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Abstract

The complexity of music is one of the less intensively resieadl areas in music information retrieval so far.
Although very interesting findings have been reported dveryears, there is a lack of a unified approach to
the matter. Relevant publications mostly concentrate mglsiaspects only and are scattered across different
disciplines. Especially an automated estimation baseti®@audio material itself has hardly been addressed
in the past. However, it is not only an interesting and cimafleg topic, it also allows for very practical
applications.

The motivation for the presented research lies in the erdmaant of human interaction with digital music
collections. As we will discuss, there is a variety of tagk®¢ considered, such as collection visualization,
play-list generation, or the automatic recommendation asim While this thesis doesn’t deal with any
of these problems in deep detail it aims to provide a usefotrdmution to their solution in form of a set
of music complexity descriptors. The relevance of music glexity in this context will be emphasized by
an extensive review of studies and scientific publicatiansnfrelated disciplines, like music psychology,
musicology, information theory, or music information retal.

This thesis proposes a set of algorithms that can be usedntpute estimates of music complexity
facets from musical audio signals. They focus on aspectsaisiics, rhythm, timbre, and tonality. Music
complexity is thereby considered on the coarse level of comagreement among human listeners. The
target is to obtain complexity judgements through autotnedimputation that resemble aiva listener’s
point of view. Expert knowledge of specialists in particutausical domains is therefore out of the scope
of the proposed algorithms. While it is not claimed that tles & algorithms is complete or final, we will
see a selection of evaluations that gives evidence to tHelness and relevance of the proposed methods
of computation. We will finally also take a look at possibléufie extensions and continuations for further
improvement, like the consideration of complexity on theeleof musical structure.



Vi



Acknowledgments

During my work on this thesis | learned many things and thabisonly in the professional, but also in the
personal sense. During my stay at the Music Technology Grbagd the luck to experience a unique climate
of encouragement, support, and open communication thaessestial for being able to proceed so fast and
smoothly with my research activities. It goes without sayiihat such a climate doesn’t come by itself, but
is due to every individual's effort to create and maintaiis fruitful environment. | therefore want to express
my gratitude to the whole MTG as the great team it has been éodumning my time in Barcelona.

In particular and at the first place | would like to thank Dr\i& Serra, my supervisor, for giving me
the opportunity to work on this very interesting topic as amber of the MTG. Also, and specially, | want to
thank Perfecto Herrera for providing countless suggestand constant support for my work in this research
project. Without him | certainly would not be at this pointwmo

Further thanks go to my colleagues from Office 316, Bee Suag Gmilia Gdmez, and Enric Guaus
for many fruitful discussions and important feedback. balsant to thank all the other people — directly or
indirectly — involved in the success of the SIMAC researatjgut for their appreciated cooperation.

This research was funded by a scholarship from Universitembgeu Fabra and by the EU-FP6-IST-
507142 project SIMAC. | am thankful for this support, whichs\a crucial economic basis for my research.

On the personal side | also want to thank my wife and my familyp provided me with the support,
encouragement, and sometimes also with the necessaryctiistr that helped me to keep going.

Finally, a special thank you note has to be included for mstésiin law” for helping out with the printing
and everything else. | owe you a coffee. ;-)

Hamamatsu, Japan Sebastian Streich
November 16, 2006

Vii



viii



List of Figures

1.1
1.2

1.3

21
2.2
2.3

3.1
3.2
3.3

3.4

4.1

4.2
4.3

4.4

4.5
4.6

4.7

Illustration of three different views on digitalmusic. . . . . . ... ... ... ...... D3
Screenshot from a music browser interface displayimggia song collection organized by
danceability and dynamic complexity. . . . . . . .. ... . oo

The Wundt curve for the relation between music complexitd preference. . . . . . . . .. H 9
Complete order, chaos, and complete disorder [from Bdis1¢1995)]. . . . . . . .. .. .. BS
Possible inclusions [from Edmonds (1995)]. . . . . . . . ... . . L o

6
Example for model selection with Minimum Descriptiomigéh [from Giinwald |(2005)]. . HB

lllustration of the Implication-Realization Procef®in Schellenberg et al. (2002)].. . . . . D 30
Tree obtained with algorithmic clustering of 12 pianegas [from Cilibrasi et al. (2004)]. . [bG

Plots from Voss and Clarke (1975). Léitg,,(loudness fluctuationagainstog,,(f) for a)

Scott Joplin piano rags, b) Classical radio station, c) Rsiakion, d) News and talk station;
Right: log,,(pitch fluctuation againstlog,,(f) for a) Classical radio station, b) Jazz and
Blues station, c) Rock station, d) News and talk station. ...... . . ... ... ... ... 1
Average DFA exponent for different music genres [from Jennings et al. (2004)] . .. ...

Instantaneous loudness as in'eq. 4.3 (dots), globahémscas in eq. 4.4 (grey solid line), and
average distance margin as inleq. 4.5 (dashed lines) foefmmple tracks. . . . . . . . .. 9
Frequency weighting curves fortheouterear. . . . . . . ... .. ... ... ... 1
Instantaneous total loudness values (eq.14.17) onilogac scale for the same four tracks
showninfigure 4.1. . . . . . . . ... e
Snapshots of energy distributions on 180°horizontahlfor two example tracks (trackl=
modern electronic music, track2= historic jazzrecording) . . . . . . . . ... ... ... 7
Schema for timbre complexity estimation with unsupsgdiHMM training . . . . . . . .. QO
Timbre symbol sequences for excerpts of a) Baroque demfuasic, b) a modern Musical
songwithorchestra. . . . . . . . . . . L e

Block diagram of timbral complexity computation basedspectral envelope matching. . D 65



4.8 Band loudness similarities (€q. 4.28) for three mus@egpts: a) bagpipe ensemble, b) clas-
sical symphony, c) rap (the thick line at the bottom markssibetions that are identified as
voice content and therefore left out in the complexity cotafian). The timbral complexity
is calculated as the percentage of frames where the sityilagqual to zero. . . .. .. .. 6

4.9 Distance measures for tonal complexity computationinegrted correlatioani], b) city
block distanceD[;], ¢) linear combination, d) corresponding HPCP data (befuoging av-

BragR). . i e
4.10 Excerpts from the time serie&:) for three example pieces from different musical genres. D 72
4.11 Double logarithmic plots of mean residual overtimdesa. . . . . . . . ... ... .... 3
4.12 DFA exponent functions for the three example tracksfigured 4.10. . . . . . . ... . .. W4
5.1 Screenshot from the second part of the websurvey. . . . . . ... ... ... ... ... @0
5.2 Average percentage of correct predictions with sulojextels for the binary complexity (top)

and liking ratings (bottom) according to different demqggrie groups. . . . . . . . . .. .. 6
5.3 Top-eight labels with the highest number of assignestart . . . . . ... ... ...... @8
5.4 a-levels for 60 techno (0) and 60 film score tracks (x), unceder . . . . . . ... ... .. QQ

5.5 Distributions on deciles for the twelve labels with msighificant deviation from equal dis-

tribution (solid horizontal lines). . . . . . . . . . ..



List of Tables

21

3.1

51
5.2

5.3
54
55
5.6

Approximate number of page hits found by the Google $eangine for different search
phrases. . . . . . L m
Features used by Scheirer et al. (2000) in theirexpatime. . . . . . .. ... ... ... E9
Statistics about the subjects who answered the webysutve . . . . . . . . . . ... @2
Pearson correlation for the complexity descriptor$witeraged ratings of complexity and
liking (significance ap < 0.01 is indicated byitalics). . . . . ... ... ... ... .... 4
The ten most significantly deviating labels ineach dioec . . . . . . .. ... ... ... HQ
Confusion matrix of three class machine learning expent. . . . . . . . ... ... ... BZ
Feature combinations used in the trackball experiments . . . . . . ... ... ... .. EE.
Mean, standard deviation, and significance margin fersemarch time in seconds of each
setup [Andricetal. (2006)]. . . . . . . .. e @

Xi



Xii



Contents

Abstract

Acknowledgments

1

Introduction

1.1 Research Contextand Motivation. . . . . . ... . ... ... . i
1.1.1 Music TracksasDataFiles . . . . . . .. .. .. .. .. . . ... .
1.1.2 Problems with Digital Collections . . . . . ... ... ... .. .........
1.1.3 Semantic DescriptorsasaPerspective . . . . . . .. . . ... . ... ...,

1.2 ThesisGoals. . . . . . . . e e e

1.3 Applicability of Music Complexity . . . . . . . . . . e
1.3.1 Enhanced Visualizationand Browsing . . . . . . . . . . . . cccce v oL
1.3.2 PlaylistGeneration . . . . . . . . . ... e
1.3.3 SongRetrieval . . . . . . .. e

1.4 ThesisOutline . . . . . . . e

The Meaning of Complexity

2.1 Thelnformal View . . . . . . . . . . e
2.1.1 Difficult Descriptionand FeltRules . . . . . ... .. ... . ..........
2.1.2 Subjectivity . . . ... e
2.1.3 Trendy Buzzword? . . . . . . . .. e

22 TheFormalView . . . . . . . . . . e
221 Informationand Entropy . . . . . . . . .
2.2.2 KolmogorovComplexity . . . . . . . . . . e
2.2.3 StochasticComplexity . . . . . . . . . . . .. . .. e

2.3 Implicationsforourgoals . . . . . . . . . . . e e

Former Work on the Complexity of Music
3.1 The Preferred Levelof Complexity . . . . . . . . ... .. ... ... .. ... ...,



3.1.1 Complexity and Aesthetics

3.1.2 Psychological Experiments

3.1.3 Musicological Studies
3.1.4 Conclusion

3.2 Computing Complexity on Symbolic Representations . ...... . . . .. ... ......

3.2.1 Models for Melodic Complexity . . . . . . .. . .. .. . ... ..
3.2.2 Models for Rhythmic Complexity

3.2.3 Models for Harmonic Complexity . . . . . .. .. .. ... ...
3.2.4 Pressing’s Music Complexity
3.2.5 Algorithmic Clustering

3.2.6 Conclusion

3.3 Computing Complexityon Audio Signals . . . . . . . ... ... ... .. ......
3.3.1 Complexity of Short Musical Excerpts
3.3.2 Power Laws

3.3.3 Detrended Fluctuation Analysis
3.3.4 Conclusion

Complexity Facets and their Implementation
4.1 Working on Facets

4.2 AcousticComplexities . . . . . . . . . e e
4.2.1 Implementation of the Dynamic Component
4.2.2 Implementation of the Spatial Component

4.3 Timbral Complexity

4.3.1 Implementations of Timbre Complexity
4.4 Tonal Complexity

4.4.1 Implementations of Tonal Complexity
4.5 Rhythmic Complexity

4.5.1 Implementation of Danceability

Evaluation
5.1 Methods of Evaluation
5.2 Evaluation with Human Ratings

5.2.1 Survey Design, Material, and Subjects
522 TheObtainedData . . . . ... ... ... ..
5.2.3 Results of the Analysis
5.3 Evaluation with Existing Labels
5.3.1 The Dataset
5.3.2 Results

Xiv



5.3.3 ConcludingRemarks . . . . . . . ... e
5.4 Evaluation through Simulated Searching . . . . . . . ... ... .. ... .. ... ..
5.4.1 Experimental Setup . . . . . . . . .. e
542 Results . . . . . . ..
55 Conclusion . . . . . . e e e

6 Conclusions and Future Work

6.1 Summary ofthe Achievements . . . . . . . . . .. . ..
6.2 OPENISSUES . . . . . o e e
6.2.1 Structural Complexity . . . . . . . ..
6.2.2 OtherFacetstobeconsidered . . . ... ... ... ... ... ...,
6.2.3 Application-oriented Evaluation . . . . .. ... ... .. ... .. ... ...,
6.3 Music Complexity in the Future of Music Content Procegsi . . . . . . ... ... ....
Bibliography

XV




XVi



Chapter 1

Introduction

1.1 Research Context and Motivation

Music, in the western cultural world at least, is presentvargbody’s life. It can be found not only at its
“traditional” places like opera houses or discotheques$,dmpears in kitchens and nurseries, in cars and
airports, bars and restaurants, parks and sport centelin amhy other places. With the increased mobility
of music reproduction devices nowadays everybody can timgwn personal music along and listen to it
almost anywhere. But this enhanced availability of musso aheans that concentrated and active listening
has become rare. Often music serves as a background whilistéreer is doing something else, it is used
as an acoustical “gap filler”, or as an emotional trigger [Seeth and Hargreaves (1997c¢)]. New ways of
dissemination for music have been arising and never befb@sibeen as easy as today to get access to such
a huge amount of music (more than a million titles are avilfilom a single music portal) without even
having to get up from one’s chair. Yet, it is not always easfjrtd what one is looking for.

1.1.1 Music Tracks as Data Files

With a broader public becoming aware of efficient audio cgd@cthniques during the last decade, the amount
of music being stored and collected in digital formats iased rapidly. While in former times a music
collection consisted of a conglomeration of physical médirm of vinyl discs, analogue or digital tapes,
and later also compact discs, a new kind of collections eetkdye to the new formats. No longer is the
music in these collections attached to a physical mediurnexists merely as a string of bits that can, very
easily and without degradation in quality, be moved andedfiom any digital storing device to any other
one. This property, apart from being very convenient, agaiimforced the rapid spread of the new formats,
by making it as easy as never before to share and exchange witlsiirtually anybody on the planet (or at
least with the roughly 16% of our world’s population who haeeess to the interngt

laccording to http://www.internetworldstats.com/stats.h



2 CHAPTER 1. INTRODUCTION

Nowadays, the music industry managed to hinder the wild @xgé of music by filing lawsuits against
operators and private users of such content exchange riestviut digital music collections already exist in
large numbers and the concept of storing music tracks aatiiies with all its advantages is an established
fact for many music consumers. Lately, legal options to bgital music online and receive it by file transfer
over the World Wide Web are arising, often combined with same of digital rights management that is
supposed to prevent consumers from “shamelessly” copyidgharing their new acquisitions. Last but not
least, alternative models of copyrighting and licensingital content are emerging (e. g. creative comr@pns
and contribute a small but growing part to the music that @afolnd and obtained from the internet. David
Kusek and Gerd Leonhard, two music futurists, even coingha bf “music as water” [Kusek and Leonhard
(2005)] in order to describe the change of attitude towardsiop music consumption, and music ownership
that is in the process of establishing itself:

“Imagine a world where music flows all around us, like watarlike electricity, and where
access to music becomes a kind of ‘utility’. Not for free, per but certainly for what feels like
free.”

While this situation still remains only an imagination nowgd, there are already plenty of examples
of developing communities of people who share their owntdigireations on a very large scale (although
many of those creations might be in fact remixes of othergeniw and thus again problematic in terms of
traditional copyright laws). Two outstanding examplesehare FIicl«E for digital photos and images, and
YouTubQ for digital video clips each with millions of users. An exagrom the music domain is the
Freesound proje@twhere audio samples of all types of sounds are shared fosthmunew digital creations.

1.1.2 Problems with Digital Collections

Despite the many advantages that came with this “digitadltgion” we can observe some negative effects,
too. The flexibility that music tracks, in form of individuéiles, provide goes along with a demand for
a proper storage organization and labelling or tagging. ®imila physical collection an item might be
declared lost when it cannot be found, in a large virtualemibn this can be said already when there are no
means to search for it. This is especially true for sharedamign collections like commercial online music
shops and community portals. Even if tags are made avaitgbiee provider they cannot be guaranteed to
be complete and consistent.

The freedom to create personalized play lists and to listanusic tracks independently from concepts
like albums or compilations requires on the other hand a dgoadviedge of the collection at hand in order
to arrive at satisfying results. Navigation and utilizatimecome difficult and limited, when typing errors in

2http://creativecommons.org/
Shitp://www.flickr.com
4http://www.youtube.com
Shttp://freesound.iua.upf.edu/



1.1. RESEARCH CONTEXT AND MOTIVATION 3

folderx
-filel.mp3
-file2.mp3

foldery
-file3.mp3

abstract entities
with semantic
connotations

information in seguences of
structured format binary data

Figure 1.1: lllustration of three different views on digitausic.

filenames, an insufficient taxonomy for file organizationd @amconsistency in the manually assigned labels
occur in such a collection.

Figure/ 1.1 shows three simplified views on a digital musidemtion that illustrate the situation. In
the center we have the traditional interface perspectivesreyeach track is identified by a name that was
assigned to it and is placed somewhere inside a folder treerenfolders might be arranged according
to albums, artists, genres, or any other concept of orgoizaOn the left we have a view of a human
user interacting with the collection. For him the items assaiated with semantic connotations. A song
in the collection has a recognizable musical theme, beléogs certain style, evokes a particular mood,
features certain instruments, etc. However, if he did no@fiuhis information into the system by choosing
a sophisticated folder structure or by excessive manuginggthese connotations are simply not available
for his interaction. Finally, on the right side we see hovwiedi#nt the perspective of the machine is. For the
computer the file names are only pointers to strings of bisgrgbols on a storage medium. The type of
“connotations” we find here are only of the technical typduding things like the bit rate, the file size, or the
sampling frequency. Another aspect of bit strings reprisgmusic is their volatility and reproducibility.
With the move of a finger they can be erased and they are gohewriteaving any trace. Or they can be
replicated with very little effort basically infinite timest no cost other than the disk space to store them.
Especially the latter has an impact on the value that is msdi¢p such an item. According to the theory of
supply and demand a commodity with finite demand but infinitgpsy has a price of zero (of course this
cannot be applied directly to music). As an illustrationi ¢fo into a record shop to buy an album and the
salesman gives me two copies for the price of one, | will aasthis a true benefit, because | can give one
copy to a friend or resell it. If | buy the same album from animalshop and they offer me to download it
twice by paying only once, | would just find it silly. This gise good hint for understanding why people are
S0 “generous” to offer their complete collection of musiediffor anybody to download without any charge.
And it also helps understanding why people do not feel shyoterdbad or copy music from others without
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paying and without feeling they do something unjust. Esgbcin the times of free peer-to-peer music
sharing networks this configuration boosted the dissefoimaind the enforcement of digital music formats,
which are a matter of fact nowadays. On the other hand, tltisssxof digital tracks may have decreased the
appreciation for the individual item. So some private azilens have been extended for the sake of collecting
rather than because of a particular interest in the material

Summarizing we can say that today probably many hard disiks wkich contain a large collection of
digital music, but the owner is ignorant about the full paigrof it. Even if he or she is not, it means a lot of
effort to fully exploit it and rather sooner than later theremtly available tools reach their limits. With the
new way of music dissemination through online portals ligedxample iTun&Sor Y!musi& the problem
of searching, browsing, and navigating a (unfamiliar) rausillection is brought to an even larger scale and
begs for new solutions.

1.1.3 Semantic Descriptors as a Perspective

Slowly, tools and technologies are starting to spread titeht to enhance and facilitate the interaction with
digital music collections. One example is the EU-FP6-18T-B42 project SIMAC (Semantic Interaction
with Music Audio Contents), which formed an important confier the research presented here. The project
was initiated by the Music Technology Group (MTG) of Pompeibia University and started in January
2004. As the project leader, MTG was heavily involved in agistration and research. The author is one of
six researchers inside MTG who, lead by the research maRagtecto Herrera, were working full-time for
SIMAC until the project finished in March 2006. The projectigin goal was the development of prototypes
for the automatic generation of semantic descriptors fosioall audio and the development of prototypes
for exploration, recommendation, and retrieval of musiesfil Further information on the project and some
examples of what has been achieved can be found on the pm;eqbagg. Related projects that attack the
same topic from slightly different angles are for instanemSnticHllﬁ and GOASEMS.

The key component of such tools and technologies is therasgigt ofsemantic descriptorfgs proposed
in Herrera (2006)] to the music tracks. We want to use this tier distinction from common descriptors or
features (as they are usually referred to in the technidd)fi€he latter usually have the notion of being more
low-level(i. e. easy to compute and close to the audio signal), whidtemthem interesting for algorithmic
classification and machine learning tasks. But due to tleehrical nature they are not very suitable for a
direct presentation to the average user of a music orgémizttol. They are simply not used by humans to
describe music. Semantic descriptors on the other handdsbapture properties and attributes of the music
content that can be experienced directly by a human listéoreexample the tempo, the instrumentation, or
the lead singer’s gender. Such properties usually reveat$klves automatically to a human who is listening

Bhttp://www.apple.com/itunes/
"http://launch.yahoo.com/
8http://www.semanticaudio.org
Shttp://shf.ircam.fr/
1Ohttp://www.ipem.ugent.be/2004GOASEMA/



1.1. RESEARCH CONTEXT AND MOTIVATION 5
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Figure 1.2: Screenshot from a music browser interface aljgpd part of a song collection organized by
danceability and dynamic complexity.

to a music track and hence are potentially very relevantim&ion when selecting and organizing music in
a collection. Therefore a link between the pure digital authta and the semantic concepts describing the
content offers much more natural ways of searching in mugleations than it is currently possible. Instead
of being limited to titles, artists, and genres as the meémsquery even very subtle or abstract aspects of
music could be used provided the semantic descriptors argnasl to the tracks. A common way to put it
is by saying that with these descriptors we try to closesgmmantic gagsee e. g. Celm%%)]. Some of
the semantic connotations of the left side from figure 1. bhezavailable for interacting with the collection.
Apart from the enhanced querying, there are also otherlpibss arising. Browsing through a collection,
be it one’s own or a foreign one, where different musical atspare visualized (see figure 1.2) is not only
amusing, but it may also lead to a better understanding ofrthsic. Similarities between different styles
or artists can be discovered, the evolution of a band alang tian be tracked, extreme examples can be
identified. This playful and educational side effect couldrt again lead to a more attentive way of music
listening, increasing pleasure and appreciation.

But the availability of such descriptors does not only braglitional opportunities for humans interacting
with music. Organized in a machine readable way, this mata-tbrms an access point for information
processing devices to the properties of music which arsaetdor a human listener. Basically, this allows
computers to mimic a human’s music perception behavior atabéishes a direct connection between the
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left and the right of figuré 1.1. Instead of the human browsrey collection, the computer could do this
automatically and identify for example clusters of simii@cks. Thus, the computer is enabled to generate
play lists according to given criteria or to recommend toubker similar tracks to a selected example track.

So we see that providing machine readable semantic dessrifarr the tracks in a collection opens the
door for a large variety of interesting methods of sortingarshing, filtering, clustering, classifying, and
visualizing. But how can we arrive there? Different wayssexd assign semantic descriptors to music. It
is possible (although expensive) to have a group of musitepsonals annotate them. Some web-based
music recommendation services follow this strategy (ea@d@r@). This first option is of course usually
not feasible in the case of private collections. Still, thetardata - once annotated - could be stored in a public
database and would then be associated through a fingengrsgivice with the files in a private collection.
To some extent the descriptors can also be assigned by a adwmieunity of listeners by majority vote or
by using collaborative filtering techniques. This secontiampinvolves quite some coordinative efforts and
furthermore causes a delay until reliable data for a nevktb@comes available. Really new material will
come without tags and will take its time until it has been disred and labelled by a sufficient number of
people. The third, most practical and versatile option h@awés the automatic computation of descriptors
based on the audio file itself. This way, an objective, caesisinexpensive, and detailed annotation can be
accomplished. The research presented here is about tldfition of descriptor extraction.

1.2 Thesis Goals

This thesis proposes to consider a specific type of semaasicrightors in the context of music information
retrieval applications. We want to coin the term music canity descriptors for them. It is a truism that
music can only be experienced as a temporal process. Therafoen providing a description of music it is
necessary to capture aspects of its temporal evolution ayahization in addition to global descriptors, that
only consider simple statistics like the maximum, mean oiaveee of instantaneous properties of an entire
music track.

The algorithms proposed in this thesis focus on the autamaimputation of music complexity as it is
perceivedd by human listeners. We regard the complexity of music as la-legel, intuitive attribute, which
can be experienced directly or indirectly by the activeeligr, so it could be estimated by empirical methods.
In particular we define the complexity as that property of aitel unit that determines how much effort the
listener has to put into following and understanding it (skaptef 2 for a more detailed discussion of the
termcomplexity.

The proposed algorithms are intended to provide a compactigéion of music as a temporal process.
The intended use should be seen in facilitating user intieragvith music databases including collection
visualization, browsing, searching, and automatic recenghation. Since music has different and partly

Uhttp://iwww.pandora.com
12Throughout this document we will use the term “perceptioth@ligh “cognition” might be considered more appropriate ateso
places. However, we want to omit this distinction here andseoutively use “perceptual” as the contrasting term toHibécal”.
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independent facets, we will address these individualyhwéparate algorithms (see chapter 4). In particular
the following facets will be considered:

 Tonality
e Rhythm
* Timbre
* Acoustics (spatial/dynamic)

Our taxonomy differs slightly from the one stated in Dowr28@3), where seven facets are described.
This is because we followed an approach driven by the cortipotdly accessible for the specified context of
audio signal processing, whereas Downie (2003) takes arratiore-based perspective. So while our tonality
facet refers to the entirety of pitched content of an audjaai, Downie distinguishes between the pitch facet
and the harmonic facet. He also includes an editorial, aiéxtaind a bibliographic facet in his list. Our
acoustic facet overlaps partly with the editorial one froowie, but the latter two are completely left aside
in our taxonomy. Although the textual facet most likely hame relevance in terms of perceived complexity
it is simply unattainable in the given context with preseghal processing methods.

The descriptors are designed for the track level. That maasnplete track of music is considered the
unit on which the algorithms are working. The segmentatida tracks is assumed to be given already, so
the application to a stream (as in broadcast monitoringdisddressed. While it might be useful to consider
complexity descriptors also on the segment level (i. e. fstirttt parts of a single track), we will not deal
with this in the context of this thesis. As for musical audie segments are not given, their detection alone
forms a problem big enough to devote a whole PhD thesis te& ¢ g. Ong (2006)].

It can be expected that individual listeners might have fegifit opinion about the complexity of a
particular musical piece. This is related to a differentte@hin which these listeners make their judgements.
For example an experienced Bebop aficionado could consitires version of the standard “Take the A
train” relatively low in complexity, but for the average Guty and Western listener this might be a rather
complex song. However, on the large scale they both woulbgily agree that it is more complex than
“Twinkle, twinkle, little star” and less complex than Delsys “Prélude a I'apes-midi d’'un faune”. The
semantic descriptors we want to provide should be compautabéach other and useful not only for one
but for many users. We want independence from the user ahtheikefore focus on this large scale rather
than addressing the individual characteristics of usersigexity perceptions. It is the goal to capture the
“common sense” in music complexity rating (see sectior?} ftom a nave point of view. Expert knowledge
about style-specific musical peculiarities will not be pithe algorithms. That also means we should expect
the classification to work on the large, but rougher scalearathan obtaining a precise ranking taking finest
nuances into account. For the latter we would have to focdstiail on a particular user’s musical background
and listening habits. The former can be achieved by assuanamgnmon background for a certain group of
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users and then restricting the validity of the provided ni@daly to this group. We chose the group of non-
expert music listeners with western cultural backgrounthasntended users of the developed descriptors,
since it forms a large fraction of the users dealing with theve mentioned music databases.

Finally it has to be said that the proposed algorithms onfynfa starting point to enter the domain of
music complexity related descriptors. Already the listafdts that were tackled during the research reported
here cannot be called complete. For example the complekityeolyrics is a certainly relevant descriptor
that has not been addressed at all, since the focus was arttatg® that operate exclusively on the audio
data. Other examples would be the musical structure and gledyn We will talk about possibilities for
future research in section 6.2 of chapter 6.

1.3 Applicability of Music Complexity

We already talked about the motivations for this researdhénprevious sections. After the goals are now
specified we have to further establish the connection to teé@qusly mentioned tasks in music information
retrieval applications. The obvious question is: Why shanlgical complexity descriptors in particular be
interesting when dealing with a digital music collection?

The answer has two parts. First, it is not too far fetcheddhettin facets of complexity might be directly
relevant for the listener. For example if | am interestedmdifig danceable music for a party, the rhythmic
complexity already provides a useful parameter for my sed®e if | am looking for “easy listening” music,
| might restrict my search to tracks at the lower end of the glewity scale on one or more dimensions.

For the second part of the answer we have to go back to the $&drwhere we find a publication by
Berlyne (1971). In this publication he states that an irdiiail’'s preference for a certain piece of music is
related to the amount of activity it produces in the listé&brain, to which he refers as tlagousal potential
According to this theory, which is backed up by a large vgridtexperimental studies, there is an optimal
arousal potential that causes the maximum liking, whileodda as well as a too high arousal potential result
in a decrease of liking. He illustrates this behaviour byamrited U-shaped curve (see figure 1.3) which
was originally introduced in the 19th century already by \8u{1874) to display the interrelation between
pleasure and stimulus intensity.

Berlyne identifies three different categories of varialdéfecting arousal [see Berlyne (1971) for de-
tails]. As the most significant he regards tt@lative variables containing among others complexity, nov-
elty/familiarity, and surprise effect of the stimulus. &rwe are intending to model exactly these aspects of
music with our descriptor, it is supposed to be very wellesdifor reflecting the potential liking of a certain
piece of music. We will return to this topic and review seVegetated experiments in section 3.1.

This said we can now flesh out the motivations for the use obstimdescriptors given in sectibn 1.1.3.
When a user is interacting with a music database or a musieatiah three major tasks can be identified:

1. Providing an appropriate interface for navigation anpl@ation.

2. The generation of a program (playlist) based on the usgrg.
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3. The retrieval of songs that match the user’s desires.

We can identify applications of complexity descriptors Ihthree tasks, which is discussed in the three
following sections.
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Figure 1.3: The Wundt curve for the relation between musiomexity and preference.

1.3.1 Enhanced Visualization and Browsing

For smooth navigation and exploration of databases a vesiigded visualization of the contents is a crucial
condition. This is a very difficult task when it comes to lasgaounts of complex data like music tracks. One
example for such visualization is the Islands of Music aggilon, developed by Pampalk (2001). This ap-
plication uses the metaphor of islands and sea to displasitthitarity of songs in a collection. Similar songs
are grouped together and represented by an island, whiardigr ones are separated from them through
“the sea”. The application uses features that are motiviad@a psychoacoustic insights, and processes them
through a self-organizing map (SOM). In order to computeilsitity between songs the sequence of instan-
taneous descriptor values extracted from each song hasgierbeken down to one number. Pampalk does
this by taking the median. He reports satisfying result$ dbithe same time states that the median is not a
good representation for songs with changing propertias @modal feature distributions).

Here, the complexity descriptors have a clear advantagegguse by default they consist only of one
number which represents the whole track and thus do not reeeeé further reduced by basic statistical
measures, like the mean or the median. Obviously, comglegfiresents a self-contained concept and is
not intended to from an alternative to the use of such measuls pointed out in the beginning of this
section, the different complexity descriptors reflect #iecharacteristics of the music that are potentially of
direct relevance for the listener. The descriptors arecfoes very well suited to facilitate the visualization
of musical properties the user might want to explore. Itiaightforward to plot the whole collection in a
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plane showing for example rhythmic complexity versus leagincomplexity without the need for specifying
a similarity metric (see also figure 1.2 on page 5).

Another aspect is the possibility of a more “musicologicatly of interaction with a music collection.
By providing the link between the actual audio and the muisioatent description a user might increase
his knowledge about the music in his own or a different cdilec Common properties of music from
different artists or different genres might be discover&tie changes in musical characteristics over time
for a particular band can be made visible. Also here the cexityl descriptors form an interesting addition,
which opens new opportunities that are still to be explored.

1.3.2 Playlist Generation

A playlist is a list of titles to be played like a musical pragr. A user interacting with a database might
ask for the automated generation of such a list. As Pachét@Q90) point out the creation of such a list
has to be taken seriously, since “[t]he craft of music prograng is precisely to build coherent sequences,
rather than just select individual titles”. A first step tads coherence is to set certain criteria the songs have
to fulfill in order to be grouped into one playlist. The useuktbbe asked to provide a seed song for the
playlist and the computer would try to find tracks from theathase which have similar descriptor values.
Pachet et al. (2000) go further and look at an even more addanay of playlist generation capturing the
two contradictory aspects of repetition and surprise. drsts have a desire for both, as they state, since
constant repetition of already known songs will cause bamedout permanent surprise by unknown songs
will probably cause stress. In their experiments Pachdt é€2@00) use a hand edited database containing,
among others, attributes like type of melody or music se¥Mp.can see a correspondence here to tonal and
timbral complexity, that encourages the utilization of gbexity descriptors for playlist generation.

An alternative way of playlist generation, which gives memntrol to the user, is that of using user
specified high-level concepts as for exampéaty-musicor music for workout Inside the SIMAC project
methods were explored to arrive at such a functionality. @yliét could then be easily compiled by selecting
tracks with the according label. The bottleneck here isdabelling of the tracks, which might be a lot of work
in a big collection. Since the labels are personalized angl andy have validity for the user who invented
them, there is no way to obtain them from a centralized mata-gervice. Instead the user can try to train
the system to automatically classify his tracks and to asgig personalized labels [e. g. citePlugin]. For
this process semantic descriptors are needed that helptingliishing whether a track should be assigned a
certain label or not. It depends of course very much on thereatf the label to identify descriptors that are
significant for this distinction. In any case, the complexiescriptors certainly have a potential to be useful
here, as can be seen from the examples at the beginning sktttisn.
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1.3.3 Song Retrieval

For song retrieval there are different possibilities in asiowatabase. The most obvious one is the direct
specification of parameters by the user. Since the compldgicriptors consist of only one value per track,
they can be used very easily in queries. The user can spaxiftraints only for those facets he is interested
in and narrow down the set of results. This way it is very gtitforward to find music that, for example,
does not change much in loudness level over time, or consaipisisticated chord patterns.

A second way of querying is the so callgdery-by-examplapproach. The user presents one or several
songs to the database and wants to find similar ones. So, Esnedpfor the visualization using similarity
measures, here the complexity descriptors can easily égrated into the computation again. The weighting
and/or the tolerance for the different descriptors couldecified by the user directly, extracted from the
provided example, or taken from a pre-computed user prdiileeh a user profile would be established by
monitoring the user’s listening habits (i. e. songs he/swih his/her collection; songs he/she listens to very
frequently, etc.) as in thecommendeapplication developed in the SIMAC project [see Celma g28105)].

Finally, we can think of anusic recommendedhat does not even need an example song. If the user’s
common listening behaviour is known it should be possiblestablish a “complexity profile”. This can be
understood for example as a histogram for the complexityesivhere either the number of tracks or the
listening frequency is monitored. From such a histograrhaigd be possible to identify the user’s optimal
complexity level in Berlyne's sense (see figire 1.3 on pdgeTdacks matching this level could then be
selected as recommendations for the user imitating thememmdations of friends with a similar musical
taste. It should be stated that complexity is of course netahly criteria that should be used here, but
according to Berlyne and others plays an important role ftemtial preference. Some experiments on this
relationship are reviewed in section 3.1 of chapter 3.

1.4 Thesis Outline

The rest of the thesis is structured as follows. In chaptee 2vll examine the ternrsomplexity since it plays

a central role for this research. We will look at the ways th#& used in different contexts and conclude
with the implications on our goals. The following chaptére®iews a variety of scientific examples where
concepts of complexity have been applied to music — ex|ylioitimplicitly. This chapter has the character
of an extended state of the art review, since we will not oplyut on algorithmic approaches to measure
complexity, but we will also consider contributions frormetfields of musicology, music perception and
cognition. In chapter/4 we will then report in detail the adimitions made during this thesis work in terms of
concrete algorithms. The mode of operation and the impléattien of each developed algorithm is explained
extensively. The chapter is structured according to tHermift facets of complexity that were considered in
this work. With chapter 5 we address the evaluation of whatlieen achieved. After a discussion of the
methodologies that were selected, we will describe in betaiexperiments that have been carried out and
what the results revealed. In the final chapter 6 we will sunmaahe conclusions of this work and point to
directions where future work might be useful.
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Chapter 2

The Meaning of Complexity

After we have clarified what our goals are and in which contextare operating, we will now examine in
more detail the chosen means to reach these goals. In tiptectvee will shed some light on the different
notions of complexity and what complexity can actually tedl It has to be a non-exhaustive compilation,
but a variety of aspects will receive attention. We will @iguish between two different perspectives, which
we will refer to as the informal view and the formal view. Thwrher is interesting for us, because it covers
also the everyday, non-scientific understanding of conifylexd thus relates directly to practical relevance.
The latter is interesting, because it is computationalliexao access and allows for fairly straight-forward
implementations. In both cases we might visit some areasthanot specially concerned with music usually.
There in particular we will have to consider the portabitifythe ideas to the domain of music and to the focus
of the research presented here. In section 2.3 at the end ohttpter we will summarize the implications for
our goals.

2.1 The Informal View

Without doubt, the termmomplexityis understood differently in different contexts and lack$ear and unified
definition. As we will see in the following, it might be consigtd an autological term, since in a way it can
be applied to itself: the terrmomplexityis complex.

2.1.1 Difficult Description and Felt Rules

John Casti points out in Casti (1992), that complexity is ownly used as a rather informal concept “for
something that is counterintuitive, unpredictable, ot plain hard to pin down”. In everyday language, he
says, the adjectiveomplexis used very much like a label that characterizes a feelingpression we have
about something, be it a piece of music, a bus route map, ouledihg the taxes. We speak odmplex
tasks complex structuresand complex systemsin table/ 2.1 we can see that this adjective also appears

13
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search term | “complex music” | “complex song”| “complex sound”| “complex rhythm”
number of hits 150,000 62,500 143,000 44,000

Table 2.1: Approximate number of page hits found by the Gesgharch engine for different search phrases.

quite frequently in the context of music. The lexical da’sﬂm\/ordN@ namessimplicityas the antonym of
complexityand so does Wikipe(ﬁa By looking further into the semantic relations we can idgranother
quality. WordNet gives the following definitions for the adfivecomplex

« complicated in structure
« consisting of interconnected parts

In the list of similar words we find adjectives likmnvoluted compoundintricate, or composite So addi-
tionally to the notion of difficulty in description and anfiation, that Casti emphasized on, there seems to
be an important aspect in the plurality of elements thatrarelved and in the way they interfere. The more
elements and the more interaction among them, the more eartipt result can be. Another way to put it
would be that something complex is more than simply the suits@farts. This seems to be true for (most)
music in general. For example a bunch of instrumentalistgipy at the same time at the same place doesn't
automatically result in music. Even though each individuaht play something musically meaningful the
whole only amounts to music if they interact and play togetti¢he freedom of each individual is limited by
the actions of the others, within these limits somethingaraiess complex can be formed by the ensemble.
In contrast, when everything is possible and what one pldges is not affecting the others at all, the result
is not complex, but simply the sum of several individuatistine generators.

It is interesting to note that the colloquial use of the tevomplexityis indeed much more related to
a feeling than to hard rationality. We could say that sormgtlis considered complex, not only if we have
difficulties describing it, but even if we don't really undéaind it. However, this is only the case as long as we
still have the impression or the feeling that there is soigtto understand. Opposed to this, if we don’t see
any possible sense in something and we have the feeling thatdmpletely random, we would not attribute
it as complex. So complexity resides “on the edge of chixedetween the two trivialities of complete order
and total randomness. This idea is nicely illustrated by mparison of the three diagrams in figure]2.1
taken from Edmonds (1995). The checkerboard pattern orefhedrresponds to complete order, regularity,
and predictability. We only needed to be shown a small paittarfid we could easily guess how the rest of
the picture looks like. The pattern is extremely simple —apgosite of complex. In contrast, the pattern
on the right is not regular at all. White and black dots appedret distributed randomly. No matter how
we look, there seems to be no rule or underlying structuren fidict there was a sophisticated determinism
governing the distribution, it would be clearly beyond oapacities to recognize it. Therefore, it would be
neglected in favor of the assumption that there is only naiskthus nothing we could understand. Were we

Ihttp://wordnet.princeton.edu
2http://en.wikipedia.org/wiki/Complexity
3supposedly this phrase has been coined by Norman Packar&8n 19
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Figure 2.1: Complete order, chaos, and complete disorden[Edmonds (1995)].

shown a modified version of the diagram where for example doaction of the pixels, randomly chosen,
are inverted, probably we would be unable to even noticeiffereince. As a result, this diagram would also
be attributed as beingot complex. The center one on the other hand gives a very difféngoression. It
contains some lines or curves and we can identify shapesjectelaistributed irregularly inside the square.
If we would see only half of the image we would not be able tadtethe other half, yet the arrangement
seems to follow some complicated rules that are not apptomamg. On a very abstract level, the diagram
seems to “make more sense” than the other two, despite wenbadea what exactly are the underlying rules
or what it is supposed to tell us. We will have to consider gast again in the second part of this chapter,
when we will talk about the mathematical, formal measuresoofiplexity.

As an exercise we can try to find an equivalent of figure 2.1Herdase of a music listening experience.
For example, the repeating sequence of a musical scale pkipgd up and down at a fixed tempo with a
stable and basic rhythm pattern could be considered a pessitresentation of the left diagram. Very fast
we would be able to pick up the rules for generating this “ruand identify it as extremely predictable,
simple and trivial. The other extreme, the right diagranuldde replaced by the output of a machine that
produces note durations and pitches at random. We mightatddielonger to come to a judgement when
confronted with this type of “music”, but finally we would dvahe conclusion that we are unable to identify
any rule in the sequence of notes. We would attribute thearassiandom and therefore also as not complex.
It is interesting to think of an alternative here. We could@¥e music that is in fact not random at all, but
possesses a complicated system of underlying rules thérai@o difficult to be recognized by the listener.
A possible candidate for this could be the compositions dfdvli Babbitt (1916- ), which are composed
according to very strict and precise regulations. Yet, astidiftymoczko (2000) puts it:

“Following the relationships in a Babbitt composition midge compared to attempting to count
the cards in three simultaneous games of bridge, all play&sss than thirty seconds. Babbitt's
music is poetry written in a language that no human can utateds It is invisible architecture.
The relationships are out there, in the objective world viieitannot apprehend them.”
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Figure 2.2: Possible inclusions [from Edmonds (1995)].

This looks like a contradiction. Shouldn't we attribute ay&igh complexity to a composition with such
a degree of organization? Probably, but we will only do sayéfcan decode or at least sense it in some
way. We will address this point in some more detail in sedRoh2. There are a lot of possibilities of
musical examples corresponding to the diagram in the middie look for something that would be judged
spontaneously as relatively more complex than the two exreases. Basically any “interesting” musical
composition could fit here as long as we can recognize somieatusles for example of tonality and rhythm
being fulfilled up to a certain degree. While we will be able tdigipate forthcoming events in the music
there are still enough open options for uncertainties. @ediptions will not reach 100% of accuracy as in
the case of the repeated scales.

2.1.2 Subjectivity

We saw that complexity is something we attribute to objgmtscesses, or systems which have certain char-
acteristics. But does this mean complexity can really bandgp as a property of a particular object, process,
or system in isolation? With the example of Babbitt's conifiaiss we already saw that this is problematic.
Were we névely exposed to his music our judgement would most likelyHz it is just a random concate-
nation of notes and therefore not complex at all. The infattistener on the other hand might acknowledge
the high complexity of the composition despite not beingablcapture much of it just by listening. So, who
is right?

We can use a second version of figure 2.1 to have anotherdtitst of this problem. In figurie 2.2 we
can see possible inclusions of the three diagrams fromdefght. With the knowledge, that the rightmost
diagram includes the middle one with further material acbitpwe would now tend to select it as the most
complex of the three instead of considering it being of loe@mnplexity than the middle one.

It emerges that we have to consider more than just the oltgett io make a statement about complexity.
It is the object in the view of the observer given a certainteghthat appears complex or not. To cite Casti
(1992) again: “So just like truth, beauty, good, and evimpdexity resides as much in the eye of the beholder
as it does in the structure and behavior of a system itséMvelcommitted completely to this point of view
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there would be no sense in trying to develop algorithms thatpute estimates of music complexity based
only on the audio signal. If half of the complexity residegtie observer or listener in our case, then we
should not expect a great relevance of these computed namider should not forget however, that we are

focusing on music listening experiences while Casti tatksuh the complexity of systems in a very general

sense. If we consider the spontaneous impressions of mmridisteners confronted with a music track, we

can expect a significantly lower influence of the individuedn for the cases Casti is including. We can see
this by the example he uses to illustrate the relativity afiptexity:

“Suppose our systeny is a stone on the street. To most of us, this is a pretty singhhegst
primitive kind of system. And the reason why we see it as a Emgstem is that we are capable
of interacting with the stone in a very circumscribed nunifervays. We can break it, throw it,
kick it — and that’s about it. [...] But if we were geologistsen the number of different kinds of
interactions available to us would greatly increase. I tlage, we could perform various sorts
of chemical analyses on the stone, use carbon-dating tpedsion it, x-ray it, and so on. So for
the geologist our stone becomes a much more complex objectesult of these additional —
and inequivalent — modes of interaction.”

To stay in the picture, for this research it is exactly oueiriion to develop algorithms that reflect the judge-
ments of “most of us” rather than those of certain specmlisthe “geologist” is explicitly out of scope,
because his point of view requires a considerable backgrknowledge and expertise, while we are putting
our attention on the obvious, intuitive, and commonly used.

There is another way to look at this problem. Bruce Edmon@9%}) gives us the following, elegant
definition: Complexity is “[t]hat property of a language egpsion which makes it difficult to formulate its
overall behaviour, even when given almost complete infoianabout its atomic components and their inter-
relations.” This is a very general statement leaving (psebhg a lot of room for interpretation depending on
the given context where it is to be applied. Although it is emplicit in the statement, Edmonds considers
a subjective element of complexity, because what “makedfitult” and what is considered the “overall
behavior” can vary with the context and the observer. Despstgenerality it is a bit of a stretch to fit this
definition to the problem we are interested in. The atomicpoaments of music in this sense could be the
individual notes and sounds, which in their arrangemeninie twould form the language expression. The
information about these atomic components and their irgtlations would then consist of two parts: first, the
rules and experiences of what we know is common in a musicahgement, and second, the actual music
itself presenting us precise atomic components at preageents in a temporal sequence. The critical point
is now what we want to consider the “overall behavior”. Themeof course many options, from very reduced
ones like identifying the genre, to very detailed ones likéng a complete transcription of the musical score.
From these two examples we can see again that one piece catheesame time very complex and very
simple, depending on the context we choose. Also the clarsiits of the observer have an influence.
Whether he knows the corresponding genre very well or uslisins to a totally different type of music for
example would certainly influence the difficulty. But thegpés of tasks are not what we are interested in.
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The notion of complexity we want to consider is on a somewtnatl level, where an explicit formulation
of the overall behavior is not so natural. We are concerneld thie difficulty in following the music in the
sense of keeping up and guessing the continuation opposscutigling and being baffled while listening
to it. While personal preferences and experience will alse zen influence here, we think that the effect is
rather small compared to the one of general gestalt laws &atlwe want to call a “musical common sense”.

Since we restrict ourselves — as proposed in chapter 1 — todmdl with individuals from a certain
cultural heritage we can eliminate influences from difféteiming or scale systems and rely on a common
background in the widest sense of the term. The “musical comsense” can be understood as the ability for
example to identify the central pitch of a song, to judge ket singer is singing in tune or not [Krumhansl|
(1990) pp. 18-25], to clap on the beat [Povel (1981)], or &idguish consonant from dissonant chords
[Tillmann et al. (2000)]. Tillmann, who performed neurolog and cognitive experiments on these effects,
refers to the cause amplicit learning of music by mere exposui®o simply by frequent exposure to music
in their everyday life humans unconsciously learn certatririsic regularities or rules of the music [Reber
(1993), Dowling (1999) pp. 613-616]. Violation of theseasithen increases the effort a listener has to
put into “decoding” or processing the music and thus in@edke perceived complexity according to our
definition. At this point there is also a link to Gestalt thgavhich assumes the existence of certain universal
principles like proximity, continuation, closure, etc.athare supposed to be “hardwired” in our perception
(see e.g. Bregman (1990)). These principles have veryasimifects as the implicitly learned rules, but they
are given to us already by birth and hence do not have to bedtthrough frequent exposure to stimuli
of a certain type. While learned rules are stored in long-ter@mory, the gestalt principles are operational
directly in short-term memory due to the organization arglgteof our “operating system”. This implies that
the Gestalt principles do not even depend on cultural backgt and environment, but form — in the widest
sense of the word — a “common sense” for the perception ofuditifror example the implication-realization
model for melodic complexity by Narmour Narmour (1990), ehiwill be reviewed in section 3.2.1 of
chapter 3, is built on these principles. We want to considisr‘tommon sense” or implicit knowledge as the
basis for our complexity estimations. So rather than adgpt individual peculiarities of individual music
listeners we want to provide general algorithms, which dole & make predictions on a large scale that
everybody can agree on with a small amount of error tolerance

2.1.3 Trendy Buzzword?

In the slipstream of the emerging new field of science caltebs theorghroughout the 1970s and 80s, the
termcomplexityalso gained popularity; not to everybody’s pleasure. Fangde David P. Feldman and John
P. Crutchfield, both from the field of complex system scieiee e will talk about in sectidn 2.2, conclude
inl[Feldman and Crutchfield (1998):

“Unfortunately, ‘complexity’ has been used without quakfiion by so many authors, both sci-
entific and non-scientific, that the term has been almogtsd of its meaning.”
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Looking at the 386 entries for publications on complexityaswires from so different fields as Psy-
cholinguistics, Urban Geography, and Mathematical Ecdaosim an on-line database from the year 1997
[Edmonds (1997)] gives us an idea of what Feldman and Cretdhéire talking about. But what exactly
makes the term so attractive? Is it just its modern and sfiesbund, is it simply a “trendy buzzword™?
Again, we can find some insight by looking at the writings ohtfthds|(1995):

“The label ‘complexity’ often performs much the same rolettzst of the name of a desirable
residential area in Estate Agent’s advertisements. Itjdieghto many items beyond the original
area but which are still somewhere in the vicinity.”

So, according to Edmonds there seems to be indeed some hazelaracteristic about the term “com-
plexity”. He gives a few examples of what falls into this “irity”:

Size is an indication of the general difficulty in dealing with tegstem/object and therefore rather g
tential of it being complex.

Ignorance can be caused by high complexity, but it is not equivalent.to i

Minimum description size is related with the amount dfformation(se€ 2.2); while the absence thereof
will coincide with the absence of complexity the inverse @ necessarily true, since the component
of interrelation increases complexity but might reduceahmunt of information.

Variety again is necessary for complexity to emerge, but by itselsnfficient for it.

Order and disorder are also closely related with complexity, but Edmonds asdhat they need a language
of representation in order to become tractable (see thaeapbns for figures 2.1 and 2.2).

Complexity is so suitable as a grouping term, because it baseall established and widely accepted
definition and it is strongly associated with several relatencepts. But as we saw it cannot simply be
reduced to any of them and it is necessary to treat it as aatepaelf-contained idea. It is however only an
advantage for our purposes, if the term can be used with edaggecision and at the same time is roughly
understandable by outsiders or laymen without lengthlyanqtions.

2.2 The Formal View

In certain fields of science complexity plays a special rold mmakes a formal expression necessary. For
our needs it is sufficient to provide a verbal definition of W& want to consider as our target and then
start from there to develop and explore different algorithapproaches. While an all-round mathematical
formula for complexity is not our ultimate goal, it is stiliteresting to look at the different definitions in
order to learn about ways how complexity can be approachegpotationally and what problems occur. The
list of reviewed measures is far from completeness and mseeVes illustrative purposes by providing a few
selected, popular examples.
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2.2.1 Information and Entropy

In the view of information theory a sequence of data is a nggEs$lat can be transmitted from a source
through a channel to areceiver. The message contains iafimma quantifiable property, which is measured
in bits. In fact, what needs to be transmitted really is ohlg information, and one can “repackaged” it more
tightly in a smaller message if possible to save bandwidtstarage space. If we consider a source that is
always sending messages of the same type, then we can talhdaverage amount of information that this
source emits with every symbol. This concept is calledstierce entropy It was introduced by Shannon
(1948) and is probably the most “traditional” measure fromfield of information theory that can be related
with complexity. Intuitively we would attribute a lower cguexity to a source that sends less information
per symbol, high entropy values would be associated withdrigomplexity, since the information rate is
higher. But what entropy measures is the randomness of tpetduom an information source, which is not
exactly the same as complexity (as we discussed alreadg ipréteding sections). The average amount of
information for each symbal; emitted by a source can be calculated with the following fden

N
Hy == p(s:) - logy p(s:), (2.2)

=1
whereN is the number of distinct symbols ap(s;) is the probability that symbal; is emitted. Equation 2.1
assumes a memoryless source, like the flipping of a coin awolthieg of a dice, where the preceding symbol
in the sequence has no influence at all on the symbols to follidvis assumption is not justified in many
practical applications. For structured data as texts famgle, the probability of a symbol depends strongly
on its predecessors. In information theory the teMaskovian sourceandMarkov chainare used in these
cases. Equatidn 2.1 can be adapted for a Markov chain bygékéncorresponding conditional probabilities
into account. If only the direct predecessor is relevaninasfirst order Markov chain), the equation takes

the following form:
N N

Hy ==Y p(si) Y _p(s;ls:) - logy pls;|s:), 2.2)

i=1 j=1

wherep(s,|s;) denotes the conditional probability of symhbgl appearing after symba; in the sequence.
Hy is the upper bound foH; and any higher order entropy of a given source, since thetatal regu-
larities captured by the conditional probabilities canyothecrease randomness. One problem is therefore
to determine the proper order that should be used with a giegnence. Another problem, when consid-
ering musical audio signals is that they do not come readilgemjuences of discrete symbols and the true
probability distributions are not known.
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2.2.2 Kolmogorov Complexity

The most widespread and most referenced definition of codtplie the information theory field originates
from the theory of algorithmic information. Referring to@of the main scientists behind it this defini-
tion is usually calledkolmogorov complexitysee Gammerman and Vovk (1999) for a short introduction].
In contrast to entropy it doesn’t address the average irdtiom transmitted by a source, but the absolute
information content of an object (a data strig)g This quantity specifies the amount of data that needs to be
transmitted in the absence of any other a priori knowledgs.defined as the length of the shortest program
p (in bits), that can generate the sequencEormally we can write:

K(s) = min(|p| : T(p) = s), (2.3)

whereT'(p) refers to the output of a universal Turing machine execugindgrhanks to its general nature
Kolmogorov complexity has been applied also in the digitadia domain (see Scheirer (2001)) as a way to
prove mathematically the advantages of structured audiemeralized audio coding.

The striking quality of both concepts is the objectivity bBtmeasures. Kolmogorov complexity and
Shannon entropy both exist as exclusive properties of tfeebflata sequence or source) and are completely
independent from an observer. But when considering musigdio signals we face problems. First as
mentioned already, the entropy measure needs a finite setopéte symbols being emitted from the source,
but this is not what we have. The audio signal would need todmvarted somehow into symbols like
the letters in a written text, which is not very straightfang. Despite that music can be generated with a
keyboard it is usually much more than the output of a “typ .

Secondly, both measures are rather technical focusing @ffiaient encoding, while we are interested
in the reception by humans. A practical example illustgntinis difference very well is given in Standish
(2001). He points out that a random sequence of numbersiwilys yield a maximum complexity although
it does not contain any meaningful information for a humaomparing a random string of characters with
the manuscript of a theater play, the random sequence walltithe higher Kolmogorov complexity value,
because there is no program to generate the sequence sharté¢he sequence itself. However, for a human
the order would be exactly reversed, because the randamg &rperceived as meaningless noise, while the
theater play is recognized as a sophisticated, multi-&/eetting (at least if it is a good one). The apparent
objectivity of the measure makes it meaningless when coih@x to be considered as it is the case for the
goals of this research.

Standish suggests the use of equivalence classes to ovetb@n An equivalence class for him is the
set of all mutations of a sequence that are equivalent in engbontext. So for example different random
sequences could hardly be distinguished by a human obsemderould therefore form a large equivalence
class. On the other hand, for a written text carrying a megranly relatively few mutations exist that would
be judged as equivalent. This judgement depends not onlheddta itself but also the context in which

4This can be experienced easily by comparing a monophonic muitilee ringing tone with a live performance of the same piece.
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it is observed. If the equivalence classes are considerdtkicomplexity computation, we arrive at more
meaningful results from a human’s point of view. But still de not have a practical solution. The decision
of what is equivalent and what is not does not seem to be veaigktforward, especially when it comes to
music. Furthermore there is no closed mathematical solfitiocomputing the Kolmogorov complexity and

it remains a rather theoretical measure.

Another extension of the idea behind Kolmogorov compleigtyhe so calledogical depthproposed
by Bennett (1985). In short the idea behind this is to comditgie number of computational operations that
are required to generate the sequenceith the minimal program as a measure of complexity. Thisnis a
elegant way to deal with the problem of randomness, becauns@fincompressible random string the shortest
program will simply store the entire sequence and juspdot(x) . This means for the logical depth:
L(z) =~ |z|. If the sequence is highly redundant and consists of perigetitions, the minimal program
will cycle over printing the same data for each period, whighin leads td.(x) ~ |z|. When there exists a
non-trivial minimal program that can generate a sequenedlitnvolve more advanced computations than
simply reading each value from a list. So the number of opmratwill be bigger and.(z) > |x|. However,
the problem remains that there is no closed mathematicalisolfor finding the minimal program, which
makes the logical depth again useful in theory only.

2.2.3 Stochastic Complexity

There is an important difference between the informatiaothtic measures that we just reviewed and the
method we will discuss here. The former ones are concernchwexactreproduction of the data sequence.
When we look at the minimal program as a type of model for théesyghat generated the data, this is an
extreme case of over—fitti%glf we consider the data as a series of measurements or alises/that contains
some noise, then these methods pay way too much attenti@tdibscthat are practically irrelevant. Instead
we should relax the degree of exactness and allow a certi@rat@e due to noise, that can be described
easily in a statistical sense [Shalizi (2006)].

The most well-known method following this line of argumeida is the one proposed by Rissanen
[Rissanen (1978) and Rissanen (1989)] which use$/inenum Description Lengtprinciple and the asso-
ciatedstochastic complexitylhe basic idea behind this is that there has to be a tradebffeen the accuracy
of a model and how well it generalizes. The accuracy can awayincreased by choosing a more complex
model. On the other hand, if we choose a simpler and therafore general model, we will have to consider
a greater amount of noise to describe the datdrigure 2.3 illustrates these effects. On the left a verypsim
model (straight line) is chosen, which provides a poor fitte data (dots). The noise component would be
very big in this case. In the center the model is very compthéxh( order polynomial function), while it fits
this data very well it probably not work very well on a diffetedata sample from the same source/system.
On the right side we can see a compromise, the model fits reblsonell, but it is significantly simpler than
the one from the center and thus more general. So we have sieotwo components when describing the

50f course Information Theory is not concerned with any typgeaferalization.
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Figure 2.3: Example for model selection with Minimum Deptiin Length [from Gianwald (2005)].

data with our model L(M) is the amount of bits needed to describe the mddeMwhere a more complex
model will need more bitsL(D|M) is the amount of bits we need to describe the “noisy” part efdhta
when applying the model/. Since we don’t want to transmit this description it is enfodor us to get an
estimate of the number of bits instead of defining the eXpictoding. The stochastic complexity of the data
is then defined as the minimum 6{ ) 4+ L(D|M) for all models under consideration.

Despite this approach has proven to be very useful for madetson, Shalizi (2006) points to several
shortcomings when we are interested in a measure of comypldxirst, the outcome depends a lot on the
way we choose to encode the models. It is up to us to decidewiypes of models we want to have “under
consideration” and according to which method we encode thgetondly, the “noisy” terni.(D|M) not
only reflects the true noise in the data, but also the imptiofeof the chosen model. As Shalizi puts it, “it
reflects our ineptness as modelers, rather than any chastictef the process.” Thirdly, one can question the
physical significance of the stochastic complexity, sincéhie system there is no need for a representation
of its organization. This is only necessary for us who havehoose from different models and to fix the
parameters.

2.3 Implications for our goals

So what are the implications of all the above for the goals aemiified in section 1.2? By looking at
the different general complexity measures that exist, itrg@s that these will not take us far, if our main
concern is a semantic description of music audio. Althougé always elegant to have a neat and general
mathematical formalism behind, it is not necessary in otalarrive at practically useful results. On the other
hand this doesn’t mean that it makes no sense to include atehprinciples from these measures into our
algorithms. We will review approaches in the following ctaphat achieve interesting results by doing so.
But the point is, that we dootwant to impose a general, theoretical model of complexity s&arting point
that is then simply applied to the complexity facets at hand.

While we are interested in developing algorithms that arebkgpof making meaningful predictions of
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human judgements it isot our concern to accurately model the underlying cognitivecpsses. It certainly
is helpful to include known principles of human perception Zognition in our implementations, but it is
not our ultimate goal to learn about these principles fromadgorithms. If there is a simple implementation
that does the job roughly as well as a sophisticated one whicloser to the actual processing taking place
in our brains, then we would prefer the simple one for reasbpsacticality.

So what we want to do is in fact a hybrid approach. We will loaloae hand at the mechanisms at work in
the music “processing” behavior of humans as they are knadroa the other hand at feasible computational
methods. The proposed algorithms are meant to provide action between the two. Additionally, we will
use the observations we made in sectioh 2.1 to guide us inghetam development when the understanding
of the cognitive process is not advanced enough.



Chapter 3

Former Work on the Complexity of
Music

After the subject of our research has been explained andfigge@nd the intended applications have been
described, we will now have a closer look at the work that Hasady been done in this area. We will first
review several experimental findings in the context of Beelg theory of arousal potential [Berlyne (1960)
and Berlyne (1971)]. Then we will address different apphescon modelling and computing complexity
facets of music that have been published by other reseatchée will focus here mainly on the methods
that analyze music in terms of complexity, neglecting that#ieeing complexity for automatic generation or
composition [for some examples see Dobrian (1993), Hod@2006), or Goertzel (1997)], as they are not in
the focus of our thesis.

3.1 The Preferred Level of Complexity

We pointed out in section 1.3 that according to Berlyne'otiieof arousal potential [Berlyne (1971)] the
level of perceived complexity of a piece of music can be dased with the preference for it. Our research is
not intending to provide evidence for the validity of thigtiny. Exploiting the psychological aspects between
perceived complexity and preference is not our main conddowever, this aspect plays an important role
in the motivation for our research. Hence, we want to giveesonom here to report about material that has
been published on the matter.

3.1.1 Complexity and Aesthetics

Berlyne himself conducted several studies during the 1860s1970s [Berlyne (1960), Berlyne (1971), and
Berlyne (1974)] on the connection between arousal potesutid hedonic value (liking) of artistic stimuli.
He has considered not only auditory, but also visual and @oaabstimuli in his experiments. He has found

25
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strong evidence for the existence of the inverted-U retastiip as depicted in figure 1.3 on page 9 which led
to his theory of arousal potential. As mentioned above hetified different types of variables to contribute
to arousal potential [Berlyne (1960) pp. 170-179]:

« Intensive Variables (e. g. pitch, color, energy)
« Affective Variables (e. g. anxiety, pain, gratification)
« Collative Variables (e. g. novelty, surprisingness, ctaxity)

Berlyne considered the collative variables the most ingrdrones of the three types. His understanding of
complexity is very closely linked to information theory atid formal measures presented in sedtion 2.2.1.
In Berlyne (1971) on page 149 he says:

“A pattern is considered more complex, the larger the nurobedependently selected elements
it contains. In two patterns that consist of the same numbeftemnents, that one will be less
complex that has a greater degree of similarity among iteefgs or, more generally, a greater
degree of redundancy of interdependence.”

Later, from his extensive review of experiments he drawsrbee general conclusion that “[. .. ] with sound
sequences as with visual patterns, subjective complexdlyats information content.” [ib. p. 202].

For art, Berlyne resumes, one has to distinguish betweergtaaps of qualities, one around the terms
beautyandpleasingnesand a distinct one linked with the termterestingnessAs he shows by reporting
the results of numerous studies [ib. pp. 198-213] the latserlly increases with increasing complexity
while the former tends to be higher for stimuli with relativédow complexity. This coincidence of beauty
and simplicity is also put forward by Schmidhuber (1997). é¥en proposes a new art form called “Low-
Complexity Art” joining the formal measures of Kolmogorow@plexity and minimum description length
with the process of artistic production. He suggests thattwhn be described very efficiently in terms of
an internal representation by the observer, will also besiciemed beautiful. He gives the example of human
faces, where an average, prototypical, symmetrical facerisidered more beautiful than an “irregular” one,
that would need more effort in the internal modelling praceBoth, Schmidhuber and Berlyne, recognize
however, that the most beautiful and pleasing is not nedbstiee preferred choice, because it might be rather
uninteresting. So an optimal choice would be at the samehimaatiful and interesting and thus somewhere
between total order and randomness. Following Berlyneseny) if we take again the three diagrams of
figure 2.1 from page 2/1 we could expect people to prefer thigimione. If we presented the three diagrams
individually to subjects and allowed them to switch freetyward and backward, we should observe that
they spend more time looking at the middle one than at ther divee

3.1.2 Psychological Experiments

With respect to music complexity in particular, Heyduk (89eports about an experiment with four custom-
built piano compositions of different complexity levelso@plexity was varied in two facets: chord structure
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and syncopation. He found strong evidence for Berlyne'sthdy analyzing the ratings for preference
and complexity given by a group of 120 subjects. While Berlysed the termarousal potentiaffor the
combination of different factors determining preferendeyduk follows the terminology of Walker (1973)
and talks aboupsychological complexityt is important to note the distinction to a pure stimulusgbexity
here. The latter would be fixed and objective, very much like Kolmogorov complexity mentioned in
section 2.2.2. The psychological complexity includes tttel, but is also determined by attributes like
novelty, uncertainty and arousal properties. It doesn&texithout specifying a specific observer. It therefore
is a subjective property, which only becomes manifest ireth@ounter of an individual with the stimulus.

Steck and Machotka (1975) conducted an experiment usindgprarsequences of sinusoidal tones as
stimuli. All tones were equally loud and had equal duratidthin one “composition” of approximately 10s
length. 16 different levels of complexity were constructgdvarying the tone duration (and thus the tone
rate) from 2s down to 60ms. The analysis of preference rafirggm 60 subjects revealed a clear inverted-U
relationship on the objective complexity levels. Howewenen presenting only subsets of the test samples
which were taken from adjacent complexity levels, againraerited-U relationship was found within each
subset. Even more interesting is their observation thatlative position of maximal preference inside each
subset was fixed. That means the preferred level of compless not absolute, but relative for the presented
stimuli.

North and Hargreaves point to two potential problems wipeet to Berlyne's theory: the influence of
the listener's mood and intention when selecting music, taeddependence on the appropriateness of the
music for the listening situation [North and Hargreave9({#)]. It seems obvious that the same listener will
prefer different types of music whether he is driving a calaxing on the sofa, or dancing in the club. So
when they asked subjects to rate the preference for the nmuaicafeteria, they indeed found an inverted-U
shaped relation between complexity and preference. Hawthe effects were mediated by musical style.
Organ music of the same complexity level as New Age music Vkasl less in this listening situation. In
another study North and Hargreaves (1997b) show that greferand pleasantness of music have to be dis-
tinguished. Preference and arousal potential were agaimdfto relate through the inverted-U curve in this
study. But North and Hargreaves argue that a subject witmtipadhy against brass music for instance will
not be pleased by this music, whether it matches the optioraptexity level or not. In this sense, optimal
complexity only provides theotentialfor a maximum of pleasure a subject might experience, bus doé
determine it completely. Conversely, a subject might finehplre in listening to music that does not pos-
sess the optimal level of complexity. However, pleasureldi@each a maximum when the right level of
complexity and a general liking coincide in a piece of music.

A quite recent study by Orr and Ohlsson (2005) addresseddgpendiency of musical expertise on pref-
erence. They used natural stimuli, bluegrass and jazz safasfferent complexity levels, which were pur-
posely performed and recorded for their experiments. Fdferent groups of subjects were asked to rate
perceived complexity and liking for the stimuli. One groumsisted of subjects with no musical training, a
second one was composed of subjects with moderate traimimgisic, the third and fourth group consisted
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of professional jazz and bluegrass musicians. The reepirted by Orr and Ohlsson indicate two things.
First, it seems that the significance of complexity for prefiee decreases with increasing musical expertise,
unless complexity itself is learned as an aesthetic coitefThis can be seen from the fact that for the group of
professional jazz musicians an inverted-U relationshigataot be identified. For the professional bluegrass
musicians the inverted-U relationship only appeared feir ttatings of bluegrass music. The authors interpret
this effect insofar as complexity might represent an expdiesthetic criterion in bluegrass music, which has
been learned by the professionals. The group of untraing@écis was the one where the inverted-U became
apparent the most for either musical style. The moderatalged group revealed this effect only in case of
the bluegrass samples. So secondly, the importance of alptomplexity seems also to depend on the music
style. We have reviewed so far only psychological studiésguselected stimuli where the complexity was
purposely varied in a controlled test environment. It iDahteresting to consider studies that were conceived
the other way around, that means observing preferenceaitwdgcof real music and then relating these with
complexity estimations.

3.1.3 Musicological Studies

Eerola and North (2000) report about their analysis of 128tBe songs, all written by and for the Beatles
in the years between 1962 and 1970. From MIDI-transcrigtmfithe songs they extracted the melodies and
analyzed the melodic complexity with their expectancyeolasodel (see section 3.2.1). A highly significant
increasing trend was found for melodic complexity over theetperiod. Secondly, the authors compared the
complexity values with indicators of commercial succesthefsongs and albums. The chart position and the
time in the charts were both negatively correlated with migl@omplexity. So the higher the complexity,
the less popular were the songs. Although this is a sign efagice between complexity and popularity, the
authors point out that other factors of social, culturac@mmercial kind certainly have an influence as well.
Since they were not considered in the study, care has to be taldrawing conclusions. A shortcoming of
this study is also that it was not checked whether the ineremsomplexity was a general trend during that
time period or whether this was only observed in the musitefBeatles. However, they make reference to
Simonton|(1994), who also found a clear connection betweslndit complexity and popularity. His results
stem from an extensive study of 15,618 melodic themes o$iclalsmusic.

A study by Parry (2004) comes to similar conclusions. Heyaeal the melodic and rhythmic complexity
of 10 songs that were listed in the Billboard Modern Rock TOpwthin the period from January to June
of 1996. The complexity was estimated using MIDI trans@oipg of the songs and is based on a very basic
self-similarity measure. As indicators for the chart perfance the number of weeks in the charts, average
weekly change in rank, peak ranking, and debut ranking wensidered. Parry found the number of weeks
in the charts being positively correlated with both, rhyitiand melodic complexity. The former was also
positively correlated with the peak ranking. For the averelgange in rank a negative correlation was found
with melodic complexity, indicating that higher melodicneplexity inhibited rapid changes. The debut
ranking revealed no statistically significant correlatwith the two complexity measures.
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3.1.4 Conclusion

As a conclusion we can say that a certain relationship betywesference and complexity of music cannot be
denied. Based on the rather scarce evidence the correlataver, seems to be not as simple as it appears
in Berlyne’s theory. Other factors, as mentioned, also skffects and might under certain circumstances
completely overrule the influence of complexity on prefeeenlt should therefore not be expected to have
found the holy grail of music recommendation with the usaigeomplexity descriptors. On the other hand,
the reported findings clearly prove the relevance of coniigléx music listening, especially for non-expert
listeners, which are the target audience we are considePiryiding complexity descriptors for music there-
fore should be able to enhance human interaction with musieations, which is the goal of the research
presented here.

3.2 Computing Complexity on Symbolic Representations

There exists a substantial amount of publications on fagktausic complexity based on the analysis of
score-like representations. Mostly, the focus lies on faghmusic in the western cultural tradition. While
we include this type of music as well into our pool of musicaitarial, it rather forms a niche in the context of
popular music that we want to process with our methods. Eurtbre we have to distinguish between the ap-
proaches that make use of expert knowledge of a theoretitatanand those that rely only on subconscious,
cognitive effects in the listener. In David Temperley'stéanology the former belong to theuggestiveype of
musicology, while the latter — which are more interestingue — belong to théescriptivetype [Temperley
(2001b)]. For each presented approach we will also disausghich degree it might be applied to our
problem, which deals with music in the form of audio signals.

3.2.1 Models for Melodic Complexity

Already back in 1990 Eugene Narmour proposed a model for ahgtexity of melodies that clearly falls
into the descriptive category. Thimplication-Realizatiormodel, as he calls it, is extensively described
in Narmour [(1990). The model hierarchically builds up largiuctures from smaller elements and thus
possesses different levels. The predictions are mostiylgaecified on the lowest level, which is the tone-
to-tone level. Any melodic interval that is perceived asgeiopen” (incomplete sounding) is said to create
animplicationon the listener’s side. That means it raises certain expectain the listener about how the
sequence is supposed to continue. Factors that contributiegure (i. e. the opposite of openness) at the
single-interval (tone-to-tone) level are [Schellenbdrgle(2002)]:

+ alonger duration of the second tone than the first one (égltrenote followed by quarter note)
« a higher stability of the second tone in the establishedcalkey (e. g#i followed by do)

 astronger metrical emphasis of the second tone (e. g. éitshbeat of a measure).
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Figure 3.1: lllustration of the Implication-Realizationdeess [from Schellenberg et al. (2002)].

According to these criteria a melodic sequence can be segohand we can observe to which degree
the implications evoked by the “open” intervals are realizEor example a relatively small interval (that is
perceived as being “open”) would make the listener expedndirmuation by another small interval in the
same direction. A large interval would raise the expectaf@ a small interval in the opposite direction.
Frequent realization of these expectations reveals a log t¢ complexity; frequent surprises reveal a high
level of complexity, because the structure of the melodyaislar to encode.

Figurel 3.1 illustrates exemplary the implications for tbad-to-tone level. The first interval implies a
second one to follow, while the relative thickness of th@was indicates that different continuations can be
implied with different strength.

It has to be pointed out that the development of this modelguéded by gestalt principles only, implying
validity completely independent from the listener’s ctéiiuor musical background. Narmour himself states
about the principles that they are “innate, hardwired,drottp, brute, automatic, subconscious, panstylistic,
and resistant to learning” [as cited by Schellenberg e2&02)].

The IR-model inspired many experiments. It was reduced thel&mnberg to its basic principles. In
experiments with human listeners Schellenberg used &tiiimuli and original folksong melodies. By
comparing the explanatory power of his simplified model vidéirmour’s original he proved experimentally
that both versions give similar results [Schellenberg GP9
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In section 3.1.3 we mentioned already a model for melodicierity by Eerola and North. In Eerola and North
(2000) they point out that the traditional information thisbview of complexity does “not address the role of
the listener’s perceptual system in organising the strattinaracteristics of music”. Therefore they propose
their expectancy-based model (EBM) to estimate compleltity also inspired by Narmour's ideas, but they
include some additional features derived from a symbolpzesentation of the music. In their evaluation
they found thatonality (modified by metrical position and tone duration), the imdlic principlesregistral
directionandintervallic differenceand the rhythmic principlesyncopatiorandrhythmic variabilityshowed
significant capability in predicting listeners’ complgxjtidgements. Comparing the prediction accuracy of
this model with an information-theoretic and a transitioalgability model [Simonton (1984)], they found it
to be the best one.

Eerola et al.| (2002) conducted experiments showing, hovaticeracy of the model can be further im-
proved by taking a larger melodic context into account. &itiee focus of the original model is limited to
two notes at a time only, it neglects the impact of the lortgem melodic evolution (e. g. repetition of mo-
tives) on the listeners’ predictions of continuation. Hees their modifications were aiming more towards
a real-time modelling of listeners’ continuation preddcis than towards a more accurate estimation of the
overall complexity.

In sum we can say that there is a selection of computable madailable, that have shown reasonably
good performance in approximating human impressions obdiecomplexity. However, there is one obsta-
cle that makes it difficult to apply these methods to the probilve are tackling: All the presented models
are working on a symbolic representation of the melody. Thdisadvantageous for us in two ways. First,
simply for pragmatical reasons, because digital music flesiot have this symbolic description attached
to them. Although there is a lot of active research going omirg at the complete transcription of musical
audio [e.g. Klapuri (2004) or Bello (2003)] or precisely hetextraction and transcription of the melodic
voice [e.g. Dressler (2005)], the results are still far froging useable. The best algorithm for melodic
pitch tracking in polyphonic signals in the 2004 ISMIR casttachieved only an average accuracy of 75%
[Gomez et al. (2005)]. This figure does not even include neggrentation. The task is so difficult, because
it involves several steps which each by itself tend to inficeerrors to the computational result. Out of the
polyphonic signal the fundamental frequencies of the smgndotes need to be detected, while the number
of sounding notes is not known. For each note the onset asétdifis to be identified, which might be
obscured by unstable fundamental frequencies and nohélaments in the music. Finally from all detected
sounding notes the ones that form the melody have to be ed|eehile the criteria for this selection are not at
all clear. Just a few wrong notes in the extracted melodygdvew would completely mislead the complexity
estimation with the presented models making the applicaigeless. Secondly, it must be asked, whether
the perception of melodic complexity should be considengépendently from the accompaniment. While
the reported methods only deal with isolated, monophoniodies, we are interested in describing complete
musical arrangements. It could be the case that the findingmiman complexity perception regarding the
former are not directly applicable to the latter.
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3.2.2 Models for Rhythmic Complexity

In Shmulevich and Povel (2000) the PS-measure for rhythomepdexity was introduced. The authors state,
with reference to Essens (1995), that a listener tries t@bésh an internal clock, when hearing rhythmic
music. According to this clock the listener then segmerggittythm pattern and tries to code the segments.
So a rhythmic pattern will appear complex, when either thduation of the internal clock is weak or ab-
sent, or when the coding of the segments is difficult. Therétlyo therefore combines the two aspects for
complexity estimation.

The clock induction strength is a weighted combination ef tlamber of clock ticks that coincide with
silence and with unaccented events. This shows alreadya ttzher high abstraction level is assumed here,
since the clock grid is assumed to be known and the musicaiteveve to be classified into accented,
non-accented, and silent ones.

The coding complexity is estimated by assigning differeeights to four different types of segments
that can appear when splitting up the sequence of eventsdiegdo the clock grid. The segment types are
empty segmentequally subdivided segmentsiequally subdivided segmengésdsegments beginning with
silence An additional weight exists that is added, when two conseesegments differ from each other.
The coding complexity is then simply the sum of all the weggforr the whole sequence.

Shmulevich and Povel (2000) tested their method on a set diyd8Bm patterns for which they obtained
human complexity judgments in a listening test. For congmarithey also used the T-measure proposed by
Tanguiane (1993) and a pure information theoretic measa®pel and Ziv (1976)]. The former counts the
number of distinct “root patterns” in a sequence that wowdbeded for its generation, where elaborations
of these root patterns do not add complexity. The latter g&fan the number of distinct substrings that
are found as the sequence evolves. The results showed ¢hBSHMeasure gave clearly the best approx-
imations of the human ratings with an overall correlatioeftioientr = 0.75 for the 35 tested patterns.
Shmulevich and Povel (2000) attribute this to the fact thairtmeasure incorporates perceptual information
and is based on an empirically tested model.

It must be noted that the clock induction strength and thengpdomplexity when computed this way
tend to give higher complexity ratings to longer segmergsalse there is no normalization. This might be
appropriate when isolated rhythm patterns are evaluaiteck & longer pattern is supposed to have a higher
complexity potential than a short one. However, for congl@iusic tracks some adaptation would be in
need. It would be necessary to identify recurring rhythrmattgrns throughout the piece and to segment
it accordingly. The measure could then be computed on eatérpand the overall complexity could be
approximated by combining the individual results in sontelligent way. This combination is not so straight
forward however. Might we consider that the perceived caxipl decreases if listeners are exposed to one
single pattern over and over again? And vice versa, is thdtnesrceived as being more complex if we have
a sequence of many different patterns that by themselvasaextremely complex?

But these problems are not the most immediate ones we emzonhen we consider to apply the PS-
measure in our context. Although rhythm pattern extractiom musical audio might seem an easier task
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to solve compared with melody extraction, to date univemsethods providing sufficient precision are still
lacking [a recent review can be found in Gouyon and Dixon 8p0rhe problem is again that errors can be
introduced at several different steps. Starting from thgiasignal the onset times of rhythmic events have
to be identified, which will result in several false detencand missed onsets. Based on the inter-onset-
intervals or additional features the beat has to be tradleddrfed to as “the clock” by Shmulevich and Povel
(2000)], which is not necessarily stable throughout theeptece. The PS-measure is an essentially “binary”
measure. A rhythmic event either is accented or not, it eitbencides with a clock tick or not. While this
comes rather naturally with symbolic data, for real-woitghals we need to apply thresholds and quantization
in order to make such decisions, and the outcome of the grtieess depends strongly on the specification
of these thresholds. In summary, the application of the R8sure in the context of real-world, polyphonic
audio appears to be not viable at present and was therefoeside in this research work.

3.2.3 Models for Harmonic Complexity

The theory of harmony in music has a very long tradition alyedBtill, in contrast to melodic complexity,
no dominant and well-studied models for harmonic compjesituld be identified by the author. Research
has been done on the expectations evoked in listeners byoharmprogressions especially on the field of
classical music [Schmuckler (1989)]. It turned out, thatdners usually predict a chord that results from
a transition considered as common in the given musical gon¥et, to our knowledge no tests have been
carried out that correlated the perceived harmonic conityl@ith the fulfilment or disappointment of these
expectations.

A step into this direction is done by Lerdahl (2001), who deps a hierarchical model for the perception
of tonal tension and chord distances in experienced lisseBiilding up on the older “Generative Theory of
Tonal Music” [Lerdahl and Jackendoff (1983)] and integrgtnewer ideas [like Lerdahl (1996)], the model
relies on a rule-based grammar which we will not discuss taitleere. For a given sequence of chords it is
then possible to compute for example the overall distaragishtravelled”, which again can be related with
the complexity of the chord sequence.

A further extension of this idea can be found in Temperley(2(. He supposes that the scores computed
with his preference rule system could reveal an estimatthéotension in music (Temperley (2001a) section
11.5, pp. 307-317). The mapping of achieved scores wouldayo ihcomprehensibl¢breaking all rules)
overtenseto calm and finally toboring (all rules obeyed). Although he does not use the term coritplex
this basically reflects what we are looking for. He names thiffierent aspects of this harmonic complexity:

1. The rate at which harmonies change.
2. The amount of harmonic changes on weak beats.
3. The amount of dissonant (ornamental) notes.

4. The distance of consecutive harmonies in a music theatetense.
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Especially the fourth point has to be addressed carefullgnndxtending the scope from classical music
to the different types of modern popular music. Temperleydeilf considers this tension estimation to be
consistent only for particular styles (see Temperley (20@igure 11.11 p. 314). As we already discussed for
the model for melodic complexity (sectibn 3.2.1) we agamefthe problem that an accurate chord transcrip-
tion is not easy to obtain from the audio signal. In the cas€enfiperley’s approach we face the additional
difficulty, that not only the pitches have to be transcribiaat, also the rhythmic grid needs to be established
in order to distinguish between chord changes on strong @adk Wweats.

A different approach in the domain of harmonic analysis ketaby Pachet (1999), who proposes the
application of what he refers to amwriting rules He addresses the effect of harmonic surprise in Jazz music.
His argument is that the “rich algebraic structure undedylazz chord sequences” has to be considered when
talking about expectation and surprise. The idea is thataesece of chords can be rewritten by applying a
limited set of rules to replace a particular chord in the sege by one or more alternative ones.

His model is therefore based on two ingredients, a sgtpi€al patternswhich he relates to the charac-
teristics of the musical style, and a setrefvriting rules according to which a given chord sequence can be
transformed. The basic idea is that even a chord sequertceahaever been heard before might not be so
surprising to a listener who is familiar with these two sétt are sufficient to generate it.

Instead of manually creating the two sets, Pachet appliehima learning technigues in order to obtain
them. He uses a string compression algorithm [Ziv and Ler(idi18)] in order to extract the typical pat-
terns. To find the rewriting rules he then uses a table methddutilizes the likelihood of occurrence of a
hypothesized rule as a basis for finding the best set of riegnitiles.

Although he is not directly aiming at a complexity estimatithe idea is not too far from our needs. A
highly predictable (little surprising) chord sequenceldde identified with a low harmonic complexity and
vice versa. However, Pachet focusses only on a very resdni@riety of music, the Jazz genre, which is not
what we want. Also, he considers only a special type of eXfgener, who is trained or accustomed to this
musical style. In addition, we have of course again the gmlib obtain an accurate chord transcription from
the audio material before we can start to use Pachet's ideas.

3.2.4 Pressing’s Music Complexity

Pressing (1998) gives a very short outline of three diffetgmes of complexity, which he nambgerarchical,
adaptive andgenerativeor information-baseccomplexity. Referring to music the first is focussing on the
structure of a composition. Pressing mentions Johann S8ab&ach’sKunst der Fugeas an example where
the composer exploits hierarchical complexity. “[N]otesdtion as elements of linear processes operating
at different time scales, and are at the same time compatiltthea vertically-oriented chordal progression
process.” He emphasizes that hierarchical complexityspdayimportant role in music composition, because
it allows a multiplicity of references increasing the pdtahfor repeated listening and providing access at
different levels of sophistication. The second type of ctaxipy refers to the temporal changes in a musical
work, including aspects like the adaption to unpredictalgieditions, or the anticipation of changes in the
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music itself or in the environment. Here, Pressing mentionmovisatory performance as an example. He
does not provide any details about how these two types of xityp could be addressed formally or even
computationally in practise.

The third type, thenformation-based complexitys elaborated in some more detail by Pressing. It is
inspired by Kolmogorov complexity, but focuses more on thedpction of music through a human than on
the generation of a data string through a computer prograessing acknowledges that a pure information
theoretic measure falls short in measuring music complelsécause it will always rate random sequences
as the most complex ones, which does not go along with humaetgon. He argues that humans process
complexity by developing routines and heuristics that éerpvercome the limitations of memory and atten-
tion. His approach to complexity is based on the conceptttieste routines have different difficulty levels,
because some are easier to learn than others. So convénsetgmplexity of a stimulus is determined by
the difficulty assigned to the routines and heuristics thah@eded to produce it.

He demonstrates his concept by estimating the complexigixofery short rhythmical patterns. This
is achieved by simply applying a processing cost functiagitive cost) to the symbolic level attribute
syncopatioron quarter-note and eight-note level. His approach showe similarity with the coding com-
plexity used in the PS-measure for rhythmic complexity {ieed3.2.2). Again, the sequence of events is
broken down into segments (this time according to two diifegrids) and a cost is assigned to each segment
depending on the type of syncopation that can be found.

This approach is very interesting, because it seems a aongirtombination of information theoretic
principles and cognitive effects. However, it is purelydtetical and was not evaluated in any experiment
with humans, although Pressing states that a similar giraseimplemented in the notation softwaFean-
scribein order to achieve a cognitively optimal musical notatiBngssing and Lawrence (1993)]. Also there
is a crucial point in the identification of the routines anditigtics needed to generate the stimulus, as well
as in the assessment of cognitive costs to them. In the caseahplex musical audio signal this is a very
hard task to solve.

3.2.5 Algorithmic Clustering

While not a genuine measure of complexity, the algorithmis@ring of music proposed by Cilibrasi et al.
(2004) is still worth mentioning at this point, because iwh a practical application of information theoretic
principles applied to music. Cilibrasi et al. make use ofribon of compressibility that is linked with Kol-
mogorov complexity. They developed thermalized information distancas a universal similarity metric,
which they apply to symbolic representations of music ireottd identify clusters of similar tracks in small
coIIectiong.

In addition to the Kolmogorov complexiti (x) of a sequence, they introduce theonditional com-
plexity K (z|y), which reflects the amount of information that is needed tomstruct: if the sequencg is

1They report their method does not work as well for larger sktsusical pieces as it does for small ones [Cilibrasi et al. QD0
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Figure 3.2: Tree obtained with algorithmic clustering offidno pieces [from Cilibrasi et al. (2004)].

given. The normalized information distance betweemndy is then defined as:

max (K (z|y), K(y|x))
max (K (z), K(y))

d(z,y) = (3.1)
This distance measure captures the number of bits of infimm#hat is not shared between the two se-
guences in relation to the maximum number of bits that coeldared [Cilibrasi et al. (2004)]. Since the
Kolmogorov complexity is uncomputable in practice, it camydoe approximated. Cilibrasi et al. (2004) use
standard file compression tools for this purpose. After ietadces between all pairs of music files are com-
puted, Cilibrasi et al. (2004) use a tree-based clustecaifgd thequartet methogdin order to identify groups

of similar songs. Although they claim this method to be a arsal and feature-free similarity assessment,
they do need to represent the music as a discreet sequengmlobls in order to be able to compute the
distances. For this reason they use only the note on and ffatdamation extracted from MIDI files in
their experiments. Timbre, tempo, and loudness informétierefore have no effect on the distance compu-
tation. Figure 3.2 shows the resulting tree obtained withalgorithmic clustering method for 12 classical
piano pieces from 3 different composers (2 fugues and 2 gesldrom Bach, 4 Ritudes by Chopin, and
the 4 movements from Suite Bergamasque composed by Deb@esfing in mind that there is no musical
knowledge or heuristics explicitly entered in the systerarat point, the results are astonishing. Indeed the
method manages to separate the three composers quite @élbezrn groups the two fugues separately from
the two preludes inside the Bach cluster. Only Chopin&uxte no. 15 is placed at a strange point in the
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graph. As Cilibrasi et al. (2004) state this must not negédgdze due to a flaw in their method, but in the
sense of data mining could be based in some objective prepeitthis particular composition, since as they
say “no. 15 is perceived as by far the most eccentric among4t&éludes of Chopin’s opus 28."

3.2.6 Conclusion

We reviewed several different approaches to model humareptons of music complexity. While some
originate from a rather theoretic nature and have not bealn@&ied in practice, for some others experimental
verifications exist. As the models address only isolatedtaof music complexity (like the melodic or the
rhythmic one), these experiments also only involved redwstenuli, as for example isolated melodies or
rhythm patterns. Leaving the problems of unavailable syoladstraction apart, this raises the question,
whether the models can accurately be applied to real worlsigreignals which are normally a mixture of
all these individual components. We can also observe thaptexity facets addressing the acoustic and
timbrical qualities of musical audio material are natwyralbt covered with these methods, since they lack a
clear symbolic representation.

In the constructive sense, we can learn from these findihgs$ td a significant degree, the impression
of human listeners with respect to certain complexity faéetconsistent and accessible through the music
material itself (opposed to e.g. cultural or social contiots). That means an algorithmic prediction of
music complexity is possible, at least in principle. Frorotem/3.2.% we also have some evidence that com-
plexity related concepts applied to music can capture d&spécelevance for human listeners in the context
of music collection organization or music similarity contg@tion. In terms of implementation however, we
will need to find alternatives to the described models, stheestate of the art in music transcription does
not allow their direct application on the material we intéadise. It seems more promising for now to avoid
sophisticated extraction processes and to concentragathen more accessible, less abstract levels in order
to assess complexity characteristics.

3.3 Computing Complexity on Audio Signals

The literature on musical audio analysis has been growipglisaduring recent years and research on this
field is still very active [see e.g. Smiraglia (2006)]. Howevmusic complexity received only little atten-
tion on this side. As Pohle et al. (2005) showed, it does nakwso easily to predict human complexity
judgements by using standard features from the music irdtom retrieval domain. In their comparative
study of different feature sets in combination with macHesning techniques, they found no configuration
that managed to reach significantly beyond the baseling ilev@edicting human complexity judgements
in the three categories low, medium, and high. This is a dhedication that music complexity needs to be
addressed directly, if a useful content description is sgpf to be achieved. We will review in this section
a few other approaches that have been taken in the past 8samsee or less direct the music complexity in
audio signals.
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3.3.1 Complexity of Short Musical Excerpts

Scheirer et al.| (2000) directly utilize the statistical pedies of psychoacoustic features of short musical
excerpts to model perceived complexity. The excerpts tiseyl in their experiment were of only 5 s length,
in order to keep the computation time for the feature setaseaable limits and to simulate a “scanning-the-
radio-dial” behavior. This also means that the more abstegels, like melodic complexity or even structural
complexity, are not accessible. Consequentially, Scheiral. consider a joint complexity of the excerpts
and do not address individual facets.

They used a selection of 75 music tracks from different nalsityles. From each track they extracted
two non-overlapping excerpts for the experiment. All eptemwere rated in a listening test by a total of 30
subjects according to their complexity perception. Aftards, Scheirer et al. performed different statistical
analyses on the human ratings and the computed featuresemtlinteresting results.

They found that overall subjects agreed on the judgment wipbexity, although there was a lot of vari-
ability in the ratings. Since every track was presented with different excerpts, Scheirer et al. also com-
pared the correlation between these two ratings for eagea&ulVithrogy9 = 0.34,p < 0.001 they found a
strong correlation, which was even higher, when the averaatings of all users where used for each excerpt
(r150 = 0.502,p < 0.001).

Scheirer et al. then used multiple-regression on 16 cordppsgchoacoustic features (see table 3.1)
to predict the mean complexity ratings for each stimuluse Tbmputation of these features is extensively
described in Scheirer (2000) (chapters 4-6). The predicipabilities of the model were strongly significant,
more than 28% of the variance was explained by the featiites (.536, p < 0.001). When using a stepwise
regression procedure entering one feature after the ahmandel with only five features already explained
almost 20% of the variance in the ratings. These five featanee order of predictive power:

1. coherence of spectral assignment to auditory Stl%ams
2. variance of number of auditory streams

3. loudness of the loudest moment

4. most-likely tempo

5. variance of time between beats

If we look at this list with the idea of different complexitadets in mind, features one and two can be
assigned to timbral complexity, feature three to acousiiopexity, and features four and five to rhythmic
complexity. Tonality related features are missing, whiha big surprise, because they are not very promi-
nent in the list (in table 3]1 only 2 and 7 are related to piti) the excerpts are probably too short to allow
the listeners a proper assessment of the melodic and hazifiooniation.

2This feature reflects the degree to which neighboring spebmds are assigned to the same auditory stream. Its valathes r
high for noisy scenes and rather low for ones with a simple harorgiructure [see Scheirer (2000) for details].
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Coherence of spectral assignment to auditory streams
Stability of within-auditory-stream pitches over time
Mean number of auditory streams

Variance of number of auditory streams

Mean amount of modulation (spectrotemporal change)
Entropy of loudness estimates in auditory streams
Entropy of pitch estimates in auditory streams
Loudness of loudest moment

Dynamic range (measured in loudness)

10. | Most-likely tempo

11. | Entropy of tempo-energy distribution

12. | Stability of tempo estimates over time

13. | Centroid of tempo-energy distribution

14. | Number of beats elicited from food-tapping model
15. | Mean time between beats

16. | Variance of time between beats

©ON>ORA~WNE

Table 3.1: Features used by Scheirer et al. (2000) in theréxent.

This approach is probably the closest to the research thescim this dissertation. Scheirer et al. con-
sider music complexity to be surface featurehat is experienced pre-consciously and immediately with n
involvement of high-level cognitive musical abilities. threir definition it consists in “the sense of how much
is going on” in the music, which is quite close to the underdiag of music complexity underlying this dis-
sertation. But there are at least two important distinitvat we should point out. First, we want to consider
entire music tracks as the relevant units to be describesting of complexity. That means although we also
want to exclude very high-level cognitive aspects from dgoathmic processing, ultimately the descriptors
should reflect a property of the entire piece. In contragteer et al. consider music complexity in a much
more instantaneous way; it is immediately revealed to 8terier after only a few seconds of music and might
very well change when a different part of the song startsoSdly, the algorithmic approach of Scheirer ori-
ents more towards mimicking the actual processes takirgeprathe auditory system during auditory scene
analysis. Central points in his system are for example thars¢gion of auditory streams and the identification
of beats, all based on the autocorrelogram. Despite tagyatsurface feature, this means a high amount of
sophisticated computation, which is clearly reflected aphocessing time of his system. In Scheirer (2000)
he reports about 3 hours of processing time for 10 secondgdif avith non-optimized code on a 450 MHz
Pentium processor. Considering the quantities of musigdibedata that we are targeting, it is apparent that
even with modern computers we have to rely on simpler algaritin order to arrive at something useable in
practice.

3.3.2 Power Laws

A more indirect approach to music complexity has been iitidy Voss and Clarke (1975) and since then
occasionally replicated or adapted by others [e. g. Yad€éb992), Manaris et al. (2005)]. Their early article
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reports about their observation that certain properti@susfic and speech signals reveal a power law behavior.

Power laws can be observed for many natural phenomena aretiff areas for example in physics, biol-
ogy, sociology and even in linguistics or in economy [seesfaample Keshner (1982)]. They are also quite
usual in describing behavior and sensory processes. TherSt€ower Law [Stevens (1957)] for example
relates physical magnitudes to subjective sensationeedPodwer Law of practice relates the time of practice
on a given behavior to the reaction time one needs when peirfgrit. The basic form of a power law looks
like this:

y=a-z7° (3.2)

wherey and x are variablesp and 3 are constants witl# being the interesting one. If we takeas a
frequency value ang as the spectral power of a signal at this frequency, thereseareral “pathological”
cases. Fop = 0 we speak of avhite noisebehavior, ford = 1 of pink noise and forg = 2 of brown noise

It must be emphasized that the frequency values are of caotdienited to the audible frequency range even
if we are considering audio signals. Also, for real-worlgigils the exponertt usually is not exactly constant
for all possible frequencies, but often shows a certairirsgdlehavior only for particular frequency regions.
Typically, a double logarithmic plot is used for the reprasgion, because ideal power law behavior appears
then as a straight line, since from equation 3.2 follows

log(y) = log(a - 2~%) & log(y) = log(a) — 3 - log(x). (33)

The three types of noise can again be put in relation with @éonaif complexity. White noise is a
completely random signal where the history has no effecli @nathe future values. At each point in time
each value in the defined range has exactly the same prapabippear. The evolution is not predictable.
While still being non-deterministic, Brown noise on the athand shows a high degree of trivial correlation.
It can be generated by integrating a white noise signal asennbles a much smoother curve than white
noise. Pink noise, also calléd f-noise, is in between the other two being less volatile thhitexnoise but
more random than brown noise. It is in fact much more trickgéoerate pink noise compared to the other
two [Mandelbrot (1971)]. If we make again the analogy to tireé diagrams presented in figure 2.1 on page
[15, we could say that pink noise appears to be more complexthée and brown noise.

In their famous article Voss and Clarke (1975) describe ewxpnts with several hours of recorded speech
and music signals from radio transmissions. The materialamalyzed in terms of loudness fluctuations and
melodic pitch fluctuations — at least this is the terminolo§yoss and Clarke. For the former, the signal was
passed through a band-pass filter with cut-off frequendié®@Hz and 10 kHz. The filter output was then
squared and low-pass filtered at 20 Hz in order to eliminaeatidible frequencies and the power spectrum
was computed for frequencies from 10 Hz dowri@o > Hz. For the pitch fluctuations they created a time
series by counting the zero crossings in the signal in anglidindow fashion. This series was then also low
pass filtered at 20 Hz and the power spectrum was computechossn figure 3.8 in all cases a power law
behavior withg ~ 1 was observed. For the rag time music [graph a) in left diagjtam strong rhythmic
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Figure 3.3: Plots from Voss and Clarke (1975). Leftig,,(loudness fluctuationagainstlog,,(f) for
a) Scott Joplin piano rags, b) Classical radio station, c}kRstation, d) News and talk station; Right:

log, o (pitch fluctuation againstlog,,(f) for a) Classical radio station, b) Jazz and Blues statiorRank
station, d) News and talk station.

organization is reflected in the deviations from the lineand in the range of 1-10 Hz.

In another article Voss and Clarke (1978) report about argkegperiment that builds up on their former
findings. They generated stochastic compositions whenedteedurations and the pitches were controlled by
independent white, pink, or brown noise generatovess and Clarke played these musical pieces to several
hundred people including professional musicians and ceensoas well as musical laymen. To their own
surprise the listeners very clearly preferred the musib Wwitf and found it to be the most interesting among
the different versions. In the words of Voss and Clarke (3978

The music obtained by this method was judged by most lissgiodse much more pleasing than
that obtained using either a white noise source (which ppedmusic that was “too random”) or
al/f? noise source (which produced music that was “too correlpténtieed the sophistication
of this “1/f music” (which was “just right”) extends far beyond what on&giht expect from

such a simple algorithm, suggesting thatld noise” (perhaps that in nerve membranes?) may
have an essential role in the creative process.

Several other researchers conducted similar experimentess and Clarke following their publication.
Especially an other form of this/ f behavior has been exploited, known as Zipf’s law [Zipf (194% is a
distribution law where the variablgof equation 3.2 corresponds to the frequency of occurrehaa event
andx corresponds to the position of the event in an ordered liseXample according to size or —again— -
frequency of occurrence. The expongnghould be close to 1 in the ideal case. In Manaris et al. (25)

3The output of the noise generators was quantized and seatedér to trigger the selection from limited sets of note dare and
pitches.
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example this idea has been applied to music (in the symbolicaih) by establishing a set of metrics that
examine the degree to which Zipf's law is followed. As Manaat al. report, they can be used successfully
in order to perform artist classification and to predict hampkeasantness judgments.

While all these findings are very interesting and certainlel@levance for music information retrieval
applications, the connection to music complexity is a nagiistract one. Although the complexity assignment
we did for the three noise types is somehow reasonable anebjsdntly found in the literature, it remains a
rather analytical one and a relationship to properties afdmperception is not obvious.

3.3.3 Detrended Fluctuation Analysis

Recently, Jennings et al. (2004) published an article oricabgenre classification based on a feature that has
not been used before in the music information retrieval dom#&hat makes this article stand out especially
is the fact that the authors used exclusively this one featualy instead of combinations with more common
ones. They refer to it as the “Detrended Variance Fluctadponent”, since it originates from a technique
called “Detrended Fluctuation Analysis” (DFA). The tedatue was introduced by Peng et al. (1994) and
is intended for the analysis of chaotic time series. It wast &ipplied by Peng in a biomedical context on
nucleotide and heartbeat rate time series. Other applitainclude financial time series [as reported in
Ausloos |(2000)]. The method is related to the power law aiglywe just discussed in section 3.3.2 in the
sense that it can also reveal correlation properties ofewpink, or brown noise in a time series. It has the
special quality that it works well for non-stationary data.

The method intends to identify tleealing behaviouof a time series. This is best explained by consid-
ering an unbounded time series (i. e. with no upper limit fevalues). If we plot a portion of such a series
over the time axis, we will need a certain rangef values on the y-axis in order to visualize all the elements
falling into the temporal segmeni. Imagine now that we are zooming in on the plot. This zoom aan b
expressed as a factor on each axis, for example we can sapé¢hagw portion has 0.5 times the length of
the previous one, such that = 7, /2. In this case we can expect that the range of values on thésyhas
changed as well, from, to . By taking the quotien% we obtain a scaling exponent This expo-
nent can be calculated for different time scales (i. e. flfieddnt values ofr; andr). If we systematically
increase or decrease the time scales and for each stepatalthet scaling exponent, we obtain a function
a(7). From this function we can get an insight into the scalingoprties of the time series. For example
the scaling can be stable (constant levehdfor it might expose irregularities. Also the general leveho
is significant. For a pure white noise signal it is 0.5, forkpimise it is 1.0, and for brown noise it is 1.5.
levels below 0.5 indicate that the signal is anti-correlddatassini|(2001) pp. 41-43].

However original the descriptor of Jennings et al. (2004yhhibe, it is not obvious on the first gaze
how it reflects semantic concepts of music that a listenerrebte to. Since their paper focusses on the
performance in genre classification, this aspect was nettijr considered, because mainly the output of
the classifier was of interest. But they state that the stpamgpdic trends in dance music styles like Techno
or Brazilian Forb) make it easily distinguishable in terms of the DFA expdrfesm high art music such as
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Figure 3.4: Average DFA exponeatfor different music genres [from Jennings et al. (2004)]

Javanese Gamelan, Hindustani, or Western European GlESsadition (WECT). The averagevalue of the
ten tracks from each genre is clearly lower for the formeraastze seen in figure 3.4. “Jazz, Rock and Raoll,
and Brazilian popular music may occupy an intermediarytmsbetween high art music and dance music:
complex enough to listen to, but periodic enough to danéelémnings et al. (2004) speculate. Hence, we
could think of this feature as a measure of “danceabilitytiicl certainly is an aspect of rhythmic complexity
that is immediately accessible for human music perceptforery appealing property of the DFA method
for our needs is also that it can be applied directly to theafile and does not rely on the extraction of other
descriptors like onsets or beats as a preprocessing stepddptation of the algorithm with further details
will be described in sectidn 4.5.1 of the next chapter.

3.3.4 Conclusion

To conclude we can state that the matter of music complexsitynation from audio signals has not been
studied to a great extent so far. Although we reviewed difieapproaches of this kind, it has to be noticed
that they either fall short of practicality for our contextltave not been fully exploited yet in terms of their
usefulness for MIR applications. It has therefore been & gjois dissertation to contribute with original
ideas and with adaptations of existing work to make musicaierity better accessible for the current topics
of audio-based music information retrieval.
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Chapter 4

Complexity Facets and their
Implementation

In this chapter we will review in detail the algorithms thatve been developed by the author in the course
of this dissertation. For each algorithm we will first explaéine general idea behind it and then present the
actual implementation.

4.1 Working on Facets

As we said in section 1.2 already, we want to address musiglesdity in different facets. Why should
this be done? Didn't we say that for complexity “the whole isrmthan the sum of its parts”? It is true,
but nevertheless there are good reasons to split the worlgubdivision of music into separate facets is
a common practice in musical analysis. The divide and cangiategy is widespread in many fields of
science. Our target of a ive listener on the other hand is not speaking in direct fafauch separation.
Such a listener should not be assumed to analyze the methtiaoets independently in order to arrive at
his judgement of complexity. But it is not our goal to mimietprocess of obtaining a judgement of the
musical complexity. Our interest is rather that the finalhesf such a process is predicted correctly by the
algorithms. We can therefore look for a way that gives usélastitrouble instead of trying to follow closely
every link in the human music processing chain.

With respect to music complexity, in Fiaa (1989) we find the statement that “unusual harmonies and
timbres, irregular tempi and rhythms, unexpected tone esezps and variations in volume” raise the level
of perceived complexity in music. We can see that the facktausic (harmony, rhythm, volume, ...)
mentioned by Finas are at least partly independent from each other. For dgaome music track can
contain very sophisticated rhythm patterns, but no meledice at all. Another one might have unexpected
changes in volume and timbre, but very straightforward mheland chord sequences. Which one should
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be rated more complex in a direct comparison? Looking at thblem this way calls for a multi-faceted
approach with an individual complexity estimation for edatet. A joint measure of global complexity does
not necessarily make sense under these circumstancesefdraton of facets also gives us the opportunity
to account up to a certain degree for the subjectivity thatde®n mentioned in chapter 2. If different people
consider the different facets to be of different importartben they can assign weights to them according
to their personal preference, while the single values r&itiain objectively comparable for any user of the
descriptors. Finally, the break down into facets is also #enaf practicality in terms of algorithm design.
A holistic model that computes a single, overall complexajue without individual analysis of the different
musical aspects would be much more difficult to build and $b. té/e therefore deal with music complexity
individually in the facets described below.

4.2 Acoustic Complexities

UnderAcoustic Complexityve want to capture two different aspects of a musical audicktrthe dynamic
and the spatial properties. The former are related to thénless evolution throughout a musical recording,
while the latter correspond to the rendering of the audismgne. From these explanations it is clear al-
ready that acoustic complexity is not completely intringiche music, but rather to the recording and the
performance. Nevertheless, we found it worthwhile to idelthis complexity facet, because digital music
tracks only exist as recorded performa@:eﬁmusic. So it is not possible to listen to one without natiri
characteristics of the other.

The dynamic complexity component relates to the propedidke loudness evolution within a musical
track. We refer to it in terms adbruptnesandrate of changef dynamic level. Also thelynamic rangénas
to be considered here, since a sudden jump by 6dB will be deresi more surprising than one by only 1dB.
A major design decision for the complexity model is the défini of the time scope. By keeping the frame
size small one can find the distinction between dynamicalipgressed and uncompressed material. The
former has less rapid changes in loudness than the latteraamitherefore be considered less complex. As we
will see later in this chapter, there is some overlap withrtiyghmic complexity descriptor here. With longer
windows one detects fades and dynamic changes between s&graents, for example a very soft passage
embedded between two rather loud ones. By looking at thie 8oope we can for example distinguish
between music in the classical style, which often uses a veidge of loudness levels within one piece, and
mainstream popular music that has been made to fit modero badadcasting by keeping continuously a
very high loudness level throughout the entire track.

For the spatial complexity component we consider only stezeordings and no advanced multi-channel
formats for the time being. Currently, two channel stereaks form by far the majority of items in digital
music file databases, whereas 5.1 recordings, for exam@estill very rare. A straight-forward example
for spatial complexity thus is thdisparity of the stereo channel#\ quasi mono situation with the same

1For electronic music the concepts of “recording” and “parfimy” have to be understood in a slightly wider sense here.
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signal in both channels reveals less complexity than a diagthat has only little correlation between the

two channels. But also more advanced aspects are to be emaiduch as the movement of the acoustical
center of effect within the stereo image, and sound effdtésiging the spatial impression (e. g. delay and
reverberation effects). In simpler words we could say tipattial complexity should be a measure of the

wideness and the amount of fluctuation in the stereo imagsvithsthe dynamic component already, spatial

complexity again depends to a great extent on the qualitijefécording.

4.2.1 Implementation of the Dynamic Component

The first step towards dynamic complexity computation is ¢hkulation of an accurate estimate of the
perceived loudness. Psychoacoustics are a well studieldafiel quite reliable measures exist in the literature
for loudness estimation of isolated sounds, like sinusoidsoise [Zwicker and Fastl (1990), Moore et al.
(1997)]. For the complex sounds that form a musical perfoiceehowever accurate loudness estimation is
a very complicated task. Not only temporal and spectral ingdkave an influence here, but also subjective
components play a role [Skovenborg and Nielsen (2004)RlRirthe playback level of a digital track cannot
be known, so we can only achieve an estimation of the loudegstrelative to an arbitrary reference. For
our needs it is also important to keep computational effaien mind, since the goal is to be able to use the
descriptors on large collections of music tracks. We thogeefvant to pay more attention to a simple and fast
approximation than to a very sophisticated and more acepratcedure.

In the course of this dissertation two different impleméotas for dynamic complexity have been devel-
oped. The first one was chosen, because of its easy impletioantt is operative in the time domain and
utilizes a simplified loudness model as described in Vick2@91). Some modifications and additions have
been made in order to make the algorithm fit for the desirdd tHse second one uses a slightly more sophis-
ticated approach based on Pampalk’s implementation oe8gwnethod [Stevens (1956), Stevens (1961)]
including a modified version of the outer ear filter from Teadhs pitch perception model [Terhardt (1979)].
This implementation has the advantage that the computedhietdiate results can also be used for the timbre
complexity estimation (see section 4/3.1).

Implementation using Vickers’ loudness estimation

As a first step the algorithm applies a very simplified “B” wtigg function to the audio signal in order to
account for the human ear’s transfer function. For efficjeme@sons this weighting is done by a first-order
Butterworth high-pass filter with a cut-off frequency of 289. So actually only the low end of the weighting
function is approximated. In the case of music signals thislerable, since they have much more energy in
the bass and mid-range compared to the high frequencies.

The pre-emphasized signaj,..(n) is then fed into a root-mean-square level detector with tegiated
smoothing function. This level detector consists of a ragréveragée/,,,, (eq.[4.1) that is downsampled
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according to the chosen frame lendgth

‘/ms(n) = C- Vms(n - 1) + (1 - C) Lz (TL) , with (41)

pre

i
c = € 7

n is the sample (or time) indexX;; corresponds to the sampling frequency arid the time constant for the
smoothing (35 ms in this implementation). The downsamgkndpne according to equation 4.2.

Vims(i) = /Vins(N i + N = 1) (4.2)

We chose a framesize of 200 ms corresponding/te= 8820 for a sampling rate of 44.1 kHz,corre-
sponds to the new sample index after downsampling. Thissjmae roughly resembles the energy integration
function of the human hearing system [Zwicker and Fastl Q)P he instantaneous level is then converted
to dB by calculating

Vap(i) = 20 - logyo (Vims (i) - (4.3)

In order to avoid silence at the end or the beginning of thektta have an effect on the complexity estimation,
successive frames with a level of -90 dB or below are deleteehvthey appear at either end. Afterwards, the
global loudness level. according to Vickers is calculated. is a weighted average of alll instantaneous
level estimates, where the louder ones are given a highghtvei

M-—1
L = Y w) Vap(i) ,with (4.4)
)
W= s
u(]) — 0.9 Vas()

The emphasis on the loud frames is grounded in psychoacdimstings. Zwicker and Fastl (1990) for
example suggest that the global loudness of a dynamicadiggihg sound can be characterized by the loud-
ness level which is reached only by the highest 5% of the mtateeous loudness values for that sound.

In this implementation a variation of Vickerdynamic spreads used as the final dynamic complexity
measure. It is a simplified complexity estimation in the sethst periodic loudness variation and the sud-
denness of changes are not explicitly considered. Insteadlgorithm basically uses the average distance
from the global loudness level (€q. #4.5) as an indicator abhigh values correspond to higher complexity

and vice versa.
1 M-—1

Caynt = 37 > Vas(i) — Lf (4.5)
=0

Figuré€ 4.1 shows the computational results of the algoriibmfiour prototypical music tracks. The dots
resemble the instantaneous loudness values, the grey éirlesie estimated global loudness level, and the
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Figure 4.1: Instantaneous loudness as in eq. 4.3 (dotd)alloudness as in ef. 4.4 (grey solid line), and
average distance margin as in eq. 4.5 (dashed lines) foefmmple tracks.
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dashed lines indicates the average distance margin. Irefilglia we see a highly saturated heavy metal track
with a basically flat dynamic level. The global loudness wetdeated as -14.9 dB and the average deviation
Cayn1 from this level is only 1.37 dB. Figure 4.1d shows anotheresxe, a recording of classical music
that changes in loudness between -50 dB and -20 dB. The tigoeistimates a clearly lower global loudness
of -24.8dB and an average deviation of 8.05dB. In betweeretlsea pop song (figure 4.1 b) moderately
varying in loudness with a global level of -16.4 dB and an agerdeviation of 3.71 dB. The jazz guitar solo
from figure 4.1 c is recorded at very low volume. The estimalebal loudness is only -25 dB. Despite some
singular drops down to -50 dB due to short pauses betweerglagtes, the average deviation amounts only
to 4.5dB and is thus considerably smaller than that of thesatal recording.

Implementation based on Pampalk’s approach

Alternatively, an implementation based on the.sone function of Pampalk'sviA Toolboﬁ has been done.
Apart from allowing for a more accurate loudness estimatioareason for this is also that the preprocessing
is similar to the one used for the timbre complexity compataive will discuss in section 4.3. Despite
the more expensive processing steps, this way is therefonpatationally more efficient if both descriptors
(dynamic complexity and timbre complexity) are to be conepfor the same track.

The processing starts by breaking the input signal downawéslapping frames of roughly 16 ms length.
We use a Hann window (eq. 4.6) for weighting the sampl@s) within each frame in order to avoid edge
effects of the Fourier Transform. The overlap factor is vbng us a relatively high temporal resolution of
8ms.

w(n) =0.5- (1 - cos(27an 1)) ,With0 <n < N (4.6)

After a frame is transformed into the frequency domain vaRhst Fourier Transform, the normalized power
spectrumP (k) is computed:

[ 2x
P = | ver 4.1
where
X9 =3 o) w0 witho< k< V3 4.8)
)_n:Ox(n w(n) - e , SRS o .

The power spectrum is then weighted with a curve that is iegiddy the frequency response of the outer ear.
As can be seen in figure 4.2 the modified version we use is mdaaded and gives a milder emphasis on
the frequency region between 2 kHz and 5 kHz than Terhardtinal curve [Terhardt (1979)] that is also
depicted. The curve assigns a weightf) to each frequency valug (measured in kHz) according to the

following formula:
—0.6-(f—3.3)2 -5 —o0.
A(f) = 1005 a0 2800, (4.9)

2http://www.ofai.at/ elias.pampalk/ma/index.html
3Since we only deal with real valued input signals, the val‘oes’2X < k < N are redundant and therefore omitted in the further
processing steps.
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Figure 4.2: Frequency weighting curves for the outer ear.

Evaluating equation 419 only at the center frequencies efhins from the discrete Fourier spectrum we
obtained from equation 4.8, we can create an array of weighteg A(k). The weighting of the power
spectrum itself can then be described by the simple mudagtn:

Py, (k) = P(k) - A(k)%. (4.10)

From this weighted power spectrum we compute then the barét baergies’., (1) by summing up the
values ofP, (k) falling in between the lower boundw B(I) and the upper bounktigh B(l) of each of the
24 bark bands as defined in Zwicker and Fastl (1990):

highB(l)

Py(l)= Y Pu(k) (4.11)

k=lowB(l)

Once the bark band energies are computed, a heuristic spgefaohction s(I) following Schroeder et al.
(1979) is applied to account for spectral masking effectatiman sound perception. Temporal masking
effects, that also exist in human perception are not aceduiatr at this point. The spreading is realized by
convoluting the bark band energi€s, () with the spreading function

s(l) = 10(0-75:1+1.937—1.75-/17+:0.948 1+1.225) (4.12)
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resulting in the spread energy distribution
24
Papread(m) = Pep(l) - s(m —1) ,with1 < m < 24. (4.13)
=1

We then limit the lower bound of the obtained band energidsitoorder to avoid numerical problems with
the following conversion to decibel scale, which is given by

PdB(m) =10- 10g10(Psp7.wd(m/)). (4.14)

The total instantaneous loudness is then estimated falpwie method described [in Stevens (1956) and
Stevens (1961) for the case of third octave bands. To do sorstenBed to convert the energy values of
each band from the decibel scale to the sone scale. The salevgas proposed by Stevens (1957) to
provide a linear correspondence to human loudness pevoefpte. if a sound has twice as much sones as
a reference sound, then it is also perceived as being twitmudy Pampalk’s implementation is not 100%
accurate at this point, since the decibel values would nedxt tconverted into phons first [as described in
Bladon and Lindblom (1981)]. This is a non-linear operatiaich would make it necessary to quantize
the values according to equal loudness curves obtaineddreatluminous lookup table or through a set of
heuristic approximations. For simplicity, we use the cosian formula directly on the band energy values,
considering that the sound sensitivity of the human eafffgrdint frequencies has been accounted for already
partly in equation 4.9:

90.1-(Pap (m)~40) for Pyg(m) > 40 (4.15)
L(m) =

(Pyp(m) —40)252  else. (4.16)
Finally, we arrive at the total loudness estimate for eaamé by evaluating

24
Ltotar = 0.85 - L(Minaa) +0.15 - > L(i), (4.17)

=1
wherem,,,q. is the index of the band with the biggest loudness in the fraBefore proceeding with the
complexity estimation it is first necessary to smoothen thelhess evolution, since so far we have been
considering only isolated frames representing 16 ms ekkeAs with Vickers’ method, we again apply an
exponential decay function in a sliding window fashion dlkaas shown in equation 4.1, but with a time
constant corresponding to 800 ms or 100 overlapped framleis. velue was empirically found and results
from the aim to reduce the influence of loud, but regular p&simn events in front of a lower overall loudness
level. In a second smoothing step we are then calculatingutm@ng average over 200 consecutive values,
corresponding to 1.6 s. We decimate the sequence to a liesodifit?.5 values per second by computing this
operation only for every 50th value.
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As we are not estimating a global loudness level for the emtéck, this time the complexity estimation
is calculated slightly different. We consider the averagettlation of successive loudness values as the
complexity indicator. So it is now more the suddenness aadthount of loudness changes, that determine
the complexity, while with the approach following Vicketsetfocus was more one the duration and distance
away from the global loudness level of the track. It was foadslantageous to move back to the decibel
level again before evaluating the complexity measure, o ivi,:s4(n) being the smoothed, decimated total
loudness values we obtain:

N-1
1
Caynir = N_1 Z logyo(Ltotsa(n)) — logio(Liotsa(n + 1)), (4.18)
n=1

with N being the number of decimated loudness values for the drdick. The use of the logarithm in this
equation actually means that we are looking at loudnesafition in terms of ratios on the sone scale rather
than in terms of absolute deviations. This makes senseubeeajump that doubles the perceived loudness
will (at least ideally) always result in a ratio of 1:2 no neatat which level it starts.

Figure| 4.3 shows the resulting loudness curves for the feamele tracks we already saw in figure
[4.1. Again, the heavy metal track depicted in figure 4.3 a shawery flat loudness curve over time. The
complexity in terms of the average absolute difference betwconsecutive values (€g. 4.18) is therefore
quite low and amounts only to 0.134. Looking at figure 4.3 le, pop song, we can observe the stronger
smoothing compared to the method based on Vickers’ algoritfhere is much less fluctuation visible than
in the instantaneous loudness in figurel 4.1 b. Still, the dexity is clearly higher than for the heavy metal
track with Cyy,,;r = 0.247. In figurel 4.3 c, the jazz guitar piece, the effect of the sriogtis even more
visible. The short sudden drops in loudness have been aa@g, but compared to the pop song there is
clearly a higher amount of fluctuation in the signal. ThisIsoaeflected in the complexity value, which
reaches 0.304 for this track. Finally, for figure 4.3 d we sgairathe strong changes in the loudness level,
which are typical for many recordings of classical musicisTrack yields again the highest complexity with
a value of 0.488.

4.2.2 Implementation of the Spatial Component

The spatial component of acoustic complexity estimatioasswe said, mainly focusing on the disparity of

the stereo channels and the amount of fluctuation in thecsit@i@ge. While methods exist to calculate the po-
sition of a single sound source in space when it is recordezhlarray of microphones [e. g. Silverman et al.

(2005)], the identification of the center of effect in therste panorama is a somewhat different problem.
Since usually complex mixtures of sounds are involved ime&hannel, some kind of source separation tech-
nigue would be needed in order to obtain very accurate geddtiwever, this type of auditory scene analysis
usually involves very heavy processing and the quality efsfparation can vary a lot with different types of

input signals and an unknown number of mixed sources.
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Figure 4.3: Instantaneous total loudness values (eq! driitgarithmic scale for the same four tracks shown

in figure 4.1.

A work-around for this bottleneck can be found in methodg¢ #ra commonly used in room acoustic
measurements to quantify the reverberation or the spawéssgsof an acoustic environment. Although we
cannot hope to find the wideness or the amount of fluctuatidharstereo image directly being reflected
in these measures, we might at least obtain a rough estimettithe “size” of the auditory scene. A good
overview over several methods in use can be found in GriesifiP99). Usually, these measures take the
room impulse response as their input and are thus not suteddontinuous signal as music. An exception
is the InterAural Difference (IAD) introduced by Griesingahich, as he states, can also be computed as
a continuous function for music signals. It is computed adicm to equation 4.19, wherk(t) and R(t)
refer to the audio signal in the left and the right channed, tae equalizatiorq consists of a low frequency
enhancement of 6dB per octave below 300Hz.

(4.19)

TAD(t) = 10 - log,, <M>

L(t)? + R(t)?
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As a function of time, thd AD indicates the direction from which the main acoustical gpés coming. A
simple measure of complexity would therefore be the vagafd AD(t).

A slightly more sophisticated alternative accounting terso effects based on a delay between the chan-
nels involves the cross-correlation functiol®’ R(7) = ZEZ:M L(t) - R(t — T) between the channels, where
the lagr should be evaluated within the boundariest ms. Delays greater than 2 ms are not perceived
as a shift of the source in the stereo image anymore, but ardifiéd as an echo. Often, the function is
normalized by the square root of the product of the soundgiein the two channels and then known as
the Inter Aural Cross-Correlation Coefficient (IACC). Thimction needs to be computed on short fragments
of the signal (e. gtena — tstare = 80 MS), since the stereo image cannot be assumed to be stablemye
periods of time in a music recording. We would then need tatifiethe lagr,,.. that maximizes the cross-
correlation function for a given fragment. A measure of thatsl complexity could be seen in the variance

of 7,4 @cross all the fragments of the entire music track.

It must be stated again that the originally intended use ed¢lmeasures is somewhat different from our
needs. The measures are supposed to reveal informatiohthb@coustic properties of a real room when an
impulse or a (dry) sound is played back inside. The two chigrineequation 4.19 correspond to the signal
recorded by two microphones (e. g. inside an artificial héathe room. We, on the contrary, already have
a stereo recording, which was produced with very differenhhiques, but we would simply have to treat
it as the recording of the dummy head in a “virtual” room. Artemsive discussion of this problem and
some experimental results can be found in Mason (2002) nibeaically be said, that this approach is only
successful when very special conditions apply to the reogr@. g. a solo instrument recorded with a stereo
room microphone). With very rich mixtures of sources andiistedited material the results become more
and more arbitrary.

Given these shortcomings we looked for a compromise betwaeesry costly and difficult, complete
auditory scene analysis and the simple but inaccuratetdicguparison of the stereo channels. The choice
fell on a method proposed in Barry et al. (2004) that has baghdr developed for human-assisted source
separation by Vinyes et al. (2006) at Pompeu Fabra Uniyershe basic idea is to compare the short-time
Fourier spectra of the two stereo channels in order to ifletiie energy distribution in the stereo image
across the audible frequency range. While the actual sépauaftthe sources based on this distribution still
requires human interaction or very advanced heuristicgoneeds this representation is already sufficient.
We can analyze the fluctuation in this distribution over tase cue for the amount of changes in the auditory
scene. And we can also compute the sharpness or flatness dfgtiibution as an indicator for the width of
the stereo image. Strictly speaking, this method is onhliegiple with accuracy, in cases where the stereo
image is created through intensity differences betweerchiamnels and not through a temporal delay. As
intensity stereophony is the most common practice in stpdioluction and even with a delay between the
channels there is often also an intensity difference, théhatecan be considered much more versatile in our
context than the afore-mentioned measures from room dcsust

As mentioned, the basis for the processing is once more aegggtion of the audio signal into frames
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followed by the multiplication with a window functiom(n) and a Fourier transformation (€q. 4.8 on page
[50). The chosen frame length and overlap factor corresploisditme to 93 ms and 0.5 respectively. In
contrast to the dynamic complexity processing, we are notaioing pairs of values(; (k) and X (k),
since we are processing the left and the right channel sghainaa synchronized manner. Again we compute
the power spectr&y, (k) = | X1 (k)|> and Pr(k) = | Xr(k)|?, this time without normalizing by the window
weight. For each of these pairs of values we estimate nowthle gan(« (%)) corresponding to the direction
of the acoustic energy source in a horizontal 180°range:

Pr(k) — Pr(k)

tan(a(k)) = NG ORD

(4.20)

In a second step these values are quantized and converted reiterence table mapping them into the range
1 < ay(k) < 180, with o, (k) being a natural number. A value of 1 would thus refer to theuatio energy
in the respective frequency bin being concentrated in tfieck@nnel only, for a value of 180 it would be
the right channel, and for the others something in betweemw We use this information to compute the
instantaneous energy distributidfy,..;,; for each frame. First we obtain the instantaneous enengideei
individual frequency bins

E(k) = logo(Pr(k)) + logio(Pr(k)) + 14, (4.21)

where the constant 14 corresponds to an empirical offsetfas@oise suppression, since we limit the values
E(k) to a lower bound of zero before proceeding with the calcoisti The energy distribution is then
obtained by summing all valuds(k) of one frame that have the same vatugk):

Eepatia(m) = > E(k) ,with1<m < 180. (4.22)
ke{k|og(k)=m}

Figurd 4.4 shows two snapshots of such distributions. bktome the stereo image is rather wide and there is
a lot of fluctuation. In the snapshot we can clearly see thahza position in time, the left channel contains
overall much more energy and one source seems to be playmggtily 40°to the left from the center. In
contrast, for track two, a historic jazz recording, thera lsig peak in the center with more or less balanced
and relatively low wings on either side indicating an auditmmage close to a mono recording. Before the
actual complexity is estimated, we apply several stepse#rihg and smoothing to reduce effects of noise
and inaccuracies in the calculation of the distributiorisstihe distribution of each framds normalized by
the total frame energy:

E[Z] o ELZ;])atml(m)
norm(m) - 180 [1]
2048 + 3,20, Eli(k)

,with 1 < m < 180. (4.23)

The constant 2048 has two functions. First, it is a simple enical trick to avoid the problem of dividing
by zero in the case of silent frames. Second, it gives additiemphasis to louder frames, since now we
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Figure 4.4: Snapshots of energy distributions on 180°bat& plane for two example tracks (trackl= mod-
ern electronic music, track2= historic jazz recording).

are assigning the weight®! = S2'*° Ell,. (m) to each frame. The normalized distributions can be
represented in form of a matrix, where the first dimensioarsfo the angle,, and the second to the frame
index. To this matrix we apply now a 3x3 median filter that ree®extreme outliers in the distribution.
Afterwards we use a box filtof size 7x11. That means for each element we are computinavérage for
the neighborhood of-3° and+230 ms, which significantly reduces the details leaving dinéymajor shifts
in the distribution.

Now we can readily apply the following formula to estimate #patial fluctuation as an indicator for

complexity in terms of changes in the stereo image over time:
N— 180
Copatrive = 37— Z gl ‘E,[;J,Tm ) — B ()] (4.24)

whereN is the total number of frames of the track. While this meassivedll suited to identify static images
from those that constantly change, it does not account omtldeness of the acoustical scene. Whether a
source is moving only several degrees away from the centecloanges from the extreme left to the extreme
right is not very well reflected despite it can be consideragdlevant difference in terms of complexity.
Also, two static images will yield the same score even thoogd might be a mono recording and the other
uses the entire available stereo panorama. For this reaearbtained energy distributions have been used
for a second complexity measure. As an auxiliary result ve¢ iompute the “center of massg] of each
distribution. If we consider the distribution as a one-disienal object with 180 partitions, where the weight

4A box filter is the equivalent to a moving average filter in twmehsions. In our case it smoothes simultaneously the tempatal an
the directional evolution.
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of each patrtition is given by the corresponding ena@é%m(m), then we have

180 4] 180
; : Enor'm : P 3
clil = Dm=1 ﬂ;ﬂ[i] (m) Jwith B, = 57 Bl (). (4.25)
sum m=1

For numerical reasons we have to take care of the Eé’éeb = 0, which can occur for silent or extremely
soft frames. For these cases the centttgidNiII be set to the neutral position, which is 90. Likewiseffe
following processing we will replace the correspondingues of B, with the equivalent tao. We now
define the second complexity measure as the average spatiatisaccording to the formula:

180
m=1

Elf]orm(m) . ‘m — cy]

(4.26)

1 N

CspatSPread = N Z EM

1=1 sum

We tried to linearly combine the two complexities to a singdéue or to multiply them, but the results were
not convincing. Therefore, they remain as separate conmisioé spatial complexity.

4.3 Timbral Complexity

There is no clear and precise definition of timbre that coelddgarded as a common agreement on the music
analysis field. By the American Standards Association [Aoaer Standards Association (1960) p. 45] the
following statement was released: "[Timbre is] that atitédof auditory sensation in terms of which a listener
can judge that two sounds similarly presented and havingdhge loudness and pitch are dissimilar.” For
our purpose we will consider timbre as the entity that is tlestntightly knitted with sound production (i. e.
the source of the sound and the way this source is exciteduetdsr, this concept of source should not be
treated in a strictly physical sense here. In the case ofgpgrb20 violinists playing unison for example we
would rather refer to the group as the sound source rathertthevery individual violin.

We can then derive several specifications of the generas idfeomplexity itemized in chapter 2. This
gives us features like the number of distinguishable imsémis or sound textures present in the music, the
rate at which the leading instruments change, or the amdumbdulation of the sound sources. As reported
in Herrera et al. (2003) a universal instrument recognitigstems for arbitrary polyphonic music signals is
not yet available. In any case, the exact classificationdividual instruments is not really necessary for our
purposes, because we rather want to look at the perceivaatees in the timbral texture of a track without
the need for official labels.

4.3.1 Implementations of Timbre Complexity

The main difficulty with timbre lies in the fact that it is noagly translated into a single low-dimensional
feature and thus lacks a simple representation. Commorgigimal processing applications it is addressed
in terms of the spectral shape and the temporal envelopdotimer being significantly easier to obtain in
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general and therefore much more in use than the latter. insltiypically encoded in a multi-dimensional
feature like the Mel Frequency Cepstral coefficients or three&r Prediction coefficients, but occasionally
also sets of different one-dimensional features can bedfolike the spectral centroid, the spectral flatness,
or the spectral skewness [see e. g. Eronen (2001)].

Hidden Markov Models

In a first attempt it was tried to utilize machine-learningl@tustering techniques in an unsupervised manner
to produce something like a finite set of timbre models forvegiinput signal. Aucouturier and Sandler
(2001) report about applying HMMs for music segmentatiothaiit explicit supervision of the training
process. HMMs are particularly interesting for this tagéGduse as we mentioned timbre has not only a static,
but also a temporal aspect to it. As HMMs are working on olet#oa sequences by default, this duality can
be accounted for to a certain degree. Extending the ideasAnacouturier and Sandler (2001) a bit further
we first tried an approach that is depicted schematicallyguré 4.5. Based on the Mel Frequency Cepstral
coefficients as a feature that is computed on overlappingédsafor the entire track, we try in a second stage
to automatically build up an optimal set of models that fitdl wéth the given observations. We might start
with only one model and a flat or random initialization. If wanmt to be a bit more sensible we also might
use a k-means clustering of the features to obtain an ia#itabn of the Gaussian mixtures in the model.
The EM-Algorithm is utilized to optimize the model paranrstéeratively on short segments of the feature
sequence until no significant improvement in the log-liketid is reached anymore for the given segment.
We can then use a threshold for the total improvement of tgdikelihood before and after the training
(loglikelihood; — loglikelihoods) to decide, whether we just want to update the original mantele keep

it and use the new parameters for a new, additional modeh e next segment we start by selecting the
best model from the ones we have trained so far (i. e. the atayites the highest log-likelihood) and then
repeat the EM-training and the update procedure until wehréae end of the entire feature sequence. As
an indication of the timbre complexity we might consider thenber of models that have been created in
the process, which we could very roughly translate into timalper of different instrument textures that have
been identified. We can also consider the average improvembay-likelihood through the EM-Algorithm

as an indication for the amount of variability in the timbhecdughout the piece. If we want to reduce the
computational complexity, we can also restrict the numbidildMs to one and simply consider the final
log-likelihood of the entire feature sequence directly asmplexity measure.

The methods were tested with a mixed set of 100 songs andptsdesm different genres ranging in
length between 20 s and 2 min. Since annotations were ndablsithe performance was assessed by look-
ing at the ranking of the tracks according to the computedraincomplexity. Some items with subjectively
extreme properties in terms of timbral complexity were inleld in the set as reference points. These items
consisted for example in a segment of applause, a speeclesegfmobotic voice, and a solo cembalo piece
(all low timbral complexity). On the other extreme end thewe for instance an experimental piece featur-
ing a variety of different acoustic instruments and a ctagdsirchestra piece with different sections playing
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Figure 4.5: Schema for timbre complexity estimation witilsumervised HMM training

sequentially. It emerged from the rankings that the low dexify range was consistent with the subjective
human impression of timbre complexity. The applause sawplays appeared at the bottom end of the list
and the cembalo piece was also ranked among the lowest 20B& dfeicks in all variations of the setup.
For the higher end, however, the results were not so niceallysthe robot voice sample would appear at
a rather high position together with other songs that wereidated by a singing voice. The two reference
samples, which contained no singing voice, managed to teetlie top ten of the list, but not until the first
positions. It became clear from these observations thatyaneeded to be found to reduce the influence of
the formants in speech and singing voice on the timbre dascrcomputation.

In any case, it is apparent that this approach has a few waakspdhe most obvious one is of course
the computational cost, since the repeated training on fadpeorequired feature extraction is relatively
expensive. More problematic even is the fact that we havelieve blindly in the thresholds and the choices
of fixed parameters that we set once for any type of input. Asithole process is unsupervised we have no
clue at all whether the different HMMs that are created dythre process really correspond to perceptually
meaningful timbre models, or they are rather arbitranyfaats of the log-likelihood optimization. A general
problem with HMMs, that also applies in this case, is the nendd free parameters. For each HMM there
is the matrixA with the probabilities of transitions between the statesctEstate then has a set of vectors
1 and matricesr that specify the means and the variances of the Gaussiannesxin the feature space.
Furthermore each Gaussian has a valugssigned that determines its weight in the mixture. So @l tbe
number of choices that have to be made by the training algorig very high considering the relatively small
amount of training material we are using. For all these nesisbwas decided to move towards a simpler,
more controlled approach.
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LZ77 compression gain

The next thing we tried was built on the idea that timbre camxity could be measured in terms of entropy
or information rate, if it was possible to convert the audgnal into a string of “timbre symbols”. With such

a representation it was then possible to apply techniques information theory like entropy estimation or
compression algorithms, for example the LZ77 algorithm byahd Lempel (1977). The basic idea of this
compression algorithm is to apply a sliding window on theusgtpe of symbols that is to be encoded. The
window is split into two parts, the memory buffer with a sulvgy A of fixed length that has been encoded
already, and the look-ahead buffer with substriagf fixed length that still needs to be encoded. In each
step the algorithm searches for the longest prefiB dfeginning inA. This prefix is then encoded as a code
word composed of three parts. It contains the offset (nunsbalymbols between prefix and match), the
length (number of matching symbols), and the terminatingtsyl of the prefix inB (the first symbol that
doesn’t match anymore). If there is no match found, offsetlangth are set to zero in the code word. The
encoded symbols are then shifted into the memory bufferlag@rtocedure starts again until the entire string
is encoded.

This algorithm is particularly interesting for us, becairsa certain way it shows similarities to the way
human memory works with music. According to Snyder (2000)short-term memory for music can capture
only about 3-5 s of audio. So this is the time scale on which wifellchunks, which can then be processed on
a higher level (e. g. to be stored as patterns in long term m@mbhe sliding window of the LZ77 algorithm
can be considered —again, very simplified— to resemble thetibnality of short-term memory, because it
puts a limitation to the maximum "chunk length”. So considgrour goal being the estimation of perceived
timbral complexity, it seems a very promising choice to l@khe compression gain of LZ77 applied to
timbre sequences:

(4.27)

Ng

l. is the length of the code words relative to the length of thatsyls in the original source alphabet. Since
we don't change the size of the buffer this is a fixed quantity therefore has no influence when comparing
the compression gain for different timbre strings. andn, are the number of code words and the number
of symbols respectively that are needed to represent timg stA low compression factor means that a lot
of redundancy was removed in the compression process, aadha source entropy is low. A compression
factor close to one means, that the compression algorithemateable to take much advantage of redundancy,
thus the source entropy is supposed to be high.

The key problem of course is the creation of the timbre stimghe first place. To achieve this we
proceeded in the following way. In order to obtain a compagiresentation of timbre only four scalar
features describing aspects of the spectral envelope veexd WAl features were derived from the spectral
representation of the audio signal, which was obtained namé-by-frame short-time Fourier transform
(STFT). The window size was 1024 samples correspondingugphly 23ms. The chosen features are:
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Bass The intensity ratio of spectral content below 100 Hz to thi $pectrum. This feature reflects the
amount of low frequency content in the signal (originatingdxample from bass drums, bass guitars,
or humming noises).

PresenceThe intensity ratio of spectral content between 1.6 and 4 kiHhe full spectrum. This feature
reflects a sensation of “closeness” and brilliance of thedpespecially noticeable with singing voices
and certain leading instruments.

Spectral Roll-Off The frequency below which 85% of the spectral energy areraatated This feature is
related with the perceived bandwidth of the sound. In musiedcts to the presence of strong drum
sounds, which push the spectral roll-off up [Tzanetakis@adk (2000)].

Spectral Flatness MeasureThe spectral flathess between 250 Hz and 16 kHz reflects whighesound
is more tonal or noiselike. It is the ratio between the geoimatean and the arithmetic mean of the
intensities within the specified frequency range [Allanfanet al. (2001)].

This selection of features is due to the practical constamrahat we would like to have relevant timbral
characteristics reflected directly in the individual featualues. In contrast, isolated Mel Frequency Cepstral
coefficients (MFCCs) for example are much more difficult teeipret although they contain very similar
information when used as a multi-dimensional feature. Vge &lied to achieve a good trade-off between
covering the different relevant aspects of timbre and kegphe number of features small. The latter is a
pre-requisite for utilizing the LZ77 compression in our t®xi, as we will see later.

In order to reduce noise and fluctuations originating fromesih (or singing) we grouped 40 consecutive
values together and only kept the median of them. So we oltaieach feature a new value roughly for
every second of audio material. The median is preferred theemean, since it is not sensitive to single
outliers. The idea is to focus rather on the longer term |sti#xture than on very fast changes in the timbre.
We also applied a silence detector based on the audio sigaajyeto exclude silent segments from further
computation. The most critical part of the conversion consisted now érttapping of the continuous valued
features into a finite domain of symbols. Since the stringsather short and we need exact correspondences
in order to have observable compression effects, we needassively simplify the representation of our
data. This was achieved by a sophisticated quantizatiocegtoe including a hysteresis behavior (i. e. the
thresholds that separate the partitions are sensitiveetditiection in which the data sequence is evolving).
For each of the four continuous features we computed thetilguboundaries for a database of 100 music
tracks with lengths between 20 s and 2 min. The hysteresisntrasluced to avoid fast oscillation between
neighboring partitions. In order to change into a differpattition it is therefore not sufficient for a value
just to fall beyond the boundary. The change is only iniiatghen one value reaches more than 25% of the
corresponding partition size beyond the boundary.

5|t is arguable whether silent frames should be kept insteddaasigned a unique timbre label. Practically this has liglevance
however, since long segments of silence are not that freguembst musical recordings.
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Figure 4.6: Timbre symbol sequences for excerpts of a) Rer@gmbalo music, b) a modern Musical song
with orchestra.

After this procedure we need only 2 Bits to represent theshgtartition for each of the four features. The
resulting timbre symbol string therefore has symbols of & Bt a rate of roughly 1 symbol/s. The reason
for being so restrictive in the number of different featunes in the number of partitions for the quantization
lies simply in keeping the number of symbols at a reasonalle.| Would we choose for example 6 different
features instead of 4 and quantize each to 4 Bits insteadwé 2yould already obtain symbols of 24 Bits.
In other words, there would be a total 2#* = 16,777,216 different symbols available. As the LZ77
compression relies on exact repetitions there would be lagvychances we would observe any significant
compression ratio considering the rather short stringstbare using. Figure 4.6 shows two example results
of the quantization process. It should be noted that them®tisnuch sense in the distance of the symbols
as they appear in the plots. The intention is to distinguisly between equal or not equal, a concept of
similarity does not exist here.

As a result of the compression gain estimation we obserted,in general the ranking of the test files
coincided relatively well with a subjective impressioniofilbre complexity. Especially at the low complexity
end there was little confusion, as it was already the cade thé HMM-based methods. The test example
consisting of recorded applause only was clearly identdiethaving the lowest complexity by the method.
Particularly at the higher end of the scale however the t®sue more ambiguous again with several cases
being clearly ranked to high. The general problem that $sgwéh a strong human voice are ranked higher
than they should (e. g. speech, rap, or solo singers) stilhneed despite of the median filtering. This is not
very surprising, because the discrimination of vowels iaegiin and singing is determined by the position
of the formants, which basically means by the form of the spéenvelope. In human perception these
changes are not perceived as changes in timbre when thegrappe human(like) voice. It is therefore a
systematic problem, which might be overcome by cancellmgvibice as much as possible from the signal
or by applying a voice detector and treating the segmentsraded by voice like silence.
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In any case, the described method still has some unfortpnaperties. Despite being much less arbitrary
than the HMM approach, because we have full control overaatumeters, the conversion of the signal into
a symbol string is still rather rough and very technical. While can assume that with such a coarse quan-
tization we can guarantee different symbols to corresporaddifferent perceptual impression, the reverse is
very questionable. Also, the placement of the boundariespuaely driven by the testing data instead of a
perceptually motivated choice. For these reasons a thjpcoaph was tried and finally chosen as the most
useful one.

Spectral envelope matching

With this third method we tried to reuse the idea of the LZ7mhpoession, but in a less rigorous way. The
main goals in the design were to avoid the necessity of a haadtization and to move closer to the human
perception of timbre. Following Winckel (1967), it takestzaage of at least 4 dB in the higher harmonics
and even 10 dB in the low harmonics in order to make the timbte/@ tones distinguishable. If we apply
this to the spectral envelope rather than to single harmspmie already have a very practical criterion for
identifying textures that are perceptually at least vemyilsir and those that can be considered different. This
classification can then be used to count how many differentiriés appear within a given temporal window
in the signal, which we will consider an indicator for the tire complexity.

For the implementation we utilize again th@.sone function of Pampalk’sVA Toolboxthat we already
referred to in sectioh 4.2.1 starting on page 50. Figure Hoivs a block diagram of the algorithm with
references to the corresponding formulas. As mentionedréethe preprocessing steps coincide exactly
with those for the described dynamic complexity until thenpaitation of the band energié%z in equation
[4.14 on page 52 (block 3 in figure 4.7). Before we proceed vhighcomplexity calculation we first apply a
median filter (block 4) across the temporal dimension onghvesues in order to reduce noise and to smooth
the loudness evolution, since temporal aspects were naidened in the processing up to this point. The
filter takes the median of nine consecutive frames for eadhebands individually, which corresponds to
approximately 72 ms at the chosen hopsize. It is applied asvangn window without downsampling the
results.

Since we are going to compare the loudness values of sueedsmines in order to find changes in the
spectral shape, we would like to be indifferent to changdsudness, where simply the entire envelope is
moving up or down. This is not as trivial as it sounds, becalisee might be bands with close to no spectral
content that remain unchanged even if all other bands mighermp or down by the same amount. In such
a case, we would still like to measure that there is no chandbd spectral envelope despite the relative
positions of the bands in fact are different. The (not pejfeclution we developed consists in two steps.
For each frame we first select those baftihat have a loudness bigger than 5 dB and that are not less than
20 dB below the mean loudness of all bands in the frame. Ingbersl step we compute the mean loudness
only of the bands iR and subtract it from them.
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Figure 4.7: Block diagram of timbral complexity computatisased on spectral envelope matching.

The obtained loudness valuééﬂb of each frame are then compared to those of a group of preceding

frames (block 5):
1—500

Sl = Z css (Ps[ﬂb,Ps[i]b) , (4.28)
k=i—10
where the functioress(a, b) returns 1 if the absolute difference of all correspondinigies.in the vectors
andb is smaller than 6, and zero otherwise. We chose the value &, ®ecause with 4 dB the tolerance
appeared too small and only very few frames were found agytsinilar in timbre. The respective time
window starts 80 ms before the current frame and reachesugild s, resembling again roughly human
short-term memory.

In figure[4.8 we see three examples of the resulting funcfih The plots emphasize more on the
amount of similar frames that have been found with the metiwbith is only one way to look at the timbre
complexity or the timbre simplicity rather. We found it mawbust however, to consider the percentage of
frames that have no similar frame in the given time windowhasindicator of timbre complexity (block 7).
For the bagpipe music in plot a) there are most of the time aiderable amount of similar frames in the past.
It is rare that no similar frame at all can be found and the fioncreaches zero (8.5% of the frames). The
excerpt of the classical symphony played by a full orchedtmavn in plot b) is usually on slightly lower level
than the bagpipe music indicating a higher variability ia ttmbre. It also touches the zero mark a bit more
often, which means there are more often timbres appearaidive no correspondence in the recent history
of the signal (11.3%). All this reflects very well the pereahimpression when listening to the excerpts. Plot
c) with the rap excerpt marks an extreme case. Despite tloeiged timbre does not change that much, the
spectral envelope is completely dominated by the fast dhgrfgrmants of the speaking voice. Only at the
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Figure 4.8: Band loudness similarities (eq. 4.28) for thressic excerpts: a) bagpipe ensemble, b) classical
symphony, c) rap (the thick line at the bottom marks the eastithat are identified as voice content and

therefore left out in the complexity computation). The tialcomplexity is calculated as the percentage of

frames where the similarity is equal to zero.

short breaks, when the instrumental background is featuesthn see that a certain amount of similar frames
is found, but otherwise we always stay at very low values. géreentage of zero-frames is extremely high
with 56.3%.

We are already familiar with this problem, but now we are gdimlook at an attempt to reduce this effect
(block 6). The heuristic we apply is simply that for the cabmstrumental music we will usually find frames
regularly that have several similar ones in the recent histthis type of behavior is not common for passages
with a dominant voice, where it can happen over long segntbatonly a few similar frames are found. We
therefore select regions that don’t exceed the level of ti#lai frames within 60 or more consecutive frames
(480 ms) for not contributing to the increase of complexityplot ¢) the corresponding regions are marked,
in the other two plots there exist no regions that fulfill tbigerion. The corrected percentage for plot ) is
now 4.8%, so it would be attributed a lower level of timbrahgaexity than the other two examples (8.5%
and 11.3% respectively).
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4.4 Tonal Complexity

In section 3.2.1 of the previous chapter we saw that very stetlied models are available for the assessment
of melodic complexity based on a symbolic representationefMhcomes to musical audio however, this
facet of complexity can be considered the most difficult oFt@s is due to melody being a very abstract de-
scription which is hard to access from the audio signal. Asted out, there is no extraction algorithm avail-
able yet, that can reliably transcribe the melody of just mnugical audio file. The situation with harmonic
complexity gives a similar picture. While it is still possgbio handle the complexity of chord progressions
that are given as symbolic sequences, we are facing bigeabif we need to start from the audio signal
level. It was therefore decided in this dissertation to gipe¢he separation between a melodic and a harmonic
component of music complexity. Instead we only want to cdersa tonal complexity facet that accounts for
both, but on a very low level of abstraction. The idea is tokweith a signal representation that contains
the important characteristics of the tonal content whileaiming for an exact transcription of single notes
and chords. Based on this representation we can then apgly ggnciples of complexity estimation that we
discussed before.

4.4.1 Implementations of Tonal Complexity

We chose to work with the harmonic pitch class profile fea{ittBCP) that has been extensively studied
and developed by Gomez (2004). lIts abilities in charadtegizonal content have been demonstrated in
terms of key detection, version identification [Gomez (200&nd musical structure analysis [Ong (2006)].
Also several approaches towards chord segmentation andnigion rely on this or very similar features
[e. g. Fujishima (1999), Sheh and Ellis (2003)]. We will rpitalate the computation of this feature only
briefly here and refer to the given references for a detaiktiiption. The HPCP is computed frame-wise
in the frequency domain, so the audio signal needs to be sagthato frames, weighted with a window
function, and transformed via Fourier transform. Our sg#ifor frame and hop size are 93 ms and 46 ms
respectively. In order to reduce the influence of non-tonaigonents in the spectrum, only the local maxima
within a certain frequency range (in our case from 40 Hz to Z)k&te considered for further processing.
Some spectral envelope adjustments are done on these paakapensate for effects of timbre and for the
presence of overtones. The final feature is then obtaineddynaulating the spectral content mapped down
into the range of one octave. We are using a resolution of @6for the pitch classes, which means that each
semitone step covers 3 bins in our HPCP feature vector.

The HPCP vectors can now be used in different ways to arrivégiter semantic levels related with
music tonality. Gomez (2006) correlates them (averageutione) with ring-shifted key profiles for minor
and for major keys. If the maximum correlation among theseraditives exceeds a certain threshold, she
takes it as an indicator for the key and mode of the musicaepi®epending on the time frame one uses
for the averaging it is possible to move from the global keythef entire piece towards more and more
detailed representations, where modulations to other &egven individual chords become recognizable.
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Gomez and Herrera (2004) proposed to use the maximum diorelalue of the entire file as a descriptor
they namedonal strength This idea is very straightforward, since it is based onlineghold of this value she
is able to distinguish atonal from tonal music in her key diét& processing. A piece where the distribution
of energy on the pitch classes matches very well with the igépeofile would thus be considered as having
a high tonal strength. The concept behind this is very closattat we are looking for in terms of tonal
complexity, especially considering that the general peefére inspired from probe tone experiments with
human listeners [Krumhansl (1990)]. So we could think ofghefiles as a kind of prototype for the “common
sense” of musical key properties that can be (or not) matbiieah actual composition. We therefore included
the tonal strength descriptor into our set of complexitycdipsors.

But the descriptor does not cover every aspect of tonal cexitglthat could be relevant to a human
listener. By its nature, the “tonal strength” is very foadism a statistical picture of tonality. This means
however, that the temporal aspects are not accounted fbr @ha rate of changes or the perceptual distance
between consecutive chords for example are not reflectée itohal strength while they should contribute to
the overall tonal complexity description. We thereforesshan additional approach particularly targeting the
temporal aspects of tonality evolution. If we consider thamification of tonal change from a musicological
point of view this is not at all trivial. Not only would we nedd identify the boundaries where a tonal
uni@ starts and ends, we would also need to label these units. dResthese labels we could then apply a
distance measure like for example the one proposed by CHgO8)20 assess the tonal distances covered in
the course of the piece. Since both, the segmentation andhibbng, are very error-prone with currently
available algorithms, we tried to look for an alternative afower abstraction level. As a first idea we
considered to map the sequence of HPCP vectors directlyhietthree-dimensional space of Chew’s spiral
array. This representation is particularly attractiveicei Chew claims that spatial distances in her model
coincide with musicological ones. By assigning each pitiels< on the spiral a virtual mass based on the
accumulated energy of the corresponding HPCP element, neafode to compute a virtual center of gravity
for each vector. From the distance of consecutive centersoped then to get an estimation of the tonal
distance. It turned out, however, that the contrast betwelenant and irrelevant pitch classes in the HPCP
vector often was not high enough and that even for a percipstable tonal unit the proportion of the pitch
classes could vary considerably. As a result, the virtuaters of gravity were located most of the time rather
close to the center of the spiral and their movement did rteatethe tonal properties as expected.

For this reason we modified the approach putting less empluesthe musicological distance in an
absolute space and more on the amount of relevant fluctuetitme HPCP feature relative to the recent
history of the tonal evolution in the piece. As a preproaggstep we first excluded silent and transient
(i. e. not tonal) frames from the computation. This was donagplying a threshold for the minimum frame
energy and the minimum contrast within each HPCP vectorafonal frame we can expect a concentration
of energy in only a few elements of the vector, whereas insteam frames the energy is more equally
distributed yielding a lower contrast. We then compute twavimg averageg“l[i] (m) and Tz[i] (m) with

6This can be either in the concrete sense of a specific groufiabfgs sounding simultaneously, or more abstract in the sese
harmonic functions of chords.
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different window sizes individually on each of the HPCP me(dimensionsTl[i] (m) is supposed to reflect
the local tonal context and covers 250 frames (approx. ])1.52@(77@) corresponds to the instantaneous
tonal content and covers 25 frames (approx. 1.15 s). Eadiorveftthe two series is then normalized to a
maximum of one.

Now we compute two different distance measures betweerothesponding elements 8§ and7,. That
means for each framewe compare the instantaneous tonal corﬂéﬂtaveraged over the past 25 frames to
the bigger tonal conteﬁl[i] established during the past 250 frames. One criterion factimparison is the
overall similarity of the shape. We measure this with therB@acorrelation coefficient:

S (@ m) — T (m) - T

7"[7] — m=1 a2
(M —1) - T T}

: (4.29)

wherez and z denote the mean and the standard deviation of a vegtoespectively. M refers to the
dimensionality of the pitch class vectors, which is 36 in oase. Negative values fof! are set to zero,
since we are only interested in the degree to which the twtovgare similar in shape. Negative correlations
are therefore not relevant for us. Since we want a distartberrthan a similarity measure, we then invert the
correlation througtD!?! = 1 — ¢,

We found in empirical tests that the Pearson correlationealdid not yield the desired results under
certain circumstances. If for example a chord is soundings@one time and then one of its pitches is
disappearing or an additional one joins in while the restaies) then the correlation measure does not show
a clear response. Overall it appears to react mainly to n&jifts and changes in the tonal configuration
and to be rather insensitive to changes of only single pitcian example of this can be seen in figure 4.9
shortly before frame number 400. While there are changesdgkace in the lowest HPCP bins and around
bin number 19, the correlation measure does not show antiopac

For this reason we included a second distance measure thas shhigher sensitivity to these types of
fluctuations. For this purpose we first quantize the two wvestguence&; and7; to three levels. Values
bigger than 0.5 are considered relevant tonal componedtam@nassigned a value of 2. Values below 0.001
are most certainly irrelevant components and therefoiigrzed a value of zero. The rest of the values cannot
be assigned to either group with high certainty or belong irdnsition periods and therefore are assigned a
value of 1. We then compute the city block distances betwleedrresponding vectors of either sequence

36
pil =% ‘Tq[il] (m) — T (m)| . (4.30)
m=1
The city block metric is preferred at this point over the @liah or other distance measures. This is because
it corresponds more directly to the number of elements thahged in the vector, which is in fact what we
want to be reflected better in our complexity measure. We earirsfigure 4.9 that this measure responds
with a clear peak to the changes that take place shortly &é&fame number 400. However, when there are
many active pitches the indications of this measure arerld&ble. For example the major shift around
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Figure 4.9: Distance measures for tonal complexity contjprtaa) inverted correlatioriDgi], b) city block
distanceDg’], ¢) linear combination, d) corresponding HPCP data (beforeing average).
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frame 600 is detected much clearer by the correlation mea# a final indicator for the tonal complexity,
we take therefore the average of the combined distance mesasver allv frame@ of the piece:

N
1 il
Ctonal = N ZDE] . D[Q] (431)
i=1

4.5 Rhythmic Complexity

With the PS-measure, that we reviewed in sedtion 3.2.2, we alaeady seen a model for rhythmic complex-

ity that even has been assessed to a certain degree in tdstamvian subjects. But as we observed already,
the applicability of the model in our context is questiorgldince it operates on an abstraction level which
is not easy to achieve when starting from the audio signatthEtmore| 3.2.2 performed their experiments

with short rhythm patterns in isolation. It is not clear wheatthe perceived complexity of such a pattern is
exactly the same when it is part of a complete musical peroiga in a larger temporal context.

We therefore will put our focus more on questions like: Ig#eclear rhythm in the music? Is it strongly
induced? Is it stable? Does it happen in a usual speed? Ohea radve level, we could also formulate: Is it
easy to clap along with the music? Is the music easy to darce to

These questions lead us to the conclusion that the type tfinfiy complexity we are after has to be
found on a level of lower abstraction and specializatiomttieat of the PS-Measure. The danceability de-
scriptor based on the detrended fluctuation analysis thaineady mentioned in section 3.3.3 is therefore an
interesting candidate as it works directly on the time densgnal without making any assumptions about
the metric grid or even note onsets. The error-prone trgtgam or event detection procedures can thus be
avoided.

4.5.1 Implementation of Danceability

The implementation described here is following the desiompby Jennings et al. (2004). Where exact spec-
ifications were missing, we integrated reasonable solstidhe experimental findings obtained with this im-
plementation on a large music database were also repottieel 51 8th AES Convention [Streich and Herrera
(2005)].

As a first step the audio signal is segmented into non-oveirigpblocks of 10 ms length. For each
block the standard deviatior{n) of the amplitude is computed. The valugs) resemble a bounded, non-
stationary time series, which can be associated with theagee physical intensity of the audio signal in
each block (see figure 4.10). In order to obtain the unboutidexlserieg)(m), s(n) is integrated:

y(m) = Z s(n) (4.32)

n=1

“As we said, only the presumably tonal frames are considered her
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Figure 4.10: Excerpts from the time serigs) for three example pieces from different musical genres.

This integration step is crucial in the process of DetrenBlattuation Analysis (DFA) computation,
because for bounded time series the DFA exponent (our fiaalfe) would always be 0 when time scales of
greater size are considered. This effect is explained irerdetail in Peng (2005).

The serieg(m) can be thought of as a random walk in one dimensighr) is now again segmented
into blocks ofr elements length. This time, we advance only by one samphe émee block to the next in the
manner of a sliding window. There are two reasons for thiseex¢ overlap. First, we obtain more blocks
from the signal, which is of interest, since we will obtairttke statistics from a larger number of blocks.
Secondly, we avoid possible synchronization with the rinttal structure of the audio signal, which would
lead to arbitrary results depending on the offset we happéave. However, performing the computation in
this manner the number of operations is increased enoru@tmsl

From each block we now remove the linear trepdand computeD(k, 7), the mean of the squared
residual:

=23 Gyl +m) — Gelm))? (4.33)

We then obtain the detrended fluctuatibiir) of the time series by computing the square root of the

8In order to reduce the computational load it was found empiyichat gently increasing the hopsize with growing windoiaes
does not affect the quality of the results too much (&dapsize = windowsize/50).
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Figure 4.11: Double logarithmic plots of mean residual diree scales.

mean ofD(k, 7) for all K blocks:

(4.34)

As indicated, the fluctuatioft’ is a function ofr (i. e. of the time scale in focus). The goal of DFA is
to reveal correlation properties on different time scal&g. therefore repeat the process above for different
values ofr that are within the range of our interest. Jennings et aD420se a range from 310 ms £ 31)
to 10 s not specifying the step size in their paper. Relatiege time scales to the musical signal they cover
the beat level to the bar level and reach further up to thd télenger rhythmical patterns.

The DFA exponent: is defined as the slope of the double logarithmic grapliadver = (eq. [4.35)
as shown in figure 4.11 for the three example tracks. It tbheeefnakes sense to increas®y a constant
multiplication factor rather than a fixed step size. Apaonirgiving equally-spaced supporting points on
the logarithmic axis it also reduces the computational aj@ns without affecting the accuracy greatly. We
chose a factor of 1.1 giving us 36 different values#farovering time scales from 310 ms to 8.8 s.

For small values of an adjustment is needed in the denominator when compuitiisge Buldyrev et al.
(1995)) giving us the following formula for the DFA exponent

ali) = logyg (F(7it1)/F(7i))

~ logyo ((i41 + 3)/ (7 + 3)) (4.35)
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Figure 4.12: DFA exponent functions for the three exameks from figure 4.10.

As 7 grows, the influence of the correction becomes negligibtethe case where the time series has
stable fractal scaling properties within the examined eartge double log graph of over 7 is a straight
line makinga(i) a constant function. We find a constant value of 0.5 for a cetefy random series (white
noise), a value of 1 for a series withi f-type noise, and 1.5 for a Brown noise series (integratetewtuise)
[Peng (2005)].

For music signals normally we do not have stable scalingens (see figurie 4.12). Unlike heart rate
time series, for example, there is much more varianegin for music. Nevertheless, we can find that music
with sudden jumps in intensity is generally yielding a lowerel of « (i) than music with a smoother varying
series of intensity values. Thus, music with pronouncedyssion events and emphasized note onsets shows
lower o values than music with a more floating, steady nature. Tleadsb a relationship between strong
periodic trends and the function. Figure 4.12 shows the evolution @fover the different time scales for
three musical pieces. As can be seen, the DFA exponent \&gigificantly within each single piece.

The most stable scaling behavior is found for the classiieglgpat short time scales —in contrast— the pop
piece shows an intermediate, and the techno piece shows anlsigbility. This is due to the presence of a
strong and regular beat pattern in the two latter cases @a&f#.10). In the techno piece the periodic beat
dominates the intensity fluctuation completely since istigrvariations on larger time scales are negligible in
comparison. This strong periodic trend deteriorates théragproperties of the series and cauads drop
significantly. Towards larger time scales however, the érfite of the periodic intensity variation disappears
andq raises back towards its normal level. In the pop music pibeeetis also a regular beat, but it is less
dominant than in the techno piece. As can be seen in figure thé@ are also some noticeable changes in
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intensity on a larger time scale. Still,is clearly decreased by the periodic trend. Towards laiger $cales,
we can observe the same effect as in the techno piece. Fota&cal piece no dominant, regular beat
pattern can be identified in the time series. Thus, the sgaliaperties are not affected in the corresponding
range. But in contrast to the other two examples the seneslga larger scale pattern in some parts, which
can also be seen in figure 4.10. This causés drop in the upper range.

In order to arrive at an indicator for the danceability anasth certain aspect of the rhythmic complexity
thea values have to be further reduced. While different ways assipée, in the first implementation simply
the averager level was computed for each track. A high value refers to & bigmplexity (not danceable),

a low value refers to a low complexity (highly danceable)alslightly more sophisticated approach we also
tried to separate the component related to the beat fromrteeeaferring to the larger time scales. As can
be clearly observed in figure 4.12 a strong and steady beaesairong oscillations in the scaling curve.
The stronger the dominance of the induced beat in the mirgidptver does the curve atpha values reach.
Therefore we use the height of the lowest local minimum irsttading curve for time scales below 1.5 s as an
indicator for the beat strength. As the minima appear roughthe time scale that corresponds to 1.5 times
the inter-beat interval, the limit of 1.5 s is a lower bound flee tempo coinciding with approximately 60
BPM. This does not necessarily resemble the real percedvefdd, as the strong downbeats might occur only
on every second or third counted beat. We applied a ceilidgof these minima, because values beyond this
limit didn’t seem to reflect anything related with the beatsgth anymore. For the part of the curve beyond
the 1.5 s boundary it was not possible to identify any stithigtvard processing that was more useful than the
simple average. While the beat strength alone can alreadgrisédered an alternative rhythmic complexity
descriptor, we also used the linear combination of the tezngth and the averageabove 1.5 s.
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Chapter 5

Evaluation

The evaluation of the achievements, which means the draigsessment and determination of worth and
validity, is of fundamental importance in scientific adtyvi While such a statement is pretty much a com-
monplace itis in fact not always easy in practice to setikedlaim in an uncompromising manner. Especially
when dealing with music, which comes in countless stylesn$p and fashions, it is often hard to provide
a test or an experimental setup of far-ranging, solid vialidturthermore a researcher with a background in
engineering (like the author) might suddenly see himseifromted with the need to borrow methods from
other domains intersecting the MIR field, in order to accdonthe human factor that enters the equation
when semantic concepts are to be explored.

Only relatively recently have there been efforts in the diontd music information retrieval research to
establish standard-like data sets and metrics for evalu@d. g. Goto et al. (2002) or Cano et al. (2&)6)
Of course these joint efforts concentrate on “hot topicsprablems that are dealt with by relatively many
researchers from different institutions. This is not theecéor music complexity estimation. During this
dissertation different means of evaluation were appligtiéaleveloped algorithms. In the following sections
we will first describe these methods before the actual resuét reported.

5.1 Methods of Evaluation

The obvious method to validate the developed algorithmswoifse is an assessment of the agreement between
human complexity perception and the algorithmic predittio/Nhile this is the most direct evaluation it also
involves certain inconveniences. The biggest challengigeidact that a reasonably big database with music
tracks and the corresponding human complexity ratingsdéde@. The term “big” is relevant in three different
ways here: First, we need to include music tracks from a wagéstyles, since we are after complexity
beyond genre limits. A selection of tracks that is truly esmntative of the universe of music available in
digital format is hard to establish, but to select multiptamples from many different styles is the least one

1See also http://ismir2004.ismir.net/ISMIBontest.html and http://www.music-ir.org/mirex2006/
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can do to approximate generality. Secondly, we would likeaee complexity ratings for each item by many
different subjects. This is because we are interested im@fiton sense” of complexity. By combining the
ratings of a group of subjects we can reduce the influence ttieoresponses due to individual preference
or peculiarity. Thirdly, it would be ideal to assess comjfilexatings separately for each of the facets we
are considering. In this way, it would be possible to evallegich of the algorithms in isolation and avoid
mediating effects among the facets. However, human ratihgsod quality are not so easy to obtain. Due
to practical necessities and limitations we need to acaappcomises regarding these three aspects. We will
talk in detail about this way of evaluation in section 5.2. é&wsimilar approach would be to pay a group of
people for manually labelling a set of songs according taltfierent facets of complexity. This is dangerous
since the quality of the annotations is difficult to check anthebody assigning random labels could spoil
the entire data set. One could overcome this effect by usemgymeople in order to identify outliers, but this
makes the approach very costly.

Although the mentioned assessment is the most straighdfdrane, it could be interesting as well, to
focus more on the usefulness of complexity descriptors mNHR context. After all, we are not after
music complexity as a stand-alone quality for its own sakee dpplication of this research is in facilitating
the management of music collections in terms of organinatidsualization, and browsing for example.
From this point of view there are of course other ways of eatidun that come to mind. It is possible for
example to use selected complexity descriptors togethtrmachine learning methods in order to evaluate
their discriminative power in genre, artist, or other cifisation based on semantic labels. Although the
descriptors might not be used in exactly the same way in a dipplication, at least an experimental proof
of relevance can be established if the classification ressigaificantly beyond chance level. This approach
is of course less powerful in terms of scientific argument,ibbears the advantage that there is no need
for costly annotations or user experiments, since many sgeniabels are easily available in existing test
collections. This strategy of evaluation will be reportadsection 5.3. Another option along the same line
is the testing of user preferences in an actual music sefetask. So rather than comparing the algorithmic
predictions with human ratings of complexity, one can dlyease the computed descriptors for organizing
a collection and then test whether this facilitates medyithe users’ interaction with the music compared
to alternative ways of organization. Section 5.4 will déseroriefly such an experiment and the obtained
results.

Probably the weakest, but also the easiest method of ei@luatthrough artificial test cases. We can
select, compose, generate, or modify music material inrdod@atch a specific level of complexity according
to our own definitions. This is basically reversing the psscef annotating a ground truth to a given set of
data. Instead, we start by deciding on the label and onlyvadtiels look for the right content. We mentioned
this type of evaluation already in section 4.3 of the presiocbiapter. There we selected several music samples
according to specified levels of timbral complexity and uthein as reference points in our experiments.

However, this approach cannot avoid to be subjected taisriti. The reasoning about the validity of the
algorithms can become circular, if we orient ourselves fosecto the algorithm itself during the creation or
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selection of the test data. In such a case, we will only be tblerify that the implementation is correct.

Whether the algorithm really has anything to say about musioptexity however could not be proved

this way. But even if the test material is chosen with moreecas in the case of our timbral complexity
experiments, there is always the question of objectivitgreliladowing the results. In fact there would be
the need to validate the test material with a separate di@ui@ order to prove that it is not biased. This

of course closes the circle to the first method of evaluatfian was mentioned above with all its problems.
Since we are dealing with music, the easiness of the geaeriatalso very relative. It can be quite difficult

to control all the mentioned facets of complexity.

5.2 Evaluation with Human Ratings

As mentioned above, ideally we would like to have the comipferatings for hundreds of pieces of music
from hundreds of people broken down into all of the facet$ W have been considering in the previous
chapter. We would appreciate a wide range of musical st@egjtrepresented and having people with very
different musical preference and experience, as long ashtbleng to our targeted group (i. e. they have a
western cultural musical background). However, we areiviotg in an ideal world and therefore we have to
accept compromises. As it was not feasible to obtain growtd tomplexity ratings locally from “annotation
mercenaries”, the alternative of a web-based survey wéigedanstead.

5.2.1 Survey Design, Material, and Subjects

The survey was adapted from the version used in Sandvold ermétd (2005) and consisted of two parts.
First, subjects had to fill in some data regarding their agye, musical experience, and music listening habits.
The second part consisted of the actual rating phase whese8€erpts of music recordings were presented
in a randomized order. Subjects had to indicate their famitjyi with the music, their complexity judgement
and their liking of it. They were allowed repeated playbanll aorrection of their ratings until they clicked
on the “Continue” button. Figufe 5.1 shows a screen-shdi@becond part of the survey.

The survey was provided in three languages (English, Spanid German) in order to encourage as many
subjects as possible for participation. This way we alserided to avoid misunderstandings due to language
problems. The order of question 2 and 3 (complexity and d¢ijkiwas switched for every other subject in
order to check for an influence in the ratings. As the expligiing of music complexity is not a common
task, we provided some guidance to the participants on hewrtight come to a decision. By clicking on
“help” next to the question about complexity the subjecisid@pen a window with the following text:

Judging Music Complexity

The complexity of music is not as intuitive as liking or famil iarity.

We therefore want to give you some help on how to find an answer

When listening to the music try to consider the following que stions:

« How much is going on in the music?
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Ho plug-in? Click here for plavbackl

- Are you familiar with this song? —

L Yes,
(O Ho.

L

(I am not sure.

- How complex is it? - (Hslp)
) Very complex.

() Bather complex.
) Intermediate.
. Rather not complex.

) Mot complex at all.

- How do yvou like 1t? -

0 I like it wery much.
O indasE Tikesiit:

0 I'm neutral about it.
() I rather dislike it.

O Erden' ks Take Shvat alls

— .
Contast o S] m O C
e — ‘w‘ DQpdoooag
weerel, sEmanticoudio.omg

Figure 5.1: Screenshot from the second part of the websurvey
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* Is it completely predictable or very surprising?
e Can you easily follow the music?

e Or is it demanding a high effort?

With this in mind you will hopefully be able to select the appr opriate
option without difficulty. The music examples presented he re were
chosen to cover the entire range of complexity levels. Don't feel

shy to use the extreme ratings if you consider it appropriate .

The total number of music excerpts was 82, out of which a maxinf 30 were randomly selected for
each participant. The disadvantage of this procedure tswibahave a different subset of songs rated by
each subject, which limits in a certain way the possib#itier analyses. We chose this design, because it
allows for a larger number of songs to be rated while keepiegtime subjects had to spent answering the
survey in reasonable limits. For the selection of audio neteve took care of having very diverse musical
styles in the data set including a few famous songs thatgizetits are very likely to be familiar with. The
majority of songs however was taken from less famous artigdle still being at a professional level of
musical and technical quality. The styles included somadiras of classical music, diverse productions
from the Pop and Rock genres, Techno and Electronic DancécMiezz and World Music, and several
modern compositions of electro-acoustic music. In seigdine music for this experiment we put a higher
emphasis on covering a wide range of complexity levels irdtfierent facets rather than on a proportional or
representative distribution of the styles. The excerptew&tracted in an automatic fashion, by cutting out a
30 s segment from the recording starting at 20 s after thenhegj. We used RMS power normalization on
the excerpts in order to achieve a more or less similar losglleeel for all stimuli. The excerpts were checked
afterwards and those considered not appropriate for thvegwere replaced by a manually selected segment
from the corresponding track. For reasons of bandwidth @xgnthe tracks were made available only in
the compressed ISO-MPEG-1 layer 3 format commonly known B8 Mrandenburg and Stoll (1994)]. We
used an implementation derived from the LAFK/Ionect for this purpose applying a fixed bit rate of 128 kbps
in stereo mode. At this bit rate setting, the audio signahiy preserved up to roughly 17 kHz, which results
in a very good but not totally transparent quality. As manyhef tracks had been compressed before and
were not available to us in their original release formagy¢hwas a danger of audible transcoding artifacts.
It was made sure through inspection of the files that they ¥eeeof such disturbing effects.

We invited friends, students, and colleagues by email tbgiaate. An announcement in the Freesound
forun@ proved to be the most effective way to win participants. 8ithh participation was completely volun-
tary and there was no benefit for the subjects other tharfygatigheir curiosity and potentially discovering
new music, there was a relatively big interest in the top ubjects started answering and 124 of them fin-
ished the entire experiment consisting in the rating of 3@imexcerpts. Table 5.1 shows some statistics for

2http://lame.sourceforge.net/
Shttp://freesound.iua.upf.edu/index.php
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gender age in years musical knowledge total
male | female| 15-24 | 25-35| 36-63 | none | basic | advanced| professional
Count: | 125 17 57 58 27 10 22 70 40 142
%: 88.0| 12.0 | 40.1 | 40.8 | 19.0 | 7.0 | 155 49.3 28.2

Table 5.1: Statistics about the subjects who answered thesuey.

the subjects whose ratings have been used in the eva@ta@me disadvantage of a web survey revealed here
is that the composition of subjects is unbalanced. We hatagsprevalence of male and young subjects.
Probably the most disadvantageous condition for our neetheilow number of subjects with low musical
training, since we are preferably interested in the conigleperception of non-expert listeners. But as the
presented excerpts have been taken from a wide variety lelsstye hope that even for the highly trained
subjects the effects of expertise are not predominant.

5.2.2 The Obtained Data

As a first step after the survey page was closed we did sonististtanalysis on the subjects’ data and the
ratings. As mentioned in taldle 5.1 we used the ratings ofad 66t142 subjects in our analyses. With a total
of 3545 ratings we had on average about 43 ratings per excanutrk with. Comparing the averaged ratings
of complexity and liking per song for the two groups with anithout switched question order there was no
significant difference. Neither had the order of preseotatif the excerpts any significant effect on these
ratings.

When we performed a one-way ANOVA on either type of rating$tlie stimulus (the excerpt ID) being
the independent variable we obtained a significant F-seob®mih cases. Precisely we gbt= 16.09 for
the complexity ratings and” = 7.57 for the ratings of liking. With 81 degrees of freedom bothues
are strongly significanty( < 0.001) suggesting that the individual excerpts are indeed rewgiclearly
distinguishable responses in the statistical sense. \Wghrtuch higher F-score for the complexity ratings
we further have evidence that the agreement on complexdtygments among the subjects is higher than
for judgements of liking, since the amount of variance eixad by selecting the stimulus is bigger. This
goes along well with our idea of a “common sense” of music dexify perception opposed to the different
personal tastes and therefore higher subjectivity refidictéhe ratings of liking for the stimuli.

We computed a set of 12 complexity descriptors that wereepted in the previous chapter on all 82
music excerpts. A standardization to zero mean and unitavee was performed before proceeding with
the analyses. The descriptor set consisted of:

Cayn1 the dynamic component of acoustic complexity based on Vickaethod (eq. 4.5, page 47).

Cayn11 the dynamic component of acoustic complexity based on Piapmplementation (ed. 4.18, page
50).

4All subjects that submitted at least five ratings were consitle
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Cspatriue the spatial fluctuation as a component of acoustic compiéed. 4.24, page 57).
Cspatspread the spatial spread (wideness) as a component of acoustislexity (eq. 4.26, page 58).

Cumpre the timbre complexity measured as the percentage of frantlegligsimilar spectral shape to recent
signal history (explanations on page 64).

Sionat the tonal strength as an inverse measure of tonal compl@siptanations on page 67).

Cionai the average local dissimilarity of the HPCP feature as a oreasf tonal complexity (eq. 4.31, page
71).

P,,nai the percentage of frames considered as tonal as a measoreabd:d)mplexit@ (explanations on page

68).
Caancer the average DFA exponent as a measure of rhythmic compl@dty4.35, page 73).

Crear the minimal DFA exponent in the inter-beat interval timelssas a measure of rhythmic complexity
(explanations on page 75).

Conrase the average DFA exponent for the musical phrase time scalasraeasure of rhythmic complexity
(explanations on page 75).

Coancerr the linear combination afy.q: andCprrqsc @S @ measure of rhythmic complexity(explanations on

page 75).

5.2.3 Results of the Analysis

The gathered data allowed for a variety of different methafdstatistical analysis. We followed partly the
procedure used in Scheirer et al. (2000) in order to haveemeete point for comparisons. However, when
making these comparisons we have to keep in mind that we arg net only a different set of descriptors,
but also a different set of music samples and ratings.

Pearson correlations

As a first step we looked at the Pearson correlation of alliplespairings of the descriptors including the
averaged ratings for complexity and liking of each exceWith 82 excerpts this gives us a threshold for sig-
nificance on the < 0.01 level atr = +0.284. Not surprisingly, the strongest correlations were foumsdag
the four different rhythmic complexity descriptors, with @airings exceeding a value of 0.82 except for the
pair Cpprase/ Crear Which still reaches 0.679. The two dynamic descriptors areetated withr = 0.822,
the two spatial ones only reach= 0.384. There is only one significant negative correlation, whichurs

5This can be expected to be a rather weak indicator. Howeysece with tonal components in every frame certainly has adrigh
potential for tonal complexity than a piece consisting ofisiant sounds only.
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Complexity | Liking

Cayn1 0.192 0.145
Caynir 0.150 0.225
CipatFluc 0.012 -0.006
CspatSpread 0.226 0.094
Otimb'r'e -0.079 0.088
Stonal -0.044 0.077
Conal 0.359 0.230
Pional 0.355 0.397
Cdance] 0.394 0.271
Cheat 0.418 0.353
Cphra,se 0.342 0.216
Cdance]] 0.416 0.313

Table 5.2: Pearson correlation for the complexity desorgptvith averaged ratings of complexity and liking
(significance ap < 0.01 is indicated byitalics).

for the combination 0f5;,,.; and Cyonar (r = —0.358) and is also expected from the conceptual point of
view. Looking across the facet groups it is most remarkdidéthe four rhythmic complexity descriptors are
positively correlated (around= 0.5) with the two dynamic descriptors and the tonal complexégatiptors
except for tonal strengtB,,,..;, where the correlation is not significant. The descriptat thleast correlated
with the others is the spatial fluctuatiory,,: 7;.., which has no significant correlations other than with the
spatial spread’spqtspread-

In table[ 5.2 we show the correlations between the complaescriptors and the averaged ratings for
complexity and liking for each excerpt. The averaged likiag be interpreted as an indicator for the overall
popularity of an excerpt. It appears that half of the desaoripet is not significantly correlated in this simple
way with the overall complexity judgements or the overdlilg. We have to consider however, that the
Pearson correlation assumes a linear relationship bettheevariables. We therefore converted the values
also to a logarithmic scale and recomputed the correlatibns effect was an overall slight increase-ifor
the descriptors that already showed significant corredatiGrom the others onl/,,;; made a major shift
and reached = 0.307 andr = 0.353 for complexity and liking respectively. These results sgjghat for
the overall impression of complexity of real musical coniposs the rhythmic and the tonal facet appear
to be the most significant when seen in isolation. It is reralalé that the single descript6f;,.,..; alone
accounts for more than 22% of the variance in the averageglesity (- = 0.473 when both are on the
logarithmic scale).

Multiple regression on averaged ratings

It is of course not very reasonable to predict the overallgexity and liking of music based on an isolated
facet or descriptor only. They can be expected to depenerath a combination of the different facets.
We therefore also examined the results of a multiple regmesgith the entire set of complexity descriptors
entered together. The obtained models for complexity aaddiwere both strongly significant witk =
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0.771 and R = 0.736 (p < 0.001), which means that roughly 60% and 54% of the variance in tta d
can be explained by them. For comparison, Scheirer et ad0j2@ached? = 0.536 with their set of 16
psychoacoustic features on 150 musical excerpts (seesé&cd.1 in chapter 3).

While these results are relatively impressive in direct carigon, this also means that around 40% of the
variance in mean complexity per song originate from factbas are not covered by the linear combination
of our descriptor set. One such factor could be the lyriciefrhusic, which can form an important aspect
in musical judgements [see e. g. Rentfrow and Gosling (30@3jother such factor would be the melody, a
facet which is only partly reflected in our tonal complexigsdriptors. In general, the sociocultural compo-
nent related with music complexity judgements is not aceasall by the descriptors in our set (for example
the image of certain musical styles or particular artisés)other very possible source of unexplained vari-
ance is the subjectivity in the ratings, which might have #iacé despite averaging over approximately 40
responses per excerpt. The critical point of the choseregutgsign in this sense is that the subjects that rated
one particular song are a random sample of the non-homogsneon-representative body of participants.
As an example, of two songs that have objectively very singifaperties, one might be rated by a sample
dominated by music professionals with an aversion to thisicalistyle, and the other by a sample dominated
by musical laymen who feel indifferent about it.

Logistic regression on individual ratings

We therefore tried also a different analysis by considenmtividual subject models. Such a model would
try to predict the ratings of only one subject and could tf@eeadapt better to individual peculiarities in
music complexity judgements. Following Scheirer's metilody we created two binary variables from the
individual ratings of complexity and liking indicating gnhether they were above or below the mean
rating of each subject. We then built a logistic regressiadets for each individual subject trying to predict
the binarized complexity and liking variables respectivelThe models used the complete set of available
complexity descriptors to calculate their predictions.ly(the 124 subjects who finished the whole survey
and gave the maximum amount of 30 ratings were considerdusiexperiment.

With the obtained models 83.0% of the binary complexitynggi and 82.6% of the binary liking ratings
could be predicted correctly (see figlre 5.2). Scheirer.€2800) obtained 73.6% of correct responses in
their experiment stating that 46.7% of their models gaviessizally significant predictiongx< 0.05). In our
case 55.4% of the user models for complexity predictionsdanti% of the user models for liking predictions
were significant. Similar to Scheirer we also observed thatise of a single model for all subjects reaches
only slightly above chance level in predicting the ratingsamplexity or liking.

The results show on one hand, that by combining the compleescriptors in different ways we can
adapt to individual peculiarities in the perception of céexpty and liking for music and very successfully
predict subjective judgments. On the other hand, for abalitdf the subjects it was not possible to predict
their ratings significantly better than through guessingniFfigure 5.2 we can see the influence of some of
the demographic variables on the performance of the lagstjression models. Most of them are statistically
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not significant (again in accordance with Scheirer’s find)ndt is interesting to note that for the group with
no music education both types of models are most succesgfuédicting the ratings. This would coincide
very well with our idea of a ri@e approach to music complexity. However, the ratings efdhoup with
basic music education are much less successfully predictederage than all the others, which goes rather
against this interpretation.

5.3 Evaluation with Existing Labels

As an alternative way of evaluation for the danceabilityatiggor C ... (S€Ctiont 4.5.11), general statistical
methods and machine learning methods were applied in oodekplore its relations to semantic labels
obtained from AIIMusi and to certain artists directly. The rationale behind thioi prove a systematic
variation of the DFA exponent subject to certain semantighates assigned to the music. More details
about the methodology and the findings are provided in tHeviirhg sections.

5.3.1 The Dataset

The described implementation was computed on a large mo#iection. A data set of 7750 tracks from
MTG-DB [Cano et al. (2004)], a digital music collection frotime MTG lab, was used in the experiment.
Each track refers to a full piece of music. The dataset alatafmed annotated semantic labels for each item,
which were obtained from music experts and afficionados, lattibeen manually assigned to the tracks.
In our experiments we used the artist names and also “tobeldaconsisting in abstract attributes that are
associated with the music, such as “Rousing”, “Sentim&ntal“Theatrical’. The list of “tone” labels is
composed of a total of 172 different entries. In the statidtanalysis only a subset of 136 labels were
considered, because the remaining ones appeared lesOthémés each. It must be noted that these labels
are originally assigned to the artists and not to the indialdracks. Therefore a certain degree of fuzziness
has to be accepted with these descriptions when working @itréitk level. The data set contained very
different, mostly popular styles of music from a total of 28fferent artists. A maximum of 34 labels were
assigned to a single artist, while the average was 11 lakelarfists. Figure 5.3 shows a bar plot of the eight
labels that were assigned to the highest number of artists.aVerage number of artists sharing a label was
18.

5.3.2 Results

By small group informal listening tests it was found that tleenplexity estimations at the extreme ends were
the most consistent ones. Comparing the tracks from thesenewith each other and with the intermediate
ones the underlying concept of “danceability” immediatebcame apparent. This effect can be easily seen
in figure[5.4, where the 60 highly danceable Techno musi&sraan be almost perfectly separated from the

Shttp://www.allmusic.com
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Number of artists

Figure 5.3: Top-eight labels with the highest number ofgresil artists.

60 non-danceable film score tracks only by considering tngragex value. The fine grain ranking within

a local region however did not appear clearly interpretablaany cases. This was especially noticeable in
the very dense area of intermediate values. So rather ascdassification into 3—5 complexity levels than a
continuous ordering of the entire collection was achievidds is a reasonable number of discrete classes for
a semantic descriptor considering human memory capabiliti

The results of the statistical tests for the danceabiligcdptor support the findings from manual random
evaluation. Strong coherence of high statistical signifieawas found for several of the “tone” labels that
are semantically close to the concept “danceable” or “notdable” respectively. For example the labels
“Party/Celebratory” and “Energetic” in the context of mubiave a clear relation with danceability, whereas
“Plaintive” and “Reflective” appear more appropriate dggns for music that is not well suited for danc-
ing.

The results reveal a consistency on a high abstraction &mexi exceeding the aspect of danceability.
Figure[ 5.5 shows how the distribution of some labels on thelekestarting from the lowest to the highest
« values in the collection. A strong skew is apparent here wéttiain labels being highly over-represented
either in the highest or the lowest deciles.

The distribution ofa: values on the whole collection was normal with a mean of 0&&3 a standard
deviation of 0.022. The tracks assigned to each label wsteddor significant deviations from this distribu-
tion with the generalized t-test (eg. 5.1). Only those wibhrmal distributions were considered. Of these, 24
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Figure 5.4:a-levels for 60 techno (0) and 60 film score tracks (x), unceder

Label a n Label a n
Party/Celebratory 0.796 | 706 Romantic 0.911 | 1399
Clinical 0.761| 489 Wistful 0.909 | 1308
Hypnotic 0.804 | 951 Plaintive 0.922| 659
Energetic 0.820| 898 Reflective 0.901 | 1805
Visceral 0.808 | 422 || Calm/Peaceful 0.908 | 1102
Trippy 0.824 | 998 Autumnal 0.916 | 604
Outrageous 0.781| 102 Intimate 0.897 | 1709
Exuberant 0.839 | 1383 Stately 0.908 | 730
Irreverent 0.830| 657 Gentle 0.892 | 1327
Sparkling 0.790| 116 Elegant 0.886 | 2506

Table 5.3: The ten most significantly deviating labels inhedicection.
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showed a significantly higher and 35 a significantly lower mesue.
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The valuey;,p; IS the meany value for the considered Iabeil?abel is the corresponding variance, angdp.;

is the number of tracks having this label assigned. Tablslko@s the ten labels that yielded the highest sig-
nificance in their deviation from the global distributiondither direction. When looking at the two complete
lists of labels a certain affinity can be noted in many casesitrer side. The group of labels for higher
wakes associations &oftnessWarmnessTranquility, andMelancholy For the others we might form two
subgroups, one around terms likxuberanceand Vehemencée. g. “Party/Celebratory”,“"Energetic”, and
“Outrageous” ), the other arouriddiumandColdnesge. g. “Clinical” and “Hypnotic”). Comparing labels
from both lists with each other, we can identify several atantonymous pairs, for example: “Clinical”
— “Intimate”, “Outrageous” — “Refined/Mannered”, “Boisters” — “Calm/Peaceful”, “Carefree” — “Melan-
cholic”.

In the machine learning experiments, two artist classificatasks were tried. It must be stated again
here, that the “tone” labels mentioned above originallp dslong to the artists and thus only indirectly to
the individual tracks. In a two class decision experimentused 238 Frank Sinatra tracks and 238 tracks
from nine other artists who either had the labels “Brittle™@utrageous” assigned to them. For the artist
“Sinatra” a total of 18 labels were listed in our data set, aghthem “Romantic”, “Calm/Peaceful”, and
“Sentimental”. From the results of the statistical analygé would expect the Sinatra songs to be distributed
around a greater value of than the other ones. The classes should therefore be skpapato a certain
degree. It must be noted, that among the nine selectedsarsalso found assigned labels like “Wistful” and
“Reflective”, which are linked to highet values as well (see table 5.3). The classification with asil@ui

table yielded a success rate of 73%, which is clearly abay&@%6 chance level.

In a second experiment we used three different classesrd€l&tcomposed by Henry Mancini, 65 tracks
composed by Bernard Herrmann, and 52 tracks of dance musiawtrong beat. We purposely did not use
the labels for selecting the artists in this case. Mancini Blerrmann were both film music composers,
but while Herrmann mainly uses "classical” orchestratiglancini often arranges his music in a jazz-like
style. We had to select dance music from different artistsabise there was no single one with a sufficient
number of tracks in the collection. In terms of the DFA expunge would expect to find the highest values
associated with Herrmann’s music, because it is the leasteddle in general terms. Intermediate values can
be expected for Mancini’s tracks, since there are many waidbast possess a pronounced beat. The lowest
values should be found for the dance music, which has stradgegular beat patterns. With a success
rate of 67% the classification reached again clearly aboaeaashlevel (48%). Furthermore the confusion
matrix (table€ 5.4) shows exactly the expected situation: lgvtiie classes “Herrmann” and “Dance” are
almost perfectly separable, “Mancini” takes an intermejgosition showing a considerable overlap with
both neighboring classes. The decision table identifiedoghténal thresholds between the classes to be
agy = 1.0 (between “Herrmann” and “Mancini”) and,; p = 0.7 (between “Mancini” and “Dance”).
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Predicted class

True class | Herrmann| Mancini | Dance
Herrmann 41 23 1
Mancini 18 84 6
Dance 1 25 26

Table 5.4: Confusion matrix of three class machine learekmgeriment.

5.3.3 Concluding Remarks

Summarizing, we can say that there is a strong evidence éod&mceability descriptor being related with
semantic properties of the music tracks it was computed aomFour experiments and observations the
hypothesis put forward by Jennings et al. (2004) seems tali ®nd the DFA exponent can be considered
a good indicator for the danceability of music. Howeverstihould be seen rather in the broad sense,
classifying music into a small number of categories frontfemely easy” over “moderately easy” to “very
difficult” to dance to. A fine grain ordering based on the DFAerent inside such a category is not beneficial.
Due to subjectivity effects such an ordering might not praseful anyway. It can further be concluded from
our results, that the DFA exponent shows to be meaningfolialsevealing even higher level attributes of
music. It thus might form a valuable addition for differentisic classification tasks, like artist identification,
musical genre recognition, or music similarity computatio

5.4 Evaluation through Simulated Searching

In cooperation with colleagues from the Music Technologyugrand other researchers from the State Uni-
versity of Milan and from Microsoft Research, we tested savdescriptors in simulated music searching
experiments [Andric et al. (2006)], involving innovativeays of interfacing music collections.

5.4.1 Experimental Setup

The experiments consisted in subjects searching for a sdthgspecific characteristics (given by the in-
structor) within a music collection of 3500 tracks. For eiint searching interfaces the searching time and
user satisfaction was assessed. In particular, an eyes*&arch by ear” browsing paradigm was compared
to the established, text-based navigation in a tree ortlistwire. For the latter, the Apple iPodnd the
Samsung Portable Media Center YH-@QBMC) were used in the experiments. For the former, a prptoty
implementation of the new interface was installed on a laptieat participants carried in a backpack during
the experiment. Playback and searching was controlled tackliall device. The collection was represented
as a 2-dimensional space — similar to figuré 1.2 on page 5 -andtfierent computed feature assigned to the

http://www.apple.com/ipod/ipod.html
8http://www.samsung.com/Products/MP3Player/ArchivedPIBgers/YHO99GSXAA.asp



5.4. EVALUATION THROUGH SIMULATED SEARCHING 93

x- and y-axis. By movements of the trackball the particisamére able to navigate in this space having the
playback of seconds 40 to 45 as an acoustic feedback.

The participants received a list with verbal descriptiohshe music they were supposed to find, for
example “I'd like something more joyful.” These descriptiovere obtained from a pilot study, where subjects
had been asked to describe the type of music they would likedo in specific situations (e. g. when being
alone, or when having friends for visit). The list contairteé following descriptions: joyful, energetic,
danceable, relaxing, funny, rhythmic, intimate, excitisgnsual, and melancholic. The order of the list was
randomized for each participant. They were instructed to firone-by-one — songs in the collection that
matched two criteria: 1. the song had to fit the descriptiontlfe perception of the participant), 2. the
participant was supposed to like the song. The participaste allowed to give up the search if they felt
frustrated and unable to find the desired song. An instrut@asured the search time for each of the ten
searches and also recorded a rating of the participant éosdhg he/she found. The ratings were done on a
five-point scale with 5 corresponding to the highest satt&ja, 1 to the lowest.

The computed features were the Tick and the Beat followirgrttplementation from Gouyon (2005), the
Tonal Strength (see section 4.4.1), and the Danceabibity §sctioh 4.5.1). Tick and Beat both correspond to
the tempo of the music, the former referring to the mean Vslad the fastest audible rhythmical pulsation
and the latter to the mean velocity of the strongest rhytahpalsation. The other two features have been
explained already in chapter 4. These features were ushd thitee combinations given in table 5.5 to create
the 2-D representation.

setup y-axis X-axis
Trackball | | Beat | Danceability
Trackball Il | Tick | Tonal Strength

Table 5.5: Feature combinations used in the trackball éxgers.

Each interface setup was tested with 8 different partidgagiving a total number of 32 subjects. The
participants were partly familiar with the collection, smeach of them brought a CD with 100 songs from
his/her own collection that were combined to build the ailtn of the experiment. The music consisted
mainly of songs from the rock, pop, heavy metal, and alt&reajenres. Tracks from jazz and classical
genres formed only a small fraction. The search space ofrtto&liall setups was explicitly explained to
the corresponding participants, and they were given a maffaar training period to get accustomed to the
device, and another half an hour to examine the collectioa desktop computer, using Windows Media
Player. The iPod and PMC users navigated their devices itrdd@ional way by viewing the metadata on
the screen.

5.4.2 Results

As table 5.6 shows, the two setups with the trackball allotiedparticipants to reach significantly faster at a
satisfying song. It is especially remarkable, that the T&tgength in combination with the Tick scores best
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despite this descriptor by itself was not very successfplaticting human complexity ratings (see table 5.2
on page 84).

Overall the results indicate that the usage of a 2-D reptaen containing a music complexity descrip-
tor allows for faster navigation in a collection. The meaarsh time for the two conventional interfaces with
90.6 s is significantly higher than for the two “eyes-fredeéifiaces with an average search time of only 59.5 s.
There was no significant difference observed in the ratifigsitisfaction or in the number of failed searches
for the different setups, which means that the shorter bdane does not come from a faster frustration, but
really yields the same level of quality in the results.

Subjects reported that they felt comfortable with the “efyes” interface after a period of getting used
to it. They also observed that it worked better to take lasgieps to keep the orientation, because with
small steps it became more difficult to identify the differes between the songs and the orientation became

blurred.
iPod PMC | Trackball I | Trackball Il
Mean 90.1 91.3 67.9 51.1
Standard deviation 52.1 48.5 56.5 40.8
95% significance | +11.6 | £11.6 +12.5 +7.7

Table 5.6: Mean, standard deviation, and significance mdagithe search time in seconds of each setup
[Andric et al. (2006)].

5.5 Conclusion

In this chapter we saw very different methods of evaluatieach one focussed on a slightly different aspect
of music complexity descriptions. We reviewed several yged regarding the direct predictions of human
complexity judgements, the estimation of semantic lalies have indirect relations with music complexity,
and the usefulness of music complexity descriptors in a&ctiin navigation task. The overall picture that
can be obtained from these evaluations seems to suggeshéhdeveloped algorithms indeed manage to
contribute to the solution of the problems around digitakiawcollections we identified in the first chapter
of this thesis. While the obtained figures of performance migh give rise to the conclusion that there is
nothing left to improve, they do clearly show that significachievements have been made. So, to close
the circle to the opening of this chapter, the critical assest and the determination of worth and validity
have been satisfied with a positive result. In the final chraptewill now summarize the conclusions and
achievements of this research work and point to some peigggof continuations.



Chapter 6

Conclusions and Future Work

“Complexity is more and more acknowledged to be a key charatic of the world we live in
and of the systems that cohabit our world.”

[Simon (2001), p. 181]

In this dissertation a set of special semantic descriptomnfisic audio content has been conceptually and
algorithmically presented. We have spent some time eléibgran the motivation for these descriptors from
the side of intended applications and from the side of sifiefindings in music psychology and musicology.
This way we pointed to some evidence that there indeed is foussusic complexity descriptors. Music
complexity appears to play a role for human judgments of mpeéference and pleasantness. This alone
already makes music complexity an interesting means togatithrough a collection or to select tracks
for a user. Other aspects speaking in favor of the proposenlexity descriptors are their compactness in
representation (important for storage and visualizatamd their intuitiveness (important for querying and
navigation), which was demonstrated for instance in sei&id on page 92.

We also discussed extensively the tezomplexityitself, seeing that it is an autological term; the term
complexity is a complex term. We have seen that there are gdiéw different notions of it especially when
comparing its formal use in technical sciences with theysey understanding. From these observations
it is apparent that we cannot simply apply a “one size fits faltinula on the musical audio data and hope
for results that coincide with human perception. Insteacheed to carefully find the balance between the
computationally feasible and the perceptually accuratenwdeveloping the algorithms for music complexity
estimations.

Especially the former, the computationally feasible, reraa very limiting factor at present when dealing
with polyphonic audio recordings. None of the existing meder music complexity facets that we reviewed
in section 3.2 of chapter 3 can be directly applied to audjoals and reliable methods to reach the required
symbolic levels are still an unsolved problem in the ongaiesearch. Therefore the proposed algorithms
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have been designed in a way that circumvents these symbgpliegentations as much as possible and relies
rather on the computationally accessible, lower abstradévels.

Finally we have looked at the details of the algorithms timagrgyed during the work on this dissertation
and also at the different ways they have been evaluated elnekt section we will summarize briefly what
can be considered the achievements of this dissertatitowiedl by another section with some pointers to
possible future directions that remained unexplored iswork.

6.1 Summary of the Achievements

» With the proposed set of algorithms an original contribathas been made to open the door and reach
beyond the score-inspired descriptors that are most conmmba MIR research field nowadays. While
more transcription-oriented approaches certainly haei ghace and merit, it is important to consider
alternatives when addressing the current challenges dieldr With this thesis one such alternative
has been explored and described.

» The clearest achievement that has been made during tkisridison is probably the exploitation and
evaluation of the Detrended Fluctuation Analysis for the imsrhythmic complexity estimation. The
connection to collective complexity ratings and high-lesemantic concepts, and the usefulness in
music navigation tasks have been demonstrated for thisigasc It thus forms a significant contri-
bution to music information retrieval applications and lieady implemented in a commercial music
similarity software tool.

« For the other complexity facets the evaluation also redkaignificance in predicting human complex-
ity ratings of music. Compared to Scheirer’s results thewmhof variance that could be explained by
the descriptors was increased. When directly comparingttiggres one has to bear in mind however,
that the data sets (the music and the ratings) were not the.sam

« For timbre complexity and the tonal complexity completegw algorithms have been developed and
tuned with manually selected reference examples. The ticasnplexities are based on previously
published algorithmic approaches, which have been adaptddxtended during this dissertation in
order to reach the chosen goals.

« The theoretical and practical potential of music compieas a description of music audio content has
been exploited and demonstrated resulting in a set of altgosi for future research and application in
the music information retrieval domain.
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6.2 Open issues

Of course the problem of music complexity estimation andjiplication in human interaction with music
collections is still far from being solved after this digsgion has been finished. Although substantial and
encouraging results have been accomplished there remamisgues to be addressed in future research.

6.2.1 Structural Complexity

One of them is the important facet of musical structure, thaot represented in the set of descriptors we
have been discussing here. Musical structure forms onedfitfnest levels of abstraction in content analysis.
It is uniqgue compared to the other musical facets in the stradall of them are potentially relevant for the
detection of structural boundaries and the recognitiotrattural segments. We can try to identify structural
elements by looking at the timbre, the chords, or the meltidéfor example. Thinking along the line of
what we have developed so far we might want to refer to straabm a rather macroscopic level (i.e. in
terms of intro, verse, and chorus rather than motive or theWve could then identify attributes of structural
complexity such as theumber of distinguishable partsr theirdissimilarityaccording to a given similarity
measure. A large number of structural parts with very catitng properties would be considered to enhance
the perceived complexity.

There are also other ways how musical structure could becompart of the complexity processing.
Instead of using entire tracks as units, we might take astivelstructure information into account. Silence
at the beginning and at the end could be ignored, we could atemihe complexity facets separately on
the different structural segments. This hints at the pdggilof using the complexity descriptors as well
for content modification applications. Remixing of partsrir several songs based on matching complexity
levels would be one example of this.

Once again, however, we have to face the fact that before wepeegorm any structural complexity
processing, the structure itself has to be extracted firgtious approaches to this problem have been taken
and are still explored [see e.g. Chai and Vercoe (2003) |&teet al. (2002), ar Ong (2006)]. The general
purpose solution has yet to be found.

6.2.2 Other Facets to be considered

Apart from musical structure there are also other facetstight well be included into the set. An important
one would consist in the complexity of the lyrics, which abirh fact be a central descriptor inside certain
musical genres. However, with current signal processinthats this is simply an unattainable goal, unless
one would allow the system to rely on other resources thay ttiel audio signal. But even then it is a long
way to arrive at a level where the computer can make enougbesaut of the words in order to assign a
meaningful complexity label to the text.

Not quite that unattainable, but still out of reach with emtrmethods is another potentially very useful
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facet: the melodic complexity. This facet was considerely ordirectly within the tonal complexity de-
scriptors in this research work. However, the melody playsrg important role in our perception of music
and therefore would deserve individual treatment. As nometil, the automatic extraction of the melody is
a very active area of research that has seen quite imprgssigeess over the past years. For this facet we
have the advantage that a theoretical framework for the tty estimation is quite readily available once
a score-like representation of the melody is obtained.

6.2.3 Application-oriented Evaluation

As the user experiments with the trackball (section 5.4hshown it can be useful to evaluate descriptors
not just against a ground truth, which might be very diffidoliobtain. Since the ultimate goal of the type
of research which is the core of this dissertation lies inacfcal application with a certain functionality, it
makes a lot of sense to assess the performance also in sodhefldimulated practical application like the
song searching. We also thought of a different experimetit wisimilar philosophy behind that could be
done with the complexity descriptors.

If a user is supposed to be able to navigate within a colledbased on complexity descriptors, then
instead of predicting users’ ratings with our algorithmssheuld rather be interested in the users’ abilities
to “predict” the algorithms’ output for a given musical pgedn other words, the user has to be able to see
and understand a relation between the algorithms’ resnitglae music. To test this we might present a few
example cases to a subject in a listening test revealing ethwdosition of the algorithm’s scale each one
was positioned. It might be sufficient to use only a very roagale here like “above average” and “below
average”. If we then present a music track to the user andiaskohpredict the algorithm’s output, we are
able to verify that the underlying concept of the algoritltunderstandable and therefore potentially useful
in a navigation task.

6.3 Music Complexity in the Future of Music Content Processing

We have seen big changes that came with the spreading opyp@ataudio coding technology in combination
with fast network connections during the past decade. The negolution should be one that helps us to
manage this incredible amount of digital content. The aalflor intelligent devices and services that can
actively assist us in our needs and interests in relaxatiot@rtainment, and culture whenever and wherever
we want. By providing access to semantic aspects of musigdibasignals without the need for manual
annotation we are giving another spin to the wheel of infiomat This dissertation will hopefully help to
bring our vision a bit closer to reality, by providing means & multi-faceted content description in a multi-
faceted field of research.
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