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1.4 Distribution Functions

Definition 1.8. The probability of the everitY < x) expressed as a function of
x e R:

is called thecumulative distribution function (cdf) of the rv.X. 0

Examplel.7. The cdf of the rv defined in Example 1.5 can be written as
0, for z € (—o0,0);
Fx(z) =1 q, for z € [0,1);
g+p=1, forzell, o0).

U
Properties of cumulative distribution functions are giwrethe following theorem.

Theorem 1.4. The functionF'(z) is a cdf iff the following conditions hold:
(i) The function is nondecreasing, that isgif < z, thenFx (z1) < Fx(z2);
(i) lim, . o Fy(z) = 0;

(iii) lim, o Fix(z) = 1;
(iv) F(zx) is right-continuous.
Proof. Note that a cdf can be equivalently written as
Fx(x)=Px(X <z)=P{weQ: X(w) <z})=P(A,),

whereAd, = {w € Q: X(w) < z}.

(i) Foranyz; < z; we haved,, C A, . Thus by 1.1 part (f), we have

P(AJ;?) < P(A$7) and SOF)((I'Z‘) < Fx(ZL‘j).

(i) Let{x,:n =1,2,...} be asequence of decreasing real numbers such that
x, — —oo asn — oo. Then, forz, > x,,; we haved, O A and

Aa o
n=1

Tnt1
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Hence, by Theorem 1.3 (b), we get

n—oo n—~o0

lim Fy(z,) = lim P(4,,)= P( ﬁ A;,) =P(0) =0.

Since the above holds for any sequefeg} such that{x,} — —oo, we
conclude thatim, ., Fx(z) = 0.

(i) Can be proved by similar reasoning as in (ii).

(iv) Afunctiong : R — Ris right continuous ifims_.o g(z + §) = g(x).

Let z,, be a decreasing sequence such that- x asn — oco. Then, by
definition, A, C A, for all n and A, is the largest set for which it is true.

This gives
() Az, = Aa
n=1

and by Theorem 1.3 (b), we get

lim Fy(z,) = lim P(A,,) = P([) As.) = P(As) = Fx(x).

n—oo n—00

Since the above holds for any sequerdeg} such that{z,} — =z, we
conclude thatim;_.o Fix(z + ) = Fx(z) for all x and soF’x is right con-
tinuous. O

Examplel.8 We will show that
1
T 1t
is the cdf of a rvX. Itis enough to show that the function meets the requirement
of Theorem 1.4. We have

lim Fx(z) =0 since lim e * = oo;

Fx(l')

Tr——00 T——00
lim Fx(z) =1 sincelim e * = 0.
T—00 r—00

Also, the derivative of'(x) is

e*{L‘
Flz)= ——=>0
showing that"(x) is increasing. Furthermore, it is a continuous functiort,amby
right-continuous. =
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Now we can define discrete and continuous rvs more formally.

Definition 1.9. A random variableX is continuous ifF'y (z) is a continuous func-
tion of z. A random variableX is discrete ifF'x (=) is a step function of. 0

1.5 Density and Mass Functions

1.5.1 Discrete Random Variables

Values of a discrete rv are elements of a countablé sgetr,, . ..}. We associate
anumbepy(z;) = Px(X = x;) with each valuer;, i = 1,2, ..., such that:

1. px(x;) > 0 for all 4

2. > px(z) = 1.

Note that
Fx(z:) = Px(X <a;) = Y px(x), (1.1)
px(l‘z) = Fx(l'l) - FX(xi—l)- (12)

The functionp is called theprobability mass functiopmf) of the random vari-
able X, and the collection of pairs

{(zi,px(z)), i=1,2,...} (1.3)

is called theprobability distributionof X. The distribution is usually presented in
either tabular, graphical or mathematical form.

Examplel.9. Consider Example 1.5, but now, we havemice and we observe
efficacy or no efficacy for each mouse independently. We aerasted in the
number of mice which respond positively to the applied dragdidate. IfX; is
a random variable as defined in Example 1.5 for each mousayamnty assume
that the probability of a positive response is the same fanale, then we may
create a new random variable as the sum of alX;, that is,

i=1

X denotest successes in independent trials and it has a binomial distribution,
which we denote by
X ~ Bin(n,p),
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wherep is the probability of success. The pmf of a binomially distited rv.X
with parameters andp is

P(X:x):(Z)px(l—p)”x, r=0,1,2,...,n,

wheren is a positive integer and < p < 1.

Exercisel.4. Forn = 8 and the probability of succegs= 0.4 obtain mathemati-
cal, tabular and graphical form (pmf and cdf).6f~ Bin(n, p). 0

1.5.2 Continuous Random Variables

Values of a continuous rv are elements of an uncountabldésetxample a real
interval. A cdf of a continuous rv is a continuous, nondesiag, differentiable
function. An interesting difference from a discrete rv iattfor aé > 0

Px(X =) = lims_o(Fx(x +9) — Fx(x)) = 0.

We define theprobability density functioifpdf) of a continuous rv as:

Hence, N
Feta)= [ fx(t)at. (L5)

Similarly to the properties of the probability distributiof a discrete rv we have
the following properties of the density function:

1. fx(x) >0forallz € X;

2. [, [x(x)dx =1,
Probability of an event thaX” € (—o0, a), is expressed as an integral

a

Px(—oo < X <a)= / fx(z)dr = Fx(a) (1.6)

— 00

or for a bounded intervdb, c) as

Px(b<X<C):/bcfx(l')dl‘:Fx(C)—Fx(b) (17)
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a b ¢ 0.0
X

Figure 1.1: Distribution Function and Cumulative Distrilomm Function for
N(4.5,2)

Exercisel.5. A certain river floods every year. Suppose that the low-waiairk

is set at 1 and a high-water makk has distribution function

0, for z < 1;
FX(m):{ 1-1L, forz>1.

1. Verify thatF'x (z) is a cdf.
2. Find the pdf ofX.
3. Calculate the probability that the high-water mark isNesin 3 and 4.

1.6 Families of Distributions

Examplel.10 Normal distribution\V (p, o?)
The density function is given by

1 —(z—p)?
e S (1.8)

€Tr) =
Ix() oV 2T
There are two parameters which tell us about the positiontie@dhape of the

density curve. 0

There is an extensive theory of statistical analysis foa aatich are realizations
of normally distributed random variables. This distriloutis most common in
applications, but sometimes it is not feasible to assumexhat we observe can
indeed be a sample from such a population. In Example 1.6 werebé time to a
specific response to a drug candidate. Such a variable cgriakd nonnegative
values, while the normal rv’'s domainli&s A lognormal distribution is often used
in such casesX has a lognormal distribution Ibg X is normally distributed.
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Exercisel.6. Recall the following discrete distributions:
1. Uniformi(n);
2. Bern(p);
3. Geom(p);

4. Hypogeometric(n, M, N);

5.

Poisson(\).

Exercisel.7. Recall the following continuous distributions:
1. Uniformi(a,b);
2. Exp(A);
3. Gamma(a, \);
4. Beta(q, 3);

Note that all the distributions depend on some parametkesy |\, 11, o or other.
These values are usually unknown, so their estimation isodrtee important
problems in statistical analyzes. These parameters dietesome characteristics
of the shape of the pdf/pmf of a random variable. It can betlonaspread, skew-
ness etc.

We denote byF, the distribution function of a nX depending on the parameter
0 (a scalar or as-dimensional vector).

Definition 1.10. Thedistribution family is a set
P:{PQ:GEGQRS}
defined on a common measurable spdeeA). O

Examplel.11 Assume that in the efficacy Example 1.9 we have 3 mice. Then the
sample spacg consists of triples of “efficacious” or “non-efficacious’sgonses,

Q= {(wlawlawl)a (wlawlaw2)7 LRI (w2aw2aw2)}-

Take thes-algebraA as the power set an.
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The random variable defined as the number of successes:-if} trials has Bino-
mial distribution with probability of succesgs

X :Q—{0,1,2,3}.

Herep is the parameter which together with the distribution fisrcdefines the
family on the common measurable spége A).

Forp = 5 we have the symmetric mass function

X=uz ‘O
P(X =1) |

N
w

X[ | =
oolw
o=

1
8
while for p = 2 the asymmetric mass function

X=z |0 1 2 3

_ 1 9 27 27 °
P(X—l’)‘a 8 o &

Both functions belong to the same family of binomial disttibns withn = 3.
0

Exercisel.8 Draw graphs of probability density functions of random shtes
having Exponential and Gamma distributions, each for sfdgferent parameter
values. O

1.7 Expected Values

Definition 1.11. The expected value of a functigfX) is defined by

/ g(x) f(x)dz, fora continuousr.v.

— 00

B(g(X)) = { =
> g(x;)p(x;) foradiscrete ry,
7=0
andg is any function such that |g(X)| < oc. 0

Two important special cases gfare:

Mean E(X), also denoted b{ X, wheng(X) = X,
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Variance E(X — E X)?, wheng(X) = (X — E X)2 The following relation is
very useful while calculating the variance

E(X -EX)??=EX?—- (EX)% (1.9)
Examplel.12 Let X be a random variable such that

) %sinx, for x € [0, 7,
€Tr) =

0 otherwise
Then the expectation and variance are following

e Expectation
1/ . T
EX = —/ rsinxdr = —.
2 Jo 2

e Variance
var(X) =EX? — (EX)?

1 [7 2
= —/ 22 sin zdx — <I>
2 /o 2

71.2

1

Examplel.13 Normal distribution, X ~ N (u, 0%)

We will show that the parameteris the expectation ok and the parameter?
is the variance oX .

First we show thakl(X — u) = 0.

B ) = [ e - ) fla)de

Hencek X = p.
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Similar arguments give

o0

B(X — p)? = / (2 — w0 f(2)de

—00

4

The following useful properties of the expectation follawrh properties of inte-
gration (summation).

Theorem 1.5.Let X be a random variable and let b andc be constants. Then
for any functiongy(z) andh(z) whose expectations exist we have:

(8) Elag(X) + bh(X) + d = aBlg(X)] + bE[R(X)] +
(b) If g(x) > h(x) for all z, thenE(g(X)) > E(h(X));
(c) If g(x) > 0forall x, thenE(g(X)) > 0;

(d) If a > g(x) > bforall z, thena > E(g(X)) > b. -

Exercisel.9. Show thatfl(X — b)? is minimized byb = E(X). 0

Variance of a random variable together with the mean are tbst important
parameters used in the theory of statistics. The followireptem is a result of
the properties of the expectation function.

Theorem 1.6.If X is a random variable with a finite variance, then for any
constants: andb,
var(aX + b) = a® var X.



