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ABSTRACT
Noise subspace methods are popular for estimating the parame-
ters of complex sinusoids in the presence of uncorrelated noise
and has applications in musical instrument modeling and micro-
phone array processing. One such algorithm, MUSIC (Multiple
Signal Classification) has been popular for its ability to resolve
closely spaced sinusoids. However, the computational efficiency
of MUSIC is relatively low, since it requires an explicit eigenvalue
decomposition of an autocorrelation matrix, followed by a linear
search over a large space. In this paper, we discuss methods for and
the benefits of converting the Toeplitz structure of the autocorrela-
tion matrix to circulant form, so that the eigenvalue decomposition
can be replaced by a Fast Fourier Transform (FFT) of one row of
the matrix. This transformation requires modeling the signal as at
least approximately periodic over some duration. Moreover, we
derive a closed-form expression for finding spectral peaks, yield-
ing large savings in computation time. We test our algorithm to
resolve closely spaced piano partials and observe that it can work
with a much shorter data window than a regular FFT.

1. INTRODUCTION

Sinusoidal parameter estimation is a classical problem with appli-
cations in radar, sonar, music, and speech, among others. When
the frequencies of sinusoids are well resolved, looking for spectral
peaks is adequate. It is shown in [1] that the maximum likelihood
(ML) frequency estimate for a single sinusoid in Gaussian white
noise is given by the frequency of the magnitude peak in the peri-
odogram. The ML approach is extended and Cramer-Rao bounds
are derived for multiple sinusoids in noise in a follow-on paper by
the same authors [2]. Some other estimators are covered in [3].

For closely spaced sinusoidal frequencies, however, other ap-
proaches have been developed. Noise subspace methods are a
class of sinusoidal parameter estimators that utilize the fact that
the noise subspace of the measured signal is orthogonal to the sig-
nal subspace. Pisarenko Harmonic Decomposition [4] makes use
of the eigenvector associated with the minimum eigenvalue of the
estimated autocorrelation matrix to find frequencies. However, it
has been found to exhibit relatively poor accuracy [3]. Schmidt
[5] improved over Pisarenko with the MUSIC (MUltiple SIgnal
Classification) algorithm which could estimate the frequencies of
multiple closely spaced signals more accurately in the presence of
noise. In MUSIC, a pseudospectrum is generated by projecting
a complex sinusoid onto all of the noise subspace eigenvectors,
defining peaks where this projection magnitude is minimum. This
method is shown to be asymptotically unbiased. An enhancement
to MUSIC, root-MUSIC, was proposed in [6]. It uses the proper-
ties of the signal-space eigenvectors to define a rational spectrum

with poles and zeros. It is said to have better resolution than MU-
SIC at low SNRs. Similarly, another popular algorithm, ESPRIT
[7], was invented by Roy et al. which makes use of the underly-
ing rotational invariance of the signal subspace. The generalized
eigenvalues of the matrix pencil formed by an auto-covariance ma-
trix and a cross-covariance matrix gives the unknown frequencies.
ESPRIT performs better than MUSIC, especially when the sig-
nal is sampled nonuniformly. More recently, another enhancement
to MUSIC, gold-MUSIC [8] has been proposed which uses two
stages for coarse and fine search, respectively.

One of the disadvantages of the MUSIC algorithm is its com-
putational complexity. Typical eigenvalue decomposition algo-
rithms are of the order O(N3) [9]. In this paper, we use the
fact that, for periodic signals, the autocorrelation matrix is circu-
lant when it spans an integer multiple of the signal’s period. In
this case, looking for the eigenvalues with largest magnitude is
equivalent to looking for magnitude peaks in the FFT. We know in
the circulant case that our noise eigenvectors are DFT sinusoids,
and hence we can derive a closed-form solution when we project
our search space onto the noise subspace, thereby reducing further
the calculations required to find the pseudospectrum. Replacing
eigenvalue decomposition in MUSIC with efficient Fourier trans-
form based methods has been previously studied in [10] where
the eigenvectors are derived to be some linear combinations of the
data vectors, while maintaining the orthonormality constraint. In
this paper, we take a different approach by utilizing the circulancy
of autocorrelation matrices.

We test our algorithm to resolve closely spaced partials of the
A3 note played on a piano. It is a well known fact that the strings
corresponding to a particular piano key are slightly mistuned. Cou-
pled motion of piano strings has been studied in detail by Weinre-
ich in [11, 12]. There is a slight difference in frequency of the
individual strings, giving rise to closely spaced peaks in the spec-
tra. A very long window of data is needed to resolve these peaks
with the FFT. We show that FAST MUSIC can resolve two closely
spaced peaks with a much shorter window of data than a regular
FFT, and much faster than MUSIC.

The rest of this paper is organized as follows : Section 2 gives
an outline of the MUSIC algorithm, Section 3 derives the FAST
MUSIC algorithm, Section 4 describes the experimental results on
a) an artificially synthesized signal containing two sinusoids with
additive white noise and b) a partial of the A3 note played on the
piano which contains beating frequencies. We conclude the paper
in Section 5 and delineate the scope for future work. Estimation of
real-valued sine wave frequencies with MUSIC has been studied
in [13]. For all derivations in this paper, we work with real signals,
because we are interested in audio applications. This saves some
time in computing the pseudospectrum since we know it will be
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symmetric. Our derivations can be easily extended to complex
signals.

2. MUSIC

2.1. Model

We wish to estimate the parameters of a signal composed of ad-
ditive sinusoids from noisy observations. Let y(n) be the noisy
signal, composed of a deterministic part, x(n), made of r real sinu-
soids and random noise,w(n). We assume thatw(n) ∼ N(0, σ2),
and that w(n) and x(n) are uncorrelated. The sinusoidal phases
φi’s are assumed to be i.i.d. and uniformly distributed φi ∼ U(−π,
π).

y(n) =

r∑
i=1

Ai cos (ωin+ φi) + w(n)

y(n) = x(n) + w(n)

In vector notation, the signal y ∈ RM can be characterized
by the M × M autocorrelation matrix Ky = E(yyT ). For a
zero-mean signal, the autocorrelation matrix coincides with the
covariance matrix. Since this matrix is Toeplitz and symmetric
positive-definite, its eigenvalues are real and nonnegative (and pos-
itive when σ > 0). We can perform an eigenvalue decomposition
on this matrix to get a diagonal matrix Λ consisting of the eigen-
values, and an eigenvector matrix Q. The 2r eigenvectors cor-
responding to the 2r largest eigenvalues, Qx, contain signal plus
noise information, whereas the remaining M-2r eigenvectors, Qw,
only represent the noise subspace. Thus, we have the following
relationships:

Ky = Kx +Kw = Kx + σ2I

Ky = QΛQH

Ky =
[
Qx Qw

] [Λ′ 0
0 σ2IM−2r

] [
QHx
QHw

] (1)

2.2. Pseudospectrum Estimation

Let a vector of M harmonic frequencies be denoted as b(ω) =

[1, ejω, e2jω · · · e(M−1)jω]T . We project this vector onto Qw, i.e.,
the subspace occupied by the noise (where there is no signal com-
ponent). We find the following spectrum as a function of a set of
ω’s:

P (ω) =
1

b(ω)HQwQHwb(ω)

P (ω) =
1

||QHwb(ω)||2

(2)

For a particular value of ω that is actually present in the sig-
nal, the sum of projections of b onto the eigenvectors spanning the
noise subspace will be zero. This is because the subspace occu-
pied by the signal is orthogonal to that occupied by noise since
they are uncorrelated. Thus, we see that P (ω) will take on a very
high value in such cases. In conclusion, we can find peaks in the
function P (ω) and those will correspond to our estimated frequen-
cies. Since the search space can consist of any number of densely
packed frequencies, very closely spaced peaks can show up in the
pseudospectrum, which a simple FFT might not be able to resolve
in the presence of noise. However, as the search-space grows, so
does computational complexity.

3. FAST MUSIC

Under conditions to be specified, it is possible to replace the eigen-
value decomposition required in MUSIC by a Fast Fourier Trans-
form (FFT). In this section, we derive the structure and order of
the autocorrelation matrix for which it is circulant instead of only
Toeplitz. We also derive a closed-form expression for finding the
pseudospectrum.

3.1. Deriving the autocorrelation matrix

In vector form, y ∈ RM can be written as:

y = Sa + w

w ∼ N(0, σ2I)
(3)


y(n)

y(n− 1)
...

y(n−M + 1)

 =


1 0 · · ·

cos(ω1) sin(ω1) · · ·
...

... . . .
cos[(M − 1)ω1] sin[(M − 1)ω1] · · ·



×


A1 cos(ω1n+ φ1)
A1 sin(ω1n+ φ2)

...
Ar sin(ωrn+ φr)

+


w(n)

w(n− 1)
...

w(n−M + 1)


(4)

Since y is zero-mean, its covariance matrix is

Ky = E(yyT ) = SKaS
T + σ2I. (5)

We now want to get Ky in terms of Ka. We have assumed φi ∼
U(−π, π) (uniformly identically distributed random phase). We
observe that every term of Ka is of the form Ka(i, j) = E[Ai cos(ωi
n+ φi)Aj cos(ωjn+ φj)], or E[Ai sin(ωin+ φi)Aj sin(ωjn+
φj)], or E[Ai sin(ωin+φi)Aj cos(ωjn+φj)], or E[Ai cos(ωin+
φi)Aj sin(ωjn+φj)]. All of these terms are zero, except the first
two when i = j, i.e. E[A2

i cos (ωin+ φi)
2] = E[A2

i sin(ωin +

φi)
2] =

A2
i
2

, which makes it a diagonal matrix:

Ka =


A2

1
2

0 · · · 0 0

0
A2

1
2
· · · 0 0

...
... . . .

...
...

0 0 · · · 0
A2
r
2

 (6)

The autocorrelation matrix of the observed signal is given in (7).
This is an M × M real, symmetric Toeplitz matrix, but with the
right order M it can become circulant.

3.2. Circulancy of the autocorrelation matrix

We have seen that the autocorrelation matrix Ky is symmetric Toeplitz.
However it is to be noted that for k = 1, 2, ..., if M is an integer
such that M = 2πn/ωi, n ∈ Z+, then

r∑
i=1

A2
i

2
cos (M − k)ωi =

r∑
i=1

A2
i

2
cos kωi (8)
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SKaS
T + σ2I =


∑
i

A2
i
2

+ σ2 ∑
i

A2
i
2

cosωi
∑
i

A2
i
2

cos 2ωi · · ·
∑
i

A2
i
2

cos (M − 1)ωi∑
i

A2
i
2

cosωi
∑
i

A2
i
2

+ σ2 ∑
i

A2
i
2

cosωi · · ·
∑
i

A2
i
2

cos (M − 2)ωi
...

...
... . . .

...∑
i

A2
i
2

cos (M − 1)ωi
∑
i

A2
i
2

cos (M − 2)ωi · · · · · ·
∑
i

A2
i
2

+ σ2

 (7)

If we choose M carefully, then the autocorrelation matrix may be
written as :


∑
i

A2
i
2

+ σ2 ∑
i

A2
i
2

cosωi · · ·
∑
i

A2
i
2

cosωi∑
i

A2
i
2

cosωi
∑
i

A2
i
2

+ σ2 · · ·
∑
i

A2
i
2

cos 2ωi
...

... . . .
...∑

i

A2
i
2

cosωi
∑
i

A2
i
2

cos 2ωi · · ·
∑
i

A2
i
2

+ σ2

 (9)

This matrix is circulant! Hence, its eigenvectors are given by
the DFT sinusoids and its eigenvalues are the DFT coefficients
of the first row [14]. The eigenvalues can be computed using an
FFT algorithm when M is a power of 2 or highly composite. The
relationship between eigenvalues of Toeplitz matrices and those of
asymptotically equivalent circulant matrices have been studied in
[15].

For example, if the signal consists of 3 sinusoids with frequen-
cies π

2
, π
4

and π
5

then the minimum order of M which will make
the autocorrelation matrix circulant is given by 2×LCM(2, 4, 5) =
40. However, if any of the denominators is irrational, then the
LCM does not exist, and hence no value of M will make the auto-
correlation matrix circulant. Of course, in reality we do not know
the frequencies and cannot determine M this way. However, we
can instead detect when the autocorrelation corresponds to a sig-
nal that is periodic. If we can find the periodicity of the estimated
autocorrelation function and set M to be that period, then the re-
sulting autocorrelation matrix will be circulant. Since no signal
is truly precisely periodic, this procedure can be viewed as intro-
ducing an approximation based on assuming the signal is periodic.
Such a periodic/harmonic approximation is common when the un-
derlying signal source is known to be a quasi periodic oscillator
such in voiced speech, bowed strings, woodwinds, flutes, brasses,
organs, and so on. In this paper, we use the Average Magnitude
Difference Function [16] to detect the period. We find all local
minima in the AMDF and pick the period as the lowest minimum
index which is smaller than its adjacent neighbors.

3.3. Searching over a large range of frequencies

Suppose we want to calculate the pseudospectrum for N distinct
frequencies ωk = 2π k

N
for k = −N

2
, . . . , N

2
− 1 covering the

range [−π, π). In that case, b(k) = [1, e
2πjk
N , e

4πjk
N . . .

e
2π(M−1)jk

N ]T . Since the eigenvectors spanning the noise sub-
space are also complex exponentials, the projection function can
be simplified. The matrix Qw is composed of columns of noise
eigenvectors, such that each column is denoted by qwni = 1√

M
[1,

e
2πjni
M , e

4πjni
M , · · · , e

2π(M−1)jni
M ]T where ni are the indices of

the noise eigenvectors for i = 1, . . . , L and L = M − 2r.

QHwb(k) =
1√
M


∑M−1
m=0 exp[2πjm

(
k
N
− n1

M

)
]

...∑M−1
m=0 exp[2πjm

(
k
N
− nL

M

)
]



=
1√
M


e−πj(

k
N
−n1
M

)(M−1) sin[π( k
N
−n1
M

)M ]

sin[π( k
N
−n1
M

)]

...

e−πj(
k
N
−nL
M

)(M−1) sin[π( k
N
−nL
M

)M ]

sin[π( k
N
−nL
M

)]


(10)

From the pseudospectrum estimate, it can be seen that, whenever
k
N

= ni
M

, one term in the denominator sum dominates, and we can
evaluate P (k) using L’Hospital’s rule.

P (k) =
M∑M−2r

i=1

∣∣ sin[π( kN −niM )M ]

sin[π( k
N
−ni
M

)]

∣∣2
≈ M∑M−2r

i=1 M2
if

k

N
=
ni
M

≈ 1

M(M − 2r)
if

k

N
=
ni
M

(11)

4. EXPERIMENTS AND RESULTS

4.1. Synthesized signal

To compare FAST MUSIC with MUSIC, we tested a cosine signal
composed of frequencies 0.04rad and 0.05rad at fs = 1 Hz.

y(n) = cos (0.05n) + 0.5 cos (0.04n+ φ) + w(n) (12)

To detect periodicity of the autocorrelation function, we need at
least two periods of the signal. For closely spaced sinusoids, the
period is likely a large number, and hence more samples of the
signal are needed to estimate the autocorrelation function. In this
example, the length of the signal is 2000. The pseudospectra of
MUSIC and FAST MUSIC are given in Figure 1.

To measure computation time, we compared various eigen-
value decomposition algorithms with Fast Fourier Transform al-
gorithms for increasing orders of the autocorrelation matrix. The
results can be seen in Figure 2. QR factorization is used to find
eigenvalues and eigenvectors. QR factorization with Gram Schmidt
orthogonalization is slow, symmetric tridiagonal QR with implicit
Wilkinson shift is slightly faster whereas reduction to the Hessen-
berg form is fastest. More details about these algorithms can be
found in [9]. The Fourier transform algorithms are orders of mag-
nitude faster, with the DFT dominating at lower orders and self-
sorting mixed radix FFT [17] and resampled split radix FFT [18]
giving faster speeds at higher orders. It is to be noted that the or-
der of the autocorrelation matrix for which circulancy is achieved
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(b) FAST MUSIC

Figure 1: Pseudospectrum of signal with frequencies 0.04 rad and
0.05 rad.

is not likely to be a power of 2, and hence we cannot use the well-
known radix-2 FFT algorithm. However, we can first resample the
data to a power of 2 [19] and then apply a radix-2/split radix FFT
algorithm or used a mixed-radix FFT algorithm on any composite
order. All of these functions have been implemented by the au-
thors in MATLAB. More efficient implementations can be done
in C, where the FFT functions should overtake the DFT at much
lower orders.
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Figure 2: Order of matrix vs time in seconds (log)

We also conducted 1000 Monte-Carlo simulations on the above
example, with uniformly distributed random phase and plotted the
mean-squared errors vs SNR for MUSIC, FAST MUSIC and QIFFT
[20], along with the Cramer-Rao bounds (CRB) as given in [21].
The plots can be seen in Figure 3. The performances are nearly
equivalent in Figure 3a, with QIFFT performing the best and FAST
MUSIC performing the worst, but FAST MUSIC performs signif-
icantly better than the others in Figure 3b for high SNRs. FAST
MUSIC performs poorly for SNRs below 20 dB.
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Figure 3: MSE vs SNR plots
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Figure 4: Spectrogram of piano note

4.2. Piano data

We tested our algorithm on the A3 note played on the piano. The
spectrogram of the steady state portion of the note is given in Fig-
ure 4. We can observe beating in some of the partials. We decided
to work with the 11th partial, located close to 2600 Hz, where
a beating of roughly 1 Hz is observed. We bandpass-filtered the
signal using a 4th-order Butterworth filter with cut-off frequen-
cies at 2400 Hz and 2900 Hz. We ran FFTs with the Blackman
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Figure 5: FFT magnitude plots and FAST MUSIC frequency estimates (vertical lines)

window and FAST MUSIC on different data lengths, as shown in
Figure 5, where the vertical lines indicate the frequencies detected
by FAST MUSIC. We see that for window sizes 214 and 215, the
FFT magnitude does not exhibit two separately discernible peaks
at all, whereas FAST MUSIC provides two peak frequencies with
some error. For larger window sizes, both FFT and FAST MU-
SIC are able to resolve the two peaks with greater accuracy. FAST
MUSIC may be preferred over the FFT for higher resolution when
the available data size is limited. One potential application is in pi-
ano tuning, where FAST MUSIC could be used to quickly resolve
closely spaced peaks caused by the coupled motion of the piano

strings.

5. DISCUSSION AND FUTURE WORK

In this paper, we have proposed a computationally efficient imple-
mentation of the MUSIC algorithm. The autocorrelation matrix
was derived and approximated by a circulant matrix. This approxi-
mation allowed us to replace computationally intensive eigenvalue
decomposition algorithms with an FFT. We subsequently derived a
closed-form expression for searching over a range of frequencies.
These modifications yielded a significant improvement in compu-
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tational speed.
A key factor in the accuracy of FAST MUSIC is the precision

in periodicity detection. If the periodicity is off by a significant
number of samples, the autocorrelation matrix is no longer circu-
lant and FAST MUSIC falls apart. AMDF based periodicity detec-
tor is time consuming, not foolproof and often yields wrong results
if the number of lags in the autocorrelation function is very high.
Ideally, a better method for periodicity detection should be used.
However, the aim of this paper is not to come up with a novel so-
lution for detecting the period of a signal, so we leave this problem
open for future work.

Another issue is finding the number of sinusoids present in a
given signal, if it is not known apriori. To do so, one can look at
the relative magnitude of the eigenvalues (FFT peak values in our
case). This works well if the signal to noise ratio is high. More
robust partitioning schemes have been used in [8]. Once the signal
frequencies are known, the estimation of amplitudes is trivial and
can be done using linear least squares.

We found that the estimator variances for both FAST-MUSIC
and the QIFFT method were dominated by bias at high SNRs. Bias
can be reduced arbitrarily in the QIFFT method by increasing the
amount of zero-padding, as well as by other methods [22], and we
expect it to reduce similarly in FAST-MUSIC when the upsam-
pling factor is increased to higher powers of 2 and when the num-
ber of points in the search space is increased. Future work should
reduce or eliminate the bias so that the relative performance can be
observed at high SNRs.

Note that both FAST-MUSIC and QIFFT are effectively FFT-
magnitude based methods. They differ only in how they extract
the peak frequency from the FFT magnitude, and there are slight
differences in the FFT magnitude computation itself (equivalently,
slightly different definitions of sample autocorrelation). Both meth-
ods can be regarded as approximate maximum-likelihood meth-
ods, so the question becomes which method gives the best average
accuracy for a given computational complexity? This remains a
topic for future work.

We would also like to add a third method for comparison which
is a true maximum likelihood estimate, obtainable by finding the
optimal window-transform overlap that explains the observed spec-
trum, under the hypothesis of two sinusoidal peaks being present.
Such a method is of course much more expensive than either of the
FFT methods considered here, but it should represent the highest
accuracy obtainable under our signal modeling assumptions. In the
end, we would like a well filled out family of approximate max-
imum likelihood estimators for closely spaced sinusoidal peaks,
providing a range of ways for trading off estimation accuracy ver-
sus computational expense.
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