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ABSTRACT

A sequential sampling methodology provides concrete results and proves to be bene�cial in many

scenarios, where a �xed sampling technique fails to deliver. This dissertation introduces several

multistage sampling methodologies to estimate the unknown parameters depending on the model in

hand. We construct both two-stage and purely sequential sampling rules under di¤erent situations.

The estimation is carried under a loss function which in our case is either a usual squared error loss

or a Linex loss. We adopt a technique known as bounded risk estimation strategy, where we bound

the appropriate risk function from above by a �xed and known constant !(> 0): At �rst we draw

attention to a negative exponential distribution and applications from health studies. We propose

appropriate stopping rules to estimate the location parameter or the threshold � of a negative

exponential distribution under a Linex loss function. This model proves to be relevant to depict

failure times of complex equipment or survival times in cancer research. We include some real

data applications such as to estimate the minimum threshold of infant mortality rates for di¤erent

countries.

We then move on to extend this investigation to a two-sample situation, where we estimate the

di¤erence in locations �1��2 of two independent negative exponential populations having scales �

and b�: An interesting aspect here is that b(> 0) should be known a�priori. The estimation is again

carried out under Linex loss. We introduce some applications from cancer studies and reliability

analysis.

The third fold of this dissertation involves the bounded risk multistage point estimation of a

negative binomial (NB) mean �(> 0); under di¤erent loss functions. We assume that the thatch
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parameter �(> 0) is either known or unknown. We use a parameterization of the NB model which

was �rst introduced by Anscombe in (1949). This is on slightly di¤erent lines since it involves a

discrete population. A negative binomial model �nds its use in entomological or ecological studies

involving count data. We propose two-stage and purely sequential rules under squared error and

Linex loss functions. We include real data applications involving weed count and bird count data.

We next move on to extend this work for a multi-sample situation where we 1) simultaneously

estimate a k-vector of NB means and 2) estimate the di¤erence in means �1��2 of two independent

NB populations. We again assume that the thatch parameters are either known or unknown. In

the case when the thatch parameters are unknown, we have designed an interesting allocation

scheme along with suitable set of stopping rules. The work is supported using interesting real

world applications.

We should mention that all of our proposed methodologies enjoy exciting asymptotic e¢ ciency

and consistency properties depending on the scenario. Finally, we conclude by discussing some

attractive areas of future research that may be of practical signi�cance.
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Chapter 1
Introduction

1.1. THE NEED FOR SEQUENTIAL

Sequential analysis is concerned with gathering information about an unknown parameter �;

by taking random samples in batches or in a sequence. This is in direct contrast with the usual

inference methodologies where one takes a �xed number of sample points. A sequential rule or

a sampling scheme consists of a positive integer valued random variable N , which denotes the

number of sample points collected at termination. We then propose an estimator of some unknown

parameter �, by a randomly stopped statistic TN which is dependent on N:

A sequential sampling scheme proves to have an edge over the usual �xed-sample strategy, as

shown in the following scenarios.

1.1.1. Hypothesis Tests

Consider a random sample X1; X2; :::; Xn of size n from a Normal population with mean � and

variance �2: Also consider the following hypothesis H0 : � = �0 against Ha : � = �1(> �0): We

know that a MP test under a known �2 at a signi�cance level �(0 < � < 1) is given by:

Reject H0 if
p
n(Xn � �0)

�
> z�; (1.1.1)

where

z� � upper 100�th percentile of a N(0; 1) distribution

Xn = n�1
Pn
i=1Xi; the sample mean.

(1.1.2)

The type I error probability is clearly �: However one also might be concerned with the type II

error probability �(0 < � < 1): If we de�ne the sample size as follows:

n �
�
z�+z�
�1��0

�2
�2 = n� with z
 � upper 100
th percentile of a N(0; 1)

distribution,
(1.1.3)

we can also restrict the type II error probability below a prede�ned �: However in most practical
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cases since �2 is unknown, controlling both � and � is a concern which needs to be addressed.

1.1.2. Estimating a Normal Mean

Again consider a Normal distribution with mean � and variance �2: Now consider a problem

of estimating the unknown mean �: The customary estimator based on a sample of size n is the

sample mean Xn: Now further consider a loss function de�ned as:

L(Xn; �) = A(Xn � �)2 + cn with known A(> 0) and c(> 0): (1.1.4)

Here, c is taken to be the cost of per unit observation. The risk function Rn is given by:

Rn = A�2n�1 + cn: (1.1.5)

Assuming �2 known, Rn can be minimized by de�ning the sample size as:

n = (A=c)1=2� : assuming it is an integer. (1.1.6)

However the issue again arises that �2 is often unknown and one then needs to deal with the

situation of minimizing the risk function in a proper manner.

1.2. MULTISTAGE AND SEQUENTIAL SAMPLING

DESIGNS: A HISTORICAL OVERVIEW

In the previous section we presented a couple of situations where a sequential route seems to be

advantageous over a �xed-sample technique. The problems of concern were to control both type I

and type II errors in Section 1.1.1 and to minimize the risk function in Section 1.1.2. The important

interest is that will these techniques work if �2 is unknown. It so turns out that none of these will

work under a �xed-sample strategy. We hence need to resort to multistage or sequential sampling

schemes.

1.2.1. Evolution of Multistage and Sequential Sampling Methods

The importance of sampling and development of sampling designs was carried out by Maha-

2



lanobis in 1940. He was the pioneer of using a pilot sample before large sample surveys. Abraham

Wald was the forerunner of sequential analysis who along with his collaborators systematically

developed theory and methodology around sequential tests in 1940 to reduce the number of sam-

pling inspections. The problems discussed in Section 1.1 were tackled by Lehmann (1951) who

proved the non-existence of �xed-sample size solutions. One may refer to Ghosh et al. (1997) or

Mukhopadhyay and de Silva (2009). A similar problem where a �xed-sample solution is impossible

is under the framework of �nding a con�dence interval. Dantzig (1940) proved the non-existence

of such a solution under a �xed-sample scenario. A large amount of literature has been developed

starting in the 1940�s surrounding the hypothesis testing and minimum risk point estimation prob-

lems. Some of the notable works include Robbins and Starr (1965) and Robbins (1959). Starr

(1966b) extended the ideas developed by Robbins (1959) in detail. Ghosh and Mukhopadhyay

(1976) investigated a two-stage procedure to tackle with the minimum risk estimation problem.

Mukhopadhyay (1976,1990) gave a three-stage procedure followed by an accelerated sequential

procedure in Mukhopadhyay (1987,1996). It was Stein (1945) who developed the con�dence inter-

val problem and presented the famous two-stage procedure, followed by Chow and Robbins (1965)

who gave the purely sequential procedure. Some of the other notable works in this relation comprise

of Hall (1981,1983) and Mukhopadhyay (1980,1990,1996).

1.2.2. Few Other Applications

Sequential probability ratio test (SPRT) is a technique developed by Wald (1947). It addresses

the hypothesis testing problem as seen in Section 1.1.1. The sample size in SPRT turns out to

be smaller on an average than the one seen in (1.1.3). Wald and Wolfowitz (1948) proved the

optimality of their SPRT rule which proves to be e¢ cient as compared to other known methods.

Another widespread area comprises of selection and ranking procedures which handle multiple

comparison problems. An illustration of the problem could be to select the sample corresponding

to the largest population mean (best treatment) among several samples of distinct population

means, with a preassigned probability of correct selection. There does not exist any �xed-sample

methodologies to tackle such a problem and one has to resort to multistage/sequential strategies.

If the variance �2 is known, then an optimal sample size can be determined using the indi¤erence-

zone approach according to Bechhofer (1954). However if �2 is unknown, one still has to resort

3



to multistage/sequential sampling designs. Further literature on selection and ranking problems

can be found in Bechhofer (1968,1995), Gibbons et al. (1977), Gupta and Panchapakesan (1979),

Mukhopadhyay (1993), Mukhopadhyay and Solanky (1994), Mukhopadhyay and de Silva (2009)

among other sources.

Further, vast literature surrounding multistage and or sequential designs can be found in Wald

(1947), Cherno¤ (1972), Ghosh and Sen (1991), Siegmund (1985), Mukhopahyay et al. (2004) and

Mukhopadhyay and de Silva (2009).

1.3. THESIS OUTLINE

In this dissertation we introduce multistage and or purely sequential sampling designs for the

purposes of point estimation. We mainly concentrate on two distributions namely negative expo-

nential and negative binomial. The problems are to estimate the appropriate parameters under

both these distributions under a Linex loss which was introduced by Varian in 1975.

In chapter 2 we develop modi�ed two-stage and purely sequential strategies to estimate the

location parameter of a negative exponential distribution under a modi�ed Linex loss. All the

methodologies enjoy asymptotic e¢ ciency and consistency properties. Towards the end of chapter

2 we support our methods using simulations and real datasets from health studies namely the infant

mortality and bone marrow data. This part comes from the publication, Mukhopadhyay and Bapat

(2016a).

In chapter 3 we extend our ideas to a two-sample problem. Here we construct appropriate

stopping rules to estimate the di¤erence in means of two independent negative exponential distri-

butions under appropriate Linex loss functions. We assume that the scale parameters are � and

b� respectively where b is known a-priori. Interesting applications are provided using real datasets

from cancer research and reliability analysis to support our methodologies. This part comes from

the publication, Mukhopadhyay and Bapat (2016b).

Chapter 4 deals with construction of purely sequential stopping rules to estimate the mean

of a negative binomial distribution. We cover both one-sample and multi-sample problems. the

estimation is again carried out under an appropriate Linex loss and is also supported using a usual

squared error loss function. We present some exciting applications using real datasets from ecology

4



namely, the weed count, bird count and raptor count data. This part comes from the submitted

manuscripts, Mukhopadhyay and Bapat (2017a,b).

We summarize our work in chapter 5 and then provide some interesting ventures of future

research in chapter 6.
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Chapter 2
Multistage Point Estimation Methodologies
for a Negative Exponential Location
Under a Modi�ed Linex Loss Function:
Illustrations with Infant Mortality

and Bone Marrow Data

2.1. INTRODUCTION

In this chapter we develop estimation methodologies for a negative exponential location under

a modi�ed Linex loss function. This chapter is based on Mukhopadhyay and Bapat (2016a).

We consider a negative exponential distribution having the following probability density function

(p.d.f.):

f(x;�; �) =
1

�
exp

�
�x� �

�

�
I(x > �); (2.1.1)

where � 2 (�1;1) and � 2 (0;1) are unknown parameters. I(:) denotes an indicator function

of (:) which takes the value 1 (or 0) when x > (or �)�. This distribution is also known as a

two-parameter exponential distribution. The parameter �; if positive, may be interpreted as the

minimum guarantee time or the threshold of the distribution in the sense that no failure will occur

before �. The parameter � is called a scale.

The p.d.f. (2.1.1) has found its use in many reliability problems such as to depict failure times

of electrical component and complex equipment. One may refer to Johnson and Kotz (1970), Bain

(1978), and Balakrishnan and Basu (1995) for illustrations. Another area where it has been used is

clinical trials such as in studying the behavior of tumor systems in animals and analysis of survival

data in cancer research. One may refer to Zelen (1966). We provide illustrations with real data

analysis in Section 8.

Before we go any further, we explain our notation clearly. Since both �; � are unknown, the

parameter vector � = (�; �) remains unknown. When we write P (:) or E(:), they should be

interpreted as P�(:) or E�(:) respectively. In the same spirit, when we write
P! (convergence in

probability) or w.p.1 (with probability one) or $! (convergence in law or distribution), they are all

6



with respect to P�. We drop subscript � for simplicity.

We address methodologies for estimating � under a variant of a customary Linex loss function

de�ned as follows:

Ln � Ln(�̂n; �) = exp

�
a(�̂n � �)

�

�
� a(�̂n � �)

�
� 1; (2.1.2)

where �̂n is meant to be a generic estimator of � based on a random sample of size n. This modi�ed

Linex loss function (2.1.2) is di¤erent from the one that was �rst proposed by Varian (1975), namely,

exp (a(�̂n � �))� a(�̂n � �)� 1: (2.1.3)

The Linex loss (2.1.3) was an appropriate function to be considered in cases of an asymmetric

penalty due to bias. It was supposed to address estimation error by penalizing over-estimation

and under-estimation unequally where over-estimation is deemed more (less) serious than under-

estimation when a > (<)0.

Varian (1975) and Zellner (1986) popularized Linex loss (2.1.3) and brought it to the forefront of

statistical science with interesting applications. We will explain in Section 2.2 why we have replaced

(2.1.3) with (2.1.2) and then propose to work under this modi�ed Linex loss (2.1.2). We may add

that under a squared error loss function (or its variant), sequential inference problems devoted to

negative exponential distributions can be found in Mukhopadhyay (1974,1984,1988,1995) and other

sources.

A sequential point estimation problem under a Linex loss function (2.1.3) was �rst developed

by Chattopadhyay (1998) utilizing nonlinear renewal theory from Woodroofe (1977,1982) and Lai

and Siegmund (1977,1979). Methodologies pertaining to Linex loss (2.1.3) were developed by Chat-

topadhyay (2000), Chattopadhyay et al. (2000), Takada (2000,2006), Takada and Nagao (2004),

Chattopadhyay et al. (2005), Chattopadhyay and Sengupta (2006), Zacks and Mukhopadhyay

(2009), and others. Many researchers obtained sequential point estimation methods under the

Linex loss (2.1.3) largely under a normal distribution. There is a substantial literature available on

Bayes sequential estimation problems under Linex loss (1.3) which may be reviewed from Takada

(2001), Jokiel-Rokita (2008), Hwang and Lee (2012), and other sources.
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Second- and higher-order approximations were developed by Mukhopadhyay and Duggan (1997)

and Mukhopadhyay (1999) under a variety of loss functions in the context of appropriately modi�ed

two-stage estimation strategies. For a review of two-stage, purely sequential, and other kinds of

stopping rules, one may refer to Sen (1981), Woodroofe (1982), Siegmund (1985), Mukhopadhyay

and Solanky (1994), Ghosh et al. (1997), Mukhopadhyay et al. (2004), Mukhopadhyay and de

Silva (2009), Zacks (2009) and other sources.

2.1.1. The Layout of This Chapter

In Section 2.2, we include some preliminaries plus an explanation for the modi�ed Linex loss

(2.1.2), formulation of the risk function, and its optimization by bounding it from above. In

Section 2.3, we consider a Stein-type (1945,1949) two-stage procedure where one �rst gathers pilot

data followed by the remaining requisite data determined by the �nal sample size. We derive

some asymptotic properties for this two-stage estimation strategy (Theorem 2.3.1). Some technical

details follow from Chow and Robbins (1965) and Mukhopadhyay (1984,1988,1995).

Section 2.4 introduces a modi�ed two-stage procedure in which we assume a lower bound �L(>

0) for the standard deviation � along the lines of Mukhopadhyay and Duggan (1997,1999). We

develop both �rst-order (Theorem 2.4.1) as well as second-order (Theorems 2.4.2-2.4.4) properties in

the present scenario of a negative exponential setting under the modi�ed Linex loss (2.1.2). Higher-

order approximations may be reviewed from Isogai et al. (2011) and seen as natural extensions of

Mukhopadhyay and Duggan (1997) and Mukhopadhyay (1999).

Section 2.5 develops a purely sequential methodology followed by its asymptotic �rst-order prop-

erties (Theorem 2.5.1). Then, we exploit nonlinear renewal theory from Woodroofe (1977,1982) and

Lai and Siegmund (1977,1979) to obtain requisite second-order approximations (Theorems 2.5.2-

2.5.3). For some of the technicalities and second-order properties, we have referred to Mukhopad-

hyay (1974,1984,1988), Lombard and Swanepoel (1978), Swanepoel and van Wyk (1982), and

others.

In Section 2.6, we outline the proofs of selected major results. Section 2.7 highlights perfor-

mances of the proposed estimation methodologies obtained with the help of computer simulations

for a wide range of values of the sample sizes and a large variety of parameter con�gurations. Our

presented data analysis are both extensive and thorough. Selected conclusions from the theorems
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studied in Sections 2.3-2.6 are critically examined and validated with data analysis in Section 2.7.

These are supplemented with illustrations (Section 2.8) using two real datasets from health

studies: The �rst illustration (Section 2.8.1) uses infant mortality data available from Leinhardt and

Wasserman (1979). Our second illustration (Section 2.8.2) uses bone marrow transplant data that

came from a multicenter clinical trial with patients prepared for transplantation with a radiation-

free conditioning regimen (Klein and Moeschberger, 2003). We end with a brief set of concluding

thoughts (Section 2.9).

2.2. MODIFIED LINEX LOSS AND SOME PRELIMINARIES

In this section, we �rst introduce an appropriately modi�ed Linex loss function (2.1.2) and then

calculate the associated risk function. But, why it is that we must modify the customary Linex

loss function (2.1.3)? Let us explain.

Having recorded a random sample X1; : : : ; Xn of independent and identically distributed (i.i.d.)

observations from a negative exponential distribution (2.1.1), one may customarily estimate � by

the maximum likelihood estimator Xn:1; the smallest order statistic. Suppose that one begins with

the original Linex loss function (2.1.3) from Varian (1975) and Zellner (1986):

exp (a(Xn:1 � �))� a(Xn:1 � �)� 1; n � 1:

Now, the associated risk function requires evaluation of E[exp (a(Xn:1 � �))] which is alternatively

expressed as E
�
exp

�
a�
n Y

��
where Y s Exp(1); a standard exponential distribution. But, this

particular term, E
�
exp

�
a�
n Y

��
; will be �nite provided that n > a�: However, since the scale

parameter � remains unknown, there is no way for one to guarantee that a sample size n will

certainly exceed a� when a > 0: Even if we have some reasonable estimator b� of � available and
n exceeds ab�; it will not guarantee that our sample size n will exceed a� when a > 0: Moreover,

under two-stage and purely sequential sampling, one will require n > a� for all �xed n which will

be hard to guarantee if a is positive.

Remark 2.2.1. If �a� is assumed negative, however, then one may continue to work under the
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customary Linex loss:

exp (a(Xn:1 � �))� a(Xn:1 � �)� 1; n � 1;

without any further modi�cation. We leave out associated details for brevity. In what follows,

however, we chart a new direction by providing a uni�ed treatment under (2.2.1) whether a is

positive or negative.

2.2.1. Modi�ed Linex Loss Function

We focus on working with �xed a without distinguishing whether a is exclusively positive or nega-

tive. Hence, we develop sampling methodologies for estimating � by Xn:1 under the modi�ed Linex

loss function formulated as follows. Instead of (2.1.2), we rewrite it:

Ln � Ln(Xn:1; �) = exp

�
a(Xn:1 � �)

�

�
� a(Xn:1 � �)

�
� 1; (2.2.1)

where a is a constant. We obtain the corresponding risk function by taking expectations across

(2.2.1) as follows:

Riskn � E[Ln] = E
h
exp

�
a(Xn:1��)

�

�
� a(Xn:1��)

� � 1
i

=
�
1� a

n

��1 � a
n � 1; for n > a:

(2.2.2)

Upon expanding (2.2.2), we clearly obtain:

Riskn = a2

n2
+ o

�
1
n2

�
: (2.2.3)

2.2.2. Cost Per Unit Sampling

Next, what we consider is the cost function, Costn(> 0); the exact nature of which ought to depend

upon the problem on hand. But, it is reasonable to assume that the cost for each observation should

go up (or down) as � goes down (or up). With this understanding, we propose a cost function of

the following form:

Costn = cn��k with �xed and known c(> 0); k(> 0): (2.2.4)
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2.2.3. Proposed Criterion: Bound the Risk Per Unit Cost from Above

We wish to bound the associated �risk� from above where we interpret �risk�as the risk per

unit cost (RPUC), namely,

RPUCn �
Riskn
Costn

=
a2

n2
�k

cn
+ o

�
n�3

�
: (2.2.5)

Thus, we �x a suitable number !(> 0) and require that RPUCn � ! for all �; � which leads us to

determine the required optimal �xed sample size, had � been known as follows:

n �
�
a2

c!

�1=3
�k=3 = n�, say: (2.2.6)

But, the magnitude of n� is unknown even though its expression is known. Hence, we proceed to

develop two-stage, modi�ed two-stage, and purely sequential bounded risk estimation strategies in

Sections 2.3-2.5.

Now, having recorded data X1; : : : ; Xn of �xed size n, we denote �̂n = 1
n�1

Pn
i=1(Xi �Xn:1) as

our customary minimum variance unbiased estimator of � with n(> maxf1; ag):

2.2.4. Evaluating the Risk Per Unit Cost When Sample Size Is Random

Clearly, the optimal �xed sample size n� given by (2.2.6) needs to be estimated. We must begin

with pilot data of appropriate size m(> maxf1; ag) and then move forward step by step with the

help of implementing a two-stage, modi�ed two-stage, or purely sequential sampling strategy to

record more data subsequently beyond pilot data as needed.

Suppose that a �nal sample size, denoted by a random variable Q, is determined by an adaptive

multistage sampling strategy. Then, the next theorem shows an exact analytical expression for

the risk per unit cost associated with the terminal estimator XQ:1 = minfX1; :::; XQg of � once

sampling has stopped. Its proof is outlined in Section 2.6.1.

Theorem 2.2.1. Under a multistage estimation strategy, suppose that (i) the �nal sample size Q

is an observable random variable that is �nite w.p.1, and (ii) Q is determined in such a way that

the event Q = q is measurable with respect to f�̂j ;m � j � qg; for all �xed q � m(> maxf1; ag):
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Then, the expression for the risk per unit cost associated with the terminal estimator XQ:1 is given

by :

E [RPUCQ] = !
n�3

a2

(
E

"
1

Q

�
1� a

Q

��1#
� E

�
a

Q2

�
� E

�
1

Q

�)
: (2.2.7)

2.3. STEIN-TYPE TWO-STAGE PROCEDURE

A Stein-type two-stage procedure along the lines of Stein (1945,1949) may be logistically conve-

nient to implement in certain situations since we may collect data in two batches. At the �rst stage,

we collect pilot data X1; : : : ; Xm of size m(> maxf1; ag). Recall that �̂m = 1
m�1

Pm
i=1(Xi �Xm:1)

is an estimator of � obtained from pilot data. We de�ne the stopping rule as:

N = max
n
m;
j
d!�̂

k=3
m

k
+ 1
o
with d! =

�
a2(c!)�1

�1=3
; (2.3.1)

as an estimator of n� found in (2.2.6) where

buc denotes the largest integer less than u(> 0).

Now, if N = m; then we will not require any more data at the second stage. However, if N > m,

we sample the di¤erence N �m at the second stage by recording an additional set of observations

Xm+1; : : : ; XN . From full data obtained by combining both stages, we propose to estimate � by

the smallest order statistic:

XN :1 = minfX1; :::; XNg:

Along the lines of (2.2.1), the associated loss function will be:

LN = exp

�
a(XN :1 � �)

�

�
� a(XN :1 � �)

�
� 1: (2.3.2)

A major di¤erence between (2.2.1) and (2.3.2) is that the sample size N used in (2.3.2) is a random

variable unlike n.

Now, since Xn:1 and I(N = n) are independent for all �xed n � m; using (2.2.7) with Q replaced
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by N from (2.3.1), we get:

!�1E [RPUCN ] =
n�3

a2

�
E

�
1

N

�
1� a

N

��1�
� E

� a

N2

�
� E

�
1

N

��
: (2.3.3)

Theorem 2.3.1. For the two-stage methodology (2.3.1 ), for �xed values of �; �; c; k; a;m we have

as !!0:

(i) N=n�
P!
�
�̂m
�

�k=3
; n�=N P!

�
�
�̂m

�k=3
if m > maxf1; ag;

(ii) E (N=n�)! E
h�
�̂m
�

�k=3i
(> 1) if m > maxfa; 1; 1� 1

3kg;

where n� comes from (2.2.6 ).

Theorem 2.3.1(ii) shows that the two-stage methodology (2.3.1) oversamples on an average

compared with n� even asymptotically. Such a feature has been observed in the past under numerous

Stein-type two-stage estimation strategies. A proof of Theorem 2.3.1 will be sketched in Section

2.6.2.

2.4. MODIFIED TWO-STAGE PROCEDURE

From Theorem 2.3.1, we note that the ratios E (N=n�) and E (n�=N) did not converge to 1 under

the Stein-type two-stage methodology (2.3.1). We thus resort to a modi�ed two-stage procedure

along the lines of Mukhopadhyay and Duggan (1997).

A key idea is to introduce a lower bound �L such that 0 < �L < � with �L known. Given this

additional input, from the expression of n� found in (2.2.6), we note that n� >
�
a2(c!)�1

�1=3
�
k=3
L .

Thus, the pilot size m may be chosen in such a way that m �
�
a2(c!)�1

�1=3
�
k=3
L .

With that spirit, Mukhopadhyay and Duggan (1997) introduced a modi�cation for estimating

a normal mean which allowed them to study second-order properties of the associated two-stage

estimation strategy. Such a modi�cation has been widely adopted in the literature. Thus, for the

problem on hand, we follow along, �x an integer m0(> maxf1; ag); and gather pilot data X1; :::; Xm

of size m de�ned as follows:

m � m(!) = max
n
m0;

j
d!�

k=3
L

k
+ 1
o
with d! =

�
a2(c!)�1

�1=3
; (2.4.1)

where all the constants remain as de�ned in Section 2.3.
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Based on pilot data, we evaluate the statistic �̂m = 1
m�1

Pm
i=1(Xi�Xm:1), and then determine

N as follows:

N = max
n
m;
j
d!�̂

k=3
m

k
+ 1

o
; (2.4.2)

as an estimator of n� de�ned in (2.2.6). Recall that buc denotes the largest integer less than u(> 0)

as before.

If N = m; we would not require any additional observations at the second stage. However,

if N > m, we sample the di¤erence N � m at the second stage by recording an additional set

of observations Xm+1; : : : ; XN . From full data X1; :::; XN obtained by combining both stages, we

propose to estimate � by the smallest order statistic:

XN :1 = minfX1; :::; XNg:

2.4.1. First-Order Asymptotics

We begin with some �rst-order results to contrast with those stated in Section 2.3. One will surely

note that there is no stated su¢ cient condition involving m in Theorem 2.4.1. This is so because

in the present setup, we have m � m(!)!1 as ! ! 0. A proof will be sketched in Section 2.6.3.

Theorem 2.4.1. With m and N respectively de�ned in (2.4.1 ) and (2.4.2 ), for each �xed value

of �; �; c; k; a we have as !!0:
(i) N=n�

P! 1; n�=N P! 1;

(ii) E
�
(N=n�)t

�
! 1; t = �1; 1 [asymptotic �rst-order e¢ ciency ];

where n� comes from (2.2.6 ).

We note that all expressions shown in Theorem 2.4.1 converge to 1 which is in direct contrast

with those from Theorem 2.3.1. That is, the modi�ed two-stage procedure (2.4.1)-(2.4.2) has more

attractive �rst-order properties than those under customary Stein-type two-stage procedure (2.3.1).

One may claim convergence of higher positive and negative moments ofN=n� in part (ii) by referring

to Mukhopadhyay and Duggan (1997,1999) and Mukhopadhyay (1999), but we leave them out for

brevity.

2.4.2. Second-Order Asymptotics
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Again we avoid giving any su¢ cient condition involving m in Theorems 2.4.2-2.4.4, stated in this

section, since m � m(!)!1 as ! ! 0. We now supplement with second-order properties which

become readily accessible along the lines of Mukhopadhyay and Duggan (1997,1999).

The following expressions provide second-order expansions as bounds of E
�
(N=n�)t

�
:

1 +
�
t + 1

2 t(t� 1)�
2
0

	
1
n� + o

�
1
n�
�
� E

�
N
n�
�t

� 1 +
�
t + t+ 1

2 t(t� 1)�
2
0

	
1
n� + o

�
1
n�
�
; if t > 0; and

1 +
�
t + t+ 1

2 t(t� 1)�
2
0

	
1
n� + o

�
1
n�
�
� E

�
N
n�
�t

� 1 +
�
t + 1

2 t(t� 1)�
2
0

	
1
n� + o

�
1
n�
�
; if t < 0;

(2.4.3)

where

 =
�
c
a2

�1=3�k
6

�
k
3 � 1

� �
a2

c

�1=3��
�
�L

�k=3
; and �20 =

k2

9

�
�
�L

�k=3
: (2.4.4)

A proof of (2.4.3) follows directly from a more generally stated Theorem 2.1 in Mukhopadhyay

and Duggan (1999). Indeed, Theorem 2.4.1, part (ii) holds for all non-zero t which directly follows

from (2.4.3). For completeness, however, we �rst show a bound for E(N � n�).

Theorem 2.4.2. With m and N respectively de�ned in (2.4.1 ) and (2.4.2 ), for each �xed value

of �; �; c; k; a we have as !!0:

 +O(!1=2) � E(N � n�) �  + 1 +O(!1=2)[asymptotic second-order e¢ ciency ]; (2.4.5)

where  is de�ned in (2.4.4 ) and n� comes from (2.2.6 ).

A proof can be constructed using (2.6.2) and the rest is omitted for brevity. Theorem 2.4.2

shows the second-order e¢ ciency property of the modi�ed two-stage procedure (2.4.1)-(2.4.2) in

the sense of Ghosh and Mukhopadhyay (1981). It is possible, however, to show a sharper result,

namely E(N � n�) =  +O(!1=2); but we leave it out for brevity.

Next, we provide a result which obtains the asymptotic distribution of a standardized version of

N along the lines of Ghosh and Mukhopadhyay (1975) and Mukhopadhyay and Duggan (1997,1999).

Its proof follows from Lemma 2.1, part (i) in Mukhopadhyay and Duggan (1999) and hence it is

omitted.
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Theorem 2.4.3. With m and N respectively de�ned in (2.4.1 ) and (2.4.2 ), for each �xed value

of �; �; c; k; a we have as !!0:

U � n��1=2(N � n�) L! N(0; �20); (2.4.6)

where �20 is de�ned in (2.4.4 ) and n
� comes from (2.2.6 ).

Again, since Xn:1 and I(N = n) are independent for all �xed n � m; the associated expression

for E [RPUCN ] will resemble (2.2.7) with Q replaced by N from (2.4.2). The following theorem

evaluates the risk per unit cost up to second-order approximation. We outline its proof in Section

2.6.4.

Theorem 2.4.4. With m and N respectively de�ned in (2.4.1 ) and (2.4.2 ), for each �xed value

of �; �; c; k; a we have as !!0:

1 + 1
n� (6�

2
0 + a� 3 � 3) + o( 1n� ) � !�1E [RPUCN ]

� 1 + 1
n� (6�

2
0 + a� 3 ) + o( 1n� )

[asymptotic second-order risk e¢ ciency ];

(2.4.7)

where  is as de�ned in (2.4.4 ) and n� comes from (2.2.6 ).

2.5. A PURELY SEQUENTIAL PROCEDURE

Unlike a modi�ed two-stage procedure where we record observations in two batches, a purely

sequential procedure is more involved operationally, but it also provides more accurate inferences.

We only take as many observations step-by-step as required depending on the rule of termination.

In this section, we develop a purely sequential methodology and make use of nonlinear renewal

theory to provide second-order approximations for the average sample size and RPUC, the risk per

unit cost.

We recall the expressions of n� from (2.2.6). We again �x an integerm(> maxf1; ag) and obtain

pilot data X1; : : : ; Xm of size m. We then proceed by recording one additional observation X at
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every stage as needed according to the following rule:

N = inf
n
n � m : n � d!�̂

k=3
n

o
with d! =

�
a2(c!)�1

�1=3
: (2.5.1)

As before, this stopping variable N again estimates n� from (2.2.6). From full data X1; :::; XN

so obtained upon termination, we propose to estimate � by the smallest order statistic:

XN :1 = minfX1; :::; XNg:

Again, since Xn:1 and I(N = n) are independent for all �xed n � m; the associated expression

for E [RPUCN ] will resemble (2.2.7) with Q replaced by N from (2.5.1). In what follows, if the

condition m(> maxf1; ag) will su¢ ce for a result to hold, then we will not mention it. We will,

however, mention a more stringent condition on m if that is what is required for a particular result

to hold.

2.5.1. First-Order Asymptotics

We begin with some useful �rst-order asymptotic properties summarized in the next theorem. A

proof of this theorem will be outlined in Section 2.6.5.

Theorem 2.5.1. For N de�ned in (2.5.1 ), for each �xed value of �; �; a; k; c we have as !!0:

(i) N=n�
P! 1;

(ii) E
�
(N=n�)t

�
! 1 for t > 0 if m(> maxf2; ag) [asymptotic �rst-order e¢ ciency ];

(iii) E
�
(n�=N)t

�
! 1 for t > 0 if m > maxf1 + 1

3kt; ag;

(iv) !�1E [RPUCN ]! 1 if m > maxf1 + 4
3k; ag [asymptotic �rst-order risk e¢ ciency ];

(v) V � n��1=2(N � n�) L! N(0; �21) with �
2
1 =

k2

9 ;

where n� comes from (2.2.6 ).

We note that the expressions shown in Theorem 2.5.1, parts (i)-(iii) converge to 1 which is again

in direct contrast with those from Theorem 2.3.1. That is, parallel to the results from Theorem 2.4.1

under the modi�ed two-stage procedure (2.4.1)-(2.4.2), the purely sequential procedure (2.5.1) also

has attractive asymptotic �rst-order properties than those under customary Stein-type two-stage

procedure (2.3.1).
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However, one major di¤erence between the properties of the modi�ed two-stage procedure

(2.4.1)-(2.4.2) and the purely sequential procedure (2.5.1) already stands out. We recall that

Theorem 2.4.3 concluded that

U � n��1=2(N � n�) L! N(0; �20) with �
2
0 =

k2

9 (
�
�L
)k=3:

In contrast, Theorem 2.5.1, part (v) shows that

V � n��1=2(N � n�) L! N(0; �21) with �
2
1 =

k2

9 :

In other words, asymptotic normal distribution for the standardized stopping variable V cer-

tainly has a smaller or tighter variance, namely, �21 under the purely sequential strategy which gives

it an edge over the modi�ed two-stage strategy.

2.5.2. Second-Order Asymptotics

Observe that N from (2.5.1) can be rewritten as J + 1 w.p.1 where

J = inf
n
n � m� 1 : �ni=1Zi � n��3=kn

3
k
+1(1 + 1

n)
3
k

o
= inf

�
n � m� 1 : �ni=1Zi � h�n�L(n)

	
;

(2.5.2)

where the Zi�s are i.i.d. Exp(1) random variables. This has been established inside the proof of

Theorem 2.5.1, part (iii) that is laid out in Section 2.6.5.

Next, we refer to nonlinear renewal theory, originally developed by Woodroofe (1977) and Lai

and Siegmund (1977,1979). We match (2.5.2) with the representation laid out in Mukhopadhyay

(1988) and Mukhopadhyay and Solanky (1994, Section 2.4.2) as follows:

� = 3
k + 1; h

� = n��3=k; L(n) = 1 + 3
kn + o

�
1
n

�
; so that L0 = 3

k ; (2.5.3)

and also note:

� = 1 ; �2 = 1; �� = k
3 ; n

�
0 = n� and p = k2

9 : (2.5.4)

Condition (2.5) from Mukhopadhyay (1988), or equivalently (2.4.8) from Mukhopadhyay and
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Solanky (1994), is satis�ed with B = 1 and b = 1: We de�ne two special entities:

� � �k =
k
6

�
9
k2
+ 1
�
� 1

2�
1
n=1n

�1E
�
max

�
0; �22n � 2n

�
3
k + 1

��	
;

� � �k =
1
3k� �

�
1
18k

2 + 1
6k + 1

�
;

(2.5.5)

along the lines of (2.4.9)-(2.4.10) in Mukhopadhyay and Solanky (1994). Table 2.1 shows a few

values of � � �k and � � �k for a couple of combinations of input for k.

To conclude this section, we now specify asymptotic second-order expansions of both positive

and negative moments of Nn� (Theorem 2.5.2) as well as an asymptotic second-order expansion of

the risk per unit cost (Theorem 2.5.3) under the purely sequential setting (2.5.1).

Theorem 2.5.2. For N de�ned in (2.5.1 ), for each �xed value of �; �; a; k; c and every non-zero

real number t; we have as !!0:

E
�
(N=n�)t

�
= 1 +

�
t�k + t+

1
2 t(t� 1)p

	
n��1 + o

�
n��1

�
[asymptotic second-order e¢ ciency ];

(2.5.6)

when (i) m > (3�t)k
3 + 1 for t 2 (�1; 2) � f�1; 1g; (ii) m > k

3 + 1 for t = 1 and t � 2; and (iii)

m > 2k
3 + 1 for t = �1; where n

�; p; and �k come from (2.2.6 ), (2.5.4 ), and (2.5.5 ) respectively.

Theorem 2.5.3. For N de�ned in (2.5.1 ), for each �xed value of �; �; a; k; c; we have the following

second-order expansion of the risk per unit cost as !!0:

!�1E [RPUCN ] = 1 + (6p+ a� 3�k � 3)n��1 + o
�
n��1

�
[asymptotic second-order risk e¢ ciency ];

(2.5.7)

when m > 7k
3 + 1 with n

�; p; and �k coming from (2.2.6 ), (2.5.4 ), and (2.5.5 ) respectively.

Very brief outlines of proofs of Theorems 2.5.2-2.5.3 are sketched in Section 2.6.6. We have sim-

ply remarked how to connect what we want to prove here with established details from Mukhopad-

hyay (1988) and Mukhopadhyay and Solanky (1994).

2.6. TECHNICAL DETAILS AND PROOFS OF THEOREMS
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In this section, we sketch some of the proofs of our main results from Sections 2.2-2.5. Often

some intermediate steps are left out for brevity.

2.6.1. Proof of Theorem 2.2.1

From (2.2.1), the associated loss function is given by:

LQ = exp

�
a(XQ:1 � �)

�

�
� a(XQ:1 � �)

�
� 1:

Now, we recall risk per unit cost from (2.2.5) and proceed to evaluate E [RPUCQ] as follows:

E
h

LQ
CostQ

i
=

P
m�q<1

E
h

LQ
CostQ

j Q = q
i
P (Q = q)

=
P

m�q<1
E
h

Lq
Costq

j Q = q
i
P (Q = q):

But, under the conditions (i) and (ii) stated in Theorem 2.2.1, we may rewrite:

E [RPUCQ]

=
P

m�q<1
E
h

Lq
Costq

i
P (Q = q)

=
P

m�q<1

E[Lq ]
Costq

P (Q = q)

=
P

m�q<1

Riskq
Costq

P (Q = q)

=
P

m�q<1

��
1� a

q

��1
� a

q � 1
�
(cq��k)�1;

utilizing previous expressions of Riskq and Costq from (2.2.2) and (2.2.4) respectively while substi-

tuting q for n.

From (2.2.6), we see that �
k

c =
n�3!
a2
, and thus we obtain:

E [RPUCQ] = ! n
�3

a2
E

�
1
Q

�
1� a

Q

��1
� a

Q2
� 1

Q

�
:

This is (2.2.7). �

2.6.2. Stein Type Two-Stage Procedure: Proof of Theorem 2.3.1
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From (2.3.1) we have the following basic inequality:

d!�̂
k=3
m � N � m+ d!�̂

k=3
m w.p.1;

which implies:

n��1d!�̂
k=3
m � n��1N � n��1m+ n��1d!�̂

k=3
m w.p.1. (2.6.1)

Now, as ! ! 0; we have n� !1; mn� ! 0; so that N
n� !

�
�̂m
�

�k=3
w.p.1. The rest of part (i) follows

immediately.

Part (ii) follows by taking expectations throughout (2.6.1) and then taking limits as ! ! 0.

Observe that 2(m�1)� �̂m � �22(m�1) which implies:

E
h
�̂
k=3
m

i
=
�

�
m�1

�k=3
�(m� 1 + k=3)f�(m� 1)g�1:

The proof that E
h�
�̂m
�

�k=3i
> 1 follows from Mukhopadhyay and Hilton (1986). �

2.6.3. Modi�ed Two-Stage Procedure: Proof of Theorem 2.4.1

Part (i): Utilizing (2.6.1), we have the following basic inequality:

d!�̂
k=3
m � N � mI(N = m) + d!�̂

k=3
m + 1 w.p.1. (2.6.2)

Along the lines of Mukhopadhyay and Duggan (1999, Lemma 2.1), we know that P (N = m) =

O(�m�1) where � = �L
� exp

�
1� �L

�

	
so that � 2 (0; 1): Thus, we can claim that I(N = m)

P�! 0

as ! ! 0. Now, after dividing (2.6.2) throughout by n�; we get:

�
�̂m
�

�k=3
� N

n�
� m

n�
I(N = m) +

�
�̂m
�

�k=3
+
1

n�
w.p.1: (2.6.3)

But, �̂m
P�! �; mn� = O(1); and n� �!1 as ! ! 0: Part (i) is immediate from (2.6.3).
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Part (ii): Taking expectations throughout (2.6.3), we have:

E

"�
�̂m
�

�k=3#
� E

�
N

n�

�
� m

n�
P (N = m) + E

"�
�̂m
�

�k=3#
+
1

n�
(2.6.4)

Clearly,

E
h
�̂
k=3
m

i
= �k=3

�
1 + k

3

�
k
3 � 1

�
(2m)�1 +O(m�2)

	
:

Thus, a proof in the case of E
�
N
n�
�
is complete in view of (2.6.4). Next, in order to handle E

�
n�

N

�
;

we �rst note that lim inf!!0E
�
n�

N

�
� 1 by Fatou�s lemma. Also, we have

lim sup
!!0

E

�
n�

N

�
� lim sup

!!0
E

�
�

�̂m

�k=3
= 1:

Now, the proof is complete. �

2.6.4. Modi�ed Two-Stage Procedure: Proof of Theorem 2.4.4

We may recall (2.2.7) and then rewrite:

!�1E [RPUCN ]

= n�
3

a2

n
E
h
1
N

�
1� a

N

��1i� E � a
N2

�
� E

�
1
N

�o
= E

h�
N
n�
��3i

+ an��1E
h�

N
n�
��4i

+ a2n��2E [UN ] ;

(2.6.5)

where UN is a remainder term which is OP
��

N
n�
��5�

:

One can show that E [UN ] = O(1): Next, we may combine (2.6.5) and (2.4.3)-(2.4.4) with

t = �3;�4 to express:

!�1E [RPUCN ] � 1 + 1
n� (6�

2
0 + a� 3 � 3) + o( 1n� );

and

!�1E [RPUCN ] � 1 + 1
n� (6�

2
0 + a� 3 ) + o( 1n� ):

This complete the proof. �

2.6.5. Purely Sequential Procedure: Proof of Theorem 2.5.1
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Part (i): Follows from using Lemma 1 of Chow and Robbins (1965).

Part (ii): With m � 3 we can claim that N�1
N�2 � 2 w.p.1; U� = supn�2

�
1
n�

n
i=1(Xi � �)

	
, for

su¢ ciently small !(> 0) so that n� > m; observe the following inequality (w.p.1):

N � m+ d!�̂
k=3
N�1 � m+ 2k=3d!

n
1

N�2�
N�1
i=1 (Xi � �)

ok=3
� m+ 2k=3d!U

�;

which implies:

N
n� � 1 + 2

k=3��k=3U�: (2.6.6)

Now, by Wiener�s (1939) ergodic theorem, it follows that E[U�t] is �nite for all �xed positive

number t. The right-hand side of (2.6.6) is also free from ! so that we can claim uniform integrability

of all positive powers of Nn� . Then, appealing to the dominated convergence theorem and part (i)

complete a proof of part (ii).

Part (iii): Let us denote:

S�n = �
n
i=2(n� i+ 1)(Xn:i �Xn:i�1);

so that we have �̂n = S�n=(n � 1). Let Y1; Y2; : : : be i.i.d. Exp(�) random variables and let

Sn = �
n�1
i=1 Yi. Now, using the embedding ideas from Lombard and Swanepoel (1978) and Swanepoel

and van Wyk (1982), we can claim that the distribution of {S�n : n � n0} is identical to that of

{Sn : n � n0} for all n0. Thus, N given by (2.5.1) is equivalently expressed as:

N � inf
�
n � m : n � d!

�
1
n�1�

n�1
i=1 Yi

�k=3�
= inf

n
n � m :

�
n
n�
�3=k

(n� 1) � �n�1i=1 Zi

o
;

(2.6.7)

where Zi�s are i.i.d. Exp(1); that is, the standard exponential random variables.

Then, N from (2.6.7) can be written as J + 1 w.p.1 with J de�ned in (2.5.2). Using Lemma

2.3 from Woodroofe (1977) or Theorem 2.4.8, part (i) of Mukhopadhyay and Solanky (1994) with

b = 1, we can claim:

P (J � 1
2n

�) = O(n��
3
k
(m�1)): (2.6.8)

Next, with �xed t > 0; since N = J + 1 w.p.1, we have 0 <
�
n�

N

�t � �
n�

J

�t
so that

�
n�

N

�t
will be
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uniformly integrable if we show:

�
n�

J

�t
is uniformly integrable. (2.6.9)

Now, we may write: �
n�

J

�t
I(J > 1

2n
�) < 2t;

so that
�
n�

J

�t
I(J > 1

2n
�) must be uniformly integrable. But,

�
n�

J

�t
I(J > 1

2n
�)

P! 1 and hence, we

must have:

E
h�
n�

J

�t
I(J > 1

2n
�)
i
= 1 + o(1). (2.6.10)

Additionally, in view of (2.6.8), we also note the following:

E
h�
n�

J

�t
I(J � 1

2n
�)
i
�
�

n�

m�1

�t
P (J � 1

2n
�) = O(n��

3
k
(m�1)+t); (2.6.11)

which is o(1) if m > 1 + 1
3kt:

Combining (2.6.10)-(2.6.11), we note that (2.6.9) will follow so that we can claim:

E
h�
n�

J

�ti
= 1 + o(1) if m > 1 + 1

3kt; with t > 0; (2.6.12)

which is part (iii).

Part (iv): We may go back to (2.6.5) and express:

!�1E [RPUCN ] = E
h�

N
n�
��3i

+ an��1E [VN ] ; (2.6.13)

where VN is a remainder term which is OP
��

N
n�
��4�

:

Clearly, in view of (2.6.12), E
h�
n�

J

�3i
= 1+ o(1) if m > 1 + k and one can show that E [VN ] =

O(1) if m > 1 + 4
3k. Then, part (iv) follows from (2.6.13).

Part (v): This result follows directly from an application of Ghosh and Mukhopadhyay�s (1975)

theorem. One may also refer to Theorem 2.4.3 or Theorem 2.4.8, part (ii) in Mukhopadhyay and

Solanky (1994). �
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2.6.6. Purely Sequential Procedure: Outlines of Proofs of Theorems 2.5.2-2.5.3

Theorem 2.5.2 follows along the lines of Theorem 2.4.8, part (iv) and from its established applica-

tions found in Mukhopadhyay and Solanky (1994).

For a proof of Theorem 2.5.3, we recall that the associated expression for E [RPUCN ] will

resemble (2.2.7) with Q replaced by N from (2.5.1). Then, one will proceed with an expansion

of !�1E [RPUCN ] similar to that in (2.6.5) and exploit Theorem 2.5.1, part (iii) with t = 5 and

Theorem 2.5.2 with t = �3;�4: Additional details are left out for brevity. �

2.7. DATA ANALYSIS: SIMULATIONS

Thus far we have developed theoretical properties for three proposed estimation strategies in

Sections 2.3-2.5 respectively. Section 2.6 gave outlines of some selected derivations. Now, it is

time to implement the methodologies and investigate how those estimation strategies may perform

when sample sizes are small (20; 30) to moderate (50; 100; 150) to large (300; 400; 500). Computer

simulations help in this investigation. All simulations are carried out with R based on 10; 000(= H,

say) replications run under each con�guration and each methodology.

Under each procedure, we generated pseudorandom observations from the distribution (2.1.1)

with � = 5; � = 10. Then, we �xed certain values of a; c; k and appropriate rounded values for n�;

thereby solving for a corresponding value of the risk-bound, !. In other words, a set of preassigned

values for a; c; k; ! will have the associated n� values as shown in our tables (column 1).

We �x a pilot sample size, namely,m in the contexts of Stein-type two-stage methodology (2.3.1)

and purely sequential methodology (2.5.1). In the context of modi�ed two-stage methodology

(2.4.1)-(2.4.2), we �x a positive lower bound �L for � and a number m0; thereby determining m

from (2.4.1). While implementing a methodology to determine the �nal sample size (N) and a

terminal estimator (XN :1) of �, we pretended that we did not know �; �; and n� values.

Now, let us set the notations that we will use in the tables to follow. We focus on implement-

ing a particular estimation methodology under a �xed con�guration of all necessary input (e.g.,

a; c; k; !;m;m0; �L as appropriate). We ran the ith replication by beginning with m pilot obser-

vations and then eventually ending sampling by recording the �nal sample size N = ni; terminal
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estimator XN :1 = xni:1; and the achieved risk per unit cost:

RPUCni = !
n�3

a2

(
1

ni

�
1� a

ni

��1
� a

n2i
� 1

ni

)
= ri, say, (2.7.1)

i = 1; :::;H. The basic notations are itemized next where H is kept �xed at 10; 000:

n = H�1�Hi=1ni Estimate of E(N) or n�;

sn =
q
(H2 �H)�1�Hi=1(ni � n)2 Estimated standard error of n;

xmin = H�1�Hi=1xni:1 Estimate of �;

sxmin =
q
(H2 �H)�1�Hi=1(xni:1 � xmin)2 Estimated standard error of xmin;

ri RPUCni from (2.7.1)

r = H�1�Hi=1ri with ri from (7.1) Risk estimator

sr =
q
(H2 �H)�1�Hi=1(ri � r)2 Estimated standard error of r;

z = r=! Estimated risk e¢ ciency to be;

compared with 1;

sz = sr=! Estimated standard error of z;

Now, we are in a position to summarize observed performances of the proposed estimation

methodologies laid down in Sections 2.3-2.5. We have many sets of tables and results obtained

from simulations under additional con�gurations. For brevity, however, we outline only a small

subset of our �ndings.

2.7.1. Stein-Type Two-Stage Procedure (2.3.1)

First we present performances of Stein-type two-stage estimation methodology (2.3.1) in Table 2.2

for

n� = 30; 100; 300; 500 and

(k;m) = (1; 3); (2; 4); (3; 5); (4; 6); (5; 7).

Table 2.2 speci�es �; �; a; c: Each block shows (k;m); n� (column 1), ! (column 2), the estimated

(from 10; 000 simulations) values xmin;sxmin (column 3), values n;sn (column 4), the ratio n=n
�

(column 5), and values z;sz (column 6).
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All xmin values appear rather close to 5(= �) with very small estimated standard error values

sxmin , for sample sizes over 300. For smaller (k;m) values, namely, (1; 3), (2; 4), it appears that

n slightly underestimates n�; but these performances reverse for larger choices of (k;m). This is

consistent with Theorem 2.3.1, part (ii). The last column shows that the two-stage estimation

methodology (2.3.1) is not successful in delivering a risk-bound approximately under (or close to)

our preset goal !.

2.7.2. Modi�ed Two-Stage Procedure (2.4.1)-(2.4.2)

Now, we move to summarize performances for the modi�ed two-stage estimation methodology

(2.4.1)-(2.4.2) in Table 2.3 for

n� = 20; 30; 50; 100; 150; 300; 400; 500 and

(k;m0) = (1; 3); (2; 4); (3; 5); (4; 6); (5; 7):

In this methodology, we need a positive and known lower bound �L(= 3) for true �; but � remains

unknown. The pilot size m was determined from (2.4.1) but that m is not shown in Table 2.3. The

estimation methodology (2.4.2) was implemented as described. Table 2.3 speci�es �; �; �L; a; c; and

each block shows (k;m0); n
� (column 1), ! (column 2), the estimated (from 10; 000 simulations)

values xmin;sxmin (column 3), values n;sn (column 4), the ratio n=n
� (column 5), and values z;sz

(column 6).

All xmin values appear closer to 5(= �) with very small estimated standard error values sxmin ,

for sample size 150 or over. For all (k;m) values, it appears that n estimates n� very accurately

across the board. These features are consistent with Theorem 2.4.1, parts (i)-(ii). The last column

shows that the modi�ed two-stage estimation methodology (2.4.1)-(2.4.2) is very successful for

(k;m) = (1; 3) for all n� values under consideration in delivering a risk-bound approximately our

preset goal !. However, in the case of k = 2; 3; 4; 5; a similar level of success in delivering a risk-

bound approximately our preset goal ! is observed as n� successively exceeded 50; 100; 150; 300

respectively.

The entries in Table 2.4 were obtained as those in Table 2.3 with one major di¤erence. Table

2.4 used another positive and known lower bound �L(= 5) for true �; but � continued to remain

unknown. Again, the pilot size m was determined from (2.4.1) but m is not shown in Table 2.4.
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Comparing columns 5 from Tables 2.3 and 2.4, it is clear n=n� is nearer to 1 in Table 2.4. Also,

entries found in the last column of Table 2.4 look more favorable to those in Table 2.3. This feature

should be expected since the speci�ed positive and known lower bound �L(= 5) is nearer to �(= 10)

than �L(= 3) is.

Table 2.5 corresponds to �L = 11 whereas true � was 10. That is, Table 2.5 shows performances

of the modi�ed two-stage estimation methodology (2.4.1)-(2.4.2) if �L is misspeci�ed in that it just

barely goes over true �. It is clear that the modi�ed two-stage estimation methodology holds up

rather well under mild misspeci�cation of �L.

In Tables 2.6-2.8, we provide the values of  found in (2.4.4) corresponding to the con�gurations

highlighted in Tables 2.3-2.5 respectively. Importance of  comes from the fact that E(N � n�)

values could be expected to lie inside the corresponding interval [ ; + 1] for large n� values in

view of Theorem 2.4.2. Thus, one could expect �n�n� values to lie inside the corresponding interval

[ ; + 1] for large n� values. In Tables 2.6-2.7, we �nd that nearly all �n� n� values lie very close

to (or inside) the corresponding interval [ ; + 1] along with the bold entries missing the boat by

a wider margin. But, the entries in Table 2.8 correspond to the case of misspecifying �L considered

by Table 2.5, and hence those entries in Table 2.8 are supposed to be completely out of line with

regard to any sense of practicality of second-order approximation under misspeci�cation of �L.

We now provide Figures 2.1-2.2 to validate empirically the normality result described in (2.4.6).

We considered four scenarios, namely �L = 3; k = 1; n� = 30 (Figure 2.1a); �L = 3; k = 4; n� = 500

(Figure 2.1b); �L = 5; k = 2; n� = 100 (Figure 2.2a); and �L = 5; k = 5; n� = 500 (Figure 2.2b).

Under a speci�c con�guration, we recorded observed values:

N = ni; i = 1; :::;H(= 10; 000);

and thus calculated 10; 000 associated standardized (ni � n�)=
p
n� values. Under each speci�c

con�guration, such 10; 000 observed ui � (ni � n�)=
p
n� values provide the empirical distribution

of the standardized sample size (dashed curve in red). We superimpose on it the appropriate

theoretical N(0; �20) distributions (solid curve in blue) where �
2
0 =

1
9(

�
�L
)k=3k2 coming from (2.4.4).

The two curves as shown appear slightly o¤ from each other in Figure 2.1a which is meant for

small n�(= 30), however we recall that a visual asymptotic match should be expected for larger n�
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(Theorem 2.4.3). Indeed, Figures 2.1b and 2.2a-2.2b show clearly that the empirical distribution

curve and the theoretical distribution curve nearly lie on each other when n�(= 100; 500) is large.

On 10; 000 observed values of u, we also performed the customary Kolmogorov-Smirnov (K-S)

test for normality in the case of each dataset that generated Figures 2.1a-2.1b and Figures 2.2a-2.2b.

We summarize the observed values of K-S test statistic (D) under the null hypothesis of normality

with associated p-values.

Parameter K-S

Case con�guration stat D p-value

2.1a �L = 3; k = 1; n
� = 30 0:56149 0:8770

2.1b �L = 3; k = 4; n
� = 500 0:51959 0:9608

2.2a �L = 5; k = 2; n
� = 100 0:51191 0:9762

2.2b �L = 5; k = 5; n
� = 500 0:51170 0:9766

The p-values shown under cases 2.1b, 2.2a, 2.2b are sizably larger than the p-value shown

under case 2.1a and all four p-values are much larger than 0:05. Our earlier sentiments supported

by visual examinations of Figures 2.1a-2.1b and Figures 2.2a-2.2b are clearly validated by K-S test

of normality under each scenario. That is, we are reasonably assured of a good �t between the

observed values of u and a normal curve with a high level of con�dence for all practical purposes.

2.7.3. Purely Sequential Procedure (2.5.1)

In this section, we summarize performances for the purely sequential estimation methodology (2.5.1)

in Table 2.9 for

n� = 20; 30; 50; 100; 150; 300; 400; 500 and

(k;m) = (1; 5); (2; 8); (3; 9); (4; 12); (5; 15):

The estimation methodology (2.5.1) was implemented as described. Table 2.9 speci�es �; �; a; c and

each block shows (k;m); n� (column 1), ! (column 2), the estimated (from 10; 000 simulations)

values xmin;sxmin (column 3), values n;sn (column 4), the ratio n=n
� (column 5), and values z;sz

(column 6). An explanation of column 7 comes later.

All xmin values appear closer to 5(= �) with very small estimated standard error values sxmin ,

for sample size 100 or over. For all (k;m) values, it appears that n estimates n� very accurately
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across the board with slight occasional over- or under-estimation. These features are consistent with

Theorem 2.5.1, parts (i)-(ii). Column 6 shows that the purely sequential estimation methodology

(2.5.1) is overall very successful for (k;m) = (1; 5) for all n� values under consideration in delivering

a risk-bound approximately our preset goal !. However, in the case of k = 2; 3; 4; 5; a similar level

of success in delivering a risk-bound approximately our preset goal ! is observed as n� successively

exceeded 50; 100; 150; 300 respectively. It is our feeling that the purely sequential procedure provides

estimates for the risk per unit cost which are generally closer to 1 than the two-stage methodologies

(2.3.1) or (2.4.1)-(2.4.2).

Theorem 5.3 showed that !�1E [RPUCN ] should be close to 1 + " where we have:

" = (6p+ a� 3�k � 3)n��1; (2.7.2)

from (2.5.7) when n� is large. �k was de�ned by (2.5.5) and it was tabulated in Table 2.1. Column 7

in Table 2.9 shows these " values under each con�guration. Upon comparing z values from column

6 with " values from column 7, it appears that the second-order approximation is little slow to take

hold under some con�gurations. It appears, however, that for all practical purposes, the z values

are described fairly well by 1 + "; more or less all across the board.

We now provide Figures 2.3-2.4 to validate empirically the normality result described in Theorem

2.5.1, part (v). We considered four scenarios, namely m = 5; k = 1; n� = 30 (Figure 2.3a); m = 12;

k = 4; n� = 500 (Figure 2.3b); m = 8; k = 2; n� = 100 (Figure 2.4a); and m = 15; k = 5; n� = 500

(Figure 2.4b). Under a speci�c con�guration, we again recorded observed values:

N = ni; i = 1; :::;H(= 10; 000)

and thus calculated 10; 000 associated standardized (ni � n�)=
p
n� values. Under each speci�c

con�guration, such 10; 000 observed vi � (ni � n�)=
p
n� values provided the empirical distribution

of the standardized sample size (dashed curve in red). We superimpose on it the appropriate

theoretical N(0; �21) distributions (solid curve in blue) where �
2
1 =

1
9k
2 coming from Theorem 2.5.1,

part (v).

The two curves as shown appear slightly o¤ from each other in Figure 2.3a which is meant
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for small n�(= 30), however we recall that a visual asymptotic match should be expected for

larger n� (Theorem 2.5.1, part (v)). Indeed, Figures 2.3b and 2.4a-2.4b show clearly that the

empirical distribution curve and the theoretical distribution curve nearly lie on each other when

n�(= 100; 500) is large.

On 10; 000 observed values of v, we also performed the customary Kolmogorov-Smirnov (K-S)

test for normality in the case of each dataset that generated Figures 2.3a-2.3b and Figures 2.4a-2.4b.

We summarize the observed values of K-S test statistic (D) under the null hypothesis of normality

with associated p-values.

Parameter K-S

Case con�guration stat D p-value

2.3a m = 5; k = 1; n� = 30 0:56679 0:8664

2.3b m = 12; k = 4; n� = 500 0:51066 0:9787

2.4a m = 8; k = 2; n� = 100 0:50022 0:9996

2.4b m = 15; k = 5; n� = 500 0:51380 0:9724

The p-values shown under cases 2.3b, 2.4a, 2.4b are sizably larger than the p-value shown

under case 2.3a and all four p-values are much larger than 0:05. Our earlier sentiments supported

by visual examinations of Figures 2.3a-2.3b and Figures 2.4a-2.4b are clearly validated by K-S test

of normality under each scenario. That is, we are reasonably assured of a good �t between the

observed values of v and a normal curve with a high level of con�dence for all practical purposes.

2.8. DATA ANALYSIS: ILLUSTRATIONS USING REAL DATA

The modi�ed two-stage estimation methodology (2.4.1)-(2.4.2) and the purely sequential esti-

mation methodology (2.5.1) will now be illustrated using two real datasets from health studies.

The �rst illustration (Section 2.8.1) uses infant mortality data from Leinhardt and Wasserman

(1979). R documentation for this data may be seen from the website:

https://vincentarelbundock.github.io/Rdatasets/doc/car/Leinhardt.html. (2.8.1)
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Our second illustration (Section 2.8.2) uses bone marrow transplant data from the text:

Survival Analysis,

by Klein and Moeschberger (2003). The data came from a multicenter clinical trial with patients

prepared for transplantation with a radiation-free conditioning regimen that consisted of allogeneic

marrow transplants for patients with AML.

2.8.1. Infant Mortality Data

The data on infant mortality rates were published in the New York Times in 1975. This data,

named after Leinhardt, were adapted in Leinhardt and Wasserman (1979). Equation (2.8.1) shows

a link for R documentation and a description of data pertaining to 105 nations around 1970.

Since infant mortality rates for Iran, Nepal, Laos and Haiti were not available, we omitted them

from our illustration. The variable of interest (X) was the infant mortality rate per 1000 live births.

The data consisted of 101(= 105 � 4) rows and we checked that the negative exponential model

(2.1.1) �tted well.

Treating this dataset as the universe, we �rst found �̂ = 9:6 and �̂ = 80:24 from full data. Next,

we implemented both modi�ed two-stage and purely sequential estimation procedures drawing

observations from the full set of data as needed. It is emphasized, however, that implementation

of sampling strategies did not exploit the numbers �̂ = 9:6 and �̂ = 80:24.

We carried out a single run under both procedures for estimating �. Tables 2.10-2.11 provide

the results from implementing the stopping rules from (2.4.1)-(2.4.2) and (2.5.1) respectively cor-

responding to certain �xed values of c; k; a and the preset risk-bound !; chosen arbitrarily. We also

�xed m or m0 as needed. These numbers are shown in the tables.

Table 2.10 summarizes the results from the modi�ed two-stage procedure. We assumed a lower

bound, �L = 40; for the otherwise unknown scale parameter �. Table 2.11 summarizes the results

from the purely sequential procedure.

Under both methodologies, we notice that the terminal estimated values of � are not too far

away from corresponding �̂ = 9:6 that was obtained from full data. One other comment is in order:

The numbers shown in the �rst column under n� are computed using (2.2.6) after replacing � with
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the number �̂ = 80:24 obtained from full data. Again, in running the estimation methodologies,

we did not exploit the number �̂ = 80:24.

We have provided n� values just so that one is able to gauge whether the observed n-values

look reasonable. The ratio n=n� appears reasonably close to 1 which should be desired. The value

z; that is, the ratio of achieved risk per unit cost and preset goal !, appears reasonably under (or

close) to 1.

2.8.2. Bone Marrow Data

We looked at the data from a multicenter clinical trial involving 137 bone marrow patients prepared

for transplant with a radiation-free conditioning regimen that consisted of allogeneic marrow trans-

plants for patients with AML. The dataset is explained in Section 1.3 (chapter 1), and enumerated

in Table D.1 (appendix D), of Klein and Moeschberger�s (2003) textbook. For illustrative purposes,

we were interested in estimating the minimum waiting time (in days) to death (or time on study

time) for these patients. We got rid of two lowest waiting times (1 or 2 days) since they were suspect

possible outliers. Other aspects of implementation of our modi�ed two-stage and purely sequential

estimation procedures and analysis remained similar to what we had explained in Section 2.8.1.

We checked that the negative exponential model (2.1.1) �tted well to this data. Treating this

dataset as our universe, we �rst found �̂ = 10:0 days and �̂ = 841:57 days. Next, we implemented

both modi�ed two-stage and purely sequential estimation procedures on full data. It is emphasized,

however, that implementation of the sampling strategies did not exploit the numbers �̂ or �̂.

We carried out a single run under both procedures for estimating �. Tables 2.12-2.13 provide the

results of implementing the stopping rules from (2.4.1)-(2.4.2) and (2.5.1) respectively corresponding

to certain �xed values of c; k; a and the preset risk-bound ! chosen arbitrarily. We also �xed m or

m0 as needed. These numbers are shown in the tables.

Table 2.12 summarizes the results from the modi�ed two-stage procedure. We assumed a lower

bound, �L = 500; for the otherwise unknown scale parameter �. Table 2.13 summarizes the results

for the purely sequential procedure.

Here again, we have provided n� values just so that one is able to gauge whether the observed

n-values look reasonable. The ratio n=n� appears reasonably close to 1 which should be desired.

The value z; that is, the ratio of achieved risk per unit cost and preset goal !, appears reasonably
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under (or close) to 1.

2.9. A BRIEF SUMMARY OF CHAPTER 2

A negative exponential distribution is widely used to model survival/failure times of electrical

equipment and is also used widely as a model in health industries. In this chapter, we have developed

methodologies that are operationally convenient and possess interesting e¢ ciency and consistency

properties. Our direction of research came from a thorough literature review and we proposed

purely sequential, two-stage and modi�ed two-stage methods to estimate the location parameter of

a negative exponential distribution.

In comparison with the usual Stein-type two-stage methodology, we came up with a modi�ed

two-stage strategy which was shown to perform better than the former. For each of these cases,

we validated our theoretical results with simulations and implemented them on real data-sets from

health studies.

A quick glance at comparing the entries within Tables 2.10-2.11 or within Tables 2.12-2.13

reveals that the purely sequential estimation strategy appears to have an edge over the modi�ed

two-stage estimation strategy. At another level, however, one should realize that a modi�ed two-

stage strategy is logistically simpler to implement than a purely sequential estimation strategy.

Indeed, both procedures are fully expected to perform very well under comparable experimental

circumstances. A practitioner, however, may consider employing one of the two procedures (2.4.1)-

(2.4.2) or (2.5.1) that will provide an acceptable level of comfort in running an experiment as

one balances it with additional factors deemed locally important, namely, feasibility, e¢ ciency,

accuracy, operational convenience, and cost.
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Table 2.1. Selected values of � � �k and � � �k

from (2.5.5), k = 1(1)6

k

1 2 3 4 5 6

�k 1:646 0:963 0:745 0:638 0:577 0:542

�k �0:673 �0:913 �1:254 �1:703 �2:259 �2:915
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Table 2.2. Simulation results from 10; 000 replications for Stein-type

two-stage procedure (2.3.1) with � = 5; � = 10; a = 1; c = 0:1

n� ! �xmin; (s�xmin) �n; (s�n) n=n� z; (sz)

k = 1;m = 3

30 3:7� 10�3 5:3720; (0:0040) 28:84; (0:0704) 0:9615 1:9767; (0:0454)

100 1� 10�4 5:1120; (0:0012) 94:95; (0:2319) 0:9495 1:9568; (0:0341)

300 3:7� 10�6 5:0385; (0:0004) 284:88; (0:7064) 0:9496 1:9635; (0:0320)

500 8� 10�7 5:0227; (0:0002) 473:89; (1:1778) 0:9477 1:9872; (0:0367)

k = 2;m = 4

30 3:7� 10�2 5:3978; (0:0050) 29:51; (0:1130) 0:9837 4:2397; (0:2016)

100 1� 10�3 5:1227; (0:0015) 97:74; (0:3790) 0:9774 3:9148; (0:1488)

300 3:7� 10�5 5:0413; (0:0004) 289:75; (1:1285) 0:9659 4:5254; (0:5000)

500 8� 10�6 5:0249; (0:0003) 482:53; (1:8796) 0:9650 3:9985; (0:1588)

k = 3;m = 5

30 3:7� 10�1 5:4293; (0:0057) 30:38; (0:1497) 1:0127 7:0348; (0:2574)

100 1� 10�2 5:1341; (0:0018) 100:55; (0:5064) 1:0055 9:3451; (0:9627)

300 3:7� 10�4 5:0440; (0:0006) 302:75; (1:5099) 1:0091 9:7991; (1:0965)

500 8� 10�5 5:0265; (0:0003) 501:48; (2:4959) 1:0029 15:2665; (6:1989)
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Table 2.2 contd.. Simulation results from 10; 000 replications for Stein-type

two-stage procedure (2.3.1) with � = 5; � = 10; a = 1; c = 0:1

n� ! �xmin; (s�xmin) �n; (s�n) n=n� z; (sz)

k = 4;m = 6

30 3:7 5:4622; (0:0064) 31:53; (0:1874) 1:0510 8:8788; (0:2425)

100 0:1 5:3720; (0:0040) 105:02; (0:6233) 1:0502 16:2954; (1:5576)

300 3:7� 10�3 5:0480; (0:0008) 311:15; (1:8387) 1:0371 21:7228; (4:6001)

500 8� 10�4 5:0282; (0:0004) 521:66; (3:1057) 1:0433 14:8328(1:4949)

k = 5;m = 7

30 37:03 5:4663; (0:0065) 32:64; (0:2190) 1:0880 9:3771; (0:2085)

100 1 5:1456; (0:0023) 110:94; (0:7588) 1:1094 21:6822; (1:5331)

300 3:7� 10�2 5:0510; (0:0008) 324:97; (2:2472) 1:0832 41:4347; (9:9591)

500 8� 10�3 5:0306; (0:0005) 555:25; (3:8969) 1:1105 30:0233; (4:5692)
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Table 2.3. Simulation results from 10; 000 replications for the modi�ed

two-stage procedure (2.4.1)-(2.4.2) with � = 5; � = 10; �L = 3; a = 1; c = 0:1

n� ! �xmin; (s�xmin) �n; (s�n) n=n� z; (sz)

k = 1;m0= 3

30 3:7� 10�3 5:3308; (0:0032) 30:32; (0:0225) 1:0109 1:0364; (0:0024)

100 1� 10�4 5:0992; (0:0009) 100:33; (0:0414) 1:0033 1:0103; (0:0012)

150 2:96� 10�5 5:0657; (0:0006) 150:35; (0:0499) 1:0023 1:0062; (0:0010)

300 3:7� 10�6 5:0333; (0:0003) 300:31; (0:0707) 1:0010 1:0035; (0:0007)

400 1:56� 10�6 5:0252; (0:0002) 400:47; (0:0813) 1:0011 1:0014; (0:0006)

500 8� 10�7 5:0199; (0:0001) 500:20; (0:0922) 1:0004 1:0028; (0:0005)

k = 2;m0= 4

30 3:7� 10�2 5:3410; (0:0035) 30:35; (0:0554) 1:0119 1:2423; (0:0082)

100 1� 10�3 5:1003; (0:0010) 100:22; (0:0995) 1:0022 1:0661; (0:0033)

150 2� 10�4 5:0673; (0:0006) 150:25; (0:1203) 1:0016 1:0416; (0:0025)

300 3:7� 10�5 5:0330; (0:0003) 300:26; (0:1731) 1:0008 1:0210; (0:0017)

400 1:56� 10�5 5:0248; (0:0002) 400:17; (0:1978) 1:0004 1:0160; (0:0015)

500 8� 10�6 5:0198; (0:0002) 500:69; (0:2250) 1:0013 1:0100; (0:0013)

k = 3;m0= 5

30 3:7� 10�1 5:3713; (0:0041) 30:65; (0:1069) 1:0217 1:3024; (0:0387)

100 1� 10�2 5:1021; (0:0010) 100:27; (0:1862) 1:0027 1:1249; (0:0081)

150 2� 10�3 5:0672; (0:0006) 150:69; (0:2258) 1:0046 1:1048; (0:0055)

300 3:7� 10�4 5:0336; (0:0003) 300:54; (0:3150) 1:0018 1:0825; (0:0035)

400 1:56� 10�4 5:0247; (0:0002) 400:47; (0:3628) 1:0011 1:0274; (0:0029)

500 8� 10�5 5:0204; (0:0002) 500:37; (0:4111) 1:0007 1:0087; (0:0018)
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Table 2.3 contd.. Simulation results from 10; 000 replications for the modi�ed

two-stage procedure (2.4.1)-(2.4.2) with � = 5; � = 10; �L = 3; a = 1; c = 0:1

n� ! �xmin; (s�xmin) �n; (s�n) n=n� z; (sz)

k = 4;m0= 6

30 3:7 5:5033; (0:0050) 31:63; (0:1684) 1:0546 1:6420; (0:0908)

100 0:1 5:1084; (0:0010) 101:97; (0:3037) 1:0197 1:1544; (0:0208)

150 0:02 5:0693; (0:0007) 151:53; (0:3659) 1:0102 1:1124; (0:0128)

300 3:7� 10�3 5:0336; (0:0003) 302:45; (0:5159) 1:0081 1:0987; (0:0066)

400 1:56� 10�3 5:0247; (0:0002) 400:40; (0:5934) 1:0010 1:0487; (0:0055)

500 8� 10�4 5:0200; (0:0002) 500:16; (0:6661) 1:0003 1:0215; (0:0048)

k = 5;m0= 7

30 37:03 5:4653; (0:0064) 33:22; (0:2242) 1:1075 1:7487; (0:0758)

100 1 5:1201; (0:0015) 104:29; (0:4803) 1:0429 1:3241; (0:0597)

150 0:2 5:0334; (0:0008) 155:43; (0:5801) 1:0362 1:2015; (0:0514)

300 0:037 5:0358; (0:0003) 305:21; (0:8044) 1:0173 1:1198; (0:0425)

400 0:015 5:0260; (0:0002) 405:39; (0:9324) 1:0134 1:0489; (0:0398)

500 0:008 5:0204; (0:0002) 507:11; (1:0365) 1:0142 1:0341; (0:0304)
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Table 2.4. Simulation results from 10; 000 replications for the modi�ed

two-stage procedure (2.4.1)-(2.4.2) with � = 5; � = 10; �L = 5; a = 1; c = 0:1

n� ! �xmin; (s�xmin) �n; (s�n) n=n� z; (sz)

k = 1;m0= 3

30 3:7� 10�3 5:3290; (0:0033) 30:34; (0:0210) 1:0116 1:0292; (0:0022)

100 1� 10�4 5:1008; (0:0010) 100:36; (0:0373) 1:0036 1:0073; (0:0011)

300 3:7� 10�6 5:0336; (0:0003) 300:45; (0:0656) 1:0015 1:0016; (0:0006)

500 8� 10�7 5:0198; (0:0001) 500:35; (0:0824) 1:0007 1:0015; (0:0004)

k = 2;m0= 4

30 3:7� 10�2 5:3312; (0:0033) 30:32; (0:0469) 1:0109 1:1678; (0:0061)

100 1� 10�3 5:1010; (0:0010) 100:33; (0:0841) 1:0033 1:0445; (0:0027)

300 3:7� 10�5 5:0340; (0:0003) 300:46; (0:1468 1:0015 1:0132; (0:0015)

500 8� 10�6 5:0199; (0:0002) 500:10; (0:1886) 1:0002 1:0099; (0:0011)

k = 3;m0= 5

30 3:7� 10�1 5:3546; (0:0037) 30:51; (0:0805) 1:0173 1:5370; (0:0148)

100 1� 10�2 5:1009; (0:0010) 100:54; (0:1421) 1:0054 1:1252; (0:0052)

300 3:7� 10�4 5:0340; (0:0003) 300:37; (0:2447) 1:0012 1:0405; (0:0026)

500 8� 10�5 5:0195; (0:0001) 500:86; (0:3158) 1:0017 1:0210; (0:0019)
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Table 2.4 contd. Simulation results from 10; 000 replications for the modi�ed

two-stage procedure (2.4.1)-(2.4.2) with � = 5; � = 10; �L = 5; a = 1; c = 0:1

n� ! �xmin; (s�xmin) �n; (s�n) n=n� z; (sz)

k = 4;m0= 6

30 3:7 5:3681; (0:0041) 31:20; (0:1222) 1:0401 1:5429; (0:0343)

100 0:1 5:1019; (0:0010) 101:35; (0:2167) 1:0135 1:2921; (0:0099)

300 3:7� 10�3 5:0338; (0:0003) 301:47; (0:3687) 1:0049 1:0837; (0:0042)

500 8� 10�4 5:0201; (0:0002) 501:40; (0:4701) 1:0022 1:0496; (0:0030)

k = 5;m0= 7

30 37:03 5:4061; (0:0050) 32:52; (0:1771) 1:0841 1:7654; (0:0710)

100 1 5:1074; (0:0011) 102:38; (0:3005) 1:0238 1:5306; (0:0202)

300 3:7� 10�2 5:0341; (0:0003) 302:29; (0:5197) 1:0076 1:1724; (0:0065)

500 8� 10�3 5:0200; (0:0002) 501:74; (0:6724) 1:0034 1:1062; (0:0047)
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Table 2.5. Simulation results from 10; 000 replications for the modi�ed

two-stage procedure (2.4.1)-(2.4.2) with � = 5; � = 10; �L = 11; a = 1; c = 0:1

n� ! �xmin; (s�xmin) �n; (s�n) n=n� z; (sz)

k = 1;m0= 3

30 3:7� 10�3 5:3199; (0:0031) 31:43; (0:0085) 1:0478 0:9014; (0:0015)

100 1� 10�4 5:0976; (0:0009) 104:22; (0:0076) 1:0422 0:8921; (0:0011)

300 3:7� 10�6 5:0320; (0:0031) 310:10; (0:0067) 1:0336 0:9083; (0:0005)

500 8� 10�7 5:0192; (0:0001) 517:03; (0:0040) 1:0340 0:9061; (0:0004)

k = 2;m0= 4

30 3:7� 10�2 5:3078; (0:0030) 32:78; (0:0162) 1:0926 0:8005; (0:0009)

100 1� 10�3 5:0935; (0:0009) 107:52; (0:0169) 1:0752 0:8130; (0:0005)

300 3:7� 10�5 5:0311; (0:0003) 320:20; (0:0127) 1:0673 0:8250; (0:0002)

500 8� 10�6 5:0190; (0:0001) 533:07; (0:0083) 1:0664 0:8267; (0:0001)

k = 3;m0= 5

30 3:7� 10�1 5:2935; (0:0029) 34:11; (0:0249) 1:1372 0:7179; (0:0011)

100 1� 10�2 5:0903; (0:0009) 110:90; (0:0278) 1:1090 0:7421; (0:0008)

300 3:7� 10�4 5:0301; (0:0002) 330:26; (0:0180) 1:1008 0:7519; (0:0004)

500 8� 10�5 5:0179; (0:0001) 550:11; (0:0133) 1:1002 0:7522; (0:0001)
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Table 2.5 contd. Simulation results from 10; 000 replications for the modi�ed

two-stage procedure (2.4.1)-(2.4.2) with � = 5; � = 10; �L = 11; a = 1; c = 0:1

n� ! �xmin; (s�xmin) �n; (s�n) n=n� z; (sz)

k = 4;m0= 6

30 3:7 5:2792; (0:0028) 36:21; (0:0305) 1:2070 0:6026; (0:0010)

100 0:1 5:0876; (0:0008) 115:09; (0:0367) 1:1509 0:6648; (0:0007)

300 3:7� 10�3 5:0291; (0:0002) 341:34; (0:0240) 1:1378 0:6810; (0:0005)

500 8� 10�4 5:0175; (0:0001) 568:08; (0:0120) 1:1361 0:6830; (0:0001)

k = 5;m0= 7

30 37:03 5:2649; (0:0026) 37:70; (0:0411) 1:2566 0:5426; (0:0014)

100 1 5:0829; (0:0008) 119:24; (0:0430) 1:1924 0:5985; (0:0008)

300 3:7� 10�2 5:0288; (0:0002) 352:42; (0:0300) 1:1747 0:6188; (0:0004)

500 8� 10�3 5:0168; (0:0001) 587:12; (0:0166) 1:1742 0:6187; (0:0002)
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Table 2.6. Values of �n� n�,  and  + 1 for

each k used in Table 2.3

n�nk 1 2 3 4 5

20 0:34 0:24 0:54 1:42 2:52

30 0:32 0:35 0:65 1:63 3:22

50 0:36 0:31 0:28 1:85 4:77

100 0:33 0:22 0:27 1:97 4:29

150 0:35 0:25 0:69 1:53 5:06

300 0:31 0:26 0:22 2:45 5:43

400 0:47 0:17 0:47 0:40 5:21

500 0:20 0:69 0:37 0:16 5:39

 �0:1659 �0:2479 0 1:1065 4:1323

 + 1 0:8341 0:7521 1 2:1065 5:1323

Table 2.7. Values of �n� n�,  and  + 1 for

each k used in Table 2.4

n�nk 1 2 3 4 5

30 0:34 0:32 0:51 1:20 2:52

100 0:36 0:33 0:54 1:35 2:38

300 0:45 0:46 0:37 1:47 2:29

500 0:35 0:10 0:86 1:10 1:74

 �0:1399 �0:1763 0 0:5599 1:7637

 + 1 0:8601 0:8237 1 1:5599 2:7637
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Table 2.8. Values of �n� n�,  and  + 1 for

each k used in Table 2.5

n�nk 1 2 3 4 5

30 1:43 2:78 4:11 6:21 7:70

100 4:22 7:52 10:90 15:09 19:24

300 10:10 20:20 30:26 41:34 52:42

500 17:03 33:07 50:11 68:08 87:12

 �0:1076 �0:1042 0 0:1957 0:4739

 + 1 0:8924 0:8958 1 1:1957 1:4739
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Table 2.9. Simulation results from 10; 000 replications of the purely

sequential procedure (2.5.1) with � = 5; � = 10; a = 1; c = 0:1

n� ! �xmin; (s�xmin) �n; (s�n) �n=n� z; (sz)
"

in (7.2)

k = 1;m = 5

30 3:70� 10�3 5:3282; (0:0032) 30:31; (0:0188) 1:0106 1:0265; (0:0243) 0:0228

100 1:00� 10�4 5:0996; (0:0009) 100:29; (0:0334) 1:0029 1:0079; (0:0238) 0:0068

150 2:96� 10�5 5:0662; (0:0006) 150:38; (0:0410) 1:0025 1:0044; (0:0226) 0:0045

300 3:70� 10�6 5:0334; (0:0003) 300:22; (0:0582) 1:0007 1:0033; (0:0216) 0:0022

400 1:56� 10�6 5:0251; (0:0002) 400:34; (0:0670) 1:0008 1:0015; (0:0240) 0:0017

500 8:00� 10�7 5:0199; (0:0002) 500:42; (0:0743) 1:0008 1:0007; (0:0228) 0:0013

k = 2;m = 8

30 3:70� 10�2 5:3443; (0:0034) 29:99; (0:0386) 0:9997 1:1714; (0:0323) 0:1135

100 1:00� 10�3 5:0993; (0:0009) 100:03; (0:0669) 1:0003 1:0377; (0:0227) 0:0340

150 2:00� 10�4 5:0671; (0:0006) 149:90; (0:0842) 0:9993 1:0284; (0:0224) 0:0227

300 3:70� 10�5 5:0332; (0:0003) 300:03; (0:1159) 1:0001 1:0120; (0:0235) 0:0113

400 1:56� 10�5 5:0249; (0:0002) 399:96; (0:1344) 0:9999 1:0096; (0:0220) 0:0085

500 8:00� 10�6 5:0201; (0:0002) 500:31; (0:1483) 1:0006 1:0054; (0:0212) 0:0068

k = 3;m = 9

30 3:70� 10�1 5:3574; (0:0037) 29:46; (0:0585) 0:9822 1:2464; (0:0478) 0:2588

100 1:00� 10�2 5:1014; (0:0010) 99:78; (0:1018) 0:9941 1:0988; (0:0515) 0:0776

150 2:00� 10�3 5:0663; (0:0006) 149:81; (0:1240) 0:9987 1:0548; (0:0400) 0:0517

300 3:70� 10�4 5:0338; (0:0003) 299:75; (0:1745) 0:9991 1:0270; (0:0489) 0:0258

400 1:56� 10�4 5:0249; (0:0002) 399:82; (0:2013) 0:9995 1:0195; (0:0375) 0:0194

500 8:00� 10�5 5:0203; (0:0002) 499:85; (0:2252) 0:9997 1:0153; (0:0236) 0:0155
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Table 2.9 contd. Simulation results from 10; 000 replications of the purely

sequential procedure (2.5.1) with � = 5; � = 10; a = 1; c = 0:1

n� ! �xmin; (s�xmin) �n; (s�n) �n=n� z; (sz)
"

in (2.7.2)

k = 4;m = 12

30 3:70 5:3823; (0:0042) 29:10; (0:0782) 0:9700 1:4793; (0:1318) 0:4592

100 0:10 5:1018; (0:0010) 99:46; (0:1357) 0:9946 1:1498; (0:0283) 0:1377

150 0:02 5:0665; (0:0006) 149:13; (0:1649) 0:9942 1:1108; (0:0253) 0:0918

300 3:70� 10�3 5:0339; (0:0003) 299:19; (0:2305) 0:9973 1:0496; (0:0236) 0:0459

400 1:56� 10�3 5:0252; (0:0002) 399:10; (0:2681) 0:9977 1:0378; (0:0241) 0:0344

500 8:00� 10�4 5:0201; (0:0002) 499:68; (0:2984) 0:9993 1:0298; (0:0234) 0:0275

k = 5;m = 15

30 37:03 5:3872; (0:0042) 28:78; (0:0890) 0:9596 1:7024; (0:2270) 0:7148

100 1:00 5:1061; (0:0011) 98:38; (0:1738) 0:9838 1:2409; (0:3578) 0:2144

150 0:20 5:0687; (0:0007) 148:77; (0:2078) 0:9918 1:1531; (0:0529) 0:1429

300 0:037 5:0336; (0:0003) 298:65; (0:2936) 0:9955 1:0815; (0:0422) 0:0714

400 0:015 5:0256; (0:0002) 398:38; (0:3362) 0:9959 1:0613; (0:0410) 0:0536

500 0:008 5:0204; (0:0002) 499:83; (0:3733) 0:9996 1:0442; (0:0394) 0:0428
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Table 2.10. Analysis of infant mortality rate data

using modi�ed two-stage procedure (2.4.1)-(2.4.2)

with a = 1; c = 0:1; �L = 40

n� m0 k !
�̂:

xn:1

n n=n� z

40 4 1 0:01253 9:8 41 1:025 0:9518

50 4 0:00642 9:6 50 1:000 1:0204

50 5 2 0:51507 10:1 52 1:040 0:9064

60 5 0:29807 9:6 57 0:950 1:2523

Table 2.11. Analysis of infant mortality rate data

using purely sequential procedure (2.5.1)

with a = 1; c = 0:1

n� m k !
�̂:

xn:1

n n=n� z
"

in (2.7.2)

40 5 1 0:01253 9:6 41 1:025 1:0245 0:0171

50 5 0:00641 9:7 48 0:960 1:0188 0:0137

50 7 2 0:51507 10:1 54 1:080 1:1073 0:0681

60 7 0:29807 9:8 63 1:050 1:1547 0:0567
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Table 2.12. Analysis of time to death (or time on study)

in bone marrow data using modi�ed two-stage

procedure (2.4.1)-(2.4.2) with a = 1; �L = 500

n� m0 c k !
�̂:

xn:1

n n=n� z

60 4 0:1 1 0:03896 14 57 0:950 1:1871

70 4 0:02453 10 75 1:071 0:9240

80 5 0:4 2 3:45820 15 81 1:013 0:9754

90 5 2:42880 10 89 0:989 1:0458

Table 2.13. Analysis of time to death (or time on study)

in bone marrow data using purely sequential

procedure (2.5.1) with a = 1

n� m c k !
�̂:

xn:1

n n=n� z
"

in (2.7.2)

60 4 0:1 1 0:03896 16 61 1:017 1:0256 0:0114

70 4 0:02453 10 70 1:000 1:0187 0:0098

80 5 0:4 2 3:45820 11 77 0:963 1:1362 0:0425

90 5 2:42880 10 88 0:978 1:0820 0:0378
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Figure 2.1. Plots of normality curves for the modi�ed two-stage procedure (2.4.1)-(2.4.2)

as validation for (2.4.6). The dashed curve (red) and the solid curve (blue)

respectively correspond to the empirical distribution of the standardized sample

size and the N(0; �20) distribution with �
2
0 =

1
9(

�
�L
)k=3k2 coming from (2.4.4):

(a) �L = 3; k = 1; n� = 30; (b) �L = 3; k = 4; n� = 500
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Figure 2.2. Plots of normality curves for the modi�ed two-stage procedure (2.4.1)-(2.4.2)

as validation for (2.4.6). The dashed curve (red) and the solid curve (blue)

respectively correspond to the empirical distribution of the standardized sample

size and the N(0; �20) distribution with �
2
0 =

1
9(

�
�L
)k=3k2 coming from (2.4.4):

(a) �L = 5; k = 2; n� = 100; (b) �L = 5; k = 5; n� = 500
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Figure 2.3. Plots of normality curves for the purely sequential procedure (2.5.1) as

validation of Theorem 2.5.1, part (v). The dashed curve (red) and the solid curve (blue)

respectively correspond to the empirical distribution of the standardized sample size

and the N(0; �21) distribution with �
2
1 =

1
9k
2 coming from Theorem 2.5.1, part (v):

(a) k = 1; m = 5; n� = 30; (b) k = 4; m = 12; n� = 500

52



Figure 2.4. Plots of normality curves for the purely sequential procedure (2.5.1) as

validation of Theorem 2.5.1, part (v). The dashed curve (red) and the solid curve (blue)

respectively correspond to the empirical distribution of the standardized sample size

and the N(0; �21) distribution with �
2
1 =

1
9k
2 coming from Theorem 2.5.1, part (v):

(a) k = 2; m = 8; n� = 100; (b) k = 5; m = 15; n� = 500
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Chapter 3
Multistage Estimation of the Di¤erence of Locations

of Two Negative Exponential Populations
Under a Modi�ed Linex Loss Function:
Real Data Illustrations from Cancer
Studies and Reliability Analysis

3.1. INTRODUCTION

In this chapter we develop sequential and two-stage procedures to estimate the di¤erence of two

independent negative exponential locations under a modi�ed Linex loss function. The material of

this chapter is based on Mukhopadhyay and Bapat (2016b). There is a wide literature devoted to

normal populations, largely under a di¤erent form of the loss function.

Point estimation of a negative exponential location parameter under a variant of the Linex

loss function has been introduced in Chapter 2. The present investigation expands those ideas

by developing appropriate methodologies and associated properties in the context of two-sample

comparisons.

3.1.1. Two-Sample Scenario and the Goal

Let X1; : : : ; Xn; ::: and Y1; : : : ; Yn; ::: be two independent and identically distributed (i.i.d.) se-

quences of random variables with the probability density functions (p.d.f.s) f(x;�1; �) and f(y;�2; b�)

with b(> 0) respectively where we denote:

f(t;�; �) =
1

�
exp

�
� t� �

�

�
I(t > �); (3.1.1)

where � 2 (�1;1) and � 2 (0;1) are both unknown parameters. I(:) denotes an indicator

function of (:) which takes the value 1(or 0) when t > (or �)�.

Additionally, we assume that the X�s are independent of the Y �s and b is known. The location

parameter �; if positive, is viewed as the minimum guarantee time or the threshold of the distribu-

tion. The parameter � is called the scale. We record a pair (Xi; Yi) at-a-time or a group of pairs of

54



observations (Xi; Yi) at-a-time as needed, i = 1; :::; n; ::: . Our goal is to estimate the �di¤erence�

parameter, namely:

� = �1 � �2: (3.1.2)

3.1.2. Motivation for a Scenario Where b Is Known A�priori

In Figure 3.1, we show columns from Parthenon, Greece. In Figure 3.1(a), a single column is

shown whereas in Figure 3.1(b) a cluster of eight columns is shown. These columns are identically

constructed. In large structures (for example, bridges), one will often see a column or a cluster of

columns strategically placed to withstand stress. This is done to raise a structure that may not fall

apart easily with a high probability under reasonable application of stress levels.

Now, visualize Figure 3.1(a), expose the column to a stress level (L), and observe the time (U)

it takes the column to show up cracks. We may reasonably assume that U is governed by the p.d.f.

f(u;�1; �) de�ned by (3.1.1), that is we will not observe a failure before time �1:

Next, we may visualize Figure 3.1(b), expose eight pillars to a stress level (L) each, and observe

the time (V ) it takes the cluster of columns to show fatal cracks. Consider independent U1; :::; U8

distributed identically as U . Then, the integrity of the cluster in Figure 3.1(b) may be described

by V = minfU1; :::; U8g s f(v;�2;
1
8�); the time of failure of the weakest column among all eight

columns. We will not observe a failure of the cluster before time �2:

Under a stress test conducted in a laboratory, we may want to estimate � = �1��2 by observ-

ing independent pairs of observations f(Xi; Yi); i = 1; :::; n; :::g where we begin by �rst identifying

X with U and Y with V respectively. That is, Xi (Yi) = ith observation on U (V ); i = 1; :::; n; :::.

This setup clearly agrees with a two-sample scenario described in Section 3.1.1 involving a known

multiplier, b = 1
8 : We emphasize that b needs to be speci�ed a�priori before data collection be-

gins. Often b will be speci�ed by the subject-matter expert(s) based on personal knowledge from

previously run similar studies.

In a situation where it may be more reasonable to postulate that X s f(x;�1; �) and Y s

f(y; g�2; h�) with both g; h positive and known, then obviously Y
� � g�1Y s f(y�;�2; b�) with

b = g�1h positive and known. By exploiting one-to-one coding from Y to Y � and then working with

X;Y � instead of X;Y would bring one back to our proposed two-sample estimation of � = �1��2.
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3.1.3. A Brief Review and Layout of the Chapter

Some of the literature handling to a normal distribution under di¤erent loss functions include

Mukhopadhyay et al. (2010) and Aoshima et al. (2011). Some notable papers pertaining to

two-sample estimation problems under negative exponential settings include Mukhopadhyay and

Hamdy (1984) and Mukhopadhyay and Darmanto (1988).

Negative exponential distributions often play a central role in reliability, life testing and clinical

experiments. For an elaborate review, one may refer to Zelen (1966), Johnson and Kotz (1970),

Lawless and Singhal (1980), Balakrishnan and Basu (1995), and other sources. We provide illus-

trations with real data in Section 7.

Sequential and two-stage procedures for estimating a negative exponential location have been

discussed extensively in Basu (1971), Ghurye (1958), Mukhopadhyay (1974,1980,1984,1988,1995),

Swanepoel and van Wyk (1982), and other sources. A sequential point estimation analog under a

Linex loss function (1.3) was �rst developed by Chattopadhyay (1998) utilizing nonlinear renewal

theory from Woodroofe (1977,1982) and Lai and Siegmund (1977,1979).

Before we go any further, we explain our notation clearly. Since �1; �2; � are all unknown, the

parameter vector � = (�1; �2; �) remains unknown. When we write P (:) or E(:), they should be

interpreted as P�(:) or E�(:) respectively. In the same spirit, when we write
P! (convergence in

probability) or w.p.1 (with probability one) or $! (convergence in law or distribution), they are all

with respect to P�. We drop subscript � in the sequel for simplicity.

In Section 3.2, we include some preliminaries of a modi�ed Linex loss function in the spirit of

Chapter 2, formulation of the risk function, and its optimization by bounding it from above. Section

3.3 introduces a modi�ed two-stage procedure in which we assume a known lower bound �L(> 0)

for the unknown standard deviation � along the lines of Mukhopadhyay and Duggan (1997,1999).

Both �rst- and second-order properties are developed for estimating �.

Section 3.4 introduces a purely sequential methodology in the present context for estimating

�. For some of the technicalities and second-order properties, we have relied upon Mukhopadhyay

(1974,1984,1988), Lombard and Swanepoel (1978), and Swanepoel and van Wyk (1982). Generally

speaking, the broad literature on sequential estimation as well as many associated tools of trade

may be reviewed from Mukhopadhyay and Solanky (1994), Ghosh et al. (1997) and Mukhopadhyay
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and de Silva (2009).

In Section 3.5, we outline proofs for some selected results. Section 3.6 presents extensive data

analysis based upon computer simulations for a large variety of parameter con�gurations high-

lighting the performance of the proposed methodologies for a wide range of small, moderate, and

large sample sizes. Selected conclusions from the theorems studied in Sections 3.3-3.4 are critically

examined and validated with data analysis.

Section 3.7 shows analysis on two real datasets, one from cancer studies and the other from

reliability analysis, both supporting the proposed methodologies. First illustration (Section 3.7.1)

uses parallel datasets related to survival times of cancer patients from Shanker et al. (2016). Second

illustration (Section 3.7.2) uses data on lifetimes of steel components from the text of Lawless (1982).

Section 3.8 gives brief conclusions.

3.2. MODIFIED LINEX LOSS AND SOME PRELIMINARIES

In this section, we work under an appropriately modi�ed Linex loss function in the spirit of

Chapter 2 and then calculate the associated risk function. For motivation, one may refer back to

Chapter 2.

3.2.1. Equal Sample Size and the Estimators

Having recorded pairs of random samples fXi; Yi; i = 1; :::; ng; n > 1; we estimate the di¤erence

parameter � � �1 � �2 from (3.1.2) with the maximum likelihood estimator

b�n � Xn:1 � Yn:1;

where Xn:1 = minfX1; :::; Xng and Yn:1 = minfY1; :::; Yng.

The minimum variance unbiased estimator of � is given by

�̂n �Wn =
1
2

�
Un + b

�1Vn
�
;

where we let
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Un =
1
n�1

Pn
i=1(Xi �Xn:1) and Vn = 1

n�1
Pn
i=1(Yi � Yn:1): (3.2.1)

3.2.2. Modi�ed Linex Loss Function

Let us begin with some �xed a; positive or negative. In the spirit of Chapter 2, a modi�ed Linex

loss function in estimating � from (3.1.2) with b�n � Xn:1 � Yn:1 is formulated as follows:

Ln = exp
�
a
h
��1(b�n ��)i�� a h��1(b�n ��)i� 1: (3.2.2)

The corresponding risk function is obtained by taking expectations across (3.2.2), namely,

Riskn � E[Ln] =
�
1� a

n

��1 �
1 + ab

n

��1 � a
n +

ab
n � 1: (3.2.3)

Upon expanding (3.2.3), we clearly obtain:

Riskn =
a2(1+b2�b)

n2
+ o

�
1
n2

�
; (3.2.4)

for n > maxf1; a;�abg:

3.2.3. Cost Per Unit Sampling

Next, we consider a cost function, Costn(> 0). The exact form of this function must depend upon

the underlying practical scenario. It may be acceptable to assume that the cost for each observation

should go up (or down) as � goes down (or up). With this in mind, we propose a cost function of

the following form:

Costn = cn��k with �xed and known c(> 0); k(> 0): (3.2.5)

One may alternatively think that Costn should have been c(2n)��k instead of cn��k because

afterall we record 2n observations. Also, the cost per unit observation on X-data could be surely

di¤erent from the cost per unit observation on Y -data giving rise to an expression such as (c1n+
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c2n)�
�k instead of cn��k: However, Costn from (3.2.5) is general enough because in our formulation,

the choice of �c�remains generic, covering easily those other possibilities.

3.2.4. Proposed Criterion: Bounded Risk Per Unit Cost

Adapting the basic formulation from Chapter 2, we bound the associated �risk� where we

interpret �risk�as the risk per unit cost (RPUC), namely,

RPUCn �
Riskn
Costn

=
a2(1 + b2 � b)

n2
�k

cn
+ o

�
n�3

�
: (3.2.6)

We require that RPUCn � ! for all parameter vector � = (�1; �2; �) where !(> 0) is a �xed

constant which leads us to determine the required optimal �xed sample size, had � been known as

follows:

n �
�
a2(1 + b2 � b)

c!

�1=3
�k=3 = n�, say: (3.2.7)

But, the magnitude of n� is unknown even though its expression is known. Hence, we proceed to

develop modi�ed two-stage and purely sequential bounded risk estimation strategies in Sections

3.3-3.4.

3.2.5. Evaluating the Risk Per Unit Cost When Sample Size Is Random

The idea is to estimate the optimal �xed sample size n� given by (3.2.7). We begin with pilot data

of appropriate size m(> maxf1; a;�abg) from both X;Y and then move forward step by step with

the help of implementing a modi�ed two-stage or a purely sequential sampling strategy to record

more data subsequently as needed beyond the pilot stage.

Suppose that a �nal sample size, denoted by a random variable Q, is determined by an adaptive

multistage sampling strategy. Then, the next result shows an exact analytical expression for the

risk per unit cost associated with the terminal estimator b�Q = XQ:1� YQ:1 for � once sampling is

terminated.

Theorem 3.2.1. Under a multistage estimation strategy, suppose that (i) the �nal sample size Q

is an observable random variable that is �nite w.p.1, and (ii) Q is determined in such a way that the

event Q = q is measurable with respect to f�̂j ;m � j � qg; for all �xed q � m(> maxf1; a;�abg):
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Then, the expression for the risk per unit cost associated with the terminal estimator b�Q is given
by :

E [RPUCQ] = ! n�3

a2(1+b2�b)

�
E

�
1
Q

�
1� a

Q

��1 �
1 + ab

Q

��1�
� E

�
a�ab
Q2

�
� E

�
1
Q

��
: (3.2.8)

Its proof is similar along the lines of Section 2.6.1 of Chapter 2 and hence it is omitted for

brevity.

3.3. A MODIFIED TWO-STAGE PROCEDURE

The customary two-stage procedure developed by Stein (1945,1949) has some advantages and

some disadvantages which were elaborated in Chapter 2. We thus resort to a modi�ed two-stage

procedure along the lines of Mukhopadhyay and Duggan (1997) to achieve attractive second-order

properties.

The key idea is to introduce a lower bound �L such that 0 < �L < � with �L known. Given

this additional input, from the expression of n� found in (3.2.7), we note that

n� >
�
a2(1 + b2 � b)(c!)�1

�1=3
�
k=3
L :

Thus, we �x an integer m0(> maxf1; a;�abg) and choose the pilot size m in such a way that

m �
�
a2(1 + b2 � b)(c!)�1

�1=3
�
k=3
L . We formally de�ne m as follows:

m � m(!) = max
n
m0;

j
d!�

k=3
L

k
+ 1

o
with d! =

�
a2(1 + b2 � b)(c!)�1

�1=3
; (3.3.1)

and gather pilot data fXi; Yi; i = 1; :::;mg. Here and elsewhere, bsc denotes the largest integer less

than s(> 0).

From pilot data, we obtain the statistic �̂m � Wm = 1
2

�
Um + b

�1Vm
�
where Um and Vm are

de�ned via (3.2.1), and then determine the terminal sample size N as follows:

N � N(!) = max
n
m;
j
d!W

k=3
m

k
+ 1

o
; (3.3.2)

which is an estimator of n� de�ned in (3.2.7).
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If N = m; we would not require additional observations at the second stage. However, if N > m,

then we sample the di¤erence N �m at the second stage by recording an additional set of pairs

of observations f(Xi; Yi); i = m + 1; :::; Ng. From full data f(Xi; Yi); i = 1; :::; Ng obtained by

combining both stages, we propose to estimate � by the di¤erence of the smallest order statistics,

namely: b�N � XN :1 � YN :1 = minfX1; :::; XNg �minfY1; :::; YNg:

Along the lines of (3.2.2), the associated loss function will be:

LN = exp
�
a
h
��1(b�N ��)i�� a h��1(b�N ��)i� 1; (3.3.3)

A major di¤erence between (3.2.2) and (3.3.3) is that the sample size N used in (3.3.3) is a random

variable unlike n.

Now, since b�n and I(N = n) are independent for all �xed n � m; using (3.2.8) with Q replaced

by N from (3.3.2), we get:

!�1E [RPUCN ] = n�3

a2(1+b2�b)

n
E
h
1
N

�
1� a

N

��1 �
1 + ab

N

��1i� E �a�ab
N2

�
� E

�
1
N

�o
: (3.3.4)

3.3.1. First-Order Asymptotics

We begin with some attractive �rst-order results involving N . One will surely note that there is no

stated su¢ cient condition involving m in Theorem 3.3.1. This is so because in the present setup,

we have m � m(!)!1 as ! ! 0.

Theorem 3.3.1. With m and N respectively de�ned in (3.3.1 ) and (3.3.2 ), for each �xed value

of �1; �2; �; c; k; b; a we have as !!0:

(i) N=n�
P! 1; n�=N P! 1;

(ii) E
�
(N=n�)t

�
! 1; t = �1; 1 [asymptotic �rst-order e¢ ciency ];

where n� comes from (3.2.7 ).

Its proof follows in similar lines as in Section 2.6.3 of Chapter 2 and we thus leave it out for

brevity. One clearly sees that all the expressions in Theorem 3.3.1 converge to 1 which looks
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very encouraging because we can expect N and n� to be in the same ball park. Indeed one may

claim convergence of higher positive and negative moments of N=n� in part (ii) by referring to

Mukhopadhyay and Duggan (1997,1999) and Mukhopadhyay (1999), but we leave them out for

brevity.

3.3.2. Second-Order Asymptotics

The second-order asymptotics are similar to what is presented in equation (2.4.3) of Chapter 2,

with N replaced from (3.3.2) and we leave them out for brevity. One should note that all such

asymptotics are readily accessible along the lines of Mukhopadhyay and Duggan (1997,1999).

Next, let us de�ne the expressions for  and �20 as follows:

 =
�

c
a2(1+b2�b)

�1=3�
k
12

�
k
3 � 1

� �a2(1+b2�b)
c

�1=3��
�
�L

�k=3
and �20 =

k2

18

�
�
�L

�k=3
: (3.3.5)

For completeness, now we exhibit both lower and upper bounds for E(N � n�).

Theorem 3.3.2. With m and N respectively de�ned in (3.3.1 ) and (3.3.2 ), for each �xed value

of �1; �2; �; c; k; b; a we have as !!0:

 +O(!1=2) � E(N � n�) �  + 1 +O(!1=2) [asymptotic second-order e¢ ciency ]; (3.3.6)

where  is de�ned in (3.3.5 ) and n� comes from (3.2.7 ).

Theorem 3.3.2 shows the second-order e¢ ciency property of the modi�ed two-stage procedure

(3.3.1)-(3.3.2) in the sense of Ghosh and Mukhopadhyay (1981). Next, we look at a result which

obtains the asymptotic distribution of a standardized version of N along the lines of Ghosh and

Mukhopadhyay (1975) and Mukhopadhyay and Duggan (1997,1999).

Theorem 3.3.3. With m and N respectively de�ned in (3.3.1 ) and (3.3.2 ), for each �xed value

of �1; �2; �; c; k; b; a we have as !!0:

U� � n��1=2(N � n�) L! N(0; �20); (3.3.7)

where �20 is de�ned in (3.3.5 ) and n
� comes from (3.2.7 ).
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Its proof follows from Lemma 2.1, part (i) in Mukhopadhyay and Duggan (1999) and hence it is

omitted. The following theorem evaluates the risk per unit cost up to second-order approximation.

The proof follows along the lines of section 2.6.4 in Chapter 2 and is thus left out for brevity.

Theorem 3.3.4. With m and N respectively de�ned in (3.3.1 ) and (3.3.2 ), for each �xed value

of �1; �2; �; c; k; b; a we have as !!0:

1 + 1
n� (6�

2
0 � 3 � 3 + a

�
b2�b3�b+1
1+b2�b

�
) + o( 1n� ) � !�1E [RPUCN ]

� 1 + 1
n� (6�

2
0 � 3 + a

�
b2�b3�b+1
1+b2�b

�
) + o( 1n� )

[asymptotic second-order risk e¢ ciency ];

(3.3.8)

where  ; �20 are as de�ned in (3.3.5 ) and n
� comes from (3.2.7 ).

3.4. A PURELY SEQUENTIAL PROCEDURE

A purely sequential procedure provides tighter results compared with those (Theorem 3.3.4) for

the modi�ed two-stage procedure. This happens perhaps because this methodology allows us to

take as many pairs of observations sequentially step-by-step as required depending on the rule of

termination.

In this section, we will pursue a purely sequential sampling strategy along the lines of Chapter

2 to address our two-sample problem. We will make use of nonlinear renewal theory to provide

second-order approximations for the average sample size and RPUC, the risk per unit cost.

We recall the expressions of n� from (3.2.7). We again �x an integer m(> maxf1; a;�abg) and

obtain pilot data fXi; Yi; i = 1; :::;mg. We then proceed by recording one additional pair (X;Y )

at every step as needed determined by the following rule:

N � N(!) = inf
n
n � m : n � d!W

k=3
n

o
with d! =

�
a2(1 + b2 � b)(c!)�1

�1=3
: (3.4.1)

Again, this stopping variable N estimates n�. From full data f(Xi; Yi); i = 1; :::; Ng gathered upon

termination of sampling, we propose to estimate � by the di¤erence of the smallest order statistics,
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namely: b�N � XN :1 � YN :1 = minfX1; :::; XNg �minfY1; :::; YNg:

Along the lines of (3.2.2), the associated loss function will be:

LN = exp
�
a
h
��1(b�N ��)i�� a h��1(b�N ��)i� 1:

Since b�n and I(N = n) are independent for all �xed n � m; the associated expression for

E [RPUCN ] will again resemble (3.2.8) with Q replaced by N from (3.4.1).

3.4.1. First-Order Asymptotics

The �rst order asymptotics that we are now presenting resemble Theorem 2.5.1 in Chapter 2. The

proof of this theorem follows along same lines as in Section 2.6.5 and hence we show a partial

derivation in Section 3.5.1.

Theorem 3.4.1. For N de�ned in (3.4.1 ), for each �xed value of �1; �2; �; c; k; b; a we have as

!!0:
(i) N=n�

P! 1; n�=N
P! 1;

(ii) E
�
(N=n�)t

�
! 1 for t > 0 if m(> maxf2; a;�abg) [asymptotic �rst-order e¢ ciency ];

(iii) E
�
(n�=N)t

�
! 1 for t > 0 if m > maxf1 + 1

3kt; a;�abg;

(iv) !�1E [RPUCN ]! 1 if m > maxf1 + 4
3k; a;�abg [asymptotic �rst-order risk e¢ ciency ];

(v) V � � n��1=2(N � n�) L! N(0; �21) with �
2
1 =

k2

18 ;

where n� comes from (3.2.7 ).

The expressions shown in Theorem 3.4.1, parts (i)-(iv) converge to 1 which are parallel to the

results from Theorem 3.3.1 under the modi�ed two-stage procedure (3.3.1)-(3.3.2). In other words,

the purely sequential procedure (3.4.1) also has attractive asymptotic �rst-order properties.

Now, in order to contrast the asymptotic normality properties of standardized N of the modi�ed

two-stage procedure (3.3.1)-(3.3.2) and the purely sequential procedure (3.4.1), �rst recall from

Theorem 3.3.3 that

U� � n��1=2(N � n�) L! N(0; �20) with �
2
0 =

k2

18 (
�
�L
)k=3:
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As opposed to that, Theorem 3.4.1, part (v) shows that

V � � n��1=2(N � n�) L! N(0; �21) with �
2
1 =

k2

18 :

Thus, we clearly observe that the asymptotic normal distribution for the standardized stopping

variable V � de�nitely has a smaller asymptotic variance (�21) compared with that (�
2
0) for U

�. This

gives an edge of the purely sequential strategy over the modi�ed two-stage strategy.

3.4.2. Second-Order Asymptotics

Going back to applications of nonlinear renewal theoretic results provided in Chapter 2 for a

one-sample problem, we express N from (3.4.1) as R+ 1 w.p.1 where

R = inf
n
n � m� 1 : �ni=1Zi � n��3=kn

3
k
+1(1 + 1

n)
3
k

o
= inf

�
n � m� 1 : �ni=1Zi � h�n�L(n)

	
;

(3.4.2)

with the Zi�s being i.i.d. Gamma(2; 12) random variables. A brief explanation is laid out inside the

proof of Theorem 3.4.1, part (iii) in Section 3.5.1.

Using Woodroofe (1977), Lai and Siegmund (1977,1979), and especially the representations laid

out in Mukhopadhyay (1988) and Mukhopadhyay and Solanky (1994, Section 2.4.2), clearly R from

(3.4.2) matches with (2.4.7) in Mukhopadhyay and Solanky (1994) where

� = 3
k + 1; h

� = n��3=k; L(n) = 1 + 3
kn + o

�
1
n

�
; so that L0 = 3

k ; (3.4.3)

and also note:

� = 1 ; �2 = 1
2 ; �

� = k
3 ; n

�
0 = n� and p = k2

18 : (3.4.4)

Condition (2.5) from Mukhopadhyay (1988) or equivalently (2.4.8) from Mukhopadhyay and

Solanky (1994) is satis�ed with B = 2 and b = 1: We de�ne two special entities:

� � �k =
k
6

�
9
k2
+ 1
�
� 1

4�
1
n=1n

�1E
�
max

�
0; �24n � 4n

�
3
k + 1

��	
; and

� � �k =
1
3k� �

�
1
36k

2 + 1
12k + 1

�
;

(3.4.5)

along the lines of (2.4.9)-(2.4.10) in Mukhopadhyay and Solanky (1994) and (2.5.5) in Chapter 2.
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Table 3.1 illustrates a few values of � � �k and � � �k with k = 1; 2; 3; 4; 5; 6.

To conclude this section, we now specify asymptotic second-order expansions for both positive

and negative moments of Nn� (Theorem 3.4.2) as well as an asymptotic second-order expansion of

the risk per unit cost (Theorem 3.4.3) under the purely sequential setting (3.4.1). Recall that we

must also have m(> maxf1; a;�abg) satis�ed in the background for Theorems 3.4.2-3.4.3 to hold.

Brief outlines of proofs of Theorems 3.4.2-3.4.3 are shown in Section 3.5.2.

Theorem 3.4.2. For N de�ned in (3.4.1), for each �xed value of �1; �2; �; c; k; b; a and every

non-zero real number t; we have as ! ! 0:

E
�
(N=n�)t

�
= 1 +

�
t�k + t+

1
2 t(t� 1)p

	
n��1 + o

�
n��1

�
[asymptotic second-order e¢ ciency ];

(3.4.6)

when (i) m > (3�t)k
3 + 1 for t 2 (�1; 2) � f�1; 1g; (ii) m > k

3 + 1 for t = 1 and t � 2; and (iii)

m > 2k
3 + 1 for t = �1; with n

�; p; and �k coming from (3.2.7 ), (3.4.4 ), and (3.4.5 ) respectively.

Theorem 3.4.3. For N de�ned in (3.4.1 ), for each �xed value of �1; �2; �; c; k; a; we have the

following second-order expansion of the risk per unit cost as !!0:

!�1E [RPUCN ] = 1 + (6p� 3�k � 3 + a
�
b2�b3�b+1
1+b2�b

�
)n��1 + o

�
n��1

�
[asymptotic second-order risk e¢ ciency ];

(3.4.7)

when m > max
�
7k
3 + 1; a;�ab

	
with n�; p; and �k coming from (3.2.7 ), (3.4.4 ), and (3.4.5 )

respectively.

3.5. TECHNICAL DETAILS AND PROOFS OF THEOREMS

Since the technicalities are largely similar to those in Chapter 2, we show some steps selectively.

Intermediate steps are kept out for brevity.

3.5.1. Purely Sequential Procedure: Proof of Theorem 3.4.1

Part (i): Follows from Lemma 1 of Chow and Robbins (1965).
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Part (ii): With m � 3 we can claim that N�1N�2 � 2 w.p.1; and let

H� = supn�2
�
1
n�

n
i=1(Xi � �1) + 1

bn�
n
i=1(Yi � �2)

	
,

for su¢ ciently small !(> 0) so that n� > m; observe the following inequality (w.p.1):

N � m+ d!W
k=3
N�1 � m+ 2k=3d!

n
1

N�2�
N�1
i=1 (Xi � �1) + 1

b(N�2)�
N�1
i=1 (Yi � �2)

ok=3
� m+ 2k=3d!H

�;

which implies (w.p.1):

N
n� � 1 + 2

k=3��k=3H�: (3.5.1)

Now, byWiener�s (1939) ergodic theorem, it follows that E[H�t] is �nite for all �xed positive number

t. The right-hand side of (3.5.1) is also free from ! so that we can claim uniform integrability of

all positive powers of Nn� . Then, by appealing to the dominated convergence theorem and part (i),

we claim part (ii).

Part (iii): Let us denote:

S�x;n = �
n
i=2(n� i+ 1)(Xn:i �Xn:i�1) and S�y;n = �ni=2(n� i+ 1)(Yn:i � Yn:i�1);

so that we have �̂n = 1
2(n�1)

�
S�x;n +

1
bS

�
y;n

�
. Let L1; L2; : : : and M1;M2; : : : be i.i.d. Exp(�) and

Exp(b�) random variables respectively, L�s andM�s being independent, and denote Sx;n = �n�1i=1 Li;.

Sy;n = �
n�1
i=1Mi:

Then, utilizing the embedding ideas from Lombard and Swanepoel (1978) and Swanepoel and

van Wyk (1982), we can claim that the distribution of {S�x;n; S
�
y;n;n � n0} is identical to that of

{Sx;n; Sy;n;n � n0} for all n0. Thus, N given by (3.4.1) can be equivalently expressed as:

N � inf
�
n � m : n � d!

�
1

2(n�1)

�
�n�1i=1 Li +

�n�1i=1 Mi

b

��k=3�
= inf

n
n � m :

�
n
n�
�3=k

(n� 1) � �n�1i=1 Zi

o
;

(3.5.2)

where Zi�s are i.i.d. Gamma(2; 12) random variables.

Now, N from (3.5.2) can be written as R + 1 w.p.1 with R de�ned in (3.4.2). Using Lemma
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2.3 from Woodroofe (1977) or Theorem 2.4.8, part (i) of Mukhopadhyay and Solanky (1994) with

b = 1, we can claim:

P (R � 1
2n

�) = O(n��
3
k
(m�1)): (3.5.3)

Next, with �xed t > 0; since N = R + 1 w.p.1, we have 0 <
�
n�

N

�t � �
n�

R

�t
so that

�
n�

N

�t
will be

uniformly integrable if we show:

�
n�

R

�t
is uniformly integrable. (3.5.4)

Now, we may write (w.p.1): �
n�

R

�t
I(R > 1

2n
�) < 2t;

so that
�
n�

R

�t
I(R > 1

2n
�) must be uniformly integrable. But,

�
n�

R

�t
I(R > 1

2n
�)

P! 1 and hence, we

must have:

E
h�
n�

R

�t
I(R > 1

2n
�)
i
= 1 + o(1). (3.5.5)

Additionally, in view of (3.5.3), we also note the following:

E
h�
n�

R

�t
I(R � 1

2n
�)
i
�
�

n�

m�1

�t
P (R � 1

2n
�) = O(n��

3
k
(m�1)+t); (3.5.6)

which is o(1) if m > 1 + 1
3kt:

Combining (3.5.5)-(3.5.6), clearly (3.5.4) follows so that we can claim:

E
h�
n�

R

�ti
= 1 + o(1) if m > 1 + 1

3kt; with t > 0; (3.5.7)

which is part (iii).

Part (iv): The proof is similar to that in Section 2.6.5 of Chapter 2.

Part (v): This result follows directly from an application of Ghosh and Mukhopadhyay�s (1975)

theorem. One may also refer to Theorem 2.4.3 or Theorem 2.4.8, part (ii) in Mukhopadhyay and

Solanky (1994). �

3.5.2. Outlines of Proofs of Theorems 3.4.2-3.4.3

68



Theorem 3.4.2 follows along the lines of Theorem 2.4.8, part (iv) and from its established applica-

tions found in Mukhopadhyay and Solanky (1994).

For a proof of Theorem 3.4.3, we recall that the associated expression for E [RPUCN ] will

resemble (3.2.8) with Q replaced by N from (3.4.1). Then, one will proceed with an expansion

of !�1E [RPUCN ] similar to that in Section 2.6.4 of Chapter 2 and exploit Theorem 3.4.2 with

t = �3;�4: Additional details are kept out for brevity. �

3.6. DATA ANALYSIS: SIMULATIONS

After developing some interesting theoretical results associated with the two proposed estima-

tion methodologies in Sections 3.3-3.4, we now move on to implement these strategies via computer

simulations. We examine how these estimation strategies may perform when sample sizes are small

(20) to moderate (50; 100; 150) to large (300; 500). All simulations are carried out with R codes

based on 10; 000(= H, say) replications under each con�guration and methodology.

Under each procedure, we generated pseudo-random observations from the distribution (3.1.1)

with �1 = 8; �1 = � = 10 and �2 = 5; �2 = b� = 10b where we �xed b so that �2 became an

appropriate multiple of �: Moreover, we also �xed certain values of a; c; k and n�; thereby solving

for a corresponding value of the risk-bound, !. Thus, a set of preassigned values for b; a; c; k; !; �

will have the associated n� values as shown in our tables (column 1) to come.

In the context of the modi�ed two-stage methodology (3.3.1)-(3.3.2), we �xed a positive lower

bound �L for � and a number m0; thereby determining m from (3.3.1). On the other hand, we

�xed a pilot sample size m in the context of the purely sequential methodology (3.4.1). While

implementing a methodology to determine the �nal sample size (N) and a terminal estimator

(XN :1 � YN :1) of �1 � �2, we pretended that we did not know �1; �2; �; and n
� values.

Now, we specify a set of notation used in the tables. Under a �xed con�guration with all

necessary input (e.g., a; c; k; !;m;m0; �L as appropriate), we focus on implementing a particular

estimation methodology. We ran the ith replication by beginning withm pilot observations and then

eventually ended sampling by recording a �nal sample size N = ni; terminal estimator xni:1�yni:1;
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and the achieved risk per unit cost:

RPUCni = !
n�3

a2(1 + b2 � b)

(
1

ni

�
1� a

ni

��1�
1 +

ab

ni

��1
�
�
a� ab
n2i

�
�
�
1

ni

�)
= ri, say,

(3.6.1)

i = 1; :::;H(= 10; 000).

n = H�1�Hi=1ni Estimate of E(N) or n�;

sn =
q
(H2 �H)�1�Hi=1(ni � n)2 Estimated standard error of n;

xmin = H�1�Hi=1xni:1; ymin = H�1�Hi=1yni:1 Estimates of �1 and �2 respectively;

� = H�1�Hi=1(xni:1 � yni:1) Estimate of �; that is �1 � �2;

sxmin =
q
(H2 �H)�1�Hi=1(xni:1 � xmin)2 Estimated standard error of xmin;

symin =
q
(H2 �H)�1�Hi=1(yni:1 � ymin)2 Estimated standard error of ymin;

s� =
q
(H2 �H)�1�Hi=1(xni:1 � yni:1 ��)2 Estimated standard error of �;

ri RPUCni from (3:6:1);

r = H�1�Hi=1ri with ri from (6.1) Risk estimator;

sr =
q
(H2 �H)�1�Hi=1(ri � r)2 Estimated standard error of r;

z = r=! Estimated risk e¢ ciency to be

compared with 1;

sz = sr=! Estimated standard error of z;

We now summarize the observed performances of the proposed estimation methodologies laid

down in Sections 3.3-3.4. We obtained a large set of tables and results summarizing extensive

simulations run under a variety of con�gurations. For brevity, we outline a small subset of our

�ndings.

3.6.1. Modi�ed Two-Stage Procedure (3.3.1)-(3.3.2)

We now summarize performances for the modi�ed two-stage estimation methodology (3.3.1)-(3.3.2)

in Table 3.2 for

n� = 20; 50; 100; 300; 500 and

(k;m0) = (1; 5); (2; 6); (3; 7):
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In this methodology, we need a positive and known lower bound �L(= 3) for true �; but � re-

mains unknown in practice. The pilot size m was determined from (3.3.1) but it is not shown

in Table 3.2. The estimation methodology (3.3.2) was implemented as described. Table 3.2 speci-

�es �1; �2; �; �L; b; a; c; and each block shows (k;m0); n
� (column 1), ! (column 2), the estimated

(from 10; 000 simulations) values xmin;sxmin (column 3), ymin;symin (column 4), �(= xmin�ymin);s�
(column 5), values n;sn (column 6), the ratio n=n� (column 7), and values z;sz (column 8).

All xmin and yminvalues appear close to 8(= �1) and 5(= �2) respectively with very small

estimated standard error values sxmin , syminfor sample size 100 or over. We observe that� accurately

estimates the true di¤erence� in locations which is 3. For all (k;m0) values, we see that n estimates

n� very accurately across the board. These features are consistent with Theorem 3.3.1, parts (i)-(ii).

The last column shows that the modi�ed two-stage estimation methodology (3.3.1)-(3.3.2) is

very successful in the case of all selected values of k for all n� under consideration in delivering a

risk-bound approximately preset !. More speci�cally, in the case k = 1; we note that z < 1; that

is r < !; for all chosen n� values which is remarkable. On the other hand, z values hang around 1

for all chosen n� and k values which is certainly encouraging.

The entries in Table 3.3 are similar to those in Table 3.2. Table 3.3 used a di¤erent lower

bound �L(= 5) for true �: We highlight performances for n� = 20; 150; 500. Again, the pilot size

m was determined from (3.3.1) but m is not shown in Table 3.3. There are two sets of two blocks

corresponding to di¤erent values of b(= 2; 3) and k(= 1; 2). We �nd that n=n� is nearer to 1 in

Table 3.3 as compared to those in Table 3.2. Also, entries found in the last column of Table 3.3 look

more attractive to those in Table 3.2. This feature should be expected since the speci�ed positive

and known lower bound �L = 5 is closer to � = 10 than �L = 3 is.

In Table 3.4, we provide the values of  found in (3.3.5) corresponding to the con�gurations

highlighted in Table 3.2. We expect that E(N � n�) values should lie inside the interval [ ; + 1]

for large n� values in view of Theorem 3.3.2. This is indeed true as we �nd that nearly all �n� n�

values lie inside the corresponding interval [ ; + 1]: Chapter 2 brie�y mentioned the case when

�L may be slightly misspeci�ed.

We provide Figure 3.2 showing empirical validation of asymptotic normality result described in

(3.3.7). We considered two scenarios, namely �L = 3; b = 1; k = 1; n� = 100 (Figure 3.2a); and

�L = 3; b = 2; k = 3; n� = 500 (Figure 3.2b). Under each con�guration, we recorded observed
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values:

N = ni; i = 1; :::;H(= 10; 000);

and thus calculated 10; 000 associated standardized (ni � n�)=
p
n� values. Under each speci�c

con�guration, such 10; 000 observed u�i � (ni � n�)=
p
n� values provide the empirical distribution

of the standardized sample size (dashed curve in red). We superimpose on it the expected theoretical

N(0; �20) distributions (solid curve in blue) where �
2
0 =

1
18(

�
�L
)k=3k2 found from (3.3.5).

Both sets of plots in Figure 3.2(a) and 3.2(b) show very good �t. However, Figure 3.2(a)

shows that the curves are slightly o¤ from one another, but this corresponds to a moderate value

of n�(= 100), Indeed, Figure 3.2(b) clearly shows that the empirical and theoretical distribution

curves nearly lie on each other when n�(= 500) is large.

To supplement the graphical presentations in Figure 3.2, we also performed the customary

Kolmogorov-Smirnov (K-S) test for normality in the case of each dataset that generated Figures

3.2(a)-3.2(b). Table 3.5 shows associated K-S test statistic (D) values under the null hypothesis of

normality with associated p-values.

Both p-values (Table 3.5) are much larger than 0:05. Thus, our earlier thoughts supported by

simple visual examinations of Figures 3.2(a)-3.2(b) are clearly validated by K-S test of normality

under each scenario. That is, we are reasonably assured of a good �t between the observed values

of u� and a normal curve with a high level of con�dence for all practical purposes.

3.6.2. Purely Sequential Procedure (3.4.1)

We now summarize performances for the purely sequential estimation methodology (3.4.1) in Table

3.6 for

n� = 20; 50; 100; 300; 500 and

(k;m) = (1; 4); (2; 6); (3; 9):

The estimation methodology (3.4.1) was implemented as described. Table 3.6 speci�es �1; �2; �; b; a; c

and each block shows (k;m); n� (column 1), ! (column 2), the estimated (from 10; 000 simulations)

values xmin;sxmin (column 3), xmin;sxmin (column 4), �(= xmin � ymin);s� (column 5) values n;sn

(column 6), the ratio n=n� (column 7), and values z;sz (column 8). An explanation of column 9

comes later.
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All xmin and yminvalues appear closer to 8(= �1) and 5(= �2) respectively with very small

estimated standard error values sxmin , syminfor sample size 100 or over. � also accurately estimates

the actual di¤erence in locations which is 3. For all (k;m) values, it appears that n estimates

n� very accurately throughout. These features are consistent with Theorem 3.4.1, parts (i)-(ii).

Column 8 shows that the purely sequential estimation methodology (3.4.1) is very successful for

all values of k and n� under consideration in delivering a risk-bound approximately !. However,

when k = 1; 2; we see an under-estimation in the risk which improves when k = 3:We feel that the

purely sequential procedure provides estimates for the risk per unit cost which are generally closer

to 1 than the two-stage methodology (3.3.1)-(3.3.2).

Theorem 3.4.3 showed that !�1E [RPUCN ] should be close to 1 + " where we have:

" = (6p� 3�k � 3 + a
�
b2 � b3 � b+ 1
1 + b2 � b

�
)n��1; (3.6.2)

from (3.4.7) when n� is large. �k was de�ned by (3.4.5) and it was tabulated in Table 3.1. Column 9

in Table 3.6 shows these " values under each con�guration. Upon comparing z values from column

8 with " values from column 9, we see that for all practical purposes, the z values are explained

fairly well by 1 + " for practical purposes.

We now address Figure 3.3 consisting of two side-by-side plots in our attempt to validate

empirically the normality result described in Theorem 3.4.1, part (v). We considered two scenarios,

b = 3; k = 1; m = 5; n� = 100 in Figure 3.3(a) and b = 1; k = 3; m = 13; n� = 500 in Figure

3.3(b). Under each con�guration, we recorded observed values:

N = ni; i = 1; :::;H(= 10; 000);

and thus calculated 10; 000 associated standardized (ni � n�)=
p
n� values. Under each speci�c

con�guration, such 10; 000 observed v�i � (ni�n�)=
p
n� values provided the empirical distribution

of the standardized sample size (dashed curve in red). We superimpose on it the appropriate

theoretical N(0; �21) distributions (solid curve in blue) where �
2
1 =

1
18k

2 coming from Theorem

3.4.1, part (v).

Both sets of plots in Figure 3.3(a) and 3.3(b) show very good �t. However, Figure 3.3(a)
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shows that the curves are slightly o¤ from one another, but this corresponds to a moderate value

of n�(= 100), Indeed, Figure 3.3(b) clearly shows that the empirical and theoretical distribution

curves nearly lie on each other when n�(= 500) is large.

To supplement the graphical presentations in Figure 3.3, we also performed the customary

Kolmogorov-Smirnov (K-S) test for normality in the case of each dataset that generated Figures

3.3(a)-3.3(b). Table 3.7 shows associated K-S test statistic (D) values under the null hypothesis of

normality with associated p-values.

Both p-values (Table 3.7) are much larger than 0:05. and our earlier thoughts supported by

visual examinations of Figures 3.3a-3.3b are clearly validated by K-S test of normality under each

scenario. That is, we are reasonably assured of a good �t between the observed values of v� and a

normal curve with a high level of con�dence for all practical purposes.

3.7. DATA ANALYSIS: ILLUSTRATIONS USING REAL DATA

In this section, we illustrate applications of the modi�ed two-stage estimation methodology

(3.3.1)-(3.3.2) and the purely sequential estimation methodology (3.4.1) using two real datasets,

one from cancer research and the other from reliability. The �rst example (Section 3.7.1) uses

parallel datasets on survival times of cancer patients from Shanker et al. (2016). The data were

utilized in Efron�s (1988) paper.

A second example (Section 3.7.2) uses lifetimes of steel components data that is available from

the textbook of Lawless (2003, Statistical Models and Methods for Lifetime Data). This data were

presented earlier by Crowder (2000).

3.7.1. Cancer Studies Data

This data consist of two independent datasets representing the survival times of a group of patients

su¤ering from head and neck cancer. The �rst group was treated using a combination of radiother-

apy and chemotherapy whereas the second group was treated with radiotherapy alone. These data

on survival times, X from �rst group and Y from second group, have been presented in Shanker et

al. (2016) and were earlier reported in Efron (1988).

The full data consisted of survival times of 44 and 51 patients respectively. As a check for a
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negative exponential model�s �t, in Figure 3.4 we provide the exponential Q-Q plots for both the

datasets. Indeed the data points seem to lie fairly well within or near the bands, indicating a good

�t.

Treating these two datasets as the universe, we �rst found �̂1 = 12:2, �̂1 = 216:19 and �̂2 = 6:53,

�̂2 = 233:88 from full data. We note that the scale parameters appear nearly the same. Thus, we

assumed b = 1: Utilizing (3.2.1), we found the pooled estimator of the scale, �̂ = 225:04. We then

implemented both modi�ed two-stage and purely sequential estimation procedures drawing obser-

vations (X;Y ) from the full set of data as needed. It is emphasized, however, that implementation

of sampling strategies did not exploit the observed numbers �̂1; �̂2; or �̂:

For estimating � � �1 � �2, we carried out a single run under both procedures. Tables 3.8-3.9

provide the results from implementing the stopping rules from (3.3.1)-(3.3.2) and (3.4.1) respectively

corresponding to certain �xed values of c; k; a and the preset risk-bound !; chosen arbitrarily. We

�xed m or m0 as needed.

The outcome of these methodologies are summarized in Tables 3.8-3.9. Table 3.8 summarizes

results from the modi�ed two-stage procedure with �L = 80; but assuming otherwise that the

scale parameter � remains unknown. Table 3.9 summarizes the results from the purely sequential

procedure.

Under both methodologies, we notice that the terminal estimated values of �1; �2 are not too

far away from corresponding �̂1 = 12:2 and �̂2 = 6:53 that was obtained from full data. Also,

the estimate of the di¤erence in locations given by b� is also close to the actual value � = 5:67:

One other comment is in order: The n� values shown in the �rst column are computed using

(3.2.7) after replacing � with �̂ = 225:04 obtained from full data. Again, in running the estimation

methodologies, we did not exploit the number �̂ = 225:04.

We have provided n� values just so that one is able to gauge whether the observed n-values

look reasonable. The ratio n=n� appears reasonably close to 1 which is nice to see. But, these

correspond to a single run each, and hence observed n may not always be very close to n�. The

values of z; that is, the ratio of achieved risk per unit cost and preset goal !, also appear reasonably

under (or close) to 1.

3.7.2. Lifetimes of Steel Specimen Data
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We considered Data G4 presented in Appendix G of the textbook, Statistical Models and Methods

for Lifetime Data, of Lawless (2003). This data, earlier presented in Crowder (2000), consisted of

lifetimes of steel specimens tested at 14 stress levels. We divided the whole data into two parts, one

corresponding to stress levels 35 or lower (low stress) and the other corresponding to stress levels

35:5 or higher (high stress).

We then considered these two groups to be our two independent groups, low (high) stress group

giving rise to failure time X (Y ). The two datasets consisted of 140 observations each. As a check

for a negative exponential (3.1.1) �t, Figure 3.5 provides the exponential Q-Q plots for both groups.

Indeed the data seem to lie largely within or near the bands, indicating a reasonable �t.

The scale parameters are taken to be � and b� for X;Y respectively, whereas the formulation

demands that one should specify a value of b before obtaining the data, perhaps from previous

analogous studies or prior experiences. We have thus resorted to the following practical approach.

We randomly picked 10 data points X (Y ) from each group under low (high) stress levels and

treat them as our data, say, from previous analogous study. In the population from where this

prior data supposedly became available through a similar previous stress test, suppose that the low

(high) stress level group had the scale parameter value �Low (�High). Following were those observed

data values:

Low (X): 206; 273; 312; 385; 415; 568; 669; 714; 767; 1056

) b�Low = 1
9

Pn
i=1(Xi �X10:1) = 1

9(5365� 2060) = 367:22;

High(Y ) : 66; 90; 105; 108; 121; 122; 127; 164; 255; 318

) b�High = 1
9

Pn
i=1(Yi � Y10:1) = 1

9(1476� 660) = 90:67: (3.7.1)

We have

F18;18;0:025 = 0:38527 and F18;18;0:975 = 2:5956

) 95% con�dence interval for �High=�Low is given by�
90:67
367:22 �

1
2:5959 ;

90:67
367:22 �

1
0:38527

�
; that is (0:0951; 0:6409):

Thus, a null hypothesis postulating that �High=�Low = 1 will be rejected in favor of a two-sided

test at 5% level. Indeed any number lying between 0:0951 and 0:6409 would seem reasonable for

the ratio �High=�Low:

Thus, we decided to implement our proposed methodologies on the remainder of the stress test
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data after removing the observations shown in (3.7.1) from full dataset with two possible choices

for the number b, namely, Case 1: b = 0:33 and Case 2: b = 0:25.

We treat the remaining 130 values from each stress groups as our universe and carry out our

proposed methodologies. From full datasets, we found �̂1 = 115, �̂2 = 51 and b� = 507:22 when

b = 0:33 whereas b� = 570:78 when b = 0:25: Table 3.10 shows �ndings from implementing the

stopping rule (3.3.1)-(3.3.2) with �L = 150 whether b = 0:33 or b = 0:25: Table 3.11 shows �ndings

from implementing the stopping rule when b = 0:33; 0:25. Both tables correspond to certain �xed

choices of c; k; a and the preset risk-bound ! and m or m0 as needed. The implementation of

sampling strategies did not exploit the numbers �̂1; �̂2 or �̂ obtained from full datasets. For

estimating � = �1 � �2, we carried out a single run under both methodologies.

Here again, we show n� values just so that one is able to gauge whether the observed n-values

look reasonable. The estimate of di¤erence � in locations given by � appears fairly close to the

actual value of � under either choices of b. The ratio n=n� appears reasonably close to 1 which

should be desirable. The value z; that is, the ratio of achieved risk per unit cost and preset goal !,

appears reasonably under (or close) to 1.

3.8. A BRIEF SUMMARY OF CHAPTER 3

In this chapter, we have developed methodologies that are operationally convenient and possess

interesting e¢ ciency and consistency properties. Our direction of research came from a thorough

literature review and we proposed purely sequential and modi�ed two-stage methods to estimate

the di¤erence � in location parameters of two independent negative exponential distributions.

One may notice that the purely sequential strategy appears to perform better overall than the

modi�ed two-stage strategy. However, it is also true that a modi�ed two-stage strategy is logistically

simpler to implement than a purely sequential estimation strategy. Indeed, both procedures are

fully expected to perform very well. A practitioner, however, may consider employing one of the

two procedures (3.3.1)-(3.3.2) or (3.4.1) that will provide an acceptable level of logistical comfort

in running an experiment as one balances bene�t under the presence of additional factors, namely,

feasibility, e¢ ciency, accuracy, operational convenience, and cost.
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Table 3.1. Selected values of � � �k and � � �k

from (3.4.5), k = 1(1)6

k

1 2 3 4 5 6

�k 3:082 1:638 1:171 0:942 0:806 0:716

�k �0:084 �0:185 �0:328 �0:521 �0:768 �1:068
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Table 3.2. Simulation results from 10; 000 replications for the

modi�ed two-stage procedure (3.3.1)-(3.3.2) with

�1 = 8; �2 = 5; � = 10; �L = 3; b = 1; a = 1; c = 0:1

n� !
xmin

sxmin

ymin

symin

�

s�

�n

s�n
n=n�

z

sz

k = 1;m0= 5

20 1:25� 10�2
8:4929

0:0049

5:4901

0:0049

3:0027

0:0069

20:38

0:0132
1:0194

0:9710

0:0019

100 1� 10�4
8:0987

0:0010

5:1012

0:0010

2:9974

0:0014

100:45

0:0297
1:0045

0:9917

0:0008

300 3:7� 10�6
8:0334

0:0003

5:0336

0:0003

2:9998

0:0004

300:45

0:0496
1:0015

0:9971

0:0004

500 8� 10�7
8:0197

0:0001

5:0198

0:0001

2:9998

0:0002

500:43

0:0645
1:0008

0:9983

0:0003

k = 2;m0= 6

20 1:25� 10�1
8:5065

0:0050

5:5084

0:0051

2:9980

0:0071

20:40

0:0334
1:0202

1:1188

0:0063

100 1� 10�3
8:1017

0:0010

5:0998

0:0010

3:0018

0:0014

100:42

0:0719
1:0042

1:0187

0:0022

300 3:7� 10�5
8:0335

0:0003

5:0336

0:0003

2:9998

0:0004

300:65

0:1213
1:0021

1:0033

0:0012

500 8� 10�6
8:0202

0:0002

5:0195

0:0001

3:0006

0:0002

500:20

0:1560
1:0004

1:0046

0:0009
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Table 3.2 contd. Simulation results from 10; 000 replications for the

modi�ed two-stage procedure (3.3.1)-(3.3.2) with

�1 = 8; �2 = 5; � = 10; �L = 3; b = 1; a = 1; c = 0:1

n� !
xmin

sxmin

ymin

symin

�

s�

�n

s�n
n=n�

z

sz

k = 3;m0= 7

20 1:25
8:5184

0:0055

5:5333

0:0058

2:9850

0:0078

20:48

0:0571
1:0242

1:5479

0:0181

100 0:01
8:1045

0:0010

5:1024

0:0010

3:0020

0:0014

100:40

0:1308
1:0024

1:1020

0:0046

300 3:7� 10�4
8:0332

0:0003

5:0340

0:0003

2:9992

0:0004

300:46

0:2243
1:0015

1:0292

0:0023

500 8� 10�5
8:0201

0:0002

5:0198

0:0001

3:0002

0:0002

500:46

0:2896
1:0009

1:0175

0:0017
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Table 3.3. Simulation results from 10; 000 replications for the

modi�ed two-stage procedure (3.3.1)-(3.3.2) with

�1 = 8; �2 = 5; � = 10; �L = 5; a = 1; c = 0:1

n� !
xmin

sxmin

ymin

symin

�

s�

�n

s�n
n=n�

z

sz

k = 1;m0= 5;b = 2

20 3:75� 10�2
8:9922

0:0049

5:4933

0:0100

3:4989

0:0112

20:39

0:0143
1:0197

0:8992

0:0019

150 8:88� 10�5
8:1316

0:0006

5:0656

0:0013

3:0659

0:0014

150:46

0:0388
1:0031

0:9838

0:0007

500 2:4� 10�6
8:0402

0:0001

5:0199

0:0003

3:0202

0:0004

500:50

0:0713
1:0010

0:9948

0:0004

k = 2;m0= 6;b = 2

20 3:75� 10�1
9:0348

0:0052

5:5075

0:0105

3:5273

0:0015

20:31

0:0332
1:0158

1:0370

0:0057

150 8:88� 10�4
8:1332

0:0006

5:0666

0:0013

3:0665

0:0014

150:41

0:0883
1:0027

1:0014

0:0017

500 2:4� 10�5
8:0403

0:0001

5:0195

0:0002

3:0207

0:0004

500:44

0:1601
1:0009

1:0001

0:0009
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Table 3.3 contd. Simulation results from 10; 000 replications for the

modi�ed two-stage procedure (3.3.1)-(3.3.2) with

�1 = 8; �2 = 5; � = 10; �L = 5; a = 1; c = 0:1

n� !
xmin

sxmin

ymin

symin

�

s�

�n

s�n
n=n�

z

sz

k = 1;m0= 5;b = 3

20 8:75� 10�2
9:1832

0:0050

5:5031

0:0149

3:6801

0:0156

20:39

0:0168
1:0195

0:9617

0:0021

150 2:07� 10�4
8:1988

0:0006

5:0673

0:0019

3:1315

0:0020

150:32

0:0451
1:0021

0:9801

0:0008

500 8� 10�5
8:0594

0:0002

5:0198

0:0005

3:0396

0:0005

500:31

0:0816
1:0006

0:9940

0:0004

k = 2;m0= 6;b = 3

20 8:75� 10�1
9:1187

0:0052

5:5093

0:0161

3:6094

0:0167

20:33

0:0385
1:0168

1:0309

0:0067

150 2:07� 10�3
8:2026

0:0006

5:0661

0:0020

3:1364

0:0021

150:60

0:1004
1:0040

0:9957

0:0020

500 5:6� 10�5
8:0597

0:0001

5:0198

0:0004

3:0399

0:0004

500:23

0:1852
1:0004

1:0011

0:0011
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Table 3.4. Values of �n� n�,  from (3.3.5)

and  + 1 for each k used in Table 3.2

n�nk 1 2 3

20 0:38 0:40 0:48

50 0:40 0:32 0:65

100 0:45 0:42 0:24

300 0:45 0:65 0:46

500 0:43 0:20 0:46

 �0:0829 �0:1239 0

 + 1 0:9170 0:8760 1

Table 3.5. Kolmogorov-Smirnov test results

corresponding to Figures 3.2(a)-3.2(b)

Parameter K-S

Case con�guration stat D p-value

2a �L = 3; b = 1; k = 1; n
� = 100 0:46252 0:8212

2b �L = 3; b = 2; k = 4; n
� = 500 0:49874 0:9025
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Table 3.6. Simulation results from 10; 000 replications of the

purely sequential procedure (3.4.1) with

�1 = 8; �2 = 5; � = 10; b = 1; a = 1; c = 0:1

n� !
xmin

sxmin

ymin

symin

�

s�

�n

s�n
n=n�

z

sz

"

(3.6.2)

k = 1;m = 4

20 1:25� 10�2
8:4902

0:0049

5:4975

0:0049

2:9926

0:0069

20:40

0:0110
1:0201

0:8612

0:0016
�0:1203

100 1� 10�4
8:0990

0:0010

5:1005

0:0009

2:9986

0:0014

100:40

0:0238
1:0040

0:9914

0:0007
�0:0241

300 3:7� 10�6
8:0335

0:0003

5:0336

0:0003

2:9999

0:0004

300:31

0:0414
1:0015

0:9979

0:0004
�0:0080

500 8� 10�7
8:0197

0:0001

5:0202

0:0002

2:9994

0:0002

500:45

0:0527
1:0009

0:9979

0:0003
�0:0048

k = 2;m = 6

20 1:25� 10�1
8:4937

0:0050

5:5018

0:0051

2:9918

0:0071

20:30

0:0218
1:0150

0:9610

0:0040
�0:0555

100 1� 10�3
8:0990

0:0009

5:0994

0:0010

2:9995

0:0014

100:37

0:0472
1:0037

0:9965

0:0014
�0:0111

300 3:7� 10�5
8:0332

0:0003

5:0333

0:0003

2:9998

0:0004

300:38

0:0822
1:0012

0:9980

0:0008
�0:0037

500 8� 10�6
8:0197

0:0001

5:0203

0:0001

2:9994

0:0002

500:44

0:1046
1:0008

0:9986

0:0005
�0:0022
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Table 3.6 contd. Simulation results from 10; 000 replications of the

purely sequential procedure (3.4.1) with

�1 = 8; �2 = 5; � = 10; b = 1; a = 1; c = 0:1

n� !
xmin

sxmin

ymin

symin

�

s�

�n

s�n
n=n�

z

sz

"

(3.6.2)

k = 3;m = 9

20 1:25
8:5199

0:0054

5:5157

0:0053

3:0041

0:0075

20:14

0:0329
1:0074

1:2011

0:0091
0:0492

100 1� 10�2
8:1014

0:0010

5:1012

0:0010

3:0002

0:0014

100:23

0:0706
1:0023

1:0242

0:0022
0:0098

300 3:7� 10�4
8:0335

0:0003

5:0333

0:0003

3:0002

0:0004

300:19

0:1236
1:0006

1:0083

0:0012
0:0032

500 8� 10�5
8:0200

0:0001

5:0199

0:0001

3:0000

0:0002

500:04

0:1594
1:0000

1:0058

0:0009
0:0019
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Table 3.7. Kolmogorov-Smirnov test results

corresponding to Figures 3.3(a)-3.3(b)

Parameter K-S

Case con�guration stat D p-value

3a b = 3;m = 5; k = 1; n� = 100 0:55487 0:8978

3b b = 1;m = 13; k = 3; n� = 500 0:52314 0:9487
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Table 3.8. Analysis of cancer survival data using modi�ed two-stage

procedure (3.3.1)-(3.3.2) with b = 1; a = 1; c = 0:1; �L = 80

n� m0 k !
�̂1:

xn:1

�̂2:

yn:1

b� n n=n� z

15 3 1 0:6667 11:64 6:84 4:8 16 1:067 0:9274

25 3 0:1440 12:52 6:21 6:31 24 0:96 0:9526

15 4 2 150:04 12:03 6:47 5:56 15 1:00 1:4201

25 4 32:410 12:38 6:64 5:74 26 1:04 1:2317

Table 3.9. Analysis of cancer survival data using purely

sequential procedure (3.4.1) with b = 1; a = 1; c = 0:1

n� m k !
�̂1:

xn:1

�̂2:

yn:1

b� n n=n� z
"

in (3.6.2)

15 5 1 0:66677 12:40 6:52 5:88 17 1:13 0:8629 �0:1609

25 5 0:14402 12:27 6:19 6:08 26 1:04 0:8897 �0:0965

15 7 2 150:046 13:02 6:49 6:53 15 1:00 0:9248 �0:0740

25 7 32:4101 13:11 6:62 6:49 28 1:12 0:9589 �0:0444
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Table 3.10. Analysis of lifetimes of steel components in stress data

using modi�ed two-stage procedure (3.3.1)-(3.3.2) with a = 1; c = 0:1

n� m0 k !
�̂1:

xn:1

�̂2:

yn:1

b� n n=n� z

b = 0:33; �L = 150

50 4 1 0:0316 129 51 78 52 1:04 0:9056

80 4 0:0077 115 57 58 79 0:98 1:0511

50 5 2 16:0311 129 65 64 47 0:94 1:2289

80 5 3:9138 146 51 95 73 0:91 1:3335

b = 0:25; �L = 150

50 4 1 0:0371 115 57 58 48 0:96 0:9608

80 4 0:0090 115 57 58 73 0:91 1:1816

50 5 2 21:1763 129 51 78 48 0:96 1:1538

80 5 5:1700 129 57 50 72 0:90 1:3340
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Table 3.11. Analysis of lifetimes of steel components in stress data

using purely sequential procedure (3.4.1) with a = 1; c = 0:1

n� m k !
�̂1:

xn:1

�̂2:

yn:1

b� n n=n� z
"

in (3.6.2)

b = 0:33

50 5 1 0:0316 115 57 58 51 1:02 0:9603 �0:0101

80 5 0:0077 140 51 89 78 0:97 0:9796 �0:0063

50 7 2 16:0311 129 51 78 49 0:98 1:0568 0:0159

80 7 3:9138 143 57 86 79 0:98 1:0233 0:0099

b = 0:25

50 5 1 0:0371 129 51 78 51 1:02 0:9824 �0:0090

80 5 0:0090 115 59 56 79 0:98 0:9912 �0:0056

50 7 2 21:1763 146 51 95 49 0:98 1:0478 0:0170

80 7 5:1700 129 51 78 81 1:01 1:0321 0:0106
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Figure 3.1. Columns from Parthenon, Greece: (a) One column

by itself (U), (b) A cluster of eight identical columns (V ).

Photo courtesy: Nitis Mukhopadhyay
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(a)

(b)

Figure 3.2. Plots of normality curves for the modi�ed two-stage procedure (3.3.1)-(3.3.2)

as validations for (3.3.7). The dashed curve (red) and the solid curve (blue)

respectively correspond to the empirical distribution of the standardized sample

size and the N(0; �20) distribution with �
2
0 =

1
18(

�
�L
)k=3k2 coming from (3.3.5):

(a) �L = 3; b = 1; k = 1; n� = 100; (b) �L = 3; b = 2; k = 3; n� = 500:

91



(a)

(b)

Figure 3.3. Plots of normality curves for the purely sequential procedure (3.4.1) as

validation of Theorem 3.4.1, part (v). The dashed curve (red) and the solid curve (blue)

respectively correspond to the empirical distribution of the standardized sample size

and the N(0; �21) distribution with �
2
1 =

1
18k

2 coming from Theorem 3.4.1, part (v):

(a) b = 3; k = 1; m = 5; n� = 100; (b) b = 1; k = 3; m = 13; n� = 500:
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Figure 3.4. Exponential Q-Q plots for cancer data:

(a) Radiotherapy and chemo (X)

(b) Radiotherapy alone (Y )
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Figure 3.5. Exponential Q-Q plots for stress data:

(a) Low stress (X)

(b) High stress (Y ).
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Chapter 4
Purely Sequential Bounded-Risk Point
Estimation of the Negative Binomial
Mean Under Various Loss Functions:

One-Sample and Multi-Sample Problems

4.1. INTRODUCTION

In this chapter, we develop only purely sequential methodologies for estimating the mean of a

negative binomial (NB) distribution under various forms of the loss functions that we have included.

We will cover both one-sample and multi-sample situations. The contents of this chapter are based

on Mukhopadhyay and Bapat (2017a) and (2017b).

A NB distribution has been used widely to model over-dispersed count data arising from studies

in ecology and agriculture. Anscombe (1949,1950) emphasized the role of NB modeling in the case

of insect count data often found in entomological research.

We will work with a NB distribution parametrized by Anscombe (1949) where one assumes the

following probability mass function (p.m.f.):

f(x;�; �) � P�;� (X = x) =
�
1 + �

�

��� �(�+x)
x!�(�)

�
�
�+�

�x
; x = 0; 1; 2; ::: (4.1.1)

This probability model is referred to as a NB distribution involving two parameters abbreviated as

NB(�; �) where 0 < �; � <1. This notation pretends that �; � are both unknown. If � is known,

then we will interpret f(x;�; �) as f(x;�) � P�(X = x): In what follows, we use the notation IA

or I(A) interchangeably to denote the indicator function of an event or a set A.

Both parameters �; � are assumed �nite and positive with � unknown, but � may or may not

be known. Here, for example, the measured response variable X may stand for the count of insects

on plants or count of a particular variety of weed in an agricultural plot.

In such examples, the parameter � used in (4.1.1) is interpreted as the average insect count

or the average number of weed per sampling unit, whereas � indicates the degree of clumping or

thatching of infestation per sampling unit. The mean and variance for the distribution (4.1.1) are
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given by:

E�;� [X] � � and V�;� [X] � �2 = �+ ��1�2: (4.1.2)

Again, this notation pretends that �; � are both unknown. If � is known, then we will interpret

E�;� [:] and V�;� [:] as E�[:] and V�[:] respectively.

4.1.1. Brief Review: One-Sample and Multi-Sample Problems

Some selected references interfacing a NB model and sequential and/or multistage sampling

strategies in agriculture and biology include: Bliss and Owen (1958), Kuno (1969,1972), Bar-

rigossi (1997), Nyrop and Binns (1991), Mulekar and Young (1993,2004), Mukhopadhyay (2002),

Mukhopadhyay and de Silva (2005), Mukhopadhyay and Banerjee (2014,2015), and Banerjee and

Mukhopadhyay (2016). For a general overview in the broad area of sequential and multi-stage

inference and methodologies, one may refer to Sen (1981), Woodroofe (1982), Siegmund (1985),

Mukhopadhyay and Solanky (1994), Ghosh et al. (1997), Mukhopadhyay et al. (2004), Mukhopad-

hyay and de Silva (2009), Zacks (2009), and other sources.

Willson and Folks (1983) and Willson et al. (1984) contained a wide variety of sequential

problems arising from estimation of a NB mean. One may refer to Mukhopadhyay and Diaz (1985)

for an overview of a two-stage point estimation problem. Mukhopadhyay and Banerjee (2014,2015)

included an extensive set of literature review addressing sequential problems on estimating the

mean of a NB population. A majority of sources had dealt with problems of sequential �xed-width

or �xed-accuracy con�dence intervals, point estimation under a squared error loss (SEL), or tests

for �: Under a Bayesian perspective to sequential estimation of a NB mean, Marcus and Talpaz

(1985) introduced a one-step look ahead procedure.

One of the loss functions considered in this chapter is the customary Linex loss introduced by

Varian (1975), which was discussed widely in Chapters 2 and 3. In order to reiterate, a Linex loss

in estimating a generic parameter � with b�n is de�ned as follows:
Ln � Ln

�b�n; �� = expna(b�n � �)o� a(b�n � �)� 1; a 2 R: (4.1.3)

One may refer to Chapters 2 and 3 for further practical applications under appropriate mod-

i�cations of this loss function (4.1.3) under negative exponential models. One may also refer to
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Zellner (1986) and Chattopadhyay (1998,2000) to gain a broader perspective. Xiao et al. (2005)

constructed a minimax con�dence bound for a normal mean and Baran and Magiera (2010) dealt

with a generalized form of the Linex loss used in sequential estimation of a function of probability

of success under a Bernoulli distribution.

We emphasize that we have embarked upon developing only purely sequential methodologies

for bounded-risk point estimation.

4.1.2. Layout of This Chapter

Section 4.2 develops an estimation strategy under a slightly modi�ed Linex loss (4.2.2) which is

a close variant of (4.1.3). This modi�cation takes into account the CV approach as introduced in

Willson and Folks (1983) and further developed by Mukhopadhyay and Diaz (1985). Here, thatch

parameter � was assumed known.

Section 4.3 develops an estimation strategy under SEL (4.3.1) assuming that the thatch para-

meter � is known.

Section 4.4 is on a di¤erent note in the sense that the thatch parameter � is now assumed

unknown. It deals with estimation of � under SEL (4.5.1).

Section 4.5 develops a simultaneous estimation strategy for a k sample problem under a modi�ed

Linex loss (4.6.2), again utilizing the CV approach. Here, thatch parameters � i; i = 1; 2; :::; k are

assumed known.

Section 4.6 develops a two-sample estimation strategy under SEL (4.7.1) assuming that the

thatch parameters �1; �2 are known.

Section 4.7 is on a di¤erent note in the sense that the thatch parameters �1; �2 are now assumed

unknown. It deals with estimation of �1 � �2 under SEL (4.9.1).

Section 4.8 provides brief conclusions.

Section 4.2 through Section 4.7 present summaries obtained from extensive sets of simula-

tion studies based on a variety of parameter con�gurations highlighting both small and moderate

sample-size performances of the proposed estimation strategies with associated risk analyses. They

are followed by appropriate sets of illustrations obtained from implementations of each proposed

estimation strategy using real data from statistical ecology. We have emphasized (i) weed count
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data of di¤erent species from a �eld in Netherlands (ii) count data of migrating woodlarks at the

Hanko bird sanctuary in Finland and (iii) raptor count data at the Hawk mountain sanctuary,

Pennsylvania.

4.2. LINEX LOSS UNDER CV APPROACH AND

KNOWN THATCH PARAMETER

In this section, we introduce an appropriate modi�cation to the conventional form of the Linex

loss function shown in (4.1.3). We assume that we have available a sequence fX1; X2; :::; Xn; :::g

of independent and identically distributed (i.i.d.) random variables from a NB(�; �) population.

Then, we develop a purely sequential bounded-risk methodology to estimate the NB mean � under

this modi�ed Linex loss (4.2.2) when � is assumed known.

4.2.1. A Modi�ed Linex Loss

We revisit the coe¢ cient of variation (CV) approach and originated by Willson and Folks (1983)

which was further developed by Mukhopadhyay and Diaz (1985) and Mukhopadhyay and de Silva

(2005). The customary Linex loss from (4.1.3) may be mildly modi�ed with a generic notation by

taking the CV approach into account. We may let:

W �
n �W �

n

�b�n; �� = expna(b�n��)�

o
� a(b�n��)

� � 1; a 2 R; (4.2.1)

pretending that the unknown � parameter is non-zero.

Having recorded X1; :::; Xn; we denote the sample mean Xn = n�1�ni=1Xi which estimates

� and in the light of (4.2.1), we propose a modi�ed Linex loss function for the point estimation

problem on hand as follows and de�ne:

Ln � Ln
�
Xn; �

�
= exp

n
a(Xn��)

�

o
� a(Xn��)

� � 1; a 2 R: (4.2.2)

Next, we express the risk function as follows:
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E�[Ln] = E�

h
exp

n
a(Xn��)

�

oi
� E�

h
a
�
Xn��
�

�i
� 1

= e�a
�
1 + �

� (1� e
t)
��n� � 1; using m.g.f. of Xn

= exp
�
a2

2n�

�
+ a2

2n� + o
�
1
n

�
� 1:

(4.2.3)

Thus, from (4.2.3), the risk associated with the modi�ed Linex loss function (4.2.2) reduces to:

Rn � E�[Ln] =
a2

2n

�
��1 + ��1

�
+ o(n�1): (4.2.4)

4.2.2. A Sequential Bounded Risk Estimation

The idea here is to bound the risk Rn given in (4.2.4) from above by a suitable constant, namely

the risk bound, !(> 0) and require that Rn � ! for all �. This leads us to obtain the optimal �xed

sample size n� approximately as follows:

n � a2

2!

�
��1 + ��1

	
= a2

2!
�2

�2
= n�; say. (4.2.5)

The magnitude of n� remains unknown even though its expression is given by (4.2.5). Hence, we

resort to developing a purely sequential bounded risk estimation strategy next. Recall that the

thatch parameter � is assumed known.

Now, Looking back at the expression of n� from (4.2.5), we see clearly that

n� > a2

2!� ; (4.2.6)

and hence, we determine the pilot size m as follows: Let

m � m(!) =
j
a2

2!�

k
+ 1; (4.2.7)

where buc denotes the largest integer < than u(> 0) and we �rst gather pilot data Xi; i = 1; :::;m.

After pilot data, we gather one additional observation at-a-time, as needed, according to the stop-

ping rule that is de�ned next.

Since Xn may be zero with a positive probability, whatever be n, we �x a number 
(> 1
2) and
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de�ne:

N = inf
n
n � m : n � a2

2!

h
��1 +

�
Xn + n

�
��1io : (4.2.8)

Here,
�
Xn + n

�
� is treated as an estimator of � which ensures that this estimator is positive with
(P�) probability one and that the classical central limit theorem (CLT) will remain in e¤ect for

n1=2
�
Xn + n

�
 � �
�
since 
 > 1

2 .

At termination, based on the fully gathered data fN;X1; :::; Xm;:::; XNg; we propose to estimate

� by the sample mean XN : Now, we prove a lemma which will be useful in the sequel in proving

the risk e¢ ciency property for the estimation strategy (N;XN ).

Lemma 4.2.1. For the estimation strategy (N;XN ) de�ned via (4.2.8 ), for each �xed � 2 R+;

� 2 R+; 
 > 1
2 ; and s 2 R

+; we have as !!0:

E�
���XN � �

��s�! 0:

Proof of Lemma 4.2.1 : Consider s �xed. We begin with the following inequality:

0 � XN � supn�1Xn =W; say, (4.2.9)

where certainly all positive powers of W are integrable in view of Wiener�s (1939) ergodic theorem

because all positive moments of the X�s are �nite. Obviously, XN ! � in probability (P�) as !!0.

Hence, we can claim:

E�

h
X
k
N

i
! �k; (4.2.10)

since X
k
N is uniformly integrable in view of (4.2.9), for all k > 0.

Now, for a �xed positive integer r(> s), we apply Jensen�s inequality to write:

E�
���XN � �

��r� = �rE�

h���XN
� � 1

���ri � �rE
1=2
�

����XN
� � 1

���2r� : (4.2.11)

But, since 2r is an even positive integer, we can express:

E�

����XN
� � 1

���2r� = �2ri=0(�1)i�2ri
�
E�

��
XN
�

�2r�i�
<1; (4.2.12)
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in view of binomial theorem and (4.2.10).

Combining (4.2.11)-(4.2.12), we can immediately claim uniform integrability of
��XN � �

��s which
completes the proof. �

We now move forward to establish a number of attractive �rst-order asymptotic properties in

Theorem 4.2.1 for the proposed purely sequential estimation strategy (N;XN ). Their proofs are

outlined in Section 4.2.3.

Theorem 4.2.1. With loss function LN ; pilot size m; and terminal sample size N de�ned in

(4.2.2 ), (4.2.7 ) and (4.2.8 ) respectively, under the purely sequential estimation rule (N;XN ) from

(4.2.8 ), for each �xed � 2 R+ and � 2 R+ we have as !!0:
(i) N=n�

P�! 1 if 
 > 1
2 ;

(ii) E� [(N=n
�)s]! 1 for all s; if 
 > 1

2(or > 1) when s < (or >)0

[asymptotic �rst-order e¢ ciency ];

(iii) E� [LN ] =! ! 1 if 
 > 1 [asymptotic risk e¢ ciency ];

where n� comes from (2.5 ) and � is assumed known.

Part (ii) shows that the sequential methodology (4.2.8) is e¢ cient along the lines of Chow and

Robbins (1965) and �rst-order e¢ cient in the sense of Ghosh and Mukhopadhyay (1981). That is,

we may expect the terminal sample size N to hover around the optimal �xed sample size n� when

n� is large. Part (iii) shows that the achieved risk E� [LN ] may be expected to hover around the

preassigned risk-bound ! when n� is large.

4.2.3. Proof of Theorem 4.2.1

Part (i):

From (4.2.8), we get the following inequality:

a2

2!

n�
XN +N

�
��1 + ��1o � N � a2

2!

n�
XN�1 + (N � 1)�


��1
+ ��1

o
I(N > m)

+ (m� 1)I(N = m) + 1 w.p.1(P�).
(4.2.13)
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Dividing (4.2.13) throughout by n� we get:

n�
XN +N

�
��1 + ��1o (��1 + ��1)�1 � N=n� �
n�
XN�1 + (N � 1)�


��1
+ ��1

o
�(��1 + ��1)�1 + (m� 1)n��1I(N = m) + 2!

a2
(��1 + ��1)�1 w.p.1(P�).

(4.2.14)

Next, taking limits on all sides of (4.2.14) and noting the following facts: N ! 1 w.p.1(P�),

XN ! � w.p.1(P�), m=n� = O(1); and P�(N = m)! 0 as ! ! 0; completes the proof of Part (i).

Part (ii):

Case 1: s < 0:

From (4.2.8) we get the following inequality w.p.1(P�):

N
n� �

1
n�

a2

2!

�
1

XN+N�


�
= �2

�2

�
1

XN+N�


�
) n�

N � �2

�2

�
XN +N

�
� � �2

�2
supn�1

�
Xn + 1

�
=W; say

)
�
N
n�
�s �W s; for s < 0:

But, again W s is clearly integrable in view of Wiener�s (1939) ergodic theorem. Thus, using part

(i), we conclude:

E�

h�
N
n�
�si! 1 as ! ! 0 when s < 0: (4.2.15)

Note that 
 > 1
2 su¢ ces when s < 0.

Case 2: s > 0:

This part follows along the lines of Willson and Folks (1983) who improvised upon some of the

original techniques from Mukhopadhyay (1974). Accordingly, we �rst �x some arbitrarily small

� > 0 and de�ne � = (1 + �)1=sn�. We tacitly disregard that � may not be an integer. Then, we

may write:

E�[N
s] = �1n=mn

sP�(N = n)

� ��+1n=m(� + 1)sn�sP�(N = n) + �1n>�+1n
sP�(N = n)

� (� + 1)sn�sP�(N � � + 1) + T (�); say, :

102



where T (�) = �1n>�+1n
sP�(N = n): Further,

E�

h�
N
n�
�si � (� + 1)sP�(N � � + 1) + n��sT (�):

Let [N = n] denote the even N = n: Now, from (4.2.8), we note the fact that

[N = n] �
n
n� 1 < a2

2!

�
1
� +

1
Xn�1+(n�1)�


�o
;

so that we may express:

[N = n]) �n�1i=1 Xi <
a2�(n�1)

2!�(n�1)�a2 � (n� 1)
�
+1:

Obviously, (n�1)�
+1 ought to be negligible for large n which will require us to assume that 
 > 1.

That is, we may rewrite:

n � � ) a2�n
2!�n�a2 � n

�
+1 � �n�
�
�

�2
(1+�)��1

� n�
+1 = a(n); say.

Hence, we obtain:

T (�) = �1n>�+1n
sP�(N = n)

� �1n>�+1(n+ 1)sP� f�ni=1Xi < a(n)g

� �1n>�+1(n+ 1)s inft<0 P�
�
e�ta(n)et�

n
i=1Xi > 1

	
:

Next, using the moment generating function of �ni=1Xi; which is distributed as NB(n�; n�); we

can show that T (�) � �1n=1dn where dn > 0 and d
1=n
n ! d; 0 < d < 1; as n ! 1: Hence, we can

claim:

lim sup!!0E� [(N=n
�)s] � 1 + �; (4.2.16)

but �(> 0) is arbitrary. Also, from part (i) and Fatou�s lemma, we have:

lim inf!!0E�;� [(N=n�)
s] � E�;� [lim inf!!0 (N=n�)

s] = 1: (4.2.17)

We omit further details for brevity. Now, combining (4.2.15)-(4.2.17) completes the proof of
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Part (ii).

Part (iii):

We will improvise upon some of the techniques developed recently by Mukhopadhyay and Zacks

(2017). For a clear understanding, we will split the proof of part (iii) into a number of (main) steps

as follows:

Step 1:

From (4.2.2), we may express E�[LN ]=! as:

!�1E�
h
exp

n
a(XN��)

�

o
� a

�
XN��
�

�
� 1
i

= !�1E�

�
a2

2

�
XN��
�

�2
+ a3

6

�
XN��
�

�3
e
a
�
�N

�
where �N is a random variable between 0 and (XN � �);

so that we have:

!�1E�[LN ]

= n�

�2
E�
�
(XN � �)2

�
+ a

3�E�

h
n�

�2
(XN � �)3e

a
�
�N
i

= n�

�2
E�[I1] +

a
3��2

n�E�[I2], say :

(4.2.18)

Here, n� comes from (4.2.5).

Step 2:

We �rst address the term n�E�[I2] from (4.2.18) and show that it is o(1). From Anscombe�s

(1952) random central limit theorem, with WN = �
N
i=1Xi, we can claim:

U � UN =
WN�N�
�
p
n�

$! N(0; 1); as ! ! 0: (4.2.19)

The term n�I2 is rewritten as follows (w.p.1):

n�I2 = n�(XN � �)3e
a
�
�N = n�

N3 (WN �N�)3e
a
�
�N = n�5=2

N3 �
3U3e

a
�
�N

= �3e
a
�
�N
�
n�

N

�3
n��1=2U3; with U from (2.19).

(4.2.20)

Case 1: On the set where a
��N < 0:

104



Note that (4.2.20) gives w.p.1(P�):

n� jI2j I
�
a
��N < 0

�
� �3

�
n�

N

�3
n��1=2 jU j3 : (4.2.21)

From Theorem 2 of Chow et al. (1979), we can claim: jU js is uniformly integrable for all s > 0

when 
 > 1: Also, from Theorem 4.2.1, part (ii), it follows that (n�=N)s is uniformly integrable for

�xed s > 0 when 
 > 1
2 : But, using Cauchy-Schwartz inequality, we can claim:

E�

h����n�N �3 U3���i � E
1=2
�

h�
n�

N

�6i
E
1=2
�

h���U 6
���i = O(1);

which combined with (4.2.21) shows that

E�

h
n� jI2j I

�
a
��N < 0

�i
= o(1); (4.2.22)

when 
 > 1.

Case 2: On the set where a
��N � 0

Again, (4.2.20) gives w.p.1(P�):

n� jI2j I
�
a
��N � 0

�
= �3e

a
�
�N
�
n�

N

�3
n�

�1=2 jU j3 I
�
a
��N � 0

�
; (4.2.23)

and we will now show that

E�

h�
n�

N

�3
e
a
�
�N jU j3 I

�
a
��N � 0

�i
= O(1):

Upon repeated uses of Holder�s inequality to split the expectations of various terms within (4.2.23),

with appropriate choices of � > 1; � > 1; ��1 + ��1 = 1 and �0 > 1; �0 > 1; �0�1 + �0�1 = 1; we

claim:

E�

h�
n�

N

�3
e
a
�
�N jU j3 I

�
a
��N � 0

�i
� O(1)E

1=��0
�

h
e
a
�
��0�N I

�
a
��N � 0

�i
; (4.2.24)

when 
 > 1.

105



We now verify that

E�

h
e��N I

�
a
��N � 0

�i
= O(1);

where we see � = a
���

0 from (4.2.24) and thus write w.p.1(P�):

e��N I
�
a
��N � 0

�
� ej�(XN��)j = �1s=0 1s!

��� �XN � �
���s ; (4.2.25)

with each term being positive and integrable. So, by applying the monotone convergence theorem,

we have from (4.2.25):

E�

h
e��N I

�
a
��N � 0

�i
� �1s=0 1s!E�

���� �XN � �
���s� : (4.2.26)

Then, after using Lemma 4.2.1, from (4.2.26), we can claim:

lim!!0E�
h
e��N I

�
a
��N � 0

�i
= 0, (4.2.27)

when 
 > 1. A combination of (4.2.20), (4.2.22), and (4.2.27) leads us to conclude:

n�E�[I2] = o(1); (4.2.28)

when 
 > 1.

Step 3:

Next, we go back to (4.2.18) and address the �rst term, namely n�

�2
E�[I1]; and show that it

converges to 1 as ! ! 0: We improvise the proof found in Mukhopadhyay (1978), a precursor of

Ghosh and Mukhopadhyay (1979). We recall U � UN =
WN�N�
�
p
n�

from (4.2.19) with WN = �
N
i=1Xi,

and we rewrite n�

�2
E�[I1] as:

n�

�2
E�
�
(XN � �)2

�
= E�

�
U2N
�
+ E�

h
U2N

n
n�2

N2 � 1
oi
= E�[I11] + E�[I12]; say. (4.2.29)

From (4.2.19), we know that U2N
$! �21 as ! ! 0. Then, in view of Wald�s second equation

(Theorem 2.4.5, Ghosh et al. 1997; Theorem 3.5.5, Mukhopadhyay and de Silva 2009), we can
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claim:

E�[I11] = E�[U
2
N ] = E�

�
N
n�
�
) lim!!0E�[I11] = 1; (4.2.30)

using Part (ii) when 
 > 1.

Now,then, U2N is also uniformly integrable. Also, in view of (4.2.7), we can claim that
���n�2N2 � 1

���
is bounded from above by maxf1; �2�4��4 � 1g: In other words,

jI12j � maxf1; �2�4��4 � 1gU2N ;

so that jI12j is also uniformly integrable. However, I12
P�! 0 as ! ! 0, so that E�[I12] = o(1):

Combining this with (4.2.29)-(4.2.30), we conclude that lim!!0 n
�

�2
E�[I1] = 1: This completes

the proof of Part (iii) and Theorem 4.2.1 in view of (4.2.18). �

4.2.4. Simulations and Real Data Illustrations

We begin with a summary (Section 4.2.4.1) from a set of simulation studies to examine the perfor-

mances of our proposed purely sequential estimation strategy (4.2.8) for small and moderate values

of n�. Sections 4.2.4.2-4.2.4.3 highlight performances of our estimation strategy using real data

from statistical ecology. We have emphasized (i) weed count data of di¤erent species from a �eld

in Netherlands and (ii) count data of migrating woodlarks at the Hanko bird sanctuary in Finland.

4.2.4.1. A Summary from Simulations

We �rst generated pseudorandom observations from the distribution (4.1.1) with combinations of

choices for � and � . We �xed the values a = 1 and 
 = 1:5. We determined m from (4.2.7).

Each row in Table 4.1 corresponds to averages from 10000 replications which were run under a

given con�guration. In order to represent varying sample sizes, we show results for �xed values of

n� = 50 (small), 200 (medium).

Since our stopping rule (4.2.8) is very similar to that of Willson and Folks (1983), we have also

included a set of simulations based on the rule given by Willson and Folks (1983), however, we

evaluated our risk function at termination. This is done for comparing the results obtained from

the two sampling methods. The �rst block in Table 4.1 shows performances of our purely sequential
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method (4.2.8) whereas the second block shows performances of Willson and Folks�s (1983) rule.

The results are shown under the following setting:

n� = 50; 200 and (�; �) = (2; 3); (3; 4) (4.2.31)

Each block in Table (4.1) shows n� (column 3), ! (column 4), the estimated values x and sx

(column 5), estimated values n; sn (column 6), the ratio n=n� (column 7) plus values of z and sz

(column 8) with

N = ni; ri =
a2

2ni

�
1
� +

1
�

�
as in (4:2:4) under the ith replication,

and r = H�1�Hi=1ri; sr =
q
(H2 �H)�1�Hi=1(ri � r)2;

so that z = r=!; sz = sr=!; H = 10000.

(4.2.32)

Under both methods, the x values are very close to the corresponding means in each case with

very small standard error value sx: These become even closer for n� = 200. The values of n seem

to estimate n� very accurately across the rows. We see that the n values overestimate n� by a

small margin. The last column shows that both sequential methodologies tend to provide a risk

bound close (or smaller) to preset goal ! for small (moderate) n�: For both small or moderate n�;

the methodologies of ours and Willson and Folks�s are in sync by producing comparable results by

taking into account the estimated values x; sx (column 5), estimated values n; sn (column 6), the

ratio n=n� (column 7), and z; sz (column 8) from (4.2.32).

4.2.4.2. Illustration 4.2.1: Weed Count Data

We now present our �rst real data Illustration 4.2.1. We resort to an ecological count dataset. We

make use of the weed count data presented by Heijting (2013). They recorded weed count data from

quadrats on part of an arable maize �eld in Wageningen, Netherlands, prior to herbicide application.

We looked at data from the year 2001 between 18-21 June, and applied our methodology (4.2.8) on

one of the species of weed, Capsella bursa-pastoris L. (Shephard�s purse). The �eld was cultivated

and sown in north-south direction and the observation area was divided into 16�67 = 1072 quadrats
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of 0:75� 0:75 meters. One can �nd further information from:

http://dx.doi.org/10.17026/dans-zu9-r7y8

and Heijting et al. (2007).

Figure 4.1 shows the types of weed included in this dataset which consist of 1072 rows and a

NB �t was seen as appropriate with a p-value of 0:84. We found b� = 0:3 and b� = 3:98 from full

data. In other words, we considered this dataset as our population with unknown mean � but with

a known value 3:98 for � : We emphasize that our implementation of the sampling strategy (4.2.8)

did not exploit the number b�(= 0:3) obtained from full dataset.

We �xed a = 1 and 
 = 1:5; implemented the methodology (4.2.8) by drawing observations

from the full set of data without replacement. We found that with or without replacement made

practically no di¤erence.

Table 4.2 shows results from implementing the estimation strategy (4.2.8) in single runs with 4

di¤erent preset values of the risk-bound !. The terminal estimated value of � are overall close to

the value of b� = 0:3; obtained from full data. The n� values (obtained by pretending that � = 0:3

and � = 3:98) are merely provided as a vehicle for ad-hoc comparison with the observed n values.

We have not used these n� values in our implementation. We note that the ratio n=n� is reasonably

close to 1 which is desired. In the last column of Table 4.2, we show a value ez obtained from a

single run:

N = n; er = a2

2n

�
1
xn
+ 1

�

�
in the spirit of (4:2:4) under

one replication, so that ez = er=!. (4.2.33)

Again, column 6 shows ez values mainly to grasp a sense of how close the estimated risk may or
may not be when compared with the preset goal !. The erratic behavior is due to the fact that ez
values were obtained from single runs.

4.2.4.3. Illustration 4.2.2: Count Data of Migrating Woodlarks at the Hanko Bird

Sanctuary

We now present our next real data Illustration 4.2.2. We resort to an ecological count dataset on

migrating woodlarks at Hanko bird sanctuary situated in southwestern Finland. This data has been
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used in Linden and Mantyniemi (2011) and is available in the Ecological Archives E092-120-S2. One

should also refer to Supplement 2 in Linden and Mantyniemi (2011) for more details regarding this

dataset.

We will use the migration data for Autumn season, 1 September - 10 November, 2009. We

worked with the daily counts of migrating birds during �rst four hours of daylight after sunrise.

The dataset included 71 rows and a NB �t was seen as appropriate with a p-value of 0:35. We found

b� = 3:05 and b� = 0:23 from full data. In other words, we considered this dataset as our population

with unknown � but with known value 0:23 for � : We emphasize that our implementation of the

sampling strategy (4.2.8) did not exploit the number b�(= 3:05) obtained from full dataset. We

picked a = 1 and 
 = 1:5, implemented the methodology (4.2.8) by drawing observations from the

full set of data without replacement. We found that with or without replacement made practically

no di¤erence.

Table 4.3 shows results from implementing the estimation strategy (4.2.8) in single runs with

3 di¤erent preset values of the risk-bound !. The terminal estimated values of � look bit erratic

and these are not too close to the value b� = 3:05; obtained from full data. The n� values (obtained

by pretending that � = 3:05 and � = 0:23) are merely provided as a vehicle for ad-hoc comparison

with the observed n values. We have not used these n� values in our implementation. We note that

the sample sizes (Table 4.2.3) are small in the range of 30 � 50, however the ratio n=n� remains

close to 1 which is desired. In the last column of Table 4.3, we show associated value ez obtained
along the line of (4.2.33) from a single run and observe that ez values are smaller than one which
indicates that the estimated risk is smaller than the preset goal !. Again, we emphasize that each

row in Table 4.3 summarizes a single run.

4.3. SQUARED ERROR LOSS APPROACH UNDER

KNOWN THATCH PARAMETER

In this section, we develop a purely sequential estimation strategy for estimating the mean of a

NB(�; �) population under a squared error loss function. We assume that the thatch parameter �

is known. Having recorded X1; :::; Xn; recall that the sample mean Xn = n�1�ni=1Xi estimates �
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and we propose a squared error loss function:

Ln � Ln(Xn; �) = b(Xn � �)2; b > 0: (4.3.1)

We express the risk function as:

Rn � E�[Ln] =
b
n

�
�+ ��1�2

�
: (4.3.2)

4.3.1. A Sequential Bounded Risk Estimation

We will again bound the risk Rn given in (4.3.2) from above by !(> 0): This leads us to the optimal

�xed sample size n� approximately as follows:

n � b
!

�
�+ ��1�2

�
= n�; say. (4.3.3)

The magnitude of n� remains unknown even though its expression is given by (4.3.3). Hence, we

resort to developing a purely sequential bounded risk estimation strategy next. We will continue

to assume that the thatch parameter � is known.

We �rst �x m(� 1) and gather pilot data Xi; i = 1; :::;m of size m from the NB population.

Again, since Xn may be zero with a positive probability, whatever be n, we �x a number 
(> 1
2)

and de�ne:

N = inf
n
n � m : n � b

!

h
Xn + �

�1X
2
n + n

�

io

: (4.3.4)

Here, n�
 ensures that the estimator is positive with probability one. Based on the fully gathered

data fN;X1; :::; Xm;:::; XNg; we propose to estimate � by the sample mean XN :

Theorem 4.3.1 gives a set of attractive �rst-order asymptotic properties for the proposed purely

sequential estimation methodology (N;XN ) obtained from (4.3.4).

Theorem 4.3.1. With loss function LN and terminal sample size N de�ned in (4.3.1 ) and

(4.3.4 ) respectively, under the purely sequential estimation rule (N;XN ) from (4.3.4 ), for each

�xed � 2 R+ and � 2 R+ we have as !!0:
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(i) N=n�
P�! 1 if 
 > 1

2 ;

(ii) E� [(N=n
�)s]! 1 for all s > 0; if 
 > 1

2 [asymptotic �rst-order e¢ ciency ];

(iii) E� [LN ] =! ! 1 if 
 > 1 [asymptotic risk e¢ ciency ];

where n� comes from (4.3.3 ) and � is assumed known.

Part (ii) shows that the sequential methodology (4.3.4) is e¢ cient along the lines of Chow and

Robbins (1965) and �rst-order e¢ cient in the sense of Ghosh and Mukhopadhyay (1981). That is,

we may expect N to hover around the optimal �xed sample size n� when n� is large. Part (iii)

shows that the achieved risk E� [LN ] may be expected to hover around the preassigned risk-bound

! when n� is large.

4.3.2. Proof of Theorem 4.3.1

Part (i):

From (4.3.4), we write down the following inequality:

b
!

�
XN + �

�1X
2
N +N

�

�
� N � b

!

�
XN�1 + �

�1X
2
N�1 + (N � 1)�


�
+ (m� 1) + 1 w.p.1(P�).

(4.3.5)

Dividing (4.3.5) throughout (4.3.5) by n�; we get:

�
XN + �

�1X
2
N +N

�

�
(�+ ��1�2)�1 � N=n� �

�
XN�1 + �

�1X
2
N�1 + (N � 1)�


�
�(�+ ��1�2)�1+ (m� 1)n��1 + n��1 w.p.1(P�).

(4.3.6)

Taking limits on all sides of (4.3.6) and noting the following facts: N !1 w.p.1(P�), XN ! �

w.p.1(P�), and m=n� = o(1) as ! ! 0 completes the proof. Here, 
 > 1
2 su¢ ces.

Part (ii):

From the right-hand side of (4.3.6), we have the following inequality (for su¢ ciently large n�):

N=n� �
�
XN�1 + �

�1X
2
N�1 + (m� 1)�


�
(�+ ��1�2)�1 +m: (4.3.7)
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Now, denoting sup
n�2

�
Xn + �

�1X
2
n

�
as W we can claim:

N=n� � (�+ ��1�2)�1[W + 1] +m: (4.3.8)

Thus, the right-hand side of (4.3.8) is free from ! and using Wiener�s (1939) ergodic theorem

we can claim the uniform integrability of all positive powers of N=n�: Next, appealing to Part (i),

we complete the proof. Here, 
 > 1
2 su¢ ces.

Part (iii): In this proof which is split into a number of steps for clarity, we improvise on the

techniques that were originally developed by Ghosh and Mukhopadhyay (1979) and then moved

further along by Sen and Ghosh (1981). Throughout, we �x an arbitrary � in (0; 1):

Step 1:

We note:

E�[LN ]=! =
b
!E�

�
(XN � �)2

�
= n�

�2
E�
�
(XN � �)2

�
:

Now, we need to verify that n
�

�2
E�

h�
XN � �

�2i ! 1 as ! ! 0 when 
 > 1: This can be shown as

follows:

Along the lines of (4.2.29), we get:

n�

�2
E�

h�
XN � �

�2i
= E�

�
U2N
�
+ E�

h
U2N

n
n�
2

N2 � 1
oi
= E� [I11] + E� [I12] ; say. (4.3.9)

where

UN =
WN�N�
�
p
n�

with WN = �
N
i=1Xi and N comes from (4.3.4).

We can claim that

E� [I11]! 1 as ! ! 0 when 
 > 1
2 ; (4.3.10)

in the spirit of (4.2.30). Thus, in view of (4.3.9), we have to verify:

E� [I12]! 0 as ! ! 0: (4.3.11)

Step 2:
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On the set jN � n�j � �n�; we can express:

�� � N
n� � 1 � �) 1

1+� �
n�

N � 1
1��

) ��(2+�)
(1+�)2

�
�
n�
2

N2 � 1
�
� �(2��)

(1��)2 )
��(2+�)
(1��)2 �

��(2+�)
(1+�)2

�
�
n�
2

N2 � 1
�
� �(2��)

(1��)2 �
�(2+�)
(1��)2 ;

which shows: ����n�N �2 � 1��� I[jN�n�j��n�] � �(2 + �)(1� �)�2: (4.3.12)

Step 3:

We recall that UN
$! N(0; 1) by Anscombe�s (1952) random CLT so that U2N

$! �21 as ! ! 0;

and we showed that E�
�
U2N
�
! 1 as ! ! 0: when 
 > 1

2 : One may go back and see (4.2.30). Hence,

U2N is uniformly integrable. Then, in view of (4.3.9), we can claim:

U2N

����n�N �2 � 1��� I[jN�n�j��n�] � �(2 + �)(1� �)�2U2N ;

that is, U2N

����n�N �2 � 1��� I[jN�n�j��n�] is also uniformly integrable when 
 > 1
2 .

But, in view of Part (i), we have:

U2N

����n�N �2 � 1��� I[jN�n�j��n�] ! 0 in probability(P�) as ! ! 0;

so that we have:

E�

h
U2N

����n�N �2 � 1��� I[jN�n�j��n�]i! 0 as ! ! 0: (4.3.13)

Step 4:

Next, on the set N > n�(1 + �); we observe w.p. 1(P�):

N
n� � 1 > �) 0 <

�
n�

N

�2
<
�

1
1+�

�2
< 1 < 2

)
����n�N �2 � 1��� < 1;

so that we can express:

U2N

���n�2N2 � 1
��� I[N�n�>�n�] � U2N ;
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w.p. 1(P�)

That is, U2N

����n�N �2 � 1��� I[N�n�>�n�] is uniformly integrable when 
 > 1
2 . But, in view of Part

(i), we have:

U2N

����n�N �2 � 1��� I[N�n�>�n�] ! 0 in probability(P�) as ! ! 0;

so that we conclude:

E�

h
U2N

����n�N �2 � 1��� I[N�n�>�n�]i! 0 as ! ! 0; (4.3.14)

since P�fN > n�(1 + �)g ! 0 as ! ! 0.

Step 5:

Now, we will proceed to show:

E�

h
U2N

���n�2N2 � 1
��� I[N�n�<��n�]i! 0 as ! ! 0: (4.3.15)

Let q be a generic positive constant that does not involve !. From (4.3.4), we can claim that

N � b
!N

�
 w.p.1(P�) so that we immediately have N �
�
b
!

�1=(1+
)
= O(n�1=(1+
)) w.p.1(P�).

This implies that
�
n�

N

�2 � qn�
2 � 1

n�
�2=(1+
)

= qn�2
=(1+
) w.p.1(P�) and then we can write:

���E� hU2N ���n�2N2 � 1
��� I[N�n�<��n�]i���

� qn��1+(2
=(1+
))E�
h
(WN �N�)2 I[N�n�<��n�]

i
= qn�(2
�1)=(1+
)E�

h
(WN �N�)2 I[N<(1��)n�]

i
� qn�(2
�1)=(1+
)E�

h
(WNk �Nk�)

2 I[N�k]

i
;

(4.3.16)

where, and in what follows, we denote: k = bn�(1� �)c = O(n�); Nk = min(N; k), 
0 = E�[(X1 �

�)3] and 
00 = E�[(X1 � �)4]:

Now, using Cauchy-Schwartz inequality and Wald�s fourth lemma (Theorem 7, Chow et al.
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1965; Theorem 2.4.7, Ghosh et al. 1997), we have:

E�

h
(WNk �Nk�)

2 I[N�k]

i
� E

1=2
�

h
(WNk �Nk�)

4
i
P
1=2
� (N � k)

�
n
6�2E�

h
Nk (WNk �Nk�)

2
i
+ 4
0E� [Nk (WNk �Nk�)]

+ 
00E�[Nk]g1=2 P 1=2� (N � k):

(4.3.17)

But, we have Nk � k w.p.1(P�): Next, we further use Wald�s second equation (Theorem 8,

Chow et al. 1965; Theorem 2.4.5, Ghosh et al. 1997) and Cauchy-Schwartz inequality in (4.3.17)

to obtain:

E�

h
(WNk �Nk�)

2 I[N�k]

i
�
n
6�2kE�

h
(WNk �Nk�)

2
i
+ 4
0E

1=2
�

�
N2
k

�
E
1=2
�

h
(WNk �Nk�)

2
i

+ 
00E�[Nk]g1=2 P 1=2� (N � k)

�
�
6�4k2 + 4
0k3=2� + 
00k

	1=2
P
1=2
� (N � k):

(4.3.18)

Step 6:

Next, we let h =
j�

b
!

�1=(1+
)k
+ 1: We may pick ! small enough so that h � k where k was

de�ned underneath (4.3.16). Then, we can write:

P� fN � n�(1� �)g = P�(N � k) = �kn=hP�(N = n)

� �kn=hP�
�
n � n�

�2
Xn

	
:

(4.3.19)

Now, with �xed but otherwise arbitrary �(� 1); we may rewrite (4.3.19) and obtain:

P� fN � n�(1� �)g

� �kn=hP�f
��Xn � �

�� � ��g

� (��)���kn=hE�
h��Xn � �

��2�i ; by Tchebyshev�s inequality
� q�kn=hn

�� :

(4.3.20)

The last step in (4.3.20) follows from the lemma of Sen and Ghosh (1981). One may also refer to

Lemma 9.2.3 in Ghosh et al. (1997, pp. 275-276).
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Next, (4.3.20) leads to:

P� fN � n�(1� �)g � qkh�� � O(n�)O(n���=(1+
)) = O
�
n�(1+
��)=(1+
)

�
; (4.3.21)

whatever be the �xed but otherwise arbitrary number �(� 1).

Thus, by combining (4.3.16)-(4.3.18) with (4.3.20)-(4.3.21), we can claim:

E�

h
U2N

���n�2N2 � 1
��� I[N�n�<��n�]i = O(n�(3
��)=(1+
)): (4.3.22)

Now, (4.3.22) validates (4.3.15) for any 
 > 1=2; provided that we pick � > max(2; 3
) which is

certainly possible to do.

Our proof of Theorem 4.3.1 is thus complete. �

Remark 4.3.1 (Negative Moments of N=n�). Now, we are in a position to summarize asymp-

totic behavior of E� [(N=n�)s] when s < 0. Clearly, E�
�
(N=n�)sI

�
N > 1

2n
��� ! 1: But, then, in

view of (4.3.21), we also have:

E�
�
(N=n�)sI

�
N � 1

2n
��� = O

�
n��s+((1+
��)=(1+
))

�
= o(1);

when we pick � > max(2; (1 + 
)(1 � s)) which is certainly possible to do. Thus, it follows that

E� [(N=n
�)s]! 1 when 
 > 1

2 ; s < 0:

4.3.3. Simulations and Real Data Illustrations

We begin with a summary (Section 4.3.3.1) from a set of simulation studies to examine the perfor-

mances of our proposed purely sequential estimation strategy (4.3.4) for small and moderate values

of n�. Sections 4.3.3.2-4.3.3.3 highlight performances of our estimation strategy using real data

from statistical ecology. Again, we have emphasized (i) weed count data of di¤erent species from

a �eld in Netherlands and (ii) count data of migrating woodlarks at the Hanko bird sanctuary in

Finland.

4.3.3.1. A Summary from Simulations
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We generated pseudorandom observations from the distribution (4.1.1) with some combinations of

choices for � and � . We �xed the values b = 1; m = 5; and 
 = 1:5. Each row in Table 4.3.1

corresponds to averages from 10000 replications which were run under a given con�guration. The

choices of �; � ; and n� are consistent with those �xed in Section 4.2.4.1. In the spirit of (4.2.32),

column 8 in Table 4.4 shows values of z and sz where

N = ni; ri =
b
ni

�
�+ ��1�2

�
as in (3:2) under the ith replication,

and r = H�1�Hi=1ri; sr =
q
(H2 �H)�1�Hi=1(ri � r)2;

so that z = r=!; sz = sr=!; H = 10000.

(4.3.23)

It is encouraging to observe that the summary highlighted in Table 4.4 looks generally consistent

with those presented in Section 4.2.4.1 even though Section 4.2 took into account a di¤erent loss

function. Table 4.4 shows clearly that our proposed sequential strategy (4.3.4) performs very well.

In order to represent varying sample sizes, we show results for �xed values of n� = 50 (small), 200

(medium).

4.3.3.2. Illustration 4.3.1: Weed Count Data

We return to use the weed count data discussed in Section 4.2.4.2 in order to highlight our �rst

real data illustration. One may refer to Section 4.2.4.2 for a detailed description of the dataset.

We had applied the methodology (4.3.4) on one of the species of weed, Capsella bursa-pastoris L.

(Shephard�s purse) from the full set of data without replacement. We found that with or without

replacement made practically no di¤erence.

Table 4.5 shows real data Illustration 4.3.1. The choices of 
 and n� are consistent with those in

Section 4.2.4.2 along with b = 1 and m = 10: In column 6 of Table 4.5, we show a value ez obtained
from a single run:

N = n; er = b
n

�
xn + �

�1x2n
�
in the spirit of (4:2:33) under

one replication, so that ez = er=!. (4.3.24)

Again, column 6 shows ez values mainly to grasp a sense of how close the estimated risk may or
may not be when compared with the preset goal !. A slight erratic behavior is due to the fact that
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ez values were obtained from single runs.

4.3.3.3 Illustration 4.3.2: Count Data of Migrating Woodlarks at the Hanko Bird

Sanctuary

We return to use the ecological count dataset on migrating woodlarks at Hanko bird sanctuary

situated in southwestern Finland that we discussed in Section 4.2.4.3 in order to highlight our

second real data illustration. We applied the methodology (4.3.4) on the daily counts of migrating

birds during �rst four hours of daylight after sunrise by drawing observations from the full set

of data without replacement. We found that with or without replacement made practically no

di¤erence. Table 4.6 provides the results.

4.4. SQUARED ERROR LOSS APPROACH UNDER

UNKNOWN THATCH PARAMETER

In this section, we develop a purely sequential estimation strategy for estimating the mean � of

a NB(�; �) population, under a squared error loss function assuming that both mean parameter

� and the thatch parameter � are unknown. Having recorded X1; :::; Xn; recall that the sample

mean Xn = n�1�ni=1Xi estimates � and we propose a squared error loss function for our estimation

problem as follows:

Ln � Ln(Xn; �) = b(Xn � �)2; b > 0: (4.4.1)

The loss function (4.5.1) looks same as in (4.3.1), but in the present formulation we again emphasize

that � remains unknown.

Next, we may express the risk function as follows:

Rn � E�;� [Ln] =
b
n�

2; (4.4.2)

where once again we recall that �2 � �+ ��1�2 from (4.1.2).

4.4.1. A Sequential Bounded Risk Estimation

Our goal is to bound the risk Rn given in (4.4.2) from above by !(> 0): This leads us to the optimal
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�xed sample size n� as follows:

n � b
!�

2 = n�; say. (4.4.3)

The magnitude of n� remains unknown. Hence, we resort to developing a purely sequential bounded

risk estimation strategy in the fundamental spirits of Chow and Robbins (1965) under the assump-

tion that the mean parameter � and the thatch parameter � are both unknown.

We �rst �xm(� 2) and gather pilot data Xi; i = 1; :::;m of sizem from the NB population. Now

since �2 is unknown, we estimate it using the customary sample variance S2n = (n� 1)�1�ni=1(Xi�

Xn)
2; n � m. However since S2n may be zero with a positive probability, whatever be n, we also �x

a number 
(> 1
2) and de�ne:

N = inf
�
n � m : n � b

!

�
S2n + n

�
�	 : (4.4.4)

Again, S2n+n
�
 is treated as an estimator of �2 having gathered data Xi; i = 1; :::; n: This ensures

that our estimated variance is positive with probability one for all n � m.

Next, based on the fully gathered data fN;X1; :::; Xm;:::; XNg; we propose to estimate � by the

sample mean XN : The following Theorem gives a set of attractive �rst-order asymptotic properties

for the proposed purely sequential methodology (4.4.4).

Theorem 4.4.1. With loss function LN and terminal sample size N de�ned in (4.4.1 ) and (4.4.4 )

respectively, under the purely sequential estimation rule (N;XN ) from (4.4.4), for each �xed � 2 R+

and � 2 R+ we have as !!0:
(i) N=n�

P�;�! 1;

(ii) E�;� [(N=n
�)s]! 1 for all s [asymptotic �rst-order e¢ ciency ];

(iii) E�;� [LN ] =! ! 1 if 
 > 1 [asymptotic risk e¢ ciency ];

where n� comes from (4.4.3 ) and �; � are both assumed unknown.

4.4.2. An Outline of a Proof of Theorem 4.4.1

Part (i) follows from the inequality:

�
S2N +N

�
���2 � N=n� �
�
S2N�1 + (N � 1)�


�
��2 + n��1 w.p.1(P�;� ), (4.4.5)
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and the facts that N !1; S2N ! ��2; S2N�1 ! ��2 w.p.1(P�;� ) as ! ! 0.

Next, for small enough !; observe that the right-hand side of (4.4.5) implies w.p.1(P�;� ):

N=n� � ��2
�
2N�1�Ni=1(Xi � �)2 + 1

	
+ 1 � ��2 supn�2

�
2n�1�ni=1(Xi � �)2 + 1

	
+ 1:

Now, when s > 0, Part (ii) follows in the spirit of our proof of Theorem 4.3.1, part (ii).

When s < 0; a proof similar to that in (4.3.21) can be easily put together since the sample

variance is a U-statistic. One needs to improvise upon the proof of an analogous result from Sen

and Ghosh (1981). Finally, when s < 0, Part (ii) follows in the spirit of the proof outlined previously

in our Remark 4.3.1.

Part (iii) can be proved along the line of the proof of Theorem 4.3.1, part (iii). More details

are left out for brevity. �

4.4.3. Simulations and Real Data Illustrations

We begin with a summary (Section 4.4.3.1) from a set of simulation studies to examine the perfor-

mances of our proposed purely sequential estimation strategy (4.4.4) for small and moderate values

of n�. Sections 4.4.3.2-4.4.3.3 highlight performances of our estimation strategy using real data

from statistical ecology. Again, we have emphasized (i) weed count data of di¤erent species from

a �eld in Netherlands and (ii) count data of migrating woodlarks at the Hanko bird sanctuary in

Finland.

4.4.3.1. A Summary from Simulations

We generated pseudorandom observations from the distribution (4.1.1) with some combinations

of choices for � and � . We �xed the values a = 1; m = 5; and 
 = 1:5. Each row in Table 4.7

corresponds to averages from 10000 replications which were run under a given con�guration. The

choices of �; � ; and n� are consistent with those �xed in previous simulations.

We now present a set of simulation studies and real data analysis to check the sample perfor-

mance of our proposed purely sequential strategy (4.5.4). The results are as expected and they

are consistent with those from earlier sections. Our proposed sequential strategy (4.5.4) is seen to
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perform well. In the spirits of (4.3.23), column 8 in Table 4.7 shows values of z and sz where

N = ni; ri =
b
ni
�2 with �2 = �+ ��1�2 as in (4:5:2) under the

ith replication, and r = H�1�Hi=1ri; sr =
q
(H2 �H)�1�Hi=1(ri � r)2;

so that z = r=!; sz = sr=!; H = 10000.

(4.4.6)

4.4.3.2. Illustration 4.4.1: Weed Count Data

We again return to use the weed count data in order to highlight our �rst real data illustration.

This time, however, we had applied our methodology (4.4.4) on another species of weed, Polygonum

aviculare L. (knotweed) from the full set of data without replacement. We found that with or

without replacement made practically no di¤erence.

A NB �t was seen as appropriate with a p-value of 0:94. We found b� = 0:91 and b� = 4:11 from
full data. We emphasize that our implementation of the sampling strategy (4.4.4) did not exploit

the numbers b�(= 0:91) and b�(= 4:11) obtained from full dataset.

Table 4.8 shows real data Illustration 4.4.1. The choices of 
 and n� are consistent with those in

Section 4.2.4.2 along with b = 1 and m = 10: In column 6 of Table 4.8, we show a value ez obtained
from a single run:

N = n; er = b
ns
2
n in the spirit of (4:2:33) under

one replication, so that ez = er=!. (4.4.7)

Again, column 6 shows ez values mainly to grasp a sense of how close the estimated risk may or
may not be when compared with the preset goal !. A slight erratic behavior is due to the fact that

ez values were obtained from single runs.

4.4.3.3 Illustration 4.4.2: Count Data of Migrating Woodlarks at the Hanko Bird

Sanctuary

We again return to use the ecological count dataset on migrating woodlarks at Hanko bird sanctuary

situated in southwestern Finland in order to highlight our second real data illustration.

We applied the methodology (4.4.4) on the daily counts of migrating birds during �rst four hours

of daylight after sunrise by drawing observations from the full set of data without replacement. We
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found that with or without replacement made practically no di¤erence.

Table 4.4.3 shows real data Illustration 4.4.2. The choices of 
 and n� are consistent with those

in Section 4.2.4.2 along with b = 1 and m = 7: In column 6 of Table 4.9, we show a value ez
obtained from a single run. Again, column 6 shows ez values mainly to grasp a sense of how close
the estimated risk may or may not be when compared with the preset goal !. A slight erratic

behavior is due to the fact that ez values were obtained from single runs.

4.5. SIMULTANEOUS MEANS ESTIMATION UNDER MODIFIED

LINEX LOSS: KNOWN THATCH PARAMETERS

In this section, we �rst introduce an appropriate modi�cation to the conventional form of the

Linex loss function under a k-sample scenario. We then move on to construct a suitable stopping

rule.

4.5.1. A Modi�ed Linex Loss

We have available a data sequenceXij ; j = 1; 2; :::; n; ::: recorded independently from a NB(�i; � i)

population, assumed to be independent of each other, i = 1; :::; k: We denote the ith sample mean

Xin = n�1�nj=1Xij which estimates �i; i = 1; :::; k; n = 1; 2; ::: and thereby giving rise to the corre-

sponding sample mean vector, Xn = (X1n; :::; Xkn); which simultaneously estimates the unknown

mean parameter vector, � � (�1; :::; �k): We may also denote � � (�1; :::; �k) which is assumed

known.

In the light of (4.2.1), we propose a modi�ed Linex loss function for our simultaneous estimation

problem as follows and de�ne:

Ln � Ln
�
Xn;�

�
=
Pk
i=1Win

�
Xin; �i

�
=
Pk
i=1

h
exp

n
ai(Xin��i)

�i

o
� ai(Xin��i)

�i
� 1
i
; with �xed ai 2 R:

(4.5.1)

Next, for a �xed i, we may express:

E�i [Win

�
Xin; �i

�
] = 1

2
a2i (�i+�

�1
i �2i )

n�2i
+ o

�
1
n

�
; i = 1; :::; k: (4.5.2)

One may refer to Section 4.2 for additional details. From (4.5.2), the risk associated with the
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modi�ed Linex loss function (4.5.1) will reduce to:

Rn � E�[Ln
�
Xn;�

�
] = 1

2n
�1Pk

i=1 a
2
i

�
��1i + ��1i

�
+ o(n�1): (4.5.3)

4.5.2. A Purely Sequential Approach

The idea here is to bound the risk Rn given in (4.5.3) from above. We introduce a suitable constant,

namely the risk bound, !(> 0) and require that Rn � ! for all �; � : This leads us to an approximate

optimal �xed sample size n� as follows:

n � 1
2!

�
�ki=1a

2
i �
�1
i +�ki=1a

2
i�
�1
i

	
= n�; say. (4.5.4)

The magnitude of n� remains unknown. Hence, we resort to developing a k-sample purely sequential

bounded risk simultaneous estimation strategy.

Looking back at the expression of n� from (4.5.4), we observe:

n� >
1

2!
�ki=1a

2
i �
�1
i ; (4.5.5)

and hence, we determine the pilot size m as follows: Let

m � m(!) =

�
1

2!
�ki=1a

2
i �
�1
i

�
+ 1; (4.5.6)

where buc denotes the largest integer < u(> 0). We �rst gather the pilot data Xij ; i = 1; :::; k;

j = 1; :::;m of size m from each NB population. Then, we continue to record one additional

observation vector (X1j ; :::; Xkj) at-a-time as needed according to the stopping rule that is de�ned

next.

Since Xin may be zero with a positive probability, whatever be n, in the spirit of Mukhopadhyay

and Diaz (1985), we now �x a number 
(> 1=2) and de�ne:

N = inf
n
n � m : n � 1

2!�
k
i=1a

2
i

h
��1i +

�
Xin + n

�
��1io : (4.5.7)

Here,
�
Xin + n

�
� is treated as an estimator of �i which ensures that this estimator is positive
124



with (P�i) probability one and that the classical central limit theorem (CLT) will remain in e¤ect

for n1=2
�
Xin + n

�
 � �i
�
.

Next, based on the fully gathered data upon termination, namely fXi1; :::; Xim;Xim+1; :::; XiNg

from the NB(�i; � i) population; we propose to estimate �i by the sample mean XiN ; i = 1; :::; k:

Finally,

we simultaneously estimate the unknown parameter vector �

� (�1; :::; �k) with the sample mean vector XN = (X1N ; :::; XkN ):
(4.5.8)

Theorem 4.5.1. Under the Linex loss (4.5.1 ), with m and N de�ned in (4.5.6 ) and (4.5.7 )

respectively, and under the purely sequential simultaneous estimation rule (4.5.8 ), for each �xed

� 2 R+k and � 2 R+k we have as !!0:
(i) N=n� ! 1 w.p.1 (P�);

(ii) E� [N=n
�]! 1, E� [n�=N ]! 1 [asymptotic �rst-order e¢ ciency ];

(iii) E� [LN ] =! ! 1 [asymptotic risk e¢ ciency ];

where n� comes from (4.5.5 ) and � vector is assumed known.

Part (ii) shows that the sequential methodology (4.5.7) is e¢ cient along the lines of Chow and

Robbins (1965) and �rst-order e¢ cient in the sense of Ghosh and Mukhopadhyay (1981). That is,

we may expect the terminal sample size N from each NB population to hover around the optimal

�xed sample size n� when n� is large. Also, part (iii) shows that the achieved risk E� [LN ] may be

expected to hover around the preassigned risk-bound ! when n� is large.

4.5.3. Proof of Theorem 4.5.1

Part (i):

From (4.5.7), we get the following inequality w.p.1(P�):

1
2!

P
k
i=1a

2
i

n
��1i +

�
XiN +N

�
��1o � N � 1
2!

P
k
i=1a

2
i

�
��1i

+
�
Xi(N�1) + (N � 1)�


��1o
+ m)

P
k
i=1UiN � N �

P
k
i=1ViN +m;

(4.5.9)

where:

UiN =
a2i
2!

n
��1i +

�
XiN +N

�
��1o and ViN = a2i
2!

n
��1i +

�
Xi(N�1) + (N � 1)�


��1o
;
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i = 1; 2; :::; k:

Dividing (4.5.9) throughout by n� we obtain w.p.1(P�):

1
n��

k
i=1UiN � N=n� � 1

n��
k
i=1ViN +mn

��1

) �ki=1
UiN
n�i

n�i
n�� N=n� � �ki=1

ViN
n�i

n�i
n� +mn

��1;

(4.5.10)

with n�i =
1
2!a

2
i

�
��1i + ��1i

�
; i = 1; 2; :::; k:

Now, along the line of Section 4.2.3, part (i), we can conclude that both UiN=n�i ; ViN=n
�
i ! 1

w.p.1(P�) for each i = 1; 2; :::; k: Hence, proof of part (i) is complete since �ki=1n
�
i =n

� = 1 and

mn��1 ! 0:

Part (ii):

We �rst �x some arbitrarily small � > 0 and de�ne � = (1+ �)n�. We tacitly disregard the fact

that � may not be an integer. Then, we may write:

E�
�
N
n�
�
� (� + 1)P�(N � � + 1) + n��1T (�); say;

where T (�) = �1n>�+1nP�(N = n):

Let [N = n] denote the event N = n: Now, from (4.5.7), we note the fact that (for n > m):

[N = n] �
n
n� 1 < 1

2!

P
k
i=1a

2
i

h
��1i +

�
Xin�1 + (n� 1)�


��1io
; (4.5.11)

so that we may claim:

T (�)

�
1P
n=�

(n+ 1)P�

�
kP
i=1

a2i
�
Xin + n

�
��1 > 2!n� kP
i=1

a2i
��1i

�

�
1P
n=�

(n+ 1)P�

�
kP
i=1

a2i
�
Xin + n

�
��1 > 2! � n�1 kP
i=1

a2i
��1i

�

�
kP
i=1

1P
n=�

(n+ 1)P�

�
a2i

�Pn
j=1Xij + n

�
+1
��1

> 1
k2! � n

�1��1i

�
(4.5.12)

Next, using the moment generating function of
Pn
j=1Xij � NB(n�i; n� i); i = 1; :::; k; we can
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show that T (�) � �1n=1dn where dn > 0 and d
1=n
n ! d; 0 < d < 1; as n !1: Hence, in the spirit

of Theorem 4.3.1, we can claim:

lim sup!!0E� [(N=n
�)] � 1 + �; (4.5.13)

but �(> 0) is arbitrary. Also, from part (i) and Fatou�s lemma, we have:

lim inf!!0E� [N=n�] � E� [lim inf!!0N=n�] = 1: (4.5.14)

Now, combining (4.5.13)-(4.5.14) completes the proof of the �rst result in part (ii).

Also, in view of the de�nition of m from (4.5.6), we observe:

0 � n�=N � n�=m = O(1) w.p.1(P�),

that is, n�=N is bounded. The second result in part (ii) follows by appealing to part (i). Now, the

proof of part (ii) is complete.

Part (iii):

From (4.5.1), we may express E�[LN ]=! as:

!�1
Pk
i=1E�

h
exp

n
ai(XiN��i)

�i

o
� ai

�
XiN��i
�i

�
� 1
i
=
Pk
i=1

Ri
! =

Pk
i=1

Ri
!i
!i
! ;

where we note:

! = 1
2n�

Pk
i=1

a2i �
2
i

�2i
; !i =

1
2n�

a2i �
2
i

�2i
and Ri =

E�

h
exp

n
ai(XiN��i)

�i

o
� ai

�
XiN��i
�i

�
� 1
i
:

Next, one may follow along the lines of Section 4.2.3, part (iii) to show that Ri=!i ! 1 as ! ! 0

for all i = 1; :::; k.

This completes the proof of Theorem 4.5.1. �

4.5.4. Simulations and Real Data Illustrations

Section 4.5.4.1 presents a summary from a set of simulation studies to examine the performances of
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our proposed purely sequential estimation strategy (4.5.7) for a varying set of values of n�. Section

4.5.4.2 highlights performances of our estimation strategy using real data from statistical ecology.

We have emphasized raptor count data from the Hawk Mountain sanctuary.

4.5.4.1. A Summary from Simulations

We �rst generated a pair of pseudorandom observations at-a-time from the distribution (4.1.1) with

combinations of choices for �1; �2 and �1; �2. We �xed the values a1 = 1; a2 = 1:2 and 
 = 1:5. We

determined m from (4.5.6). Each row in Table 4.10 corresponds to averages from 10000 replications

which were run under each given con�guration. We considered a wide variety of values for n�. In

order to represent varying sample sizes, we include results obtained only for �xed values of n� = 50

(small) and n� = 200 (medium).

The results are shown under the following setting:

n� = 50; 200 and (�1; �2; �1; �2) = (3; 1; 3; 2); (7; 3; 2; 1)

Each block in Table (4.10) shows n� (column 3), ! (column 4), the estimated values x1; x2 along

with their estimated standard errors sx1 ; sx2 (columns 5 and 6), estimated values n along with its

estimated standard error sn (column 7), the ratio n=n� (column 8), and the values of z and sz

(column 9) where we denote:

N = ni; ri =
P2
j=1

a2j
2ni

�
1
�j
+ 1

�j

�
as in (4:5:3) under the ith replication,

and r = H�1�Hi=1ri; sr =
q
(H2 �H)�1�Hi=1(ri � r)2;

so that z = r=!; sz = sr=!; H = 10000.

(4.5.15)

Under our proposed methodology (4.5.7), we observe that the x1; x2 values are very close to the

corresponding population means �1; �2 in each case with very small standard error values sx1 ; sx2 :

These become more accurate when n� = 200. The values of n seem to estimate n� very accurately

across the rows. We note that the n values overestimate n� by a small margin. The last column

appears to validate our sentiment that the sequential methodology tends to provide a risk bound

close (or smaller) to (than) the preset goal ! for all values of n�:

4.5.4.2. Illustration 4.5.1: Raptor Count Data at the Hawk Mountain Sanctuary
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We use ecological count dataset on two species of raptors, American Kestrel (X1) and Golden Eagle

(X2); from the Hawk Mountain Sanctuary in Pennsylvania. This data had been collected at the

Hawk Mountain Sanctuary and is available on its website

www.hawkmountain.org.

We worked with the daily count data of raptors for 2 years, 2015 and 2016 (both Spring and

Fall). The dataset included 357 rows and a NB �t was seen as appropriate with p-values of 0:29 and

0:43 for X1 and X2 datasets respectively. Treating these two datasets as the universe, we �rst foundb�1 = 1:43; b�1 = 0:28 and b�2 = 0:7; b�2 = 0:18 from full data. In other words, we considered this

dataset as our population with unknown �1; �2 but with known values for �1; �2:We emphasize that

our implementation of the sampling strategy (4.5.7) did not exploit the numbers b�1; b�2 obtained
from full datasets.

We picked a1 = 1; a2 = 1:2 and 
 = 1:5, implemented the methodology (4.5.7) by drawing obser-

vations from the full set of data without replacement. We found that with or without replacement

made practically no di¤erence.

Table 4.11 shows results from implementing the estimation strategy (4.6.7).in single runs with 3

di¤erent preset values of the risk bound !. The terminal estimated values of �1; �2 are reasonably

close to the values b�1 = 1:43; b�2 = 0:7 obtained from full data. The n� values are merely provided

as a vehicle for ad-hoc comparison with the observed n values. We have not used these n� values

in our implementation. The sample sizes (Table 4.11) considered are small/moderate and the ratio

n=n� remains close to 1 which is desired. In the last column of Table 4.11, we show associated

value ez obtained from a single run:

N = n; er =P2
j=1

a2j
2n

�
1
xj
+ 1

�j

�
in the spirit of (4:5:3) under

one replication, so that ez = er=!. (4.5.16)

and observe that ez values are smaller than one which indicates that the estimated risk is smaller
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than the preset goal !. We should emphasize that each row in Table 4.11 summarizes a single run.

4.6. COMPARING TWO MEANS UNDER SEL:

KNOWN THATCH PARAMETERS

In this section, we �x k = 2 and develop a purely sequential strategy for estimating � � �1��2;

the di¤erence of means in two independent NB populations under a squared error loss function. We

assume that the thatch parameters �1 and �2 are known. As in Section 2, we denote � � (�1; �2)

and � � (�1; �2):

We assume that the sample sizes are equal. Thus, having recorded X11; :::; X1n and X21; :::; X2n

from NB(�1; �1) and NB(�2; �2) respectively, we propose the di¤erence in the sample means

Tn � X1n �X2n = n�1(�ni=1X1i � �ni=1X2i)

to estimate � as we proceed to work under a squared error loss function (SEL):

Ln � Ln(Tn;�) = b
�
(X1n �X2n)� (�1 � �2)

�2
= b

�
(X1n � �1)� (X2n � �2)

�2
; b > 0:

(4.6.1)

We express the risk function associated with (4.6.1) as:

Rn � E�[Ln] =
b
n

�
�21 + �

2
2

�
= b

n

�
�1 +

�21
�1
+ �2 +

�22
�2

�
: (4.6.2)

4.6.1. A Purely Sequential Approach

We will again bound the risk Rn given in (4.6.2) from above by !(> 0): This leads us to the optimal

�xed sample size n� approximately as follows:

n � b
!

�
�1 +

�21
�1
+ �2 +

�22
�2

�
= n�; say. (4.6.3)

The magnitude of n� remains unknown even though its expression is given by (4.6.3). Hence, we

resort to developing a purely sequential bounded risk estimation strategy next. We will continue

to assume that the thatch parameters �1 and �2 are known.
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We �rst �x m(� 1) and gather a set of pilot data X1i; X2i; i = 1; :::;m of size m from the NB

populations. Again, since both X1n; X2n may be zero with a positive probability, whatever be n,

we �x a number 
(> 1
2) and de�ne:

N = inf
n
n � m : n � b

!

�
X1n +X2n + �

�1
1 X

2
1n + �

�1
2 X

2
2n + n

�

�o

: (4.6.4)

Here, the term n�
 ensures that the estimator used on the right-hand side of (4.6.4) is positive

w.p.1(P�). Based on the fully gathered data fN;Xi1; :::; Xim;:::; XiNg; i = 1; 2, we propose to

estimate

� � �1 � �2 by TN � X1N �X2N : (4.6.5)

Theorem 4.6.1 gives a set of attractive �rst-order asymptotic properties for the proposed purely

sequential estimation methodology obtained from (4.6.4)-(4.6.5).

Theorem 4.6.1. Under the SEL function LN from (4.6.1 ) and the purely sequential estimation

strategy (4.6.4 )-(4.6.5 ), for each �xed �1; �2 2 R+ and �1; �2 2 R+ we have as !!0:
(i) N=n� ! 1 w.p.1(P�) if 
 > 1

2 ;

(ii) E� [(N=n
�)s]! 1 for all s > 0; if 
 > 1

2 [asymptotic �rst-order e¢ ciency ];

(iii) E� [LN ] =! ! 1 if 
 > 1 [asymptotic risk e¢ ciency ];

where n� comes from (4.6.3 ) and �1; �2 are assumed known.

Part (ii) shows that the sequential methodology (4.6.4) is e¢ cient along the lines of Chow and

Robbins (1965) and �rst-order e¢ cient in the sense of Ghosh and Mukhopadhyay (1981). That is,

we may expect N to hover around the optimal �xed sample size n� when n� is large. Part (iii)

shows that the achieved risk E� [LN ] may be expected to hover around the preassigned risk-bound

! when n� is large.

4.6.2. Proof of Theorem 4.6.1

Part (i):
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From (4.6.4), we may write down the following inequality:

b
!

�
X1N +X2N + �

�1
1 X

2
1N + �

�1
2 X

2
2N +N

�

�
� N � b

!

�
X1N�1 +X2N�1 + �

�1
1 X

2
1N�1

+ ��12 X
2
2N�1 + (N � 1)�


�
+m w.p.1(P�).

(4.6.6)

Now, dividing (4.6.6) throughout by n�; and then taking limits on all sides of (4.6.6), we conclude

the desired result. Here, 
 > 1
2 su¢ ces.

Part (ii):

From the right-hand side of (4.6.6), we have the following inequality (for su¢ ciently large n�):

N=n� �
�
X1N�1 +X2N�1 + �

�1
1 X

2
1N�1 + �

�1
2 X

2
2N�1 + 1

�
(�21 + �

2
2)
�1 +m; w.p.1(P�): (4.6.7)

Now, denoting sup
n�2

n
X1n +X1n + �

�1
1 X

2
1n + �

�1
2 X

2
2n

o
by W; we can claim w.p.1(P�):

N=n� � (�21 + �22)�1fW + 1g+m: (4.6.8)

Thus, the right-hand side of (4.6.8) is free from ! and using Wiener�s (1939) ergodic theorem

we can claim the uniform integrability of all positive powers of N=n�: Next, appealing to part (i),

we complete the proof. Here, again, 
 > 1
2 su¢ ces.

Part (iii): In this proof, we may improvise on the techniques that were originally developed by

Ghosh and Mukhopadhyay (1979) and further extended by Sen and Ghosh (1981), in the spirit of

Section 4.3.2. Details are omitted.

Our proof of Theorem 4.6.1 is now complete. �

Remark 4.6.1 (Negative Moments of N=n�). Following along Remark 4.3.1, we can conclude that

E� [(N=n
�)s]! 1 when 
 > 1

2 ; s < 0:

Remark 4.6.2 (Unequal Sample Sizes). In the case of unequal sample sizes, under the correspond-

ing SEL function in the spirit of (4.6.1), we could develop an associated purely sequential bounded

risk estimation strategy. This would then involve an allocation scheme as well as a terminal es-

timator for � with a set of desirable asymptotic �rst-order properties along the lines of Theorem
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4.6.1. Speci�c details are omitted for brevity. However, one will �nd related analyses in Section

4.7 when thatch parameters are also assumed unknown.

Remark 4.6.3 (A k-Sample consideration). In the case of a k-sample scenario, one could set out

to estimate the parameter � that is de�ned as �ki=1di�i by the estimator Tn � �ki=1diXin where

di�s are assumed non-zero constants. Under the corresponding SEL function in the spirit of (4.6.1),

we could develop an associated purely sequential bounded risk estimation strategy and a set of

desirable asymptotic �rst-order properties along the lines of Theorem 4.6.1. Further details are left

out for brevity.

4.6.3. Simulations and Real Data Illustrations

Section 4.6.3.1 presents a summary from a set of simulation studies to examine the performances of

our proposed purely sequential estimation strategy (4.6.4)-(4.6.5) for a varying set of values of n�.

Section 4.6.3.2 highlights performances of our estimation strategy using real data from statistical

ecology. Again, we utilize raptor count data from the Hawk Mountain sanctuary.

4.6.3.1. A Summary from Simulations

We generated a pair of pseudorandom observations at-a-time from the distribution (4.1.1) with

combinations of choices for �1; �1 and �1; �2. We �xed the values b = 1; m = 5; and 
 = 1:5. Each

row in Table 4.12 corresponds to averages from 10000 replications which were run under a given

con�guration. The choices of �1; �1; �1; �2; and n
� are consistent with those �xed in Section 4.5.4.1.

Column 7 in Table 4.12 shows � values which were computed from the observed sample averages,

namely, x1 � x2 values under each case. In the spirit of (4.5.15), column 10 in Table 4.12 shows

values of z and sz where

N = ni; ri =
b
ni

P2
j=1

�
�j + �

�1
j �2j

�
as in (3:2) under the ith replication,

and r = H�1�Hi=1ri; sr =
q
(H2 �H)�1�Hi=1(ri � r)2;

so that z = r=!; sz = sr=!; H = 10000.

(4.6.9)

It is encouraging that the summary highlighted in Table 4.12 looks generally consistent with

those presented in Section 4.5.4.1 even though Section 4.5 took into account a di¤erent loss function.
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The � values also accurately estimate the true di¤erence � under each case. Table 4.12 shows

clearly that our proposed sequential strategy (4.6.4)-(4.6.5) performs very well. In order to represent

varying sample sizes, we show selected results for �xed values of n� = 50 (small) and n� = 200

(medium).

4.6.3.2. Illustration 4.6.1: Raptor Count Data at the Hawk Mountain Sanctuary

We return to use the raptor count data discussed as discussed in Section 4.5.4.2 in order to highlight

our real data Illustration 4.6.1 in Table 4.13. We applied the methodology (4.6.4)-(4.7.5) on two

species of raptors, American Kestrel (X1) and Golden Eagle (X2) from the full set of data without

replacement. Again, with or without replacement sampling made practically no di¤erence.

Table 4.13 shows real data Illustration 4.6.1. The choices of 
 and n� are consistent with those

in Section 4.5.4.2 along with b = 1 and m = 5: Column 5 shows �(= x1n � x2n) values which

estimates � = 0:73: In column 8 of Table 4.13, we show a value ez obtained from single runs:

N = n; er = b
n

�
x1n + �

�1
1 x21n + x2n + �

�1
2 x22n

�
in the spirit of (4:5:16) under

one replication, so that ez = er=!. (4.6.10)

Again, column 8 shows ez values mainly to grasp a sense of how close the estimated risk may or
may not be when compared with the preset goal !. A slightly erratic observed behavior is due to

the fact that ez values were obtained from single runs.

4.7. COMPARING TWO MEANS UNDER SEL WITH UNEQUAL

SAMPLE SIZES: UNKNOWN THATCH PARAMETERS

The purely sequential sampling designs considered in this section will be fundamentally di¤erent

from the rest of the paper on two important counts:

(a) In contrast with Section 4.6, we now handle estimation of � � �1 � �2 from two NB

populations when the sample sizes are allowed to be unequal; and

(b) This is the only section within this paper where thatch parameters �1; �2 are allowed to

remain unknown.

But, before we move forward with the NB problems, let us �rst review very brie�y the litera-
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ture on purely sequential analogues of the Behrens-Fisher problem just so that a reader may get

some proper perspective. In the case of two independent normal populations, purely sequential

�xed-width con�dence interval estimation problems for the di¤erence in means with unequal sam-

ple sizes were originally formulated and developed by Robbins et al. (1967) and Srivastava (1970)

when both sets of mean and variance parameters remained unknown. Mukhopadhyay (1976,1977)

developed associated point estimation problems and expanded �xed-width con�dence interval esti-

mation problems while comparing two or three independent normal populations having unknown

sets of mean and variance parameters.

The literature is extensive. However, we may refer readers to Ghosh and Mukhopadhyay (1980),

Ramkaran et al. (1986), and Mukhopadhyay and Liberman (1989), including other sources, for a

broader range of review. The following monographs may also help in this regard: Ghosh et al. (1997,

Sections 7.3, 8.3, pp. 222-223, pp. 256-259) and Mukhopadhyay and de Silva (2009, Chapter 13).

In this section, we develop a purely sequential estimation strategy to estimate the di¤erence in

means � � �1 � �2 of two NB populations, under SEL assuming that both mean parameters in

� = (�1; �2) and both thatch parameters in � = (�1; �2) are unknown. We will also assume that

the two sample sizes are unequal.

Having recorded X11; :::; X1n1 NB(�1; �1) and X21; :::; X2n2 NB(�2; �2); we continue to use the

di¤erence in sample means �, namely

Tn � X1n1 �X2n2 = n�11 �
n1
j=1X1j � n

�1
2 �

n2
j=1X2j with n = (n1; n2);

to estimate �. We propose SEL for our estimation problem as follows:

Ln � Ln(Xini ; �i) = b
�
(X1n1 �X2n2)��

�2
= b

�
(X1n1 � �1)� (X2n2 � �2)

�2
; b > 0; i = 1; 2:

(4.7.1)

Next, we express the risk function associated with 4.7.1) as follows:

Rn � E�;� [Ln] = b
�
�21
n1
+

�22
n2

�
; (4.7.2)

where one may recall that �2i � �i + �
�1
i �2i ; i = 1; 2.
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4.7.1. Purely Sequential Approaches

Again, our goal is to have Rn from (4.7.2) not to exceed !(> 0):We will minimize the total sample

size n � n1 + n2 subject to a restriction that we have b
�
�21
n1
+

�22
n2

�
� !: Hence, the restricted

optimization problem is as follows:

Minimize n � n1 + n2 under the restriction
�
�21
n1
+

�22
n2

�
� !

b : (4.7.3)

The solution to this problem reduces to the following optimal �xed-sample-size choices:

n1 � n�1 =
b
!�1(�1 + �2); n2 � n�2 =

b
!�2(�1 + �2); n

�
1n
��1
2 = �1�

�1
2 ;

and n� � n�1 + n
�
2 =

b
! (�1 + �2)

2:
(4.7.4)

One may refer to Mukhopadhyay and deSilva (2009, Section 13.5.1) for a proof. Now, since the

sample sizes are unequal, we need to come up with a purely sequential sampling involving (i) an

allocation scheme and (ii) a termination rule at every step of sampling. We will adopt an allocation

scheme along the lines of Robbins et al. (1967) and Srivastava (1970) as follows:

An Allocation Scheme:

We �rst �x m(� 2); 
 > 1
2 and then gather a set of pilot data X1i; X2i; i = 1; 2; :::;m from the

NB populations. Suppose that at some point, we have already recorded n1; n2 observations from

the two NB populations respectively, but we require one more additional observation. The question

is: Which population the next additional observation come from?

Since �21; �
2
2 are both unknown, we respectively estimate them using the customary sample

variances, namely,

S21n1 = (n1 � 1)
�1�n1j=1(X1j �X1n1)

2; S22n2 = (n2 � 1)
�1�n2j=1(X2j �X2n2)

2; n1; n2 � m:

We continue sampling by taking one additional observation, where the next observation would come

from:

population NB(�1; �1) if
n1
n2
� S1n1+n

�

1

S2n2+n
�

2

;

population NB(�2; �2) if
n1
n2
>

S1n1+n
�

1

S2n2+n
�

2

;

(4.7.5)
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which clearly mimics the ratio of the two optimal �xed sample sizes as shown in (4.7.4).

Purely Sequential Stopping Rules:

In what follows, we de�ne a set of nearly equivalent stopping rules along the lines of Robbins

et al. (1967) and Srivastava (1970) as follows:

Rule 1: In conjunction with the allocation scheme (4.7.5), we stop with the �rst total sample

size n = n1+n2(� 2m) when ni observations from the ith NB population have been taken, i = 1; 2;

and,

n � b
!

n
(S1n1 + S2n2)

2 + n�

o
; (4.7.6)

in the light of the expression of n� from (4.7.4).

Rule 2: In conjunction with the allocation scheme (4.7.5), we stop with the �rst total sample

size n = n1+n2(� 2m) when ni observations from the ith NB population have been taken, i = 1; 2;

and,

S21n1
+n�
1
n1

+
S22n2

+n�
2
n2

� !
b ; (4.7.7)

in the light of the expression from (4.7.3).

Rule 3: In conjunction with the allocation scheme (4.7.5), we stop with the �rst total sample

size n = n1+n2(� 2m) when ni observations from the ith NB population have been taken, i = 1; 2;

and,

n1 � b
! fS1n1 (S1n1 + S2n2) + n

�
g and n2 � b
! fS2n2 (S1n1 + S2n2) + n

�
g ; (4.7.8)

in the light of the expression of n�1; n
�
2 from (4.7.4).

Purely Sequential Estimators of �:

Let N (1); N (2); N (3) denote the terminal total sample sizes corresponding to the stopping rules

1; 2; 3 respectively from (4.9.6)-(4.9.8). We can easily check that P�;�
�
N (j) <1

	
= 1; j = 1; 2; 3:

We can also verify:

N (1) � N (2) � N (3) w.p.1(P�;� ). (4.7.9)
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Based on the fully gathered data

n
N (j) � N

(j)
1 +N

(j)
2 ; Xi1; :::; Xim;:::; XiN(j)

i

o
;

using the stopping rule j; i = 1; 2; j = 1; 2; 3; we propose to estimate:

� � �1 � �2 by TN(j) � X
1N

(j)
1

�X
2N

(j)
2

; with N(j) = (N
(j)
1 ; N

(j)
2 ); j = 1; 2; 3. (4.7.10)

The following Theorem gives a set of attractive �rst-order asymptotic properties for the proposed

purely sequential estimation methodologies (4.7.4) when �1; �2; �1; �2 are all assumed unknown.

Theorem 4.7.1. With N(j) = (N
(j)
1 ; N

(j)
2 ); the loss function LN(j) in the spirit of (4.7.1 ), the al-

location scheme (4.7.5), under any purely sequential estimation strategy
�
N(j); TN(j)

�
from (4.7.6 )-

(4.7.8 ) and (4.7.10 ); for each �xed � 2 R+2 and � 2 R+2 we have as !!0:
(i) N (j)=n� ! 1 w.p.1 (P�;� );

(ii) E�;�
�
(N (j)=n�)s

�
! 1 for all s > 0; if 
 > 1

2 [asymptotic �rst-order e¢ ciency ];

(iii) E�;� [LN(j) ] =! ! 1 if 
 > 1[asymptotic risk e¢ ciency ];

where n� = n�1 + n
�
2 comes from (4.7.4 ).

4.7.2. Proof of Theorem 4.7.1

For brevity, we will provide a brief outline of the proof. Details are available in Ghosh et al. (1997,

Sections 7.3, 8.3, pp. 222-223, pp. 256-259), Mukhopadhyay and de Silva (2009, Chapter 13),

Robbins et al. (1967), and Srivastava (1970), and in other sources.

Part (i):

From (4.7.6), we write down the following inequality w.p.1(P�;� ):

N (1) � b
!

��
S
1N

(1)
1

+ S
2N

(1)
2

�2
+N (1)�


�
: (4.7.11)

Dividing (4.7.11) throughout by n�; we write w.p.1(P�;� ):

N (1)=n� � (�1 + �2)�2
��

S
1N

(1)
1

+ S
2N

(1)
2

�2
+N (1)�


�
: (4.7.12)
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Now, noting the facts that N (1) ! 1; N (1)
1 ! 1; N (1)

2 ! 1; S
1N

(1)
1

! �1; and S2N(1)
2

! �2

w.p.1(P�;� ) as ! ! 0, we have:

lim inf!!0N (1)=n� � 1 w.p.1(P�;� )

Since N (1) � N (2) � N (3); it follows that:

lim inf!!0N (3)=n� � lim inf!!0N (2)=n� � lim inf!!0N (1)=n� � 1 w.p.1(P�;� ). (4.7.13)

Next, from (4.7.8) we have the following inequalities w.p.1(P�;� ):

N
(3)
1 =n� � (�1 + �2)�2

�
S
1N

(3)
1 �1

�
S
1N

(3)
1 �1 + S2N(3)

2 �1

�
+
�
N
(3)
1 � 1

��
�
+m=n� and

N
(3)
2 =n� � (�1 + �2)�2

�
S
2N

(3)
2 �1

�
S
1N

(3)
1 �1 + S2N(3)

2 �1

�
+
�
N
(3)
2 � 1

��
�
+m=n�:

(4.7.14)

Combining the inequalities from (4.7.14) we can write w.p.1(P�;� ):

N (3)=n� � (�1 + �2)�2
��

S
1N

(3)
1 �1 + S2N(3)

2 �1

�2
+
�
N
(3)
1 � 1

��

+
�
N
(3)
2 � 1

��
�
+m=n�;

(4.7.15)

which clearly shows that

lim sup!!0N
(3)=n� � 1 w.p.1(P�;� ).

Now, since N (1) � N (2) � N (3) w.p.1(P�;� ); it follows that

lim sup!!0N
(1)=n� � lim sup!!0N (2)=n� � lim sup!!0N (3)=n� � 1 w.p.1(P�;� ). (4.7.16)

Proof of part (i) is complete by combining (4.7.13) and (4.7.16).

Part (ii):

139



From (4.7.15), we have the following inequality w.p.1(P�;� ) with large enough n�:

N (3)=n� � (�1 + �2)�2
��

S
1N

(3)
1 �1 + S2N(3)

2 �1

�2
+ 2

�
+m

� (�1 + �2)�2 supn1;n2�2
n
(S1n1�1 + S2n2�1)

2 + 2
o
+m:

(4.7.17)

Now, denoting supn1�2;n2�2
n
(S1n1�1 + S2n2�1)

2
o
by W; we can claim w.p.1(P�;� ):

N (3)=n� � (�1 + �2)�2fW + 2g+m; (4.7.18)

from (4.7.17).

Since the right-hand side of (4.7.18) is free from !; using Wiener�s (1939) ergodic theorem we

can claim uniform integrability of all positive powers of N=n�: Next, appealing to part (i), we

complete the proof. Here, 
 > 1
2 su¢ ces.

Part (iii): A proof can be improvised along the lines of how Ghosh and Mukhopadhyay (1979)

handled their distribution-free two-sample problem. One may also refer to Ghosh et al. (1997, pp.

280-284). Further details are omitted. �

Remark 4.7.1. (A k-Sample consideration). In the case of a k-sample scenario, one could set

out to estimate the parameter � that is de�ned as �ki=1di�i by the estimator Tn � �ki=1diXin

where di�s are assumed non-zero constants. Under the corresponding SEL function in the spirit

of (3.1), we could develop an associated purely sequential bounded risk estimation strategy and

a set of desirable asymptotic �rst-order properties along the lines of Theorem 5.1. Obviously, an

appropriate allocation scheme will become much more complicated than (4.7.5). One may refer to

Mukhopadhyay and Liberman (1989) for some insight. Further details are left out for brevity.

Remark 4.7.2. One could think of implementing both allocation and stopping rules (4.7.5)-(4.7.8)

by replacing S2ini with b�ini;MLE+b��1ini;MLEb�2ini;MLE where b�ini;MLE and b� ini;MLE are respectively the
maximum likelihood estimators (MLE) of �i; � i obtained from Xi1; :::; Xini ; ni � m; i = 1; 2: In

other words, at every stage of sampling one would update b�ini;MLE and b� ini;MLE sequentially. We
conjecture that purely sequential estimation strategies revised along those lines will continue to

remain asymptotically �rst-order e¢ cient and risk-e¢ cient. At the same time, however, the small
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and moderate sample performances will remain nearly similar without any appreciable changes.

But, such revised purely sequential estimation strategies will become extremely time-consuming.

4.7.3. Simulations and Real Data Illustrations

We begin with a summary (Section 4.7.3.1) from a set of simulation studies to examine the per-

formances of our proposed purely sequential estimation strategies (4.7.5)-(4.7.8) and (4.7.10). We

�xed the values of the risk bound ! which gave us the values of n�1; n
�
2 and hence the �nal optimal

�xed-sample-size n�. Section 4.7.3.2 highlights performances of our estimation strategies using real

raptor count data from the Hawk Mountain sanctuary.

4.7.3.1. A Summary from Simulations

We generated pseudorandom observations from the distribution (4.1.1) with some combinations of

choices for � and � . We �xed the values b = 1; m = 5; and 
 = 1:5. Each row in Table 4.14

corresponds to averages from 10000 replications which were run under a given con�guration. The

results are shown under the following settings:

! = 0:05; 0:1 and (�1; �2; �1; �2) = (3; 1; 3; 2): (4.7.19)

We simply use notations in Table 4.14 which are very similar to what we had used earlier, but

naturally with obvious changes that must re�ect having unequal sample sizes.

We have observed clearly that n(1) < n(2) < n(3) in all our simulations. This feature is consistent

with our theoretical claim stated in (4.7.9). For brevity, we omit other comments since they line

up with our previous comments made in the contexts of Tables 4.10 and 4.12.

4.7.3.2. Illustration 4.7.1: Raptor Count Data

We again return to use the raptor count data in order to highlight our real data Illustration 4.7.1

in Table 4.15. As we did earlier, we applied the methodologies (4.7.5)-(4.7.8) and (4.7.10) on two

of the species of raptors, American Kestrel (X1) and Golden Eagle (X2) from the full set of data

without replacement. We found that with or without replacement made practically no di¤erence.

However, to illustrate varying sample sizes, we use X1 data only from a single year (2016). The

datasets thus consisted of 179 and 357 rows respectively for X1; X2 and NB �ts were seen rather

141



appropriate with p-values of 0:34 and 0:43 respectively. Treating these two datasets as the universe,

we found b�1 = 1:28; b�1 = 0:21; b�2 = 0:7; b�2 = 0:18:
Table 4.15 shows real data Illustration 4.7.1. Each block in Table 4.15 shows results from

stopping rules N (j); j = 1; 2; 3:We �xed 
 = 1:5 along with b = 1 and m = 5:We also �xed certain

values for our risk bound ! which are shown in the table. Column 3 shows �
(j)
= x

(j)
1 �x(j)2 values

which estimate � = 0:58; j = 1; 2; 3: In column 8 of Table 4.15, we show a value ez obtained from
a single run:

N (j) = n(j); er(j) = b

�
x
(j)
1 +�

(j)�1
1 x

(j)2
1

n
(j)
1

+
x
(j)
2 +�

(j)�1
2 x

(j)2
2

n
(j)
2

�
in the spirit of (4:5:17)

under one replication, so that ez(j) = er(j)=!; j = 1; 2; 3: (4.7.20)

We show ez mainly to grasp a sense of how close the estimated risk may or may not be when

compared with the preset goal !. A slight erratic behavior is due to the fact that ez values were
obtained from single runs. Columns 4,5,6 in Table 4.15 give the estimated individual sample sizes

n
(j)
1 ; n

(j)
2 and the estimated total sample size n(j), for each rule N (j); j = 1; 2; 3:

These can be seen close to the corresponding n�1; n
�
2 and n

� values respectively which are shown

exclusively for purposes of comparisons. We again notice that n(1) < n(2) < n(3) under each

con�guration, that is a feature which is consistent with our theoretical claim stated in (4.7.9).

4.8. A BRIEF SUMMARY OF CHAPTER 4

We have proposed and developed a set of purely sequential methodologies to estimate a negative

binomial mean �, under several useful loss functions both when the thatch parameter �(> 0)may be

assumed known or unknown. We should emphasize that in the case of sequential point estimation

problems for � when � remains unknown, the literature has been rather scarce. One may look

back at Mukhopadhyay and Diaz (1985) for a lone treatment in this case and we have not been

aware of any other substantial approaches. Sections 4.4 and 4.7 have proposed and investigated

new and substantial sequential estimation strategies for � when � remains unknown. Illustrations

using both simulations and real datasets put this contribution in a proper perspective.

4.8.1. Speci�c Thoughts on Section 4.2
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In Section 4.2, we noted a straightforward and naturally arriving positive and known lower bound

for n� in (4.2.6) which led to the speci�c choice of a pilot sample size m from (4.2.7) used in Section

4.2. This lower bound for n� was so noted �rst in Willson and Folks (1983) in developing their

purely sequential methodology. However, the same lower bound for n� led Mukhopadhyay and Diaz

(1985) to propose an associated two-stage estimation methodology.

In a di¤erent vein, Mukhopadhyay and Duggan (1997) developed a remarkable two-stage �xed-

width con�dence interval methodology for the normal mean when the unknown population variance

had a known positive lower bound. It was truly remarkable because Mukhopadhyay and Duggan

(1997) could develop asymptotic second-order properties for an appropriately modi�ed two-stage

estimation methodology. It was a clear vindication of Stein�s (1945,1949) original two-stage �xed-

width con�dence interval methodology.

The proliferation of the core ideas from Mukhopadhyay and Duggan (1997) in many directions

has been rather widespread and that continues to spread in areas including big data problems as

well as small n large p problems. For brevity, we only mention some of the important references

in order to connect the dots: Mukhopadhyay and Aoshima (1998), Aoshima and Mukhopadhyay

(1998,1999), Mukhopadhyay (1999a,b), Mukhopadhyay and Duggan (2000,2001), Aoshima and

Takada (2000), and Aoshima and Yata (2010).

We could easily develop appropriate two-stage methodologies in Section 4.2 in the light of

Mukhopadhyay and Diaz (1985). However, such methodologies and techniques would be well-

understood by now and their second-order asymptotic e¢ ciency properties would also clearly follow

along the lines of the detailed asymptotic second-order analysis from Mukhopadhyay and de Silva

(2005) developed in the context of the NB problem of Mukhopadhyay and Diaz (1985). Thus, in

Sections 4.2 and 4.3, we keep out the corresponding two-stage estimation strategies primarily for

brevity.

4.8.2. Speci�c Thoughts on Sections 4.3

In Section 4.3, a straightforward and natural positive and known lower bound m for n� such that

m!1 and m=n� = O(1) was not available. This is in direct contrast with our Section 4.2.

But, from the proof of Theorem 4.3.1, one notes that the terminal sample size N was at

least (b=!)1=(1+
) w.p.1. Thus, one could immediately propose appropriately modi�ed two-stage
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estimation strategies in the spirit of Mukhopadhyay (1980). See also Mukhopadhyay and Solanky

(1994, pp. 25-27), Ghosh et al. (1997, pp.156-157), and Mukhopadhyay and de Silva (2009, pp.

114-118) for details. However, since such two-stage estimation methodologies will fail to achieve

asymptotic second-order properties, associated discussions are again kept out for brevity.

4.8.3. Speci�c Thoughts on Section 4.4

Going back to Section 4.4, one could think of stopping rules di¤erent from (4.4.4) by replacing the

sample variance S2n with the following estimator:

b�n;MLE + b��1n;MLEb�2n;MLE;
where b�n;MLE and b�n;MLE are respectively the maximum likelihood estimators (MLE) of �; � ob-

tained from X1; :::; Xn; n � m: In other words, at every stage of sampling one must update b�n;MLE
and b�n;MLE sequentially. But, then such revised versions of sequential estimation strategies will
become extremely time-consuming.

We conjecture that those revised sequential estimation strategies will be asymptotically �rst-

order e¢ cient and risk-e¢ cient. At the same time, however, the small and moderate sample per-

formances will remain nearly similar without any appreciable changes. Hence, in Section 4.4, we

continued using S2n in de�ning the stopping boundaries for its own versatility, for example, the

sample variance is a U-statistic.

4.8.4. Speci�c Thoughts on Sections 4.5-4.7

Similar to earlier thoughts, one can notice that in Section 4.5, we have a natural, positive and known

lower bound for n� which led to a speci�c choice of pilot sample size m. One can hence construct

an appropriate two-stage methodology along the lines of Mukhopadhyay and Diaz (1985) which

may be expected to have asymptotic second-order properties along the lines of Mukhopadhyay and

de Silva (2005).

Also, in Sections 4.6-4.7, one may notice that the terminal sample size N is at least O
�
!1=(1+
)

�
and one can easily construct appropriate modi�ed two-stage estimation strategies along the lines

of Mukhopadhyay (1980). One should refer to Mukhopadhyay and Solanky (1994, pp. 25-27),
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Ghosh et al. (1997, pp. 156-157), and Mukhopadhyay and de Silva (2009, pp. 114-118) for further

details. These two-stage strategies however will fail to achieve asymptotic second-order properties

and hence we leave them out for brevity.
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Table 4.1. Simulation results from 10; 000 replications

with m from (4.2.7), a = 1; 
 = 1:5

� � n� !
x

sx

n

sn
n=n�

z

sz

Our purely sequential procedure (4:2:8)

2 3 50 0:0083
2:0178

0:0026

51:65

0:0683
1:0330

1:0155

9:72� 10�6

200 0:0020
2:0032

0:0013

201:70

0:1275
1:0085

1:0084

1:24� 10�6

3 4 50 0:0058
3:0178

0:0032

51:21

0:0504
1:0242

1:0072

5:32� 10�6

200 0:0014
3:0080

0:0016

201:33

0:0973
1:0066

1:0040

6:79� 10�7

Sequential procedure by Willson and Folks (1983)

2 3 50 0:0083
1:9989

0:0025

50:59

0:0392
1:0119

0:9940

6:30� 10�6

200 0:0020
2:0010

0:0012

200:44

0:0770
1:0022

0:9992

7:97� 10�7

3 4 50 0:0058
2:9976

0:0032

50:46

0:0310
1:0092

0:9945

3:55� 10�6

200 0:0014
2:9993

0:0016

200:59

0:0619
1:0029

0:9979

4:48� 10�7
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Capsella bursa-pastoris L.

Polygonum aviculare L.

Figure 4.1. Pictures of the types of weed included in

the weed count data under consideration.

Photo Credits: Max Licher (photographer)

and SCINet
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Table 4.2. Analysis of weed count data

using purely sequential strategy (4.2.8)

assuming � = 3:98 with a = 1; 
 = 1:5

n� !
�̂:

xn

n n=n� ez
75 0:0182 0:91 82 1:09 1:2069

200 0:0068 0:44 151 0:75 1:1339

500 0:0027 0:41 607 1:21 0:9052

700 0:0019 0:42 782 1:11 1:0078

Table 4.3. Analysis of woodlarks data

using purely sequential strategy (4.2.8)

assuming � = 0:23 with a = 1; 
 = 1:5

n� !
�̂:

xn

n n=n� ez
30 0:0779 4:03 32 1:06 0:9218

40 0:0584 2:78 41 1:02 0:9830

50 0:0467 3:15 51 1:02 0:9794
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Table 4.4. Simulation results from 10; 000 replications

of the purely sequential procedure (4.3.4)

with a = 1; 
 = 1:5; m = 5

� � n� !
x

sx

n

sn
n=n�

z

sz

2 3 50 0:0667
2:0035

0:0026

49:53

0:0943
0:9907

1:0626

2:58� 10�4

200 0:0167
2:0001

0:0013

199:37

0:1817
0:9968

1:0148

5:61� 10�5

3 4 50 0:1050
3:0056

0:0032

49:90

0:0783
0:9981

1:0307

2:11� 10�4

200 0:0262
3:0006

0:0016

200:14

0:1568
1:0007

1:0055

2:11� 10�5
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Table 4.5. Analysis of weed count data using

purely sequential strategy (4.3.4) assuming

� = 3:98 with b = 1; 
 = 1:5; m = 10

n� !
�̂:

xn

n n=n� ez
75 0:0043 0:28 74 0:98 0:8350

200 0:0016 0:32 210 1:05 1:1332

500 0:0006 0:32 540 1:08 1:2116

700 0:0004 0:28 667 0:95 1:2524

Table 4.6. Analysis of woodlarks data using

purely sequential strategy (4.3.4) assuming

� = 0:23 with b = 1; 
 = 1:5; m = 7

n� !
�̂:

xn

n n=n� ez
30 1:4498 2:61 31 1:03 0:7490

40 1:0873 2:84 39 0:97 0:8939

50 0:8699 3:47 46 0:92 1:3950
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Table 4.7. Simulation results from 10; 000 replications

of the purely sequential procedure (4.4.4)

with b = 1; 
 = 1:5; m = 5

� � n� !
x

sx

n

sn
n=n�

z

sz

2 3 50 0:0667
1:9989

0:0029

46:15

0:1491
0:9231

1:2634

4:72� 10�4

200 0:0167
1:9972

0:0013

197:69

0:2939
0:9884

1:0358

2:79� 10�5

3 4 50 0:1050
3:0036

0:0036

46:10

0:1438
0:9220

1:2731

8:54� 10�4

200 0:0262
2:9995

0:0016

196:92

0:2758
0:9846

1:0369

4:11� 10�5
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Table 4.8. Analysis of weed count data

using purely sequential procedure (4.4.4)

with b = 1; 
 = 1:5; m = 10

n� !
�̂:

xn

n n=n� ez
75 0:0148 1:06 65 0:87 1:3860

200 0:0055 0:87 224 1:12 0:8406

500 0:0022 0:92 538 1:07 0:9584

700 0:0015 0:87 765 1:09 0:9186

Table 4.9. Analysis of woodlarks data

using purely sequential procedure (4.4.4)

with b = 1; 
 = 1:5; m = 7

n� !
�̂:

xn

n n=n� ez
30 1:4498 2:87 27 0:90 0:9881

40 1:0873 2:54 28 0:70 1:0047

50 0:8699 3:10 59 1:18 0:8744
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Table 4.10. Simulation results for the purely sequential estimation

methodology (4.5.7) from 10; 000 replications when k = 2

with m from (4.5.6), a1 = 1; a2 = 1:2; 
 = 1:5

(�1; �2) (�1; �2) n� !
x1

sx1

x2

sx2

n

sn
n=n�

z

sz

(3; 1) (3; 2) 50 0:0246
3:0014

0:0034

0:9994

0:0017

51:06

0:0380
1:0213

0:9844

1:77� 10�5

200 0:0061
3:0018

0:0017

1:0004

0:0008

201:12

0:0745
1:0056

0:9957

2:25� 10�6

(7; 3) (2; 1) 50 0:0225
7:0056

0:0078

3:0046

0:0048

50:73

0:0138
1:0147

0:9862

6:01� 10�6

200 0:0056
6:9949

0:0039

2:9984

0:0024

200:75

0:0265
1:0037

0:9964

7:42� 10�7
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Table 4.11. Analysis of raptor count data when k = 2

using purely sequential estimation strategy (4.5.7)

with m from (4.6.6) assuming �1 = 0:28; �2 = 0:18

and a1 = 1; a2 = 1:2; 
 = 1:5

n� !
�̂1:

x1n

�̂2:

x2n

n n=n�
ez:

(4:5:16)

50 0:1313 1:57 0:61 57 1:14 0:8772

100 0:0656 1:41 0:76 101 1:01 0:9900

200 0:0328 1:48 0:66 201 1:00 0:9950
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Table 4.12. Simulation results for the purely sequential estimation

methodology (4.6.4)-(4.6.5) from 10; 000 replications

with m = 5; b = 1; 
 = 1:5

(�1; �2) (�1; �2) n� !
x1

sx1

x2

sx2

�

s�

n

sn
n=n�

z

sz

(3; 1) (3; 2) 50 0:15
3:0016

0:0034

1:0003

0:0017

2:0013

0:0025

50:09

0:0732
1:0018

1:0219

2:55� 10�4

200 0:0375
3:0036

0:0017

1:0001

0:0008

2:0035

0:0012

200:05

0:1465
1:0002

1:0051

2:81� 10�5

(7; 3) (2; 1) 50 0:87
6:9945

0:0080

2:9959

0:0049

3:9986

0:0068

50:09

0:0828
1:0019

1:0291

1:84� 10�3

200 0:2175
6:9988

0:0039

3:0040

0:0024

3:9948

0:0030

199:75

0:1653
0:9987

1:0082

1:85� 10�4
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Table 4.13. Analysis of raptor count data using purely

sequential estimation strategy (4.6.4)-(4.6.5) assuming

�1 = 0:28; �2 = 0:18 with b = 1; 
 = 1:5

n� !
�̂1:

x1n

�̂2:

x2n

� n n=n�
ez:

(4:6:10)

50 0:2431 1:60 0:58 1:02 41 0:82 1:2195

100 0:1215 1:68 0:71 0:97 108 1:08 0:9259

200 0:0607 1:47 0:82 0:65 221 1:10 0:9049
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Table 4.14. Simulation results for the purely sequential estimation methodologies

(4.7.5)-(4.7.8) and (4.7.10) from 10; 000 replications with (�1; �2) = (3; 1);

(�1; �2) = (3; 2); m = 5; b = 1; 
 = 1:5

Rule j x
(j)
1 x

(j)
2 �

(j)
n
(j)
1 n

(j)
2 n(j) n(j)=n� z(j)

Eq # s
x
(j)
1

s
x
(j)
2

s
�
(j) s

n
(i)
1

s
n
(i)
2

sn(i) sn(i) sz(i)

! = 0:05; n�1 = 180; n
�
2 = 90; n

� = 270

j = 1 3:0041 1:0058 1:9983 189:35 85:23 274:58 1:0169 1:0358

Eq (4.7.6) 0:0065 0:0035 0:0051 1:9589 1:0091 1:1151 0:0026

j = 2 3:0031 1:0050 1:9981 196:86 87:47 284:33 1:0530 1:0605

Eq (4.7.7) 0:0069 0:0047 0:0059 2:0358 1:1025 1:2384 0:0030

j = 3 3:0033 1:0042 1:9991 196:96 89:91 286:87 1:0625 1:1121

Eq (4.7.8) 0:0078 0:0036 0:0070 2:1254 1:3002 1:5488 0:0035

! = 0:1; n�1 = 90; n
�
2 = 45; n

� = 135

j = 1 3:0068 1:0090 1:9978 91:76 46:38 138:14 1:0233 0:9924

Eq (4.7.6) 0:0028 0:0020 0:0014 1:2121 0:5247 0:7122 0:0034

j = 2 3:0103 1:0121 1:9982 92:51 49:87 142:38 1:0547 0:9789

Eq (4.7.7) 0:0054 0:0037 0:0058 1:3029 0:6069 0:8098 0:0036

j = 3 3:0135 1:0144 1:9991 97:23 51:05 148:28 1:0984 0:9712

Eq (4.7.8) 0:0059 0:0048 0:0064 1:4781 0:7814 0:9947 0:0035
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Table 4.15. Analysis of raptor count data using purely sequential

estimation methodologies (4.7.5)-(4.7.8) and (4.7.10)

with m = 5; b = 1; 
 = 1:5

Rule j ez(j)
Eq # x

(j)
1 x

(j)
2 �

(j)
n
(j)
1 n

(j)
2 n(j) n(j)=n� (4:9:20)

! = 0:1; n�1 = 89:97; n
�
2 = 146:56; n

� = 236:53

j = 1

Eq (4.7.6) 1:3021 0:6568 0:6453 79:09 138:77 217:86 0:9211 1:3100

j = 2

Eq (4.7.7) 1:3212 0:6920 0:6292 95:82 144:92 240:74 1:0178 1:2018

j = 3

Eq (4.7.8) 1:3844 0:7215 0:6629 97:37 150:89 248:26 1:0496 1:0987

! = 0:2; n�1 = 44:98; n
�
2 = 73:28; n

� = 118:26

j = 1

Eq (4.7.6) 1:2608 0:6921 05687 37:36 69:02 106:38 0:8996 1:4252

j = 2

Eq (4.7.7) 1:3258 0:7412 0:5846 48:20 74:88 123:08 1:0408 1:2214

j = 3

Eq (4.7.8) 1:3378 0:7503 0:5875 53:17 76:30 129:47 1:0948 1:1287
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Chapter 5
Concluding Thoughts

This thesis involves problems surrounding two important but interesting distributions, namely

negative exponential and negative binomial. We have designed appropriate multistage methodolo-

gies to estimate the unknown parameters under each of these distributions. One of the loss functions

we have made use of is the Linex loss which was introduced by Varian in 1975. This loss is asym-

metric in nature and addresses estimation error by penalizing over-estimation and under-estimation

unequally.

Chapter 2 covered two-stage and purely sequential estimation of a negative exponential location

under a Linex loss. The existing literature was rather scarce and mainly concentrated on a normal

distribution and/or a squared error loss function. Chattopadhyay (1998) �rst developed a sequential

estimation problem under a Linex loss. As seen in this chapter, a negative exponential model proves

to be useful in many reliability problems such as to depict the failure times of electrical components

among many others. It is also used widely to model survival data under di¤erent situations. We

developed a modi�ed two-stage procedure along the lines of Mukhopadhyay and Duggan (1997)

which proved to have exciting properties as opposed to the usual Stein type two-stage methodology.

Our proposed methods were also seen to be both operationally convenient and theoretically sound.

They were supported by analyses from simulations and real data, namely infant mortality and bone

marrow data and were seen to perform remarkably well.

In Chapter 3 we decided to extend our ideas to a two-sample problem which involved multistage

estimation of the di¤erence in locations of two independent negative exponential populations. It

was again carried out under an appropriate Linex loss. An interesting aspect to this problem was

that we assumed that the scale parameters are � and b�, where b is known a�priori. A motivational

scenario was also introduced to support this problem structure. Our proposed methodologies were

again seen to enjoy interesting e¢ ciency and consistency properties. These were applied to real

datasets from cancer studies and reliability analysis and were seen to perform exceptionally well.

Chapter 4 involved multistage estimation under a di¤erent distribution, namely negative bino-

mial. Being a discrete distribution, it becomes operationally di¤erent than the negative exponential.
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It was �rst parametrized by Anscombe in 1949, 1950 and is heavily applied to model count data. It

proves to handle over-dispersion more adequately than a Poisson model. Willson and Folks (1983)

and Willson et al. (1984) contains a wide variety of sequential problems arising from estimation of

a NB mean. We developed appropriate purely sequential methodologies to estimate 1) a NB mean

associated with a single sample, 2) a k-mean vector of NB means and 3) di¤erence in means of

two independent NB populations. The estimation was again carried out under appropriate Linex

loss and was also compared under a squared error loss. Di¤erent situations pertaining to known or

unknown thatch parameter/s were discussed. All of our proposed methodologies were seen to enjoy

interesting e¢ ciency and consistency properties. These were heavily supported by real datasets

from ecology, namely weed count data, bird count data and raptor count data. For completeness,

we also discussed possible modi�cations and rami�cations to construct a two-stage methodology

under di¤erent situations.
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Chapter 6
Future Research Directions

6.1. THREE-STAGE AND ACCELERATED SEQUENTIAL

STOPPING RULES

We have witnessed a number of multistage and or purely sequential sampling strategies through-

out this thesis. These mainly comprised of two-stage, modi�ed two-stage and purely sequential

stopping rules. Following along these lines, one can extend further to construct three-stage and ac-

celerated sequential methodologies under appropriate situations. Three-stage methodologies were

largely developed by Hall (1981). and discussed in Mukhopadhyay (1990). Hall (1983) built ideas

on an accelerated sequential rule and outlined some basic properties. Mukhopadhyay and Solanky

(1991) further built a uni�ed theory. Both of these methods prove to have their advantages over

two-stage and purely sequential rules in some aspects. They are much more operationally conve-

nient to apply and enjoy interesting e¢ ciency properties at the same time. We hope to construct

these methodologies to estimate the location parameter of a negative exponential distribution,

again under an appropriate Linex loss function. One can also extend these further to a two-sample

scenario to estimate the di¤erence in location parameters of two independent negative exponen-

tial distributions. We can support our sampling designs with interesting applications from health

studies.

6.2. NON-PARAMETRIC METHODS

A vast literature has been developed surrounding distribution free or non-parametric method-

ologies concerned with estimation. One may refer to Mukhopadhyay (1978), Ghosh and Mukhopad-

hyay (1979), Sen (1981,1985) for more detailed literature. These methods do not assume any crucial

characteristics of any distribution under concern. Let us assume that we have a sequence of indepen-

dent observations X1; X2; :::; Xn; ::: from a population having a distribution function F:We hope to

construct suitable multistage stopping rules solely for estimation purposes, where we assume very

little about the distribution function F . Point estimation can be carried out under speci�ed loss

functions including the squared error or Linex loss. These methodologies hope to revolve around
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appropriate U-statistics which would estimate the unknown parameters.

6.3. CHANGE POINT DETECTION PROBLEMS

The �eld of change point problems is well developed over the years. We still hope to cover

untrodden grounds in relation with these. Let us assume that X1; X2; :::; Xn be an independent

sequence and � be a change point such that X1; :::; X��1 � NExpo(�0; �0) and X� ; :::; Xn �

NExpo(�1; �1). We also assume that �1 > �0: The underlying problem could be to test and detect

the changepoint � , and draw inferences such as estimation of the unknown parameters both before

and after the change.
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