)) =



















∫ ∞

−∞

g(x)f(x)dx, for a continuous r.v.,

∞
∑

j=0

g(xj)p(xj) for a discrete r.v.,

andg is any function such thatE |g(X)| < ∞.
�

Two important special cases ofg are:

Mean E(X), also denoted byE X, wheng(X) = X,
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Variance E(X − E X)2, wheng(X) = (X − E X)2. The following relation is
very useful while calculating the variance

E(X − E X)2 = E X2 − (E X)2. (1.9)

Example1.12. Let X be a random variable such that

f(x) =







1

2
sin x, for x ∈ [0, π],

0 otherwise.

Then the expectation and variance are following

• Expectation

E X =
1

2

∫ π

0

x sin xdx =
π

2
.

• Variance
var(X) = E X2 − (E X)2

=
1

2

∫ π

0

x2 sin xdx −
(π

2

)2

=
π2

4
.

�

Example1.13. Normal distribution,X ∼ N (µ, σ2)

We will show that the parameterµ is the expectation ofX and the parameterσ2

is the variance ofX.

First we show thatE(X − µ) = 0.

E(X − µ) =

∫ ∞

−∞

(x − µ)f(x)dx

=

∫ ∞

−∞

(x − µ)
1

σ
√

2π
e
−(x−µ)2

2σ2 dx

= −σ2

∫ ∞

−∞

f ′(x)dx = 0.

HenceE X = µ.
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Similar arguments give

E(X − µ)2 =

∫ ∞

−∞

(x − µ)2f(x)dx

= −σ2

∫ ∞

−∞

(x − µ)f ′(x)dx = σ2.

�

The following useful properties of the expectation follow from properties of inte-
gration (summation).

Theorem 1.5. Let X be a random variable and leta, b andc be constants. Then
for any functionsg(x) andh(x) whose expectations exist we have:

(a) E[ag(X) + bh(X) + c] = a E[g(X)] + b E[h(X)] + c;

(b) If g(x) ≥ h(x) for all x, thenE(g(X)) ≥ E(h(X));

(c) If g(x) ≥ 0 for all x, thenE(g(X)) ≥ 0;

(d) If a ≥ g(x) ≥ b for all x, thena ≥ E(g(X)) ≥ b.
�

Exercise1.9. Show thatE(X − b)2 is minimized byb = E(X).
�

Variance of a random variable together with the mean are the most important
parameters used in the theory of statistics. The following theorem is a result of
the properties of the expectation function.

Theorem 1.6. If X is a random variable with a finite variance, then for any
constantsa andb,

var(aX + b) = a2 var X.

�


