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Abstract
In the past, to study Mendelian diseases, segregating families have
been carefully ascertained for segregation analysis, followed by col-
lecting extended multiplex families for linkage analysis. This would
then be followed by association studies, using independent case-
control samples and/or additional family data. Recently, for com-
plex diseases, the initial sampling has been for a genome-wide link-
age analysis, often using independent sib-pairs or nuclear families,
to identify candidate regions for follow-up with association studies,
again using case-control samples and/or additional family data. We
now have the ability to conduct genome-wide association studies
using 100,000–500,000 diallelic genetic markers. For such studies
we focus especially on efficient two-stage association sampling de-
signs, which can retain nearly optimal statistical power at about half
the genotyping cost. Similarly, beginning an association study by
genotyping pooled samples may also be a viable option if the cost
of accurately pooling DNA samples outweighs genotyping costs. Fi-
nally, we note that the sampling of family data for linkage analysis is
not a practice that should be automatically discontinued.
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INTRODUCTION

In the past 25 years, new methods for ge-
netic epidemiology have been mainly focused
on answering whether or not a trait shows
Mendelian segregation, cosegregation in fam-
ilies with a genetic marker, and finally as-
sociation in the population with a genetic
marker (10). Segregation analysis has been
used to determine an appropriate genetic
model for model-based linkage analysis. Seg-
regation analysis has been an efficient initial
approach for simple Mendelian diseases, but
rarely successful for a complex disease be-
cause, when the mode of inheritance requires
numerous parameters to be estimated, the es-
timates have typically been imprecise. Link-
age analysis can be done assuming a known
genetic model for the trait being studied or in
a model-free manner, which may initally be
more appropriate for a complex trait. Often,
the demonstration of linkage has provided the
ultimate proof of a genetic component in the
etiology of a disease, whether it is one that
segregates in a Mendelian fashion or one that
shows a complex pattern of inheritance. As a
large number of single nucleotide polymor-
phisms (SNPs) are now available at relatively
low cost, it has been proposed that testing for
association between a disease and a large panel
of SNPs on unrelated individuals is a more ef-
ficient design for gene discovery when gene
effects are small. However, association can
arise as a result of chance, of population strat-
ification/heterogeneity, of very close linkage,
or of pleiotropy. The essential problem for as-
sociation analysis is to distinguish the first two
of these causes from the second two.

The more recent designs and methods of
analysis for linkage and association studies
have been driven by the advances of molec-
ular technology, which provide more ge-
netic markers at ever-reduced cost. In 1980,
Botstein et al. (2) proposed the use of re-
striction fragment length polymorphisms to
find cosegregation of a trait of interest to
any point on the genome. Later, microsatel-
lites (63, 64, 68) became the genetic markers

used for a genome-wide linkage study, usu-
ally numbering about 400, roughly equally
spaced across the genome. Today, SNPs are
the genetic markers of choice for either link-
age or association studies. They are mostly
diallelic and abundant, current platforms cov-
ering with good potential power about 80%
of the Caucasian genome. With the HapMap
project (1), millions of SNPs have been identi-
fied throughout the genome. In fact, genome-
wide association studies with 500,000 SNPs
are already being published.

However, there are challenges in perform-
ing large-scale association studies to inves-
tigate the genetics of complex diseases (3).
First, the cost of genotyping is still high. For a
genome-wide association study with 500,000
SNPs and a couple of thousand individu-
als, the genotyping cost alone lies between
a quarter and half a million dollars. Second,
a large-scale genetic study has a potentially
high false positive rate and it is often dif-
ficult to replicate results in later indepen-
dent studies. Multistage designs incorporat-
ing both linkage and association components,
or cost-efficient association designs with mul-
tiple stages of genotyping, are essential to
maintain statistical power at an affordable cost
with limited false positive rates. In this article,
we review the classical paradigm of multistage
sampling designs, using both families and un-
related individuals, that have been successful
for Mendelian diseases; a two-stage linkage-
association design for more complex diseases;
and several cost-efficient multistage designs
for large association studies. We conclude by
noting that there are advantages to collecting
family data and conducting a linkage analysis
prior to any genome-wide association study.

CLASSICAL PARADIGM

The classical paradigm for genetic analy-
sis in humans has been a multistage pro-
cedure. First, after showing that a trait is
familial, segregating families have been col-
lected, segregation analysis performed to
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verify Mendelian segregation and define the
best segregating model for a model-based
linkage analysis, and then, after such a link-
age analysis, association studies undertaken.
This procedure involves multistage sampling
of families and individuals. How to ascertain
segregating families depends on the disease.
For an autosomal dominant disease, fami-
lies may be ascertained through the parents’
phenotypes. For a rare autosomal recessive
disease, heterozygote × heterozygote mat-
ings are the informative mating types that
are most commonly available; however, be-
cause the phenotypes of individuals carrying
one risk allele and no risk allele are indistin-
guishable, these mating types can only be as-
certained through the presence of an affected
offspring (45).

Following a segregation analysis, a model-
based linkage study is conducted with marker
loci using a sample of multiplex family data.
During meiosis, owing to the crossing over of
a pair of chromosomes, a parent may transmit
a recombinant gamete or a nonrecombinant
gamete to an offspring. A genetic marker is
linked to a disease locus if the fraction of ga-
metes recombining between them is less than
one half. The recombination fraction mea-
sures the genetic distance between two loci
and a model-based linkage analysis uses family
data to test whether or not the recombination
fraction is one half. Usually, three or more
generations are used to estimate the fraction
of gametes that are recombinant. The base 10
logarithm of a likelihood ratio (LOD), often
misinterpreted as the logarithm of the odds
for linkage (6), is commonly used to test the
null hypothesis of no linkage and we reject
the null hypothesis when the recombination
fraction is significantly less than one half. For
genome-wide linkage analysis, in a large sam-
ple and the simplest of situations, a maximum
LOD score of 3 corresponds to a pointwise
P-value of ∼10−4 (6) and indicates a good
linkage signal. In other more general situa-
tions, a LOD of 3 or more may have much less
statistical significance, which has led to the
recommendation that LODs be abandoned in

Multiplex family: a
family containing
multiple individuals
affected with a
disease

LOD: the logarithm
(usually to base 10)
of a ratio of two
likelihoods, that of
linkage to that of
free recombination

Linkage
disequilibrium
(LD): population
association between
the alleles at linked
loci

Identical by
descent (IBD):
alleles at a locus
inherited from the
same chromosome of
an ancestor

favor of P-values (7, 29). Multipoint linkage
analysis simultaneously uses the information
from all the markers on a chromosome to find
positions where trait loci may lie. Here again
LODs are usually reported, but their signifi-
cance is not always clear (69).

When linkage signals are detected, further
studies for allelic association due to linkage
disequilibrium (LD) can focus on these chro-
mosomal regions. An association study to test
LD is complementary to linkage analysis. LD
between two loci causes the alleles at these two
loci to be associated in the population. Testing
for association between the alleles at two loci
is most easily done on a random population
sample, but both family data and case-control
samples can be used.

The study of complex diseases, e.g., dis-
eases caused by segregation at multiple loci
with incomplete penetrance, has typically
started with linkage analysis followed by asso-
ciation analysis. Linkage analysis can be per-
formed using a model-free method on a sam-
ple of family units as small as independent
sib-pairs. For example, linkage can be tested
using concordantly affected sib-pairs (ASPs),
where families with an ASP are ascertained
and genotyped to determine the number of al-
leles that each sib-pair has identical by descent
(IBD) at any genomic location; more gener-
ally, other affected pairs of relatives may also
be studied (30). A sib-pair can share 0, 1, or
2 alleles IBD at a locus, most other relative
pairs share 0 or 1 allele IBD. For some mating
types, IBD cannot be uniquely determined, in
which case the expected IBD sharing is esti-
mated using all the available marker data.

For a quantitative trait locus (QTL), the
Haseman-Elston (HE) regression model can
be used. The original HE method uses in-
dependent sib-pairs to test for linkage of a
QTL. The squared measured trait difference
between sibs is regressed on the proportion
of alleles the sib-pair shares IBD, and test-
ing for linkage is equivalent to testing that
this regression model has a negative slope
(17). The HE model has been extended to
many situations, e.g., larger sib-ships (49) and
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Hardy-Weinberg
equilibrium
(HWE): HWE
proportions that
remain stable over
generations (no
selection)

Hardy-Weinberg
equilibrium (HWE)
proportions:
genotypic
frequencies that
result from random
mating

Table 1 Parental transmission data for a
diallelic SNP

Transmitted

Not transmitted A B Total
A a b a + b
B c d c + d
Total a + c b + d n

extended pedigrees (60). Provided unaffected
sibs are included in the sample, binary af-
fected/unaffected traits can also be analyzed
as quantitative data by this same method (9).

If a candidate gene is already suspected,
linkage to it can be tested from a sample of par-
ents and an affected offspring (trios) using the
transmission/disequilibrium test (TDT) (54).
The original TDT compares the frequency
that a particular allele is transmitted to an af-
fected offspring from a heterozygous parent
to the frequency that it is not so transmitted.
Table 1 presents the parental transmission
data for a diallelic marker with alleles A and
B. In n trios, b heterozygous parents transmit-
ted allele B and c heterozygous parents trans-
mitted allele A. The test statistic, TDT =
(b − c)2/(b + c), has a large sample chi-square
distribution with one degree of freedom ei-
ther when the marker and disease locus are
not linked or when they are not in LD. The
TDT was proposed as a test of linkage, but it
can also be used to test for LD, or both LD
and linkage, depending on assumptions and
the sampling scheme (47, 53). Whereas it can
always be used validly to test for linkage, it
is only a valid test for LD when independent
trios are sampled or the test properly allows
for the nonindependence of sibs. In linkage
analysis, several sampling designs may be ap-
plied together. For example, if one has both
ASPs and parent-offspring trios, then linkage
can be tested by testing IBD patterns in the
ASPs and by using the TDT for the trios.

After candidate genes have been detected
by linkage analysis, we can conduct an as-
sociation study focusing on these candidate
genes with densely spaced SNPs that is ei-
ther family based or population based. The

Table 2 Genotype data for a diallelic SNP
in a case-control design

Genotypes

AA AB BB Total
Case R0 R1 R2 R
Control S0 S1 S2 S
Total N0 N1 N2 N

simplest sampling scheme for family data
comprises trios (Table 1) for TDT analysis.
Schaid & Sommer (42) considered more gen-
eral score tests for candidate gene association
using trios, and the TDT is a special case of
these score tests. Note that the TDT and sim-
ilar tests are family based, i.e., require family
data, and are also designed to protect against
detecting spurious associations that are due
to population stratification, which leads to
departure from Hardy-Weinberg equilibrium
(HWE) proportions. However, more power
is available from the same family-based data
if it is not necessary to protect against spuri-
ous association (8, 15). In a population-based
association study, independent cases and con-
trols are typically sampled. For a SNP with
alleles A and B, the data for a case-control
sample are presented in Table 2 by genotypes
and in Table 3 by alleles. The total sample
size is N, with R cases and S controls. Asso-
ciation between the disease and the SNP can
be tested by comparing the genotype frequen-
cies (genotype-based analysis) or the allele (A,
B) frequencies (allele-based analysis) ( p, q) be-
tween cases and controls (13, 37, 51). Let T
represent all the samples. In Table 2, the fre-
quencies of genotypes (AA, AB, BB) in cases
and controls are estimated by ( p0, p1, p2) =
(R0/R, R1/R, R2/R) and (q0, q1, q2) = (S0/S,

Table 3 Allele-based case-control samples
for a diallelic SNP in a case-control design

Alleles

A B Total
Case 2R0 + R1 2R2 + R1 2R
Control 2S0 + S1 2S2 + S1 2S
Total 2N0 + N1 2N2 + N1 2N
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S1/S, S2/S), respectively. In Table 3, the fre-
quencies for allele A in cases and controls are
estimated by p = (2R0 + R1) / (2R) and q =
(2S0 + S1)/(2S ), respectively. The trend test
statistic and the allele-based test statistic are
then respectively given by

ZT(T ) = (RSN )1/2 {(p2 + p1/2) − (q2 + q1/2)}
{N(N2 + N1/2) − (N2 + N1/2)2}1/2

and

ZA(T ) = (8RSN )1/2 (p − q )
{(2N0 + N1)(2N2 + N1)}1/2

.

For the test using ZA(T ), HWE proportions
must hold in the population, and then the two
tests have similar power. Both test statistics in
large samples follow a standard normal distri-
bution if there is no association.

A two-stage linkage-association sampling
design has several advantages compared with
an association study alone. Linkage analysis
can identify candidate gene regions at a dis-
covery stage, so a subsequent association study
can focus on candidate genes at a confirma-
tory stage. If linkage to a genomic region is
known to exist, it is less likely that an associ-
ation to a variant in that region is spurious.
Linkage analysis results based on the HE re-
gression model may also be used to help select
samples to design an optimal subsequent as-
sociation study. Wang & Elston (61) define a
quantitative linkage score (QLS) that captures
the linkage signals; the QLS can guide the se-
lection of subsamples from a linkage study to
increase the power of a subsequent association
study.

Thus, the classical paradigm has always
started with sampling data for segregation
analysis, followed by sampling for linkage
analysis and then association analysis, the last
using case-control data and/or further family
data. This multistage method will find mul-
tiple loci and multiple variants within each
(multiallelic) locus if the disease being studied
is due to many rare variants. However, while
this approach might be the only method to
find rare mutations at a reasonable cost, sam-
pling family data is expensive.

TWO-STAGE DESIGNS FOR
ASSOCIATION

Because family data are required to conduct
linkage analysis, it might be more efficient to
perform a case-control association study with-
out a preceding linkage study when sampling
family data is expensive, especially for a large-
scale association study (11, 23, 35, 36). More-
over, for late-onset diseases or diseases related
to newly developed technology and medical
devices, family data are usually not available.
For example, in-stent restenosis is a compli-
cation related to stent therapy for atheroscle-
rotic coronary artery disease (14). To study
any genetic effect on in-stent restenosis, a
case-control sample would be far simpler to
collect than family data. Case-control sam-
ples are also useful for genome-wide associa-
tion studies with 100,000–500,000 SNPs, be-
cause it is much less costly to recruit thousands
of unrelated, rather than related, cases and
controls.

A cost-effective two-stage design was first
developed for case-control association studies
in a candidate gene setting. The genotype-
based case and control samples for the two-
stage design are given in Table 4, where the
total sample size is N(1) + N(2). Satagopan et al.
(39) proposed to genotype all the SNPs under

Table 4 Genotype data for a diallelic SNP,
selected for advancement to the second stage,
in the first and second stages of a two-stage
case-control design

First-stage data T1

Genotypes

AA AB BB Total
Case R01 R11 R21 R(1)

Control S01 S11 S21 S(1)

Total N01 N11 N21 N(1)

Second-stage data T2

Genotypes

AA AB BB Total
Case R02 R12 R22 R(2)

Control S02 S12 S22 S(2)

Total N02 N12 N22 N(2)
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study on a fraction, fs = R(1)/(R(1) + R(2)) =
S(1)/(S(1) + S(2)), of the cases and controls in
the first stage, denoted T1 (Table 4), and test
each SNP for association using the test statis-
tic ZA(T1). The most significant small frac-
tion of SNPs is then genotyped on the rest
of the cases and controls at the second stage,
denoted T2 (Table 4). Here again the test-
ing for association uses ZA(T ), but this is now
calculated from all the samples. For a power-
ful two-stage design with a fixed total cost, the
general guideline given was to genotype about
25% of the cases and controls ( fs = 0.25) in
the first stage and then to genotype the 10%
( fm = 0.10) most-promising SNPs in the sec-
ond stage on the rest (75%) of the samples.
Given equal cost for the single-stage and two-
stage designs, this two-stage approach allows
one to genotype 325% more cases and con-
trols than in a single-stage association study
(N(1) + N(2) = 4.25N ), resulting in a substan-
tial increase in power to detect susceptibility
SNPs for a disease. In practice, however, the
total number of cases and controls may not be
arbitrary, but rather prespecified as the sam-
ple size of the study. Thus, two-stage designs
may be compared with the single-stage design
with N(1) + N(2) = N.

Satagopan & Elston (38) then modified
this two-stage design, assuming that markers
are in linkage equilibrium, to find the optimal
design parameters that minimize the cost of
the study while retaining a prespecified Type I
error and power. This approach was further
extended (40) to allow for LD among the
SNPs, with the result that genotyping 50%
of the samples in the first stage and evaluating
the most significant 10% of the SNPs in the
second stage yields power close to that of the
single-stage design. Following the same de-
signs (38–40), Thomas et al. (56) considered
estimating relative risks: the risk of having a
disease with genotype AA relative to that with
BB, and the risk of having a disease with geno-
type AB relative to that with BB—in other
words genotype BB is used as the reference
genotype. When the SNP and the disease lo-
cus are not associated (which could result from

linkage equilibrium), the RRs are equal to 1.
In the second stage they incorporated the data
T1 of the unselected SNPs to enhance power.
They demonstrated that a two-stage design
with appropriate tag SNP selection can be
very cost-efficient compared with the single-
stage design.

These two-stage sampling designs and
analyses were developed for candidate gene
studies or association studies with hundreds,
or thousands, of markers. The same de-
signs and analysis strategies can be ap-
plied to genome-wide association studies with
100,000–500,000 SNPs. To test a total of
m = 500,000 SNPs, the significance level
for each SNP is set to α = 0.05/m = 1 ×
10−7. Following (38), Wang et al. (59) studied
two-stage designs using allele-based tests and
odds ratios for such genome-wide scans. They
considered more focused fine mapping in the
second stage using the HapMap data and a
model with different unit costs of genotyping
in the two stages. Let fs be the fraction of sam-
ples genotyped in the first stage and fm be the
fraction of SNPs selected in the first stage for
carryover to the second stage in a two-stage
design. Let c1 and c2 be the per-sample costs
of genotyping a SNP at the first and second
stages, respectively. The per-sample genotyp-
ing cost of the two-stage design is then c1 fs +
c2 (1 − fs) fm, whereas that for a single-stage
design is just c1. If c1 > c2 fm, then c1 fs + c2 (1 −
fs) fm < c1, indicating that a two-stage design
reduces the genotyping cost.

A two-stage design is optimal when the de-
sign parameters are determined under some
optimality criterion, e.g., for minimizing the
total cost when the Type I error and power are
fixed, or for maximizing the power when the
cost and Type I error are fixed. Wang et al. (59)
derived optimal configurations for the design
parameters, along with sample size and power
calculations. Based on 1000 dollars per subject
(currently only 250–500 dollars) for 500,000
SNPs in the first stage (c1 = 0.2 cents), and
c2 = 3.5 cents in the second stage, they
showed that, to minimize the cost, the optimal
two-stage design for a range of risk allele
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frequencies (0.1–0.9) and realistic odds ratios
(1.35–2.0) is to genotype about 30% of all the
samples in the first stage at significance lev-
els α1 = 0.00362 − 0.00388, achieving about
90.7% power in the first stage. Then the sig-
nificance level in the second stage, α2, should
be about 1.6 × 10−7 or 1.7 × 10−7, compared
with the single-stage design with a more strin-
gent level α = 1 × 10−7. To minimize the to-
tal sample size under the same allele frequen-
cies and odds ratios, while constraining the
cost to be within 110% of the minimum cost,
about 40% of the samples are genotyped in the
first stage with α1 = 0.00510 − 0.00533, giv-
ing 95% power for this stage, and the second-
stage level reduces to α2 = 1.1 × 10−7 or
1.2 × 10−7, closer to α. In practice, which
optimality criterion should be used to design
an optimal two-stage study depends on many
factors, including disease prevalence and
budget.

For the second stage, they proposed a no-
table extension: to genotype an average of
five more densely spaced SNPs, determined
from HapMap data, around each SNP signif-
icant in the first stage (59). Assuming the same
unit costs of genotyping in the two stages,
genotyping five more SNPs in the second
stage for each selected first-stage SNP may
be prohibitive if a large fraction of the SNPs
is selected and a small fraction of samples
is used in the first stage. In fact, an optimal
two-stage design to minimize the total cost,
when genotyping five extra SNPs at the sec-
ond stage for each significant first-stage SNP,
entails α1 = 0.0005—much smaller than
α1 = 0.00362 − 0.00388 for the same de-
sign, but without genotyping the extra SNPs.
In addition, about 50% of the samples would
be allocated to the second stage, compared
with 70% if these extra SNPs were not geno-
typed. Because 500,000 SNPs may not capture
all the genetic variation across the genome,
there is a distinct advantage to using more
densely spaced SNPs in the second stage to
increase coverage of the genome. With this
optimal design, the measure of genetic varia-
tion covered (see 55) is increased by more than

66% when the extra SNPs are genotyped in
the second stage. The disadvantage, however,
is that the total cost, although minimized,
is almost double that of the optimal two-
stage design without genotyping these extra
SNPs. When genotyping costs go down even
further—currently, only a quarter of what was
assumed in Reference 57—genotyping more
densely spaced SNPs in the second stage could
be promising. However, although one could
then genotype extra case-control samples in
the second stage for the same cost, and the
increased sample size would lead to increased
power, it should be noted that, to the extent
that genetic variation is not covered by the
first-stage SNPs, no amount of extra SNPs at
the second stage will help if they are chosen
only on the basis of SNPs showing association
at the first stage.

Skol et al. (50) studied a simple procedure
to combine the test statistics in the two stages
under various configurations of the design
parameters. When test statistics ZA(T1) and
ZA(T2) are applied to the two stages, respec-
tively, a weighted test statistic for a joint anal-
ysis can be written as Zω(T ) = ω1 ZA(T1) +ω2

ZA(T2), where the weights ω1 and ω2 are pro-
portional to the sample sizes used in the two
stages. Since the number of markers tested in
the second stage is much smaller than the total
number of markers, one might be tempted to
view stage two as a replication study and as-
sess statistical significance based on the stage-
two data alone. However, this strategy almost
always results in decreased power to detect
genetic association, as compared with analyz-
ing the data from both stages together, despite
the fact that less-stringent-significance crite-
ria are used.

It is not obvious how to evaluate statistical
significance in two-stage association studies. A
common practice is to use the Bonferroni cor-
rection based on the total number of markers
tested in the first stage (56). This strategy can
be highly conservative, especially when the
markers are in strong LD, because it assumes
that none of the markers eliminated after
the first-stage testing would reach statistical
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significance if they were genotyped and tested
in the second stage, and that the test statis-
tics are independent across all markers. Lin
(24) proposed a Monte Carlo procedure that
properly accounts for the two-stage sampling
and the correlated nature of the SNP data.
Through simulation studies, he demonstrated
that this procedure provides accurate con-
trol of Type I error and can be substantially
more powerful than using the Bonferroni
correction.

A comparison of various optimal two-stage
sampling designs and analyses is summarized
in Table 5, showing that most studies use no
more than 50% of the samples in the first
stage and select less than 25% of the SNPs for
genotyping in the second stage. In particular,
for genome-wide association studies, as the
number of SNPs increases, the proportion of
SNPs selected for the second stage decreases.
One limitation of any two-stage design is that
a disease susceptibility SNP may not be se-
lected in the first stage if only a small frac-
tion of SNPs is carried forward to the second
stage. For example, Thomas et al. (57) used
the level α1 = 0.005 at the first stage for a to-
tal of 500,000 SNPs. On average, about 2500
SNPs would then be selected for genotyping
and analysis in the second stage. Although the
probability that at least one SNP with true as-
sociation is in the selected 2500 SNPs is un-
known, it appears that it may be low (see table
2 in 70). For example, for a genome-wide as-
sociation study with 200,000 null SNPs and
one SNP with true association, the proba-
bility that the most significant 20,447 (9931)
SNPs would contain the true SNP is 95%
when the power for detecting this true SNP
is 90% (95%). This transforms to selecting
about 5–10% of the total SNPs in the first
stage, within the range discussed by Skol et al.
(50).

With advances in technology, the geno-
typing cost is dramatically reduced. When
the genotyping cost is of no concern, espe-
cially for candidate gene analysis, a single-
stage design using all samples in the analysis
is more powerful than a two-stage design. T
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A single-stage design also allows one to
examine multiple phenotypes and to perform
multimarker testing. On the other hand, a
large-scale case-control association study is
costly. Among 500,000 SNPs, only a few of
the SNPs are, or are in LD with, true suscep-
tibility SNPs. Genotyping all SNPs using all
samples is a waste of resources. With an ap-
propriate choice of design parameters, a two-
stage design would reduce genotyping costs
up to 50%, yet have power close to the cor-
responding single-stage design. Therefore, a
two-stage sampling design is cost efficient and
particularly useful for genome-wide associa-
tion studies.

In the two-stage designs shown in Table 5,
the same test statistic is applied to both stages,
e.g., the trend test statistic ZT (T ). However,
different procedures and test statistics can be
applied to the two stages. For example, at the
first stage we could pool a fraction of all the
DNA samples separately for cases and con-
trols. If the statistic used simply compares the
frequencies of an allele in cases and controls,
pooling DNA is an efficient way to reduce the
genotyping cost in the first stage. Comparing
the frequencies of alleles A and B in pooled
cases and pooled controls for each SNP is
equivalent to the first-stage test of Skol et al.
(50). In the second stage, the selected SNPs
are separately genotyped for each of the re-
maining samples. If the genotyping cost in
the second stage is much higher than that in
the first stage—in particular if more densely
spaced SNPs are to be genotyped in the sec-
ond stage—pooling DNA could be done in
the second stage, rather than in the first stage.
Pooling DNA in only one stage has the ad-
vantage that the individual genotype data can
be adjusted for covariates. Pooling DNA has
been applied to SNP and haplotype analyses
(e.g., 4, 26, 48, 67, 71, 74; for a review, see
46). For quality control, several sets of pools
within cases and controls are usually used
as replications and, if the pools are not too
large, it is possible to obtain good estimates of
haplotype frequencies from them (34). How-
ever, optimal two-stage designs with pooling

DNA require further study and the number of
pools is a further design parameter to be de-
termined. As another example, following the
same two-stage design as in Table 4, we can
apply a multimarker analysis to the first stage
and select clusters of SNPs for the second
stage (25). In this case, the two-stage design is
based on clusters of SNPs rather than on sin-
gle SNPs. This approach is similar to the two-
stage design for haplotype analysis proposed
by Thomas et al. (57). The optimal configura-
tions of design parameters for two-stage sam-
pling with multimarker analysis are unknown
and need further research.

Research on multistage sampling has
mainly focused on a binary outcome. For
quantitative traits, we can also apply the
multistage sampling designs used for binary
outcomes by defining two thresholds to deter-
mine cases and controls (e.g., for blood pres-
sure, cases could have pressure greater than
160/90 and normal controls pressure less than
120/80). For a QTL, the power to reject the
null hypothesis is substantially increased when
subjects with more extreme trait values are
sampled. Therefore, sampling only the more
extreme trait values in each stage may be use-
ful to reduce the cost of genotyping when the
cost of measuring trait values is much cheaper
than the cost of genotyping.

One disadvantage of case-control asso-
ciation studies is that population stratifica-
tion or allelic correlation may lead to spuri-
ous association (25). Population stratification
occurs when subjects with different genetic
backgrounds are enrolled. For example, in-
dividuals with different ethnic backgrounds
may be defined as subpopulations. The sub-
populations can cause spurious associations
if they have different disease prevalences as
well as different allele frequencies for a SNP.
An extreme situation of population stratifica-
tion occurs when cases and controls are sam-
pled from two different ethnic groups. Allelic
correlation, arising from cryptic relatedness,
may occur within a population if there is not
random mating, with the result that HWE
does not hold in the population. This can
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Hardy-Weinberg
disequilibrium
(HWD): departure
from
Hardy-Weinberg
equilibrium
proportions, often
resulting from
selection

distort the test statistics, leading to either an
underestimate or overestimate of their vari-
ances. Adjustments for either population
stratification or cryptic relatedness have been
studied in the literature for single-stage de-
sign, e.g., using structure analysis and a latent-
class modeling approach (32, 33, 41, 43, 62),
or a genomic control approach (5, 16, 44, 72).
The effect of population stratification and al-
lelic correlation on two-stage designs has not
been studied and may be more complicated
than for single-stage designs. One possibility
is to apply genomic control to correct for vari-
ance distortion using what are believed to be
null SNPs—SNPs that are not in LD with
loci underlying the trait under study. Because
only a portion of the SNPs are genotyped
in the second stage, the candidate null SNPs
should be from among those not selected from
the first stage for advancement to the second
stage. However, genotypes of these null SNPs
are only obtained from a fraction of the case-
control samples.

MULTISTAGE DESIGNS FOR
ASSOCIATION STUDIES

Most research on optimal cost-efficient de-
signs for association studies has focused on
two-stage designs. Multistage designs for as-
sociation can also be considered. Prentice
et al. (31) discussed a three-stage design for an
association study with 250,000 SNPs. They
suggested dividing the case-control samples
into three independent portions of equal size
for each stage. To allow for an overall average
of 2.5 false positives in this three-stage study,
the significance level 0.022 was used for each
stage. This design has a two-thirds reduction
in the genotyping cost, with only 121 SNPs
typed at the third stage, each tested at a signif-
icance level of 0.022. This design is simple but
not optimal, and its power performance is not
clear. A similar three-stage screening proce-
dure for genome-wide studies that divides the
samples into three fractions, with decreasing
sizes from the first stage to the third stage, has
also been discussed (19). The significance lev-

els used at the first two stages were liberal, but
a more stringent level was proposed for the
third stage. The optimality of this design is
unknown. Optimal three-stage designs based
on different optimality criteria can be ob-
tained, analogous to the optimal two-stage de-
signs. However, because more design param-
eters are involved, the optimal solutions will
be more complicated and difficult to define.

Statistical power can be further enhanced if
a “self-replication” analysis stage is employed.
This idea of self-replication was introduced by
Van Steen et al. (58) for a single-stage family-
based association study and was applied to a
genome-wide family-based association study
with 100,000 SNPs (18). The idea is to iden-
tify and use two statistically independent pro-
cedures to test each SNP for association. After
the first procedure is performed to test for as-
sociation, the second can be regarded as an in-
dependent replication of the results obtained.
The main feature of this procedure is that all
samples are used in both analysis stages. In
a single-stage case-control design, the power
of using self-replication is often greater than
that of a single-stage analysis without the self-
replication (73).

When the two alleles, A and B, of a SNP are
independent, HWE holds at this SNP. HWE
is often tested by the Hardy-Weinberg dis-
equilibrium (HWD) coefficient (65). Defin-
ing p1 = R1/R, p2 = R2/R, q1 = S1/S and q2

= S2/S (Table 2), this coefficient is �1 = p2–
( p2 + p1/2)2 in cases and �0 = q2–(q2 + q1/2)2

in controls. Departure from HWE among
cases has been used to test for association (12),
but has no power under a multiplicative model
(28, 66). After standardization, the resulting
statistic can be used because it has a large sam-
ple chi-squared distribution with 1 degree of
freedom under the null hypothesis. HWD has
also been used, in both cases and controls, to
indicate genotyping errors as a form of qual-
ity control for large association studies). Song
& Elston (52) proposed using the difference
in HWD coefficients between cases and con-
trols, �1–�0, to test for association; we refer
to this as the Hardy-Weinberg disequilibrium
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trend test (HWDTT), denoted ZH (T ). When
HWE holds in the population, in large sam-
ples ZH (T ) and ZT (T ) are independent un-
der the null hypothesis and so can be used for
self-replication. Using all samples, each SNP
is first tested by ZH (T ) at the significance level
α1, and those of the m SNPs that are signifi-
cant at this level are then tested using ZT (T )
at the level α2, where α1α2 = α/m (73).

Using the concept of self-replication, we
can introduce into a multisample design the
test ZH (T ) as a new analysis stage. For exam-
ple, in the two-stage design in Table 4, we can
add this as an extra stage once both sets of data
T1 and T2 become available: The test statistic
ZH (T1 + T2) is calculated on the total sam-
ple of N(1) + N(2) individuals and then only
those SNPs that are significant (at a prede-
termined level) are tested using ZT (T ). Thus
fewer SNPs are tested, mitigating the multi-
ple testing problem. This self-replication can
also be applied to the second stage of any of the
two-stage designs in Table 5 where the trend
test is used. Thus, instead of using the trend
test in the second stage, we apply the self-
replication procedure. In this case, although
genotyping costs will not be reduced by in-
troducing a self-replication stage, the power
of the two-stage design would be improved
(73).

DISCUSSION

In this review, we outlined three types of mul-
tistage sampling schemes for genetic studies.
The first follows the classic paradigm that
has been successfully used for Mendelian dis-
eases: First, familial segregation patterns are
examined in families; this is followed by link-
age analysis using samples of affected sib-
pairs, complete sib-ships, nuclear families,
case-parents trios, or large pedigrees; and this
is followed by an association study using fam-
ily and/or individual data.

The second scheme is for more com-
plex diseases: Linkage analysis using fam-
ily data is first conducted, followed by an
association study for candidate genes. This

linkage-association design has several advan-
tages. First, results of the prior linkage anal-
ysis provide insight into association studies,
because markers that are significantly linked
to a disease locus can be regarded as providing
candidate genes for the association study. Sec-
ond, testing association between a marker and
a disease locus can incorporate results of the
linkage analysis to enhance the power of the
association study (27, 61). Third, if many rare
variants at a single locus can each cause the
disease, a linkage study will have more power
than an association study to detect that locus.
Fourth, a linkage study involves the collec-
tion of family data that enables one to detect
phenomena such as anticipation and parent-
of-origin effects (imprinting).

The third scheme is a multistage design for
genome-wide association studies using only
case-control samples. This multistage sam-
pling can reduce the genotyping cost while re-
taining nearly optimal power compared with a
single–stage association design. In a two-stage
design, a fraction (usually between 25% and
50%) of case-control samples is first geno-
typed on all 100,000–500,000 SNPs in the
first stage, in which association between each
SNP and the disease is tested. Only a small
fraction of the SNPs (often less than 10%)
is selected for genotyping on the rest of the
samples. Then the two stages are combined to
test the selected SNPs. With high-throughput
genotyping technology, this last scheme is
most promising for the future, but the advan-
tages of conducting a linkage study prior to a
genome-wide association study should not be
ignored.

In this review of multistage sampling
designs, we focused on designs in which
each sample is ascertained conditional on its
phenotypes. In pharmarcogenetic or gene-
intervention interaction studies of candidate
genes, samples are randomized to two treat-
ments (interventions) for a period of time.
The genetic characteristics of individuals who
develop disease during this period are then
compared between the two treatment groups
and tested. The genotyping cost may not
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then be an issue because, in such a prospec-
tive case-control study, follow-up of individ-
uals usually costs much more than genotyp-
ing. For example, to study whether or not
regular use of an inhaled b2-adrenergic ag-
onist worsens airflow and clinical outcomes
in asthma patients, a small-scale retrospective
case-control study was carried out in a first
stage (22). This suggested that adverse events
occurred in individuals with homozygosity
for arginine (Arg/Arg), rather than glycine
(Gly/Gly), at aminoacid residue 16 of the re-
ceptor. No significant events were identified
with heterozygosity (Arg/Gly). Therefore, in
a second stage, only Gly/Gly and Arg/Arg
individuals were identified and enrolled, and
then regularly scheduled treatment with al-
buterol or placebo was given to each matched

pair (Gly/Gly-Arg/Arg, matching for forced
expiratory volume in 1 s, i.e., FEV1) in a
masked, crossover design (21). This two-
stage genotype-stratified design dramatically
reduced the total cost of the prospective trial
compared with the same trial that would have
enrolled random samples without selective
genotyping.

In conclusion, most genetic studies need
to have independent replication, in partic-
ular for a large study, because there is a
danger of a high false positive rate from
testing many SNPs. Once the results of a
genotype-phenotype association have been
replicated, additional sampling may be needed
for fine mapping, resequencing, functional
studies, and, finally, developing personalized
medicine.

SUMMARY POINTS

1. The classical paradigm for the genetic analysis of a familial disease in humans has
been to collect family samples for segregation analysis and linkage analysis, followed by
collecting further samples for association studies. This multistage sampling procedure
has been extremely successful for Mendelian diseases.

2. For complex diseases, the first stage has tended to be a genome-wide linkage study to
suggest candidate regions for further fine-mapping and association studies.

3. A well-designed optimal two-stage association study, possibly pooling DNA at one
stage, is cost-efficient for genome-wide association studies. It has power close to
that of a single-stage design, but with up to a 50% reduction in the genotyping
cost.

4. Three-stage association designs are also promising, but need further study of their
optimality.

5. Statistical methods need to be developed to control for confounding factors and to test
for gene-gene and gene-environment interactions in multistage association studies.

6. Replication and resequencing are important stages of a sampling design for genetic
studies.

7. Collecting a sample of families for a linkage study before conducting a genome-wide
association study may still be useful, either to reduce the cost when there is allelic
heterogeneity or to detect generational effects.
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