
Empirical Distributions 
 

An empirical distribution is one for which each possible event is assigned a 
probability derived from experimental observation.  It is assumed that the events 
are independent and the sum of the probabilities is 1. 
 
An empirical distribution may represent either a continuous or a discrete 
distribution.  If it represents a discrete distribution, then sampling is done “on 
step”.  If it represents a continuous distribution, then sampling is done via 
“interpolation”.  The way the table is described usually determines if an empirical 
distribution is to be handled discretely or continuously; e.g., 
 

discrete description continuous description 
value probability value probability 

 10 .1 0 – 10- .1 
 20 .15 10 – 20- .15 
 35 .4 20 – 35- .4 
 40 .3 35 – 40- .3 
 60 .05 40 – 60- .05 
 

To use linear interpolation for continuous sampling, the discrete points on the end 
of each step need to be connected by line segments.  This is represented in the 
graph below by the green line segments.  The steps are represented in blue: 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the discrete case, sampling on step is accomplished by accumulating 
probabilities from the original table; e.g., for x = 0.4, accumulate probabilities 
until the cumulative probability exceeds 0.4; rsample is the event value at the 
point this happens (i.e., the cumulative probability 0.1+0.15+0.4 is the first to 
exceed 0.4, so the rsample value is 35). 
 
In the continuous case, the end points of the probability accumulation are needed, 
in this case x=0.25 and x=0.65 which represent the points (.25,20) and (.65,35) on 
the graph.  From basic college algebra, the slope of the line segment is  
(35-20)/(.65-.25) = 15/.4 = 37.5.  Then slope = 37.5 = (35-rsample)/(.65-.4) so 
rsample = 35 - (37.5×.25) = 35 – 9.375 = 25.625. 
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Discrete Distributions 
 

To put a little historical perspective behind the names used with these 
distributions, James Bernoulli (1654-1705) was a Swiss mathematician whose 
book Ars Conjectandi (published posthumously in 1713) was the first significant 
book on probability; it gathered together the ideas on counting, and among other 
things provided a proof of the binomial theorem.  Siméon-Denis Poisson (1781-
1840) was a professor of mathematics at the Faculté des Sciences whose 1837 text 
Recherchés sur la probabilité des jugements en matière criminelle et en matière 
civile introduced the discrete distribution now called the Poisson distribution.  
Keep in mind that scholars such as these evolved their theories with the objective 
of providing sophisticated abstract models of real-world phenomena (an effort 
which, among other things, gave birth to the calculus as a major modeling tool). 
 
I. Bernoulli Distribution 
 

A Bernoulli event is one for which the probability the event occurs is p and 
the probability the event does not occur is 1-p; i.e., the event is has two 
possible outcomes (usually viewed as success or failure) occurring with 
probability p and 1-p, respectively.  A Bernoulli trial is an instantiation of a 
Bernoulli event.  So long as the probability of success or failure remains the 
same from trial to trial (i.e., each trial is independent of the others), a 
sequence of Bernoulli trials is called a Bernoulli process.  Among other 
conclusions that could be reached, this means that for n trials, the 
probability of n successes is pn. 
 
A Bernoulli distribution is the pair of probabilities of a Bernoulli event, 
which is too simple to be interesting.  However, it is implicitly used in “yes-
no” decision processes where the choice occurs with the same probability 
from trial to trial (e.g., the customer chooses to go down aisle 1 with 
probability p) and can be cast in the same kind of mathematical notation  
used to describe more complex distributions: 

pz(1-p)1-z for z = 0,1 
p(z) = 

0 otherwise 
 

 
 
 
 
 
 
  

While this is notational overkill for such a simple distribution, it’s 
construction in this form will be useful for understanding other distributions. 
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Sampling from a discrete distribution, requires a function that corresponds 
to the distribution function of a continuous distribution f given by  

 
 

 
This is given by the mass function F(x) of the distribution, which is the step 
function obtained from the cumulative (discrete) distribution given by the 
sequence of partial sums 

 
 

 

For the Bernoulli distribution, F(x) has the construction  

 0 for -∞ ≤ x < 0 
F(x) = 1-p for 0 ≤ x < 1 

1 for x ≥ 1 

which is an increasing function (an so can be inverted in the same manner as 
for continuous distributions).   Graphically, F(x) looks like 
 
 
 
 
 
 
 
 
which inverted yields the sampling function 
 
 
 
 
 
 
 
 
 
 
 
In other words, for random value x drawn from [0,1), 

 0 if 0 ≤  x < 1-p 
rsample = 

1 if 1-p ≤  x < 1 
 

In essence, this demonstrates that sampling from a discrete distribution, 
even one as simple as the Bernoulli distribution, can be viewed in the same 
manner as for continuous distributions. 
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II. Binomial Distribution 
 

The Bernoulli distribution represents the success or failure of a single 
Bernoulli trial.  The Binomial Distribution represents the number of 
successes and failures in n independent Bernoulli trials for some given value 
of n.  For example, if a manufactured item is defective with probability p, 
then the binomial distribution represents the number of successes and 
failures in a lot of n items.  In particular, sampling from this distribution 
gives a count of the number of defective items in a sample lot.  Another 
example is the number of heads obtained in tossing a coin n times. 
 
The binomial distribution gets its name from the binomial theorem which 
states that the binomial 
 

 
It is worth pointing out that if a = b = 1, this becomes 
 
 
 
Yet another viewpoint is that if S is a set of size n, the number of k element 
subsets of S is given by  
 
 
This formula is the result of a simple counting analysis: there are   
 
 
ordered ways to select k elements from n (n ways to choose the 1st item,  
(n-1) the 2nd , and so on).  Any given selection is a permutation of its k 
elements, so the underlying subset is counted k! times.  Dividing by k! 
eliminates the duplicates. 
 
Note that the expression for 2n counts the total number of subsets of an  
n-element set. 
 
For n independent Bernoulli trials the pdf of the binomial distribution is 
given by 
 
 

p(z) =  
 

0 otherwise 
 

Note that  
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When choosing z items from among n items, the term 
 

 
 
represents the probability that z are defective (and concomitantly that (n-z) 
are not defective). 
 
The binomial theorem is also the key for determining the expected value 
E(X) for the random variable X for the distribution.  E(X) is given by 

(the expected value is just the sum of the discrete items weighted by their 
probabilities, which corresponds to a sample’s mean value; this is an 
extension of the simple average value obtained by dividing by n, which 
corresponds to a weighted sum with each item having probability 1/n). 
 
For the binomial distribution the calculation of E(X) is accomplished by 
 
 
 

 
 
 
This gives the result that E(X) = np for a binomial distribution on n items 
where probability of success is p.  It can be similarly shown that the 
standard deviation is  
 
 
The binomial distribution with n=10 and p=0.7 appears as follows: 
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Its corresponding mass function F(x) is given by 
 
 
 
 
 
 
 
 
 
 
 
 
 
which provides the sampling function 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A typical sampling tactic is to accumulate the sum 
 
 
 
increasing rsample until the sum's value exceeds the random value between 
0 and 1 drawn for x. The final rsample summation limit is the sample value.  
Note that in contrast to a continuous pdf described by some formula, the 
function for a finite discrete pdf has to be given in its relational form by a 
table of pairs, which in turn mandates the kind of "search" algorithm 
approach used above to obtain rsample. 
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III. Poisson Distribution (values z = 0, 1, 2, . . .) 
 

The Poisson distribution is the limiting case of the binomial distribution 
where p=λ/n → 0 and n → ∞. 
 
The expected value E(X) = λ.  The standard deviation is        .  The pdf is 
given by 
 
 
   
This distribution dates back to Poisson's 1837 text regarding civil and criminal 
matters, in effect scotching the tale that its first use was for modeling deaths from 
the kicks of horses in the Prussian army.  In addition to modeling the number of 
arrivals over some interval of time (recall the relationship to the exponential 
distribution; a Poisson process has exponentially distributed interarrival times), 
the distribution has also been used to model the number of defects on a 
manufactured article.  In general the Poisson distribution is used for situations 
where the probability of an event occurring is very small, but the number of trials 
is very large (so the event is expected to actually occur a few times). 
 
Graphically, with λ = 2,  it appears as: 
 
 
 
 
 
 
 
 
 
 
 
 
The sampling function looks like: 
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IV. Geometric Distribution 
 

The geometric distribution gets its name from the geometric series: 
 
 
 
  
The pdf for the geometric distribution is given by 
 

p(z) =  
0 otherwise 

 
The geometric distribution is the discrete analog of the exponential distribution.  
Like the exponential distribution, it is "memoryless"; i.e.,  

              P(X > a+b | X > a) = P(X > b) 
(the geometric distribution is the only discrete distribution with this property just 
as the exponential distribution is the only continuous one behaving in this 
manner). 
 
Its expected value is given by 
 
 
 
(by applying the 3rd form of the geometric series).   

The standard deviation is given by 
p

p1 −
. 

A plot of the geometric distribution with p = 0.3 is given by 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

various flavors of the geometric series 
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A typical use of the geometric distribution is for modeling the number of 
failures before the first success in a sequence of independent Bernoulli 
trials.  This is a typical scenario for sales.  Suppose that the probability of 
making a sale is 0.3.  Then 
 p(1) = 0.3 is the probability of success on the 1st try, 
 p(2) = (1-p)p = 0.7×0.3 = 0.21  

which is the probability of failing on the 1st try (with probability 1-p) 
and succeeding on the 2nd (with probability p). 

p(3) = (1-p)(1-p)p = 0.15 is the probability that the sale takes 3 tries, and 
so forth. 

A random sample from the distribution represents the number of attempts 
needed to make the sale. 


