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Abstract

The complexity of music is one of the less intensively researched areas in music information retrieval so far.

Although very interesting findings have been reported over the years, there is a lack of a unified approach to

the matter. Relevant publications mostly concentrate on single aspects only and are scattered across different

disciplines. Especially an automated estimation based on the audio material itself has hardly been addressed

in the past. However, it is not only an interesting and challenging topic, it also allows for very practical

applications.

The motivation for the presented research lies in the enhancement of human interaction with digital music

collections. As we will discuss, there is a variety of tasks to be considered, such as collection visualization,

play-list generation, or the automatic recommendation of music. While this thesis doesn’t deal with any

of these problems in deep detail it aims to provide a useful contribution to their solution in form of a set

of music complexity descriptors. The relevance of music complexity in this context will be emphasized by

an extensive review of studies and scientific publications from related disciplines, like music psychology,

musicology, information theory, or music information retrieval.

This thesis proposes a set of algorithms that can be used to compute estimates of music complexity

facets from musical audio signals. They focus on aspects of acoustics, rhythm, timbre, and tonality. Music

complexity is thereby considered on the coarse level of common agreement among human listeners. The

target is to obtain complexity judgements through automatic computation that resemble a naı̈ve listener’s

point of view. Expert knowledge of specialists in particular musical domains is therefore out of the scope

of the proposed algorithms. While it is not claimed that this set of algorithms is complete or final, we will

see a selection of evaluations that gives evidence to the usefulness and relevance of the proposed methods

of computation. We will finally also take a look at possible future extensions and continuations for further

improvement, like the consideration of complexity on the level of musical structure.
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Chapter 1

Introduction

1.1 Research Context and Motivation

Music, in the western cultural world at least, is present in everybody’s life. It can be found not only at its

“traditional” places like opera houses or discotheques, but appears in kitchens and nurseries, in cars and

airports, bars and restaurants, parks and sport centers andin many other places. With the increased mobility

of music reproduction devices nowadays everybody can bringhis own personal music along and listen to it

almost anywhere. But this enhanced availability of music also means that concentrated and active listening

has become rare. Often music serves as a background while thelistener is doing something else, it is used

as an acoustical “gap filler”, or as an emotional trigger [seeNorth and Hargreaves (1997c)]. New ways of

dissemination for music have been arising and never before it has been as easy as today to get access to such

a huge amount of music (more than a million titles are available from a single music portal) without even

having to get up from one’s chair. Yet, it is not always easy tofind what one is looking for.

1.1.1 Music Tracks as Data Files

With a broader public becoming aware of efficient audio coding techniques during the last decade, the amount

of music being stored and collected in digital formats increased rapidly. While in former times a music

collection consisted of a conglomeration of physical mediain form of vinyl discs, analogue or digital tapes,

and later also compact discs, a new kind of collections emerged due to the new formats. No longer is the

music in these collections attached to a physical medium, but exists merely as a string of bits that can, very

easily and without degradation in quality, be moved and copied from any digital storing device to any other

one. This property, apart from being very convenient, againreinforced the rapid spread of the new formats,

by making it as easy as never before to share and exchange music with virtually anybody on the planet (or at

least with the roughly 16% of our world’s population who haveaccess to the internet1).

1according to http://www.internetworldstats.com/stats.htm
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2 CHAPTER 1. INTRODUCTION

Nowadays, the music industry managed to hinder the wild exchange of music by filing lawsuits against

operators and private users of such content exchange networks. But digital music collections already exist in

large numbers and the concept of storing music tracks as digital files with all its advantages is an established

fact for many music consumers. Lately, legal options to buy digital music online and receive it by file transfer

over the World Wide Web are arising, often combined with somesort of digital rights management that is

supposed to prevent consumers from “shamelessly” copying and sharing their new acquisitions. Last but not

least, alternative models of copyrighting and licensing musical content are emerging (e. g. creative commons2)

and contribute a small but growing part to the music that can be found and obtained from the internet. David

Kusek and Gerd Leonhard, two music futurists, even coin the term of “music as water” [Kusek and Leonhard

(2005)] in order to describe the change of attitude towards music, music consumption, and music ownership

that is in the process of establishing itself:

“Imagine a world where music flows all around us, like water, or like electricity, and where

access to music becomes a kind of ‘utility’. Not for free, perse, but certainly for what feels like

free.”

While this situation still remains only an imagination nowadays, there are already plenty of examples

of developing communities of people who share their own digital creations on a very large scale (although

many of those creations might be in fact remixes of others’ material and thus again problematic in terms of

traditional copyright laws). Two outstanding examples here are Flickr3 for digital photos and images, and

YouTube4 for digital video clips each with millions of users. An example from the music domain is the

Freesound project5 where audio samples of all types of sounds are shared for the use in new digital creations.

1.1.2 Problems with Digital Collections

Despite the many advantages that came with this “digital revolution” we can observe some negative effects,

too. The flexibility that music tracks, in form of individualfiles, provide goes along with a demand for

a proper storage organization and labelling or tagging. While in a physical collection an item might be

declared lost when it cannot be found, in a large virtual collection this can be said already when there are no

means to search for it. This is especially true for shared andforeign collections like commercial online music

shops and community portals. Even if tags are made availableby the provider they cannot be guaranteed to

be complete and consistent.

The freedom to create personalized play lists and to listen to music tracks independently from concepts

like albums or compilations requires on the other hand a goodknowledge of the collection at hand in order

to arrive at satisfying results. Navigation and utilization become difficult and limited, when typing errors in

2http://creativecommons.org/
3http://www.flickr.com
4http://www.youtube.com
5http://freesound.iua.upf.edu/



1.1. RESEARCH CONTEXT AND MOTIVATION 3

Figure 1.1: Illustration of three different views on digital music.

filenames, an insufficient taxonomy for file organization, and inconsistency in the manually assigned labels

occur in such a collection.

Figure 1.1 shows three simplified views on a digital music collection that illustrate the situation. In

the center we have the traditional interface perspective, where each track is identified by a name that was

assigned to it and is placed somewhere inside a folder tree, where folders might be arranged according

to albums, artists, genres, or any other concept of organization. On the left we have a view of a human

user interacting with the collection. For him the items are associated with semantic connotations. A song

in the collection has a recognizable musical theme, belongsto a certain style, evokes a particular mood,

features certain instruments, etc. However, if he did not put all this information into the system by choosing

a sophisticated folder structure or by excessive manual tagging, these connotations are simply not available

for his interaction. Finally, on the right side we see how different the perspective of the machine is. For the

computer the file names are only pointers to strings of binarysymbols on a storage medium. The type of

“connotations” we find here are only of the technical type including things like the bit rate, the file size, or the

sampling frequency. Another aspect of bit strings representing music is their volatility and reproducibility.

With the move of a finger they can be erased and they are gone without leaving any trace. Or they can be

replicated with very little effort basically infinite timesat no cost other than the disk space to store them.

Especially the latter has an impact on the value that is assigned to such an item. According to the theory of

supply and demand a commodity with finite demand but infinite supply has a price of zero (of course this

cannot be applied directly to music). As an illustration: IfI go into a record shop to buy an album and the

salesman gives me two copies for the price of one, I will consider this a true benefit, because I can give one

copy to a friend or resell it. If I buy the same album from an online shop and they offer me to download it

twice by paying only once, I would just find it silly. This gives a good hint for understanding why people are

so “generous” to offer their complete collection of music files for anybody to download without any charge.

And it also helps understanding why people do not feel shy to download or copy music from others without
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paying and without feeling they do something unjust. Especially in the times of free peer-to-peer music

sharing networks this configuration boosted the dissemination and the enforcement of digital music formats,

which are a matter of fact nowadays. On the other hand, this excess of digital tracks may have decreased the

appreciation for the individual item. So some private collections have been extended for the sake of collecting

rather than because of a particular interest in the material.

Summarizing we can say that today probably many hard disks exist which contain a large collection of

digital music, but the owner is ignorant about the full potential of it. Even if he or she is not, it means a lot of

effort to fully exploit it and rather sooner than later the currently available tools reach their limits. With the

new way of music dissemination through online portals like for example iTunes6 or Y!music7 the problem

of searching, browsing, and navigating a (unfamiliar) music collection is brought to an even larger scale and

begs for new solutions.

1.1.3 Semantic Descriptors as a Perspective

Slowly, tools and technologies are starting to spread that intent to enhance and facilitate the interaction with

digital music collections. One example is the EU-FP6-IST-507142 project SIMAC (Semantic Interaction

with Music Audio Contents), which formed an important context for the research presented here. The project

was initiated by the Music Technology Group (MTG) of Pompeu Fabra University and started in January

2004. As the project leader, MTG was heavily involved in administration and research. The author is one of

six researchers inside MTG who, lead by the research managerPerfecto Herrera, were working full-time for

SIMAC until the project finished in March 2006. The project’smain goal was the development of prototypes

for the automatic generation of semantic descriptors for musical audio and the development of prototypes

for exploration, recommendation, and retrieval of music files. Further information on the project and some

examples of what has been achieved can be found on the projectweb page8. Related projects that attack the

same topic from slightly different angles are for instance SemanticHIFI9 and GOASEMA10.

The key component of such tools and technologies is the assignment ofsemantic descriptors[as proposed

in Herrera (2006)] to the music tracks. We want to use this term in distinction from common descriptors or

features (as they are usually referred to in the technical field). The latter usually have the notion of being more

low-level(i. e. easy to compute and close to the audio signal), which makes them interesting for algorithmic

classification and machine learning tasks. But due to their technical nature they are not very suitable for a

direct presentation to the average user of a music organization tool. They are simply not used by humans to

describe music. Semantic descriptors on the other hand should capture properties and attributes of the music

content that can be experienced directly by a human listener, for example the tempo, the instrumentation, or

the lead singer’s gender. Such properties usually reveal themselves automatically to a human who is listening

6http://www.apple.com/itunes/
7http://launch.yahoo.com/
8http://www.semanticaudio.org
9http://shf.ircam.fr/

10http://www.ipem.ugent.be/2004GOASEMA/
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Figure 1.2: Screenshot from a music browser interface displaying part of a song collection organized by
danceability and dynamic complexity.

to a music track and hence are potentially very relevant information when selecting and organizing music in

a collection. Therefore a link between the pure digital audio data and the semantic concepts describing the

content offers much more natural ways of searching in music collections than it is currently possible. Instead

of being limited to titles, artists, and genres as the means of a query even very subtle or abstract aspects of

music could be used provided the semantic descriptors are assigned to the tracks. A common way to put it

is by saying that with these descriptors we try to close thesemantic gap[see e. g. Celma (2006)]. Some of

the semantic connotations of the left side from figure 1.1 become available for interacting with the collection.

Apart from the enhanced querying, there are also other possibilities arising. Browsing through a collection,

be it one’s own or a foreign one, where different musical aspects are visualized (see figure 1.2) is not only

amusing, but it may also lead to a better understanding of themusic. Similarities between different styles

or artists can be discovered, the evolution of a band along time can be tracked, extreme examples can be

identified. This playful and educational side effect could then again lead to a more attentive way of music

listening, increasing pleasure and appreciation.

But the availability of such descriptors does not only bringadditional opportunities for humans interacting

with music. Organized in a machine readable way, this meta-data forms an access point for information

processing devices to the properties of music which are relevant for a human listener. Basically, this allows

computers to mimic a human’s music perception behavior and establishes a direct connection between the
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left and the right of figure 1.1. Instead of the human browsingthe collection, the computer could do this

automatically and identify for example clusters of similartracks. Thus, the computer is enabled to generate

play lists according to given criteria or to recommend to theuser similar tracks to a selected example track.

So we see that providing machine readable semantic descriptors for the tracks in a collection opens the

door for a large variety of interesting methods of sorting, searching, filtering, clustering, classifying, and

visualizing. But how can we arrive there? Different ways exist to assign semantic descriptors to music. It

is possible (although expensive) to have a group of music professionals annotate them. Some web-based

music recommendation services follow this strategy (e. g. Pandora11). This first option is of course usually

not feasible in the case of private collections. Still, the meta-data - once annotated - could be stored in a public

database and would then be associated through a fingerprinting service with the files in a private collection.

To some extent the descriptors can also be assigned by a wholecommunity of listeners by majority vote or

by using collaborative filtering techniques. This second option involves quite some coordinative efforts and

furthermore causes a delay until reliable data for a new track becomes available. Really new material will

come without tags and will take its time until it has been discovered and labelled by a sufficient number of

people. The third, most practical and versatile option however is the automatic computation of descriptors

based on the audio file itself. This way, an objective, consistent, inexpensive, and detailed annotation can be

accomplished. The research presented here is about this third option of descriptor extraction.

1.2 Thesis Goals

This thesis proposes to consider a specific type of semantic descriptors in the context of music information

retrieval applications. We want to coin the term music complexity descriptors for them. It is a truism that

music can only be experienced as a temporal process. Therefore, when providing a description of music it is

necessary to capture aspects of its temporal evolution and organization in addition to global descriptors, that

only consider simple statistics like the maximum, mean or variance of instantaneous properties of an entire

music track.

The algorithms proposed in this thesis focus on the automated computation of music complexity as it is

perceived12 by human listeners. We regard the complexity of music as a high-level, intuitive attribute, which

can be experienced directly or indirectly by the active listener, so it could be estimated by empirical methods.

In particular we define the complexity as that property of a musical unit that determines how much effort the

listener has to put into following and understanding it (seechapter 2 for a more detailed discussion of the

termcomplexity).

The proposed algorithms are intended to provide a compact description of music as a temporal process.

The intended use should be seen in facilitating user interaction with music databases including collection

visualization, browsing, searching, and automatic recommendation. Since music has different and partly

11http://www.pandora.com
12Throughout this document we will use the term “perception” although “cognition” might be considered more appropriate at some

places. However, we want to omit this distinction here and consecutively use “perceptual” as the contrasting term to “technical”.
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independent facets, we will address these individually with separate algorithms (see chapter 4). In particular

the following facets will be considered:

• Tonality

• Rhythm

• Timbre

• Acoustics (spatial/dynamic)

Our taxonomy differs slightly from the one stated in Downie (2003), where seven facets are described.

This is because we followed an approach driven by the computationally accessible for the specified context of

audio signal processing, whereas Downie (2003) takes a rather score-based perspective. So while our tonality

facet refers to the entirety of pitched content of an audio signal, Downie distinguishes between the pitch facet

and the harmonic facet. He also includes an editorial, a textual, and a bibliographic facet in his list. Our

acoustic facet overlaps partly with the editorial one from Downie, but the latter two are completely left aside

in our taxonomy. Although the textual facet most likely has some relevance in terms of perceived complexity

it is simply unattainable in the given context with present signal processing methods.

The descriptors are designed for the track level. That meansa complete track of music is considered the

unit on which the algorithms are working. The segmentation into tracks is assumed to be given already, so

the application to a stream (as in broadcast monitoring) is not addressed. While it might be useful to consider

complexity descriptors also on the segment level (i. e. for distinct parts of a single track), we will not deal

with this in the context of this thesis. As for musical audio the segments are not given, their detection alone

forms a problem big enough to devote a whole PhD thesis to it [see e. g. Ong (2006)].

It can be expected that individual listeners might have a different opinion about the complexity of a

particular musical piece. This is related to a different context in which these listeners make their judgements.

For example an experienced Bebop aficionado could consider ablues version of the standard “Take the A

train” relatively low in complexity, but for the average Country and Western listener this might be a rather

complex song. However, on the large scale they both would probably agree that it is more complex than

“Twinkle, twinkle, little star” and less complex than Debussy’s “Pŕelude a l’apr̀es-midi d’un faune”. The

semantic descriptors we want to provide should be comparable to each other and useful not only for one

but for many users. We want independence from the user and will therefore focus on this large scale rather

than addressing the individual characteristics of users’ complexity perceptions. It is the goal to capture the

“common sense” in music complexity rating (see section 2.1.2) from a näıve point of view. Expert knowledge

about style-specific musical peculiarities will not be partof the algorithms. That also means we should expect

the classification to work on the large, but rougher scale rather than obtaining a precise ranking taking finest

nuances into account. For the latter we would have to focus indetail on a particular user’s musical background

and listening habits. The former can be achieved by assuminga common background for a certain group of
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users and then restricting the validity of the provided models only to this group. We chose the group of non-

expert music listeners with western cultural background asthe intended users of the developed descriptors,

since it forms a large fraction of the users dealing with the above mentioned music databases.

Finally it has to be said that the proposed algorithms only form a starting point to enter the domain of

music complexity related descriptors. Already the list of facets that were tackled during the research reported

here cannot be called complete. For example the complexity of the lyrics is a certainly relevant descriptor

that has not been addressed at all, since the focus was on algorithms that operate exclusively on the audio

data. Other examples would be the musical structure and the melody. We will talk about possibilities for

future research in section 6.2 of chapter 6.

1.3 Applicability of Music Complexity

We already talked about the motivations for this research inthe previous sections. After the goals are now

specified we have to further establish the connection to the previously mentioned tasks in music information

retrieval applications. The obvious question is: Why shouldmusical complexity descriptors in particular be

interesting when dealing with a digital music collection?

The answer has two parts. First, it is not too far fetched thatcertain facets of complexity might be directly

relevant for the listener. For example if I am interested in finding danceable music for a party, the rhythmic

complexity already provides a useful parameter for my search. Or if I am looking for “easy listening” music,

I might restrict my search to tracks at the lower end of the complexity scale on one or more dimensions.

For the second part of the answer we have to go back to the year 1971 where we find a publication by

Berlyne (1971). In this publication he states that an individual’s preference for a certain piece of music is

related to the amount of activity it produces in the listener’s brain, to which he refers as thearousal potential.

According to this theory, which is backed up by a large variety of experimental studies, there is an optimal

arousal potential that causes the maximum liking, while a too low as well as a too high arousal potential result

in a decrease of liking. He illustrates this behaviour by an inverted U-shaped curve (see figure 1.3) which

was originally introduced in the 19th century already by Wundt (1874) to display the interrelation between

pleasure and stimulus intensity.

Berlyne identifies three different categories of variablesaffecting arousal [see Berlyne (1971) for de-

tails]. As the most significant he regards thecollative variables, containing among others complexity, nov-

elty/familiarity, and surprise effect of the stimulus. Since we are intending to model exactly these aspects of

music with our descriptor, it is supposed to be very well suited for reflecting the potential liking of a certain

piece of music. We will return to this topic and review several related experiments in section 3.1.

This said we can now flesh out the motivations for the use of semantic descriptors given in section 1.1.3.

When a user is interacting with a music database or a music collection three major tasks can be identified:

1. Providing an appropriate interface for navigation and exploration.

2. The generation of a program (playlist) based on the user’sinput.
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3. The retrieval of songs that match the user’s desires.

We can identify applications of complexity descriptors in all three tasks, which is discussed in the three

following sections.

Figure 1.3: The Wundt curve for the relation between music complexity and preference.

1.3.1 Enhanced Visualization and Browsing

For smooth navigation and exploration of databases a well-designed visualization of the contents is a crucial

condition. This is a very difficult task when it comes to largeamounts of complex data like music tracks. One

example for such visualization is the Islands of Music application, developed by Pampalk (2001). This ap-

plication uses the metaphor of islands and sea to display thesimilarity of songs in a collection. Similar songs

are grouped together and represented by an island, while dissimilar ones are separated from them through

“the sea”. The application uses features that are motivatedfrom psychoacoustic insights, and processes them

through a self-organizing map (SOM). In order to compute similarity between songs the sequence of instan-

taneous descriptor values extracted from each song has to beshrunken down to one number. Pampalk does

this by taking the median. He reports satisfying results, but at the same time states that the median is not a

good representation for songs with changing properties (e.g. bimodal feature distributions).

Here, the complexity descriptors have a clear advantage, because by default they consist only of one

number which represents the whole track and thus do not need to be further reduced by basic statistical

measures, like the mean or the median. Obviously, complexity represents a self-contained concept and is

not intended to from an alternative to the use of such measures. As pointed out in the beginning of this

section, the different complexity descriptors reflect specific characteristics of the music that are potentially of

direct relevance for the listener. The descriptors are therefore very well suited to facilitate the visualization

of musical properties the user might want to explore. It is straightforward to plot the whole collection in a
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plane showing for example rhythmic complexity versus loudness complexity without the need for specifying

a similarity metric (see also figure 1.2 on page 5).

Another aspect is the possibility of a more “musicological”way of interaction with a music collection.

By providing the link between the actual audio and the musical content description a user might increase

his knowledge about the music in his own or a different collection. Common properties of music from

different artists or different genres might be discovered.The changes in musical characteristics over time

for a particular band can be made visible. Also here the complexity descriptors form an interesting addition,

which opens new opportunities that are still to be explored.

1.3.2 Playlist Generation

A playlist is a list of titles to be played like a musical program. A user interacting with a database might

ask for the automated generation of such a list. As Pachet et al. (2000) point out the creation of such a list

has to be taken seriously, since “[t]he craft of music programming is precisely to build coherent sequences,

rather than just select individual titles”. A first step towards coherence is to set certain criteria the songs have

to fulfill in order to be grouped into one playlist. The user could be asked to provide a seed song for the

playlist and the computer would try to find tracks from the database which have similar descriptor values.

Pachet et al. (2000) go further and look at an even more advanced way of playlist generation capturing the

two contradictory aspects of repetition and surprise. Listeners have a desire for both, as they state, since

constant repetition of already known songs will cause boredom, but permanent surprise by unknown songs

will probably cause stress. In their experiments Pachet et al. (2000) use a hand edited database containing,

among others, attributes like type of melody or music setup.We can see a correspondence here to tonal and

timbral complexity, that encourages the utilization of complexity descriptors for playlist generation.

An alternative way of playlist generation, which gives morecontrol to the user, is that of using user

specified high-level concepts as for exampleparty-musicor music for workout. Inside the SIMAC project

methods were explored to arrive at such a functionality. A playlist could then be easily compiled by selecting

tracks with the according label. The bottleneck here is the labelling of the tracks, which might be a lot of work

in a big collection. Since the labels are personalized and may only have validity for the user who invented

them, there is no way to obtain them from a centralized meta-data service. Instead the user can try to train

the system to automatically classify his tracks and to assign the personalized labels [e. g. citePlugIn]. For

this process semantic descriptors are needed that help in distinguishing whether a track should be assigned a

certain label or not. It depends of course very much on the nature of the label to identify descriptors that are

significant for this distinction. In any case, the complexity descriptors certainly have a potential to be useful

here, as can be seen from the examples at the beginning of thissection.
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1.3.3 Song Retrieval

For song retrieval there are different possibilities in a music database. The most obvious one is the direct

specification of parameters by the user. Since the complexity descriptors consist of only one value per track,

they can be used very easily in queries. The user can specify constraints only for those facets he is interested

in and narrow down the set of results. This way it is very straightforward to find music that, for example,

does not change much in loudness level over time, or containssophisticated chord patterns.

A second way of querying is the so calledquery-by-exampleapproach. The user presents one or several

songs to the database and wants to find similar ones. So, as explained for the visualization using similarity

measures, here the complexity descriptors can easily be integrated into the computation again. The weighting

and/or the tolerance for the different descriptors could bespecified by the user directly, extracted from the

provided example, or taken from a pre-computed user profile.Such a user profile would be established by

monitoring the user’s listening habits (i. e. songs he/she has in his/her collection; songs he/she listens to very

frequently, etc.) as in therecommenderapplication developed in the SIMAC project [see Celma et al.(2005)].

Finally, we can think of amusic recommenderthat does not even need an example song. If the user’s

common listening behaviour is known it should be possible toestablish a “complexity profile”. This can be

understood for example as a histogram for the complexity values where either the number of tracks or the

listening frequency is monitored. From such a histogram it should be possible to identify the user’s optimal

complexity level in Berlyne’s sense (see figure 1.3 on page 9). Tracks matching this level could then be

selected as recommendations for the user imitating the recommendations of friends with a similar musical

taste. It should be stated that complexity is of course not the only criteria that should be used here, but

according to Berlyne and others plays an important role for potential preference. Some experiments on this

relationship are reviewed in section 3.1 of chapter 3.

1.4 Thesis Outline

The rest of the thesis is structured as follows. In chapter 2 we will examine the termcomplexity, since it plays

a central role for this research. We will look at the ways thatit is used in different contexts and conclude

with the implications on our goals. The following chapter 3 reviews a variety of scientific examples where

concepts of complexity have been applied to music – explicitly or implicitly. This chapter has the character

of an extended state of the art review, since we will not only focus on algorithmic approaches to measure

complexity, but we will also consider contributions from the fields of musicology, music perception and

cognition. In chapter 4 we will then report in detail the contributions made during this thesis work in terms of

concrete algorithms. The mode of operation and the implementation of each developed algorithm is explained

extensively. The chapter is structured according to the different facets of complexity that were considered in

this work. With chapter 5 we address the evaluation of what has been achieved. After a discussion of the

methodologies that were selected, we will describe in detail the experiments that have been carried out and

what the results revealed. In the final chapter 6 we will summarize the conclusions of this work and point to

directions where future work might be useful.
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Chapter 2

The Meaning of Complexity

After we have clarified what our goals are and in which contextwe are operating, we will now examine in

more detail the chosen means to reach these goals. In this chapter we will shed some light on the different

notions of complexity and what complexity can actually tellus. It has to be a non-exhaustive compilation,

but a variety of aspects will receive attention. We will distinguish between two different perspectives, which

we will refer to as the informal view and the formal view. The former is interesting for us, because it covers

also the everyday, non-scientific understanding of complexity and thus relates directly to practical relevance.

The latter is interesting, because it is computationally easier to access and allows for fairly straight-forward

implementations. In both cases we might visit some areas that are not specially concerned with music usually.

There in particular we will have to consider the portabilityof the ideas to the domain of music and to the focus

of the research presented here. In section 2.3 at the end of the chapter we will summarize the implications for

our goals.

2.1 The Informal View

Without doubt, the termcomplexityis understood differently in different contexts and lacks aclear and unified

definition. As we will see in the following, it might be considered an autological term, since in a way it can

be applied to itself: the termcomplexityis complex.

2.1.1 Difficult Description and Felt Rules

John Casti points out in Casti (1992), that complexity is commonly used as a rather informal concept “for

something that is counterintuitive, unpredictable, or just plain hard to pin down”. In everyday language, he

says, the adjectivecomplexis used very much like a label that characterizes a feeling orimpression we have

about something, be it a piece of music, a bus route map, or calculating the taxes. We speak ofcomplex

tasks, complex structures, andcomplex systems. In table 2.1 we can see that this adjective also appears

13
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search term “complex music” “complex song” “complex sound” “complex rhythm”
number of hits 150,000 62,500 143,000 44,000

Table 2.1: Approximate number of page hits found by the Google search engine for different search phrases.

quite frequently in the context of music. The lexical database WordNet1 namessimplicityas the antonym of

complexityand so does Wikipedia2. By looking further into the semantic relations we can identify another

quality. WordNet gives the following definitions for the adjectivecomplex:

• complicated in structure

• consisting of interconnected parts

In the list of similar words we find adjectives likeconvoluted, compound, intricate, or composite. So addi-

tionally to the notion of difficulty in description and anticipation, that Casti emphasized on, there seems to

be an important aspect in the plurality of elements that are involved and in the way they interfere. The more

elements and the more interaction among them, the more complex the result can be. Another way to put it

would be that something complex is more than simply the sum ofits parts. This seems to be true for (most)

music in general. For example a bunch of instrumentalists playing at the same time at the same place doesn’t

automatically result in music. Even though each individualmight play something musically meaningful the

whole only amounts to music if they interact and play together. If the freedom of each individual is limited by

the actions of the others, within these limits something more or less complex can be formed by the ensemble.

In contrast, when everything is possible and what one playerdoes is not affecting the others at all, the result

is not complex, but simply the sum of several individualistic tone generators.

It is interesting to note that the colloquial use of the termcomplexityis indeed much more related to

a feeling than to hard rationality. We could say that something is considered complex, not only if we have

difficulties describing it, but even if we don’t really understand it. However, this is only the case as long as we

still have the impression or the feeling that there is something to understand. Opposed to this, if we don’t see

any possible sense in something and we have the feeling that it is completely random, we would not attribute

it as complex. So complexity resides “on the edge of chaos”3 – between the two trivialities of complete order

and total randomness. This idea is nicely illustrated by a comparison of the three diagrams in figure 2.1

taken from Edmonds (1995). The checkerboard pattern on the left corresponds to complete order, regularity,

and predictability. We only needed to be shown a small part ofit and we could easily guess how the rest of

the picture looks like. The pattern is extremely simple – theopposite of complex. In contrast, the pattern

on the right is not regular at all. White and black dots appear to be distributed randomly. No matter how

we look, there seems to be no rule or underlying structure. Ifin fact there was a sophisticated determinism

governing the distribution, it would be clearly beyond our capacities to recognize it. Therefore, it would be

neglected in favor of the assumption that there is only noiseand thus nothing we could understand. Were we

1http://wordnet.princeton.edu
2http://en.wikipedia.org/wiki/Complexity
3supposedly this phrase has been coined by Norman Packard in 1988
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Figure 2.1: Complete order, chaos, and complete disorder [from Edmonds (1995)].

shown a modified version of the diagram where for example somefraction of the pixels, randomly chosen,

are inverted, probably we would be unable to even notice the difference. As a result, this diagram would also

be attributed as beingnot complex. The center one on the other hand gives a very different impression. It

contains some lines or curves and we can identify shapes or objects distributed irregularly inside the square.

If we would see only half of the image we would not be able to predict the other half, yet the arrangement

seems to follow some complicated rules that are not apparentto us. On a very abstract level, the diagram

seems to “make more sense” than the other two, despite we haveno idea what exactly are the underlying rules

or what it is supposed to tell us. We will have to consider thispoint again in the second part of this chapter,

when we will talk about the mathematical, formal measures ofcomplexity.

As an exercise we can try to find an equivalent of figure 2.1 for the case of a music listening experience.

For example, the repeating sequence of a musical scale beingplayed up and down at a fixed tempo with a

stable and basic rhythm pattern could be considered a possible representation of the left diagram. Very fast

we would be able to pick up the rules for generating this “music” and identify it as extremely predictable,

simple and trivial. The other extreme, the right diagram, could be replaced by the output of a machine that

produces note durations and pitches at random. We might takea bit longer to come to a judgement when

confronted with this type of “music”, but finally we would draw the conclusion that we are unable to identify

any rule in the sequence of notes. We would attribute the music as random and therefore also as not complex.

It is interesting to think of an alternative here. We could choose music that is in fact not random at all, but

possesses a complicated system of underlying rules that arefar too difficult to be recognized by the listener.

A possible candidate for this could be the compositions of Milton Babbitt (1916– ), which are composed

according to very strict and precise regulations. Yet, as Dmitri Tymoczko (2000) puts it:

“Following the relationships in a Babbitt composition might be compared to attempting to count

the cards in three simultaneous games of bridge, all played in less than thirty seconds. Babbitt’s

music is poetry written in a language that no human can understand. It is invisible architecture.

The relationships are out there, in the objective world, butwe cannot apprehend them.”
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Figure 2.2: Possible inclusions [from Edmonds (1995)].

This looks like a contradiction. Shouldn’t we attribute a very high complexity to a composition with such

a degree of organization? Probably, but we will only do so, ifwe can decode or at least sense it in some

way. We will address this point in some more detail in section2.1.2. There are a lot of possibilities of

musical examples corresponding to the diagram in the middle, if we look for something that would be judged

spontaneously as relatively more complex than the two extreme cases. Basically any “interesting” musical

composition could fit here as long as we can recognize some musical rules for example of tonality and rhythm

being fulfilled up to a certain degree. While we will be able to anticipate forthcoming events in the music

there are still enough open options for uncertainties. Our predictions will not reach 100% of accuracy as in

the case of the repeated scales.

2.1.2 Subjectivity

We saw that complexity is something we attribute to objects,processes, or systems which have certain char-

acteristics. But does this mean complexity can really be regarded as a property of a particular object, process,

or system in isolation? With the example of Babbitt’s compositions we already saw that this is problematic.

Were we näıvely exposed to his music our judgement would most likely bethat it is just a random concate-

nation of notes and therefore not complex at all. The informed listener on the other hand might acknowledge

the high complexity of the composition despite not being able to capture much of it just by listening. So, who

is right?

We can use a second version of figure 2.1 to have another illustration of this problem. In figure 2.2 we

can see possible inclusions of the three diagrams from left to right. With the knowledge, that the rightmost

diagram includes the middle one with further material around it, we would now tend to select it as the most

complex of the three instead of considering it being of lowercomplexity than the middle one.

It emerges that we have to consider more than just the object itself to make a statement about complexity.

It is the object in the view of the observer given a certain context that appears complex or not. To cite Casti

(1992) again: “So just like truth, beauty, good, and evil, complexity resides as much in the eye of the beholder

as it does in the structure and behavior of a system itself.” If we committed completely to this point of view
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there would be no sense in trying to develop algorithms that compute estimates of music complexity based

only on the audio signal. If half of the complexity resides inthe observer or listener in our case, then we

should not expect a great relevance of these computed numbers. We should not forget however, that we are

focusing on music listening experiences while Casti talks about the complexity of systems in a very general

sense. If we consider the spontaneous impressions of non-expert listeners confronted with a music track, we

can expect a significantly lower influence of the individual than for the cases Casti is including. We can see

this by the example he uses to illustrate the relativity of complexity:

“Suppose our systemN is a stone on the street. To most of us, this is a pretty simple,almost

primitive kind of system. And the reason why we see it as a simple system is that we are capable

of interacting with the stone in a very circumscribed numberof ways. We can break it, throw it,

kick it – and that’s about it. [...] But if we were geologists,then the number of different kinds of

interactions available to us would greatly increase. In that case, we could perform various sorts

of chemical analyses on the stone, use carbon-dating techniques on it, x-ray it, and so on. So for

the geologist our stone becomes a much more complex object asa result of these additional –

and inequivalent – modes of interaction.”

To stay in the picture, for this research it is exactly our intention to develop algorithms that reflect the judge-

ments of “most of us” rather than those of certain specialists. The “geologist” is explicitly out of scope,

because his point of view requires a considerable background knowledge and expertise, while we are putting

our attention on the obvious, intuitive, and commonly used.

There is another way to look at this problem. Bruce Edmonds (1995) gives us the following, elegant

definition: Complexity is “[t]hat property of a language expression which makes it difficult to formulate its

overall behaviour, even when given almost complete information about its atomic components and their inter-

relations.” This is a very general statement leaving (purposely) a lot of room for interpretation depending on

the given context where it is to be applied. Although it is notexplicit in the statement, Edmonds considers

a subjective element of complexity, because what “makes it difficult” and what is considered the “overall

behavior” can vary with the context and the observer. Despite its generality it is a bit of a stretch to fit this

definition to the problem we are interested in. The atomic components of music in this sense could be the

individual notes and sounds, which in their arrangement in time would form the language expression. The

information about these atomic components and their inter-relations would then consist of two parts: first, the

rules and experiences of what we know is common in a musical arrangement, and second, the actual music

itself presenting us precise atomic components at precise moments in a temporal sequence. The critical point

is now what we want to consider the “overall behavior”. Thereare of course many options, from very reduced

ones like identifying the genre, to very detailed ones like giving a complete transcription of the musical score.

From these two examples we can see again that one piece can be at the same time very complex and very

simple, depending on the context we choose. Also the characteristics of the observer have an influence.

Whether he knows the corresponding genre very well or usuallylistens to a totally different type of music for

example would certainly influence the difficulty. But these types of tasks are not what we are interested in.
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The notion of complexity we want to consider is on a somewhat lower level, where an explicit formulation

of the overall behavior is not so natural. We are concerned with the difficulty in following the music in the

sense of keeping up and guessing the continuation opposed tostruggling and being baffled while listening

to it. While personal preferences and experience will also have an influence here, we think that the effect is

rather small compared to the one of general gestalt laws and what we want to call a “musical common sense”.

Since we restrict ourselves – as proposed in chapter 1 – to only deal with individuals from a certain

cultural heritage we can eliminate influences from different tuning or scale systems and rely on a common

background in the widest sense of the term. The “musical common sense” can be understood as the ability for

example to identify the central pitch of a song, to judge whether a singer is singing in tune or not [Krumhansl

(1990) pp. 18–25], to clap on the beat [Povel (1981)], or to distinguish consonant from dissonant chords

[Tillmann et al. (2000)]. Tillmann, who performed neurological and cognitive experiments on these effects,

refers to the cause asimplicit learning of music by mere exposure. So simply by frequent exposure to music

in their everyday life humans unconsciously learn certain intrinsic regularities or rules of the music [Reber

(1993), Dowling (1999) pp. 613–616]. Violation of these rules then increases the effort a listener has to

put into “decoding” or processing the music and thus increases the perceived complexity according to our

definition. At this point there is also a link to Gestalt theory, which assumes the existence of certain universal

principles like proximity, continuation, closure, etc. that are supposed to be “hardwired” in our perception

(see e. g. Bregman (1990)). These principles have very similar effects as the implicitly learned rules, but they

are given to us already by birth and hence do not have to be induced through frequent exposure to stimuli

of a certain type. While learned rules are stored in long-termmemory, the gestalt principles are operational

directly in short-term memory due to the organization and design of our “operating system”. This implies that

the Gestalt principles do not even depend on cultural background and environment, but form – in the widest

sense of the word – a “common sense” for the perception of stimuli. For example the implication-realization

model for melodic complexity by Narmour Narmour (1990), which will be reviewed in section 3.2.1 of

chapter 3, is built on these principles. We want to consider this “common sense” or implicit knowledge as the

basis for our complexity estimations. So rather than adapting to individual peculiarities of individual music

listeners we want to provide general algorithms, which are able to make predictions on a large scale that

everybody can agree on with a small amount of error tolerance.

2.1.3 Trendy Buzzword?

In the slipstream of the emerging new field of science calledchaos theorythroughout the 1970s and 80s, the

termcomplexityalso gained popularity; not to everybody’s pleasure. For example David P. Feldman and John

P. Crutchfield, both from the field of complex system science that we will talk about in section 2.2, conclude

in Feldman and Crutchfield (1998):

“Unfortunately, ‘complexity’ has been used without qualification by so many authors, both sci-

entific and non-scientific, that the term has been almost stripped of its meaning.”
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Looking at the 386 entries for publications on complexity measures from so different fields as Psy-

cholinguistics, Urban Geography, and Mathematical Economics in an on-line database from the year 1997

[Edmonds (1997)] gives us an idea of what Feldman and Crutchfield are talking about. But what exactly

makes the term so attractive? Is it just its modern and scientific sound, is it simply a “trendy buzzword”?

Again, we can find some insight by looking at the writings of Edmonds (1995):

“The label ‘complexity’ often performs much the same role asthat of the name of a desirable

residential area in Estate Agent’s advertisements. It is applied to many items beyond the original

area but which are still somewhere in the vicinity.”

So, according to Edmonds there seems to be indeed some buzzword characteristic about the term “com-

plexity”. He gives a few examples of what falls into this “vicinity”:

Size is an indication of the general difficulty in dealing with thesystem/object and therefore rather thepo-

tentialof it being complex.

Ignorance can be caused by high complexity, but it is not equivalent to it.

Minimum description size is related with the amount ofinformation(see 2.2); while the absence thereof

will coincide with the absence of complexity the inverse is not necessarily true, since the component

of interrelation increases complexity but might reduce theamount of information.

Variety again is necessary for complexity to emerge, but by itself not sufficient for it.

Order and disorder are also closely related with complexity, but Edmonds argues that they need a language

of representation in order to become tractable (see the explanations for figures 2.1 and 2.2).

Complexity is so suitable as a grouping term, because it has no well established and widely accepted

definition and it is strongly associated with several related concepts. But as we saw it cannot simply be

reduced to any of them and it is necessary to treat it as a separate, self-contained idea. It is however only an

advantage for our purposes, if the term can be used with academic precision and at the same time is roughly

understandable by outsiders or laymen without lengthly explanations.

2.2 The Formal View

In certain fields of science complexity plays a special role and makes a formal expression necessary. For

our needs it is sufficient to provide a verbal definition of what we want to consider as our target and then

start from there to develop and explore different algorithmic approaches. While an all-round mathematical

formula for complexity is not our ultimate goal, it is still interesting to look at the different definitions in

order to learn about ways how complexity can be approached computationally and what problems occur. The

list of reviewed measures is far from completeness and merely serves illustrative purposes by providing a few

selected, popular examples.
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2.2.1 Information and Entropy

In the view of information theory a sequence of data is a message that can be transmitted from a source

through a channel to a receiver. The message contains information, a quantifiable property, which is measured

in bits. In fact, what needs to be transmitted really is only this information, and one can “repackaged” it more

tightly in a smaller message if possible to save bandwidth orstorage space. If we consider a source that is

always sending messages of the same type, then we can calculate the average amount of information that this

source emits with every symbol. This concept is called thesource entropy. It was introduced by Shannon

(1948) and is probably the most “traditional” measure from the field of information theory that can be related

with complexity. Intuitively we would attribute a lower complexity to a source that sends less information

per symbol, high entropy values would be associated with higher complexity, since the information rate is

higher. But what entropy measures is the randomness of the output from an information source, which is not

exactly the same as complexity (as we discussed already in the preceding sections). The average amount of

information for each symbolsi emitted by a source can be calculated with the following formula:

H0 = −
N

∑

i=1

p(si) · log2 p(si), (2.1)

whereN is the number of distinct symbols andp(si) is the probability that symbolsi is emitted. Equation 2.1

assumes a memoryless source, like the flipping of a coin or therolling of a dice, where the preceding symbol

in the sequence has no influence at all on the symbols to follow. This assumption is not justified in many

practical applications. For structured data as texts for example, the probability of a symbol depends strongly

on its predecessors. In information theory the termsMarkovian sourceandMarkov chainare used in these

cases. Equation 2.1 can be adapted for a Markov chain by taking the corresponding conditional probabilities

into account. If only the direct predecessor is relevant (asin a first order Markov chain), the equation takes

the following form:

H1 = −
N

∑

i=1

p(si)
N

∑

j=1

p(sj |si) · log2 p(sj |si), (2.2)

wherep(sj |si) denotes the conditional probability of symbolsj appearing after symbolsi in the sequence.

H0 is the upper bound forH1 and any higher order entropy of a given source, since the structural regu-

larities captured by the conditional probabilities can only decrease randomness. One problem is therefore

to determine the proper order that should be used with a givensequence. Another problem, when consid-

ering musical audio signals is that they do not come readily as sequences of discrete symbols and the true

probability distributions are not known.
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2.2.2 Kolmogorov Complexity

The most widespread and most referenced definition of complexity in the information theory field originates

from the theory of algorithmic information. Referring to one of the main scientists behind it this defini-

tion is usually calledKolmogorov complexity[see Gammerman and Vovk (1999) for a short introduction].

In contrast to entropy it doesn’t address the average information transmitted by a source, but the absolute

information content of an object (a data strings). This quantity specifies the amount of data that needs to be

transmitted in the absence of any other a priori knowledge. It is defined as the length of the shortest program

p (in bits), that can generate the sequences. Formally we can write:

K(s) = min(|p| : T (p) = s), (2.3)

whereT (p) refers to the output of a universal Turing machine executingp. Thanks to its general nature

Kolmogorov complexity has been applied also in the digital audio domain (see Scheirer (2001)) as a way to

prove mathematically the advantages of structured audio ingeneralized audio coding.

The striking quality of both concepts is the objectivity of the measures. Kolmogorov complexity and

Shannon entropy both exist as exclusive properties of the object (data sequence or source) and are completely

independent from an observer. But when considering musicalaudio signals we face problems. First as

mentioned already, the entropy measure needs a finite set of discrete symbols being emitted from the source,

but this is not what we have. The audio signal would need to be converted somehow into symbols like

the letters in a written text, which is not very straightforward. Despite that music can be generated with a

keyboard it is usually much more than the output of a “typewriter”4.

Secondly, both measures are rather technical focusing on anefficient encoding, while we are interested

in the reception by humans. A practical example illustrating this difference very well is given in Standish

(2001). He points out that a random sequence of numbers will always yield a maximum complexity although

it does not contain any meaningful information for a human. Comparing a random string of characters with

the manuscript of a theater play, the random sequence would yield the higher Kolmogorov complexity value,

because there is no program to generate the sequence shorterthan the sequence itself. However, for a human

the order would be exactly reversed, because the random string is perceived as meaningless noise, while the

theater play is recognized as a sophisticated, multi-layered setting (at least if it is a good one). The apparent

objectivity of the measure makes it meaningless when context has to be considered as it is the case for the

goals of this research.

Standish suggests the use of equivalence classes to overcome this. An equivalence class for him is the

set of all mutations of a sequence that are equivalent in a given context. So for example different random

sequences could hardly be distinguished by a human observerand would therefore form a large equivalence

class. On the other hand, for a written text carrying a meaning, only relatively few mutations exist that would

be judged as equivalent. This judgement depends not only on the data itself but also the context in which

4This can be experienced easily by comparing a monophonic mobilephone ringing tone with a live performance of the same piece.
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it is observed. If the equivalence classes are considered inthe complexity computation, we arrive at more

meaningful results from a human’s point of view. But still wedo not have a practical solution. The decision

of what is equivalent and what is not does not seem to be very straightforward, especially when it comes to

music. Furthermore there is no closed mathematical solution for computing the Kolmogorov complexity and

it remains a rather theoretical measure.

Another extension of the idea behind Kolmogorov complexityis the so calledlogical depthproposed

by Bennett (1985). In short the idea behind this is to consider the number of computational operations that

are required to generate the sequencex with the minimal program as a measure of complexity. This is an

elegant way to deal with the problem of randomness, because for an incompressible random string the shortest

program will simply store the entire sequence and just doprint(x) . This means for the logical depth:

L(x) ≈ |x|. If the sequence is highly redundant and consists of periodic repetitions, the minimal program

will cycle over printing the same data for each period, whichagain leads toL(x) ≈ |x|. When there exists a

non-trivial minimal program that can generate a sequence itwill involve more advanced computations than

simply reading each value from a list. So the number of operations will be bigger andL(x) > |x|. However,

the problem remains that there is no closed mathematical solution for finding the minimal program, which

makes the logical depth again useful in theory only.

2.2.3 Stochastic Complexity

There is an important difference between the information theoretic measures that we just reviewed and the

method we will discuss here. The former ones are concerned with anexactreproduction of the data sequence.

When we look at the minimal program as a type of model for the system that generated the data, this is an

extreme case of over-fitting5. If we consider the data as a series of measurements or observations that contains

some noise, then these methods pay way too much attention to details that are practically irrelevant. Instead

we should relax the degree of exactness and allow a certain tolerance due to noise, that can be described

easily in a statistical sense [Shalizi (2006)].

The most well-known method following this line of argumentation is the one proposed by Rissanen

[Rissanen (1978) and Rissanen (1989)] which uses theMinimum Description Lengthprinciple and the asso-

ciatedstochastic complexity. The basic idea behind this is that there has to be a trade-offbetween the accuracy

of a model and how well it generalizes. The accuracy can always be increased by choosing a more complex

model. On the other hand, if we choose a simpler and thereforemore general model, we will have to consider

a greater amount of noise to describe the dataD. Figure 2.3 illustrates these effects. On the left a very simple

model (straight line) is chosen, which provides a poor fit to the data (dots). The noise component would be

very big in this case. In the center the model is very complex (high order polynomial function), while it fits

this data very well it probably not work very well on a different data sample from the same source/system.

On the right side we can see a compromise, the model fits reasonably well, but it is significantly simpler than

the one from the center and thus more general. So we have to consider two components when describing the

5Of course Information Theory is not concerned with any type ofgeneralization.
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Figure 2.3: Example for model selection with Minimum Description Length [from Gr̈unwald (2005)].

data with our model.L(M) is the amount of bits needed to describe the modelM , where a more complex

model will need more bits.L(D|M) is the amount of bits we need to describe the “noisy” part of the data

when applying the modelM . Since we don’t want to transmit this description it is enough for us to get an

estimate of the number of bits instead of defining the explicit encoding. The stochastic complexity of the data

is then defined as the minimum ofL(M) + L(D|M) for all models under consideration.

Despite this approach has proven to be very useful for model selection, Shalizi (2006) points to several

shortcomings when we are interested in a measure of complexity. First, the outcome depends a lot on the

way we choose to encode the models. It is up to us to decide which types of models we want to have “under

consideration” and according to which method we encode them. Secondly, the “noisy” termL(D|M) not

only reflects the true noise in the data, but also the imperfection of the chosen model. As Shalizi puts it, “it

reflects our ineptness as modelers, rather than any characteristic of the process.” Thirdly, one can question the

physical significance of the stochastic complexity, since in the system there is no need for a representation

of its organization. This is only necessary for us who have tochoose from different models and to fix the

parameters.

2.3 Implications for our goals

So what are the implications of all the above for the goals we identified in section 1.2? By looking at

the different general complexity measures that exist, it emerges that these will not take us far, if our main

concern is a semantic description of music audio. Although it is always elegant to have a neat and general

mathematical formalism behind, it is not necessary in orderto arrive at practically useful results. On the other

hand this doesn’t mean that it makes no sense to include ideasand principles from these measures into our

algorithms. We will review approaches in the following chapter that achieve interesting results by doing so.

But the point is, that we donot want to impose a general, theoretical model of complexity asa starting point

that is then simply applied to the complexity facets at hand.

While we are interested in developing algorithms that are capable of making meaningful predictions of
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human judgements it isnot our concern to accurately model the underlying cognitive processes. It certainly

is helpful to include known principles of human perception and cognition in our implementations, but it is

not our ultimate goal to learn about these principles from our algorithms. If there is a simple implementation

that does the job roughly as well as a sophisticated one whichis closer to the actual processing taking place

in our brains, then we would prefer the simple one for reasonsof practicality.

So what we want to do is in fact a hybrid approach. We will look on one hand at the mechanisms at work in

the music “processing” behavior of humans as they are known and on the other hand at feasible computational

methods. The proposed algorithms are meant to provide a connection between the two. Additionally, we will

use the observations we made in section 2.1 to guide us in the algorithm development when the understanding

of the cognitive process is not advanced enough.



Chapter 3

Former Work on the Complexity of

Music

After the subject of our research has been explained and specified, and the intended applications have been

described, we will now have a closer look at the work that has already been done in this area. We will first

review several experimental findings in the context of Berlyne’s theory of arousal potential [Berlyne (1960)

and Berlyne (1971)]. Then we will address different approaches on modelling and computing complexity

facets of music that have been published by other researchers. We will focus here mainly on the methods

that analyze music in terms of complexity, neglecting thoseutilizing complexity for automatic generation or

composition [for some examples see Dobrian (1993), Hodgson(2006), or Goertzel (1997)], as they are not in

the focus of our thesis.

3.1 The Preferred Level of Complexity

We pointed out in section 1.3 that according to Berlyne’s theory of arousal potential [Berlyne (1971)] the

level of perceived complexity of a piece of music can be associated with the preference for it. Our research is

not intending to provide evidence for the validity of this theory. Exploiting the psychological aspects between

perceived complexity and preference is not our main concern. However, this aspect plays an important role

in the motivation for our research. Hence, we want to give some room here to report about material that has

been published on the matter.

3.1.1 Complexity and Aesthetics

Berlyne himself conducted several studies during the 1960sand 1970s [Berlyne (1960), Berlyne (1971), and

Berlyne (1974)] on the connection between arousal potential and hedonic value (liking) of artistic stimuli.

He has considered not only auditory, but also visual and combined stimuli in his experiments. He has found

25
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strong evidence for the existence of the inverted-U relationship as depicted in figure 1.3 on page 9 which led

to his theory of arousal potential. As mentioned above he identified different types of variables to contribute

to arousal potential [Berlyne (1960) pp. 170–179]:

• Intensive Variables (e. g. pitch, color, energy)

• Affective Variables (e. g. anxiety, pain, gratification)

• Collative Variables (e. g. novelty, surprisingness, complexity)

Berlyne considered the collative variables the most important ones of the three types. His understanding of

complexity is very closely linked to information theory andthe formal measures presented in section 2.2.1.

In Berlyne (1971) on page 149 he says:

“A pattern is considered more complex, the larger the numberof independently selected elements

it contains. In two patterns that consist of the same number of elements, that one will be less

complex that has a greater degree of similarity among its elements or, more generally, a greater

degree of redundancy of interdependence.”

Later, from his extensive review of experiments he draws themore general conclusion that “[. . . ] with sound

sequences as with visual patterns, subjective complexity reflects information content.” [ib. p. 202].

For art, Berlyne resumes, one has to distinguish between twogroups of qualities, one around the terms

beautyandpleasingnessand a distinct one linked with the terminterestingness. As he shows by reporting

the results of numerous studies [ib. pp. 198–213] the latterusually increases with increasing complexity

while the former tends to be higher for stimuli with relatively low complexity. This coincidence of beauty

and simplicity is also put forward by Schmidhuber (1997). Heeven proposes a new art form called “Low-

Complexity Art” joining the formal measures of Kolmogorov Complexity and minimum description length

with the process of artistic production. He suggests that what can be described very efficiently in terms of

an internal representation by the observer, will also be considered beautiful. He gives the example of human

faces, where an average, prototypical, symmetrical face isconsidered more beautiful than an “irregular” one,

that would need more effort in the internal modelling process. Both, Schmidhuber and Berlyne, recognize

however, that the most beautiful and pleasing is not necessarily the preferred choice, because it might be rather

uninteresting. So an optimal choice would be at the same timebeautiful and interesting and thus somewhere

between total order and randomness. Following Berlyne’s theory, if we take again the three diagrams of

figure 2.1 from page 2.1 we could expect people to prefer the middle one. If we presented the three diagrams

individually to subjects and allowed them to switch freely forward and backward, we should observe that

they spend more time looking at the middle one than at the other two.

3.1.2 Psychological Experiments

With respect to music complexity in particular, Heyduk (1975) reports about an experiment with four custom-

built piano compositions of different complexity levels. Complexity was varied in two facets: chord structure
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and syncopation. He found strong evidence for Berlyne’s theory by analyzing the ratings for preference

and complexity given by a group of 120 subjects. While Berlyneused the termarousal potentialfor the

combination of different factors determining preference,Heyduk follows the terminology of Walker (1973)

and talks aboutpsychological complexity. It is important to note the distinction to a pure stimulus complexity

here. The latter would be fixed and objective, very much like the Kolmogorov complexity mentioned in

section 2.2.2. The psychological complexity includes the latter, but is also determined by attributes like

novelty, uncertainty and arousal properties. It doesn’t exist without specifying a specific observer. It therefore

is a subjective property, which only becomes manifest in theencounter of an individual with the stimulus.

Steck and Machotka (1975) conducted an experiment using random sequences of sinusoidal tones as

stimuli. All tones were equally loud and had equal duration within one “composition” of approximately 10s

length. 16 different levels of complexity were constructedby varying the tone duration (and thus the tone

rate) from 2s down to 60ms. The analysis of preference ratings from 60 subjects revealed a clear inverted-U

relationship on the objective complexity levels. However,when presenting only subsets of the test samples

which were taken from adjacent complexity levels, again an inverted-U relationship was found within each

subset. Even more interesting is their observation that therelative position of maximal preference inside each

subset was fixed. That means the preferred level of complexity was not absolute, but relative for the presented

stimuli.

North and Hargreaves point to two potential problems with respect to Berlyne’s theory: the influence of

the listener’s mood and intention when selecting music, andthe dependence on the appropriateness of the

music for the listening situation [North and Hargreaves (1997a)]. It seems obvious that the same listener will

prefer different types of music whether he is driving a car, relaxing on the sofa, or dancing in the club. So

when they asked subjects to rate the preference for the musicin a cafeteria, they indeed found an inverted-U

shaped relation between complexity and preference. However, the effects were mediated by musical style.

Organ music of the same complexity level as New Age music was liked less in this listening situation. In

another study North and Hargreaves (1997b) show that preference and pleasantness of music have to be dis-

tinguished. Preference and arousal potential were again found to relate through the inverted-U curve in this

study. But North and Hargreaves argue that a subject with an antipathy against brass music for instance will

not be pleased by this music, whether it matches the optimal complexity level or not. In this sense, optimal

complexity only provides thepotentialfor a maximum of pleasure a subject might experience, but does not

determine it completely. Conversely, a subject might find pleasure in listening to music that does not pos-

sess the optimal level of complexity. However, pleasure would reach a maximum when the right level of

complexity and a general liking coincide in a piece of music.

A quite recent study by Orr and Ohlsson (2005) addressed the dependency of musical expertise on pref-

erence. They used natural stimuli, bluegrass and jazz solos, at different complexity levels, which were pur-

posely performed and recorded for their experiments. Four different groups of subjects were asked to rate

perceived complexity and liking for the stimuli. One group consisted of subjects with no musical training, a

second one was composed of subjects with moderate training in music, the third and fourth group consisted
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of professional jazz and bluegrass musicians. The results reported by Orr and Ohlsson indicate two things.

First, it seems that the significance of complexity for preference decreases with increasing musical expertise,

unless complexity itself is learned as an aesthetic criterion. This can be seen from the fact that for the group of

professional jazz musicians an inverted-U relationship could not be identified. For the professional bluegrass

musicians the inverted-U relationship only appeared for their ratings of bluegrass music. The authors interpret

this effect insofar as complexity might represent an explicit aesthetic criterion in bluegrass music, which has

been learned by the professionals. The group of untrained subjects was the one where the inverted-U became

apparent the most for either musical style. The moderately trained group revealed this effect only in case of

the bluegrass samples. So secondly, the importance of optimal complexity seems also to depend on the music

style. We have reviewed so far only psychological studies using selected stimuli where the complexity was

purposely varied in a controlled test environment. It is also interesting to consider studies that were conceived

the other way around, that means observing preference indicators of real music and then relating these with

complexity estimations.

3.1.3 Musicological Studies

Eerola and North (2000) report about their analysis of 128 Beatles songs, all written by and for the Beatles

in the years between 1962 and 1970. From MIDI-transcriptions of the songs they extracted the melodies and

analyzed the melodic complexity with their expectancy-based model (see section 3.2.1). A highly significant

increasing trend was found for melodic complexity over the time period. Secondly, the authors compared the

complexity values with indicators of commercial success ofthe songs and albums. The chart position and the

time in the charts were both negatively correlated with melodic complexity. So the higher the complexity,

the less popular were the songs. Although this is a sign of relevance between complexity and popularity, the

authors point out that other factors of social, cultural, orcommercial kind certainly have an influence as well.

Since they were not considered in the study, care has to be taken in drawing conclusions. A shortcoming of

this study is also that it was not checked whether the increase in complexity was a general trend during that

time period or whether this was only observed in the music of the Beatles. However, they make reference to

Simonton (1994), who also found a clear connection between melodic complexity and popularity. His results

stem from an extensive study of 15,618 melodic themes of classical music.

A study by Parry (2004) comes to similar conclusions. He analyzed the melodic and rhythmic complexity

of 10 songs that were listed in the Billboard Modern Rock Top 40 within the period from January to June

of 1996. The complexity was estimated using MIDI transcriptions of the songs and is based on a very basic

self-similarity measure. As indicators for the chart performance the number of weeks in the charts, average

weekly change in rank, peak ranking, and debut ranking were considered. Parry found the number of weeks

in the charts being positively correlated with both, rhythmic and melodic complexity. The former was also

positively correlated with the peak ranking. For the average change in rank a negative correlation was found

with melodic complexity, indicating that higher melodic complexity inhibited rapid changes. The debut

ranking revealed no statistically significant correlationwith the two complexity measures.
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3.1.4 Conclusion

As a conclusion we can say that a certain relationship between preference and complexity of music cannot be

denied. Based on the rather scarce evidence the correlation, however, seems to be not as simple as it appears

in Berlyne’s theory. Other factors, as mentioned, also showeffects and might under certain circumstances

completely overrule the influence of complexity on preference. It should therefore not be expected to have

found the holy grail of music recommendation with the usage of complexity descriptors. On the other hand,

the reported findings clearly prove the relevance of complexity in music listening, especially for non-expert

listeners, which are the target audience we are considering. Providing complexity descriptors for music there-

fore should be able to enhance human interaction with music collections, which is the goal of the research

presented here.

3.2 Computing Complexity on Symbolic Representations

There exists a substantial amount of publications on facetsof music complexity based on the analysis of

score-like representations. Mostly, the focus lies on high-art music in the western cultural tradition. While

we include this type of music as well into our pool of musical material, it rather forms a niche in the context of

popular music that we want to process with our methods. Furthermore we have to distinguish between the ap-

proaches that make use of expert knowledge of a theoretical nature and those that rely only on subconscious,

cognitive effects in the listener. In David Temperley’s terminology the former belong to thesuggestivetype of

musicology, while the latter – which are more interesting for us – belong to thedescriptivetype [Temperley

(2001b)]. For each presented approach we will also discuss to which degree it might be applied to our

problem, which deals with music in the form of audio signals.

3.2.1 Models for Melodic Complexity

Already back in 1990 Eugene Narmour proposed a model for the complexity of melodies that clearly falls

into the descriptive category. ThisImplication-Realizationmodel, as he calls it, is extensively described

in Narmour (1990). The model hierarchically builds up larger structures from smaller elements and thus

possesses different levels. The predictions are most clearly specified on the lowest level, which is the tone-

to-tone level. Any melodic interval that is perceived as being “open” (incomplete sounding) is said to create

an implicationon the listener’s side. That means it raises certain expectations in the listener about how the

sequence is supposed to continue. Factors that contribute to closure (i. e. the opposite of openness) at the

single-interval (tone-to-tone) level are [Schellenberg et al. (2002)]:

• a longer duration of the second tone than the first one (e. g. eighth note followed by quarter note)

• a higher stability of the second tone in the established musical key (e. g.ti followed bydo)

• a stronger metrical emphasis of the second tone (e. g. at thefirst beat of a measure).
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Figure 3.1: Illustration of the Implication-Realization Process [from Schellenberg et al. (2002)].

According to these criteria a melodic sequence can be segmented and we can observe to which degree

the implications evoked by the “open” intervals are realized. For example a relatively small interval (that is

perceived as being “open”) would make the listener expect a continuation by another small interval in the

same direction. A large interval would raise the expectation for a small interval in the opposite direction.

Frequent realization of these expectations reveals a low level of complexity; frequent surprises reveal a high

level of complexity, because the structure of the melody is harder to encode.

Figure 3.1 illustrates exemplary the implications for the tone-to-tone level. The first interval implies a

second one to follow, while the relative thickness of the arrows indicates that different continuations can be

implied with different strength.

It has to be pointed out that the development of this model wasguided by gestalt principles only, implying

validity completely independent from the listener’s cultural or musical background. Narmour himself states

about the principles that they are “innate, hardwired, bottom-up, brute, automatic, subconscious, panstylistic,

and resistant to learning” [as cited by Schellenberg et al. (2002)].

The IR-model inspired many experiments. It was reduced by Schellenberg to its basic principles. In

experiments with human listeners Schellenberg used artificial stimuli and original folksong melodies. By

comparing the explanatory power of his simplified model withNarmour’s original he proved experimentally

that both versions give similar results [Schellenberg (1996)].
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In section 3.1.3 we mentioned already a model for melodic complexity by Eerola and North. In Eerola and North

(2000) they point out that the traditional information theorist view of complexity does “not address the role of

the listener’s perceptual system in organising the structural characteristics of music”. Therefore they propose

their expectancy-based model (EBM) to estimate complexity. It is also inspired by Narmour’s ideas, but they

include some additional features derived from a symbolic representation of the music. In their evaluation

they found thattonality (modified by metrical position and tone duration), the intervallic principlesregistral

directionandintervallic difference, and the rhythmic principlessyncopationandrhythmic variabilityshowed

significant capability in predicting listeners’ complexity judgements. Comparing the prediction accuracy of

this model with an information-theoretic and a transition probability model [Simonton (1984)], they found it

to be the best one.

Eerola et al. (2002) conducted experiments showing, how theaccuracy of the model can be further im-

proved by taking a larger melodic context into account. Since the focus of the original model is limited to

two notes at a time only, it neglects the impact of the longer-term melodic evolution (e. g. repetition of mo-

tives) on the listeners’ predictions of continuation. However, their modifications were aiming more towards

a real-time modelling of listeners’ continuation predictions than towards a more accurate estimation of the

overall complexity.

In sum we can say that there is a selection of computable models available, that have shown reasonably

good performance in approximating human impressions of melodic complexity. However, there is one obsta-

cle that makes it difficult to apply these methods to the problem we are tackling: All the presented models

are working on a symbolic representation of the melody. Thisis disadvantageous for us in two ways. First,

simply for pragmatical reasons, because digital music filesdo not have this symbolic description attached

to them. Although there is a lot of active research going on aiming at the complete transcription of musical

audio [e. g. Klapuri (2004) or Bello (2003)] or precisely at the extraction and transcription of the melodic

voice [e. g. Dressler (2005)], the results are still far frombeing useable. The best algorithm for melodic

pitch tracking in polyphonic signals in the 2004 ISMIR contest achieved only an average accuracy of 75%

[Gomez et al. (2005)]. This figure does not even include note segmentation. The task is so difficult, because

it involves several steps which each by itself tend to introduce errors to the computational result. Out of the

polyphonic signal the fundamental frequencies of the sounding notes need to be detected, while the number

of sounding notes is not known. For each note the onset and offset has to be identified, which might be

obscured by unstable fundamental frequencies and non-tonal elements in the music. Finally from all detected

sounding notes the ones that form the melody have to be selected, while the criteria for this selection are not at

all clear. Just a few wrong notes in the extracted melody, however, would completely mislead the complexity

estimation with the presented models making the application useless. Secondly, it must be asked, whether

the perception of melodic complexity should be considered independently from the accompaniment. While

the reported methods only deal with isolated, monophonic melodies, we are interested in describing complete

musical arrangements. It could be the case that the findings on human complexity perception regarding the

former are not directly applicable to the latter.
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3.2.2 Models for Rhythmic Complexity

In Shmulevich and Povel (2000) the PS-measure for rhythmic complexity was introduced. The authors state,

with reference to Essens (1995), that a listener tries to establish an internal clock, when hearing rhythmic

music. According to this clock the listener then segments the rhythm pattern and tries to code the segments.

So a rhythmic pattern will appear complex, when either the induction of the internal clock is weak or ab-

sent, or when the coding of the segments is difficult. The algorithm therefore combines the two aspects for

complexity estimation.

The clock induction strength is a weighted combination of the number of clock ticks that coincide with

silence and with unaccented events. This shows already, that a rather high abstraction level is assumed here,

since the clock grid is assumed to be known and the musical events have to be classified into accented,

non-accented, and silent ones.

The coding complexity is estimated by assigning different weights to four different types of segments

that can appear when splitting up the sequence of events according to the clock grid. The segment types are

empty segments, equally subdivided segments, unequally subdivided segments, andsegments beginning with

silence. An additional weight exists that is added, when two consecutive segments differ from each other.

The coding complexity is then simply the sum of all the weights for the whole sequence.

Shmulevich and Povel (2000) tested their method on a set of 35rhythm patterns for which they obtained

human complexity judgments in a listening test. For comparison they also used the T-measure proposed by

Tanguiane (1993) and a pure information theoretic measure [Lempel and Ziv (1976)]. The former counts the

number of distinct “root patterns” in a sequence that would be needed for its generation, where elaborations

of these root patterns do not add complexity. The latter is based on the number of distinct substrings that

are found as the sequence evolves. The results showed that the PS-Measure gave clearly the best approx-

imations of the human ratings with an overall correlation coefficient r = 0.75 for the 35 tested patterns.

Shmulevich and Povel (2000) attribute this to the fact that their measure incorporates perceptual information

and is based on an empirically tested model.

It must be noted that the clock induction strength and the coding complexity when computed this way

tend to give higher complexity ratings to longer segments, because there is no normalization. This might be

appropriate when isolated rhythm patterns are evaluated, since a longer pattern is supposed to have a higher

complexity potential than a short one. However, for complete music tracks some adaptation would be in

need. It would be necessary to identify recurring rhythmic patterns throughout the piece and to segment

it accordingly. The measure could then be computed on each pattern and the overall complexity could be

approximated by combining the individual results in some intelligent way. This combination is not so straight

forward however. Might we consider that the perceived complexity decreases if listeners are exposed to one

single pattern over and over again? And vice versa, is the result perceived as being more complex if we have

a sequence of many different patterns that by themselves arenot extremely complex?

But these problems are not the most immediate ones we encounter when we consider to apply the PS-

measure in our context. Although rhythm pattern extractionfrom musical audio might seem an easier task
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to solve compared with melody extraction, to date universalmethods providing sufficient precision are still

lacking [a recent review can be found in Gouyon and Dixon (2005)]. The problem is again that errors can be

introduced at several different steps. Starting from the audio signal the onset times of rhythmic events have

to be identified, which will result in several false detections and missed onsets. Based on the inter-onset-

intervals or additional features the beat has to be tracked [referred to as “the clock” by Shmulevich and Povel

(2000)], which is not necessarily stable throughout the entire piece. The PS-measure is an essentially “binary”

measure. A rhythmic event either is accented or not, it either coincides with a clock tick or not. While this

comes rather naturally with symbolic data, for real-world signals we need to apply thresholds and quantization

in order to make such decisions, and the outcome of the entireprocess depends strongly on the specification

of these thresholds. In summary, the application of the PS-measure in the context of real-world, polyphonic

audio appears to be not viable at present and was therefore left aside in this research work.

3.2.3 Models for Harmonic Complexity

The theory of harmony in music has a very long tradition already. Still, in contrast to melodic complexity,

no dominant and well-studied models for harmonic complexity could be identified by the author. Research

has been done on the expectations evoked in listeners by harmonic progressions especially on the field of

classical music [Schmuckler (1989)]. It turned out, that listeners usually predict a chord that results from

a transition considered as common in the given musical context. Yet, to our knowledge no tests have been

carried out that correlated the perceived harmonic complexity with the fulfilment or disappointment of these

expectations.

A step into this direction is done by Lerdahl (2001), who develops a hierarchical model for the perception

of tonal tension and chord distances in experienced listeners. Building up on the older “Generative Theory of

Tonal Music” [Lerdahl and Jackendoff (1983)] and integrating newer ideas [like Lerdahl (1996)], the model

relies on a rule-based grammar which we will not discuss in detail here. For a given sequence of chords it is

then possible to compute for example the overall distance that is “travelled”, which again can be related with

the complexity of the chord sequence.

A further extension of this idea can be found in Temperley (2001a). He supposes that the scores computed

with his preference rule system could reveal an estimate forthe tension in music (Temperley (2001a) section

11.5, pp. 307–317). The mapping of achieved scores would go from incomprehensible(breaking all rules)

over tenseto calm, and finally toboring (all rules obeyed). Although he does not use the term complexity,

this basically reflects what we are looking for. He names fourdifferent aspects of this harmonic complexity:

1. The rate at which harmonies change.

2. The amount of harmonic changes on weak beats.

3. The amount of dissonant (ornamental) notes.

4. The distance of consecutive harmonies in a music theoretical sense.
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Especially the fourth point has to be addressed carefully when extending the scope from classical music

to the different types of modern popular music. Temperley himself considers this tension estimation to be

consistent only for particular styles (see Temperley (2001a) figure 11.11 p. 314). As we already discussed for

the model for melodic complexity (section 3.2.1) we again face the problem that an accurate chord transcrip-

tion is not easy to obtain from the audio signal. In the case ofTemperley’s approach we face the additional

difficulty, that not only the pitches have to be transcribed,but also the rhythmic grid needs to be established

in order to distinguish between chord changes on strong and weak beats.

A different approach in the domain of harmonic analysis is taken by Pachet (1999), who proposes the

application of what he refers to asrewriting rules. He addresses the effect of harmonic surprise in Jazz music.

His argument is that the “rich algebraic structure underlying Jazz chord sequences” has to be considered when

talking about expectation and surprise. The idea is that a sequence of chords can be rewritten by applying a

limited set of rules to replace a particular chord in the sequence by one or more alternative ones.

His model is therefore based on two ingredients, a set oftypical patterns, which he relates to the charac-

teristics of the musical style, and a set ofrewriting rules, according to which a given chord sequence can be

transformed. The basic idea is that even a chord sequence that has never been heard before might not be so

surprising to a listener who is familiar with these two sets that are sufficient to generate it.

Instead of manually creating the two sets, Pachet applies machine learning techniques in order to obtain

them. He uses a string compression algorithm [Ziv and Lempel(1978)] in order to extract the typical pat-

terns. To find the rewriting rules he then uses a table method and utilizes the likelihood of occurrence of a

hypothesized rule as a basis for finding the best set of rewriting rules.

Although he is not directly aiming at a complexity estimation, the idea is not too far from our needs. A

highly predictable (little surprising) chord sequence could be identified with a low harmonic complexity and

vice versa. However, Pachet focusses only on a very restricted variety of music, the Jazz genre, which is not

what we want. Also, he considers only a special type of expertlistener, who is trained or accustomed to this

musical style. In addition, we have of course again the problem to obtain an accurate chord transcription from

the audio material before we can start to use Pachet’s ideas.

3.2.4 Pressing’s Music Complexity

Pressing (1998) gives a very short outline of three different types of complexity, which he nameshierarchical,

adaptive, andgenerativeor information-basedcomplexity. Referring to music the first is focussing on the

structure of a composition. Pressing mentions Johann Sebastian Bach’sKunst der Fugeas an example where

the composer exploits hierarchical complexity. “[N]otes function as elements of linear processes operating

at different time scales, and are at the same time compatiblewith a vertically-oriented chordal progression

process.” He emphasizes that hierarchical complexity plays an important role in music composition, because

it allows a multiplicity of references increasing the potential for repeated listening and providing access at

different levels of sophistication. The second type of complexity refers to the temporal changes in a musical

work, including aspects like the adaption to unpredictableconditions, or the anticipation of changes in the
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music itself or in the environment. Here, Pressing mentionsimprovisatory performance as an example. He

does not provide any details about how these two types of complexity could be addressed formally or even

computationally in practise.

The third type, theinformation-based complexity, is elaborated in some more detail by Pressing. It is

inspired by Kolmogorov complexity, but focuses more on the production of music through a human than on

the generation of a data string through a computer program. Pressing acknowledges that a pure information

theoretic measure falls short in measuring music complexity, because it will always rate random sequences

as the most complex ones, which does not go along with human perception. He argues that humans process

complexity by developing routines and heuristics that try to overcome the limitations of memory and atten-

tion. His approach to complexity is based on the concept thatthese routines have different difficulty levels,

because some are easier to learn than others. So conversely,the complexity of a stimulus is determined by

the difficulty assigned to the routines and heuristics that are needed to produce it.

He demonstrates his concept by estimating the complexity ofsix very short rhythmical patterns. This

is achieved by simply applying a processing cost function (cognitive cost) to the symbolic level attribute

syncopationon quarter-note and eight-note level. His approach shows some similarity with the coding com-

plexity used in the PS-measure for rhythmic complexity (section 3.2.2). Again, the sequence of events is

broken down into segments (this time according to two different grids) and a cost is assigned to each segment

depending on the type of syncopation that can be found.

This approach is very interesting, because it seems a convincing combination of information theoretic

principles and cognitive effects. However, it is purely theoretical and was not evaluated in any experiment

with humans, although Pressing states that a similar strategy is implemented in the notation softwareTran-

scribein order to achieve a cognitively optimal musical notation [Pressing and Lawrence (1993)]. Also there

is a crucial point in the identification of the routines and heuristics needed to generate the stimulus, as well

as in the assessment of cognitive costs to them. In the case ofa complex musical audio signal this is a very

hard task to solve.

3.2.5 Algorithmic Clustering

While not a genuine measure of complexity, the algorithmic clustering of music proposed by Cilibrasi et al.

(2004) is still worth mentioning at this point, because it shows a practical application of information theoretic

principles applied to music. Cilibrasi et al. make use of thenotion of compressibility that is linked with Kol-

mogorov complexity. They developed thenormalized information distanceas a universal similarity metric,

which they apply to symbolic representations of music in order to identify clusters of similar tracks in small

collections1.

In addition to the Kolmogorov complexityK(x) of a sequencex, they introduce theconditional com-

plexityK(x|y), which reflects the amount of information that is needed to reconstructx if the sequencey is

1They report their method does not work as well for larger sets of musical pieces as it does for small ones [Cilibrasi et al. (2004)].
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Figure 3.2: Tree obtained with algorithmic clustering of 12piano pieces [from Cilibrasi et al. (2004)].

given. The normalized information distance betweenx andy is then defined as:

d(x, y) =
max (K(x|y),K(y|x))

max (K(x),K(y))
(3.1)

This distance measure captures the number of bits of information that is not shared between the two se-

quences in relation to the maximum number of bits that could be shared [Cilibrasi et al. (2004)]. Since the

Kolmogorov complexity is uncomputable in practice, it can only be approximated. Cilibrasi et al. (2004) use

standard file compression tools for this purpose. After the distances between all pairs of music files are com-

puted, Cilibrasi et al. (2004) use a tree-based clustering,called thequartet method, in order to identify groups

of similar songs. Although they claim this method to be a universal and feature-free similarity assessment,

they do need to represent the music as a discreet sequence of symbols in order to be able to compute the

distances. For this reason they use only the note on and note off information extracted from MIDI files in

their experiments. Timbre, tempo, and loudness information therefore have no effect on the distance compu-

tation. Figure 3.2 shows the resulting tree obtained with the algorithmic clustering method for 12 classical

piano pieces from 3 different composers (2 fugues and 2 preludes from Bach, 4 Préludes by Chopin, and

the 4 movements from Suite Bergamasque composed by Debussy). Bearing in mind that there is no musical

knowledge or heuristics explicitly entered in the system atany point, the results are astonishing. Indeed the

method manages to separate the three composers quite well and it even groups the two fugues separately from

the two preludes inside the Bach cluster. Only Chopin’s prélude no. 15 is placed at a strange point in the
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graph. As Cilibrasi et al. (2004) state this must not necessarily be due to a flaw in their method, but in the

sense of data mining could be based in some objective properties of this particular composition, since as they

say “no. 15 is perceived as by far the most eccentric among the24 Pŕeludes of Chopin’s opus 28.”

3.2.6 Conclusion

We reviewed several different approaches to model human perceptions of music complexity. While some

originate from a rather theoretic nature and have not been evaluated in practice, for some others experimental

verifications exist. As the models address only isolated facets of music complexity (like the melodic or the

rhythmic one), these experiments also only involved reduced stimuli, as for example isolated melodies or

rhythm patterns. Leaving the problems of unavailable symbolic abstraction apart, this raises the question,

whether the models can accurately be applied to real world music signals which are normally a mixture of

all these individual components. We can also observe that complexity facets addressing the acoustic and

timbrical qualities of musical audio material are naturally not covered with these methods, since they lack a

clear symbolic representation.

In the constructive sense, we can learn from these findings, that to a significant degree, the impression

of human listeners with respect to certain complexity facets is consistent and accessible through the music

material itself (opposed to e. g. cultural or social connotations). That means an algorithmic prediction of

music complexity is possible, at least in principle. From section 3.2.5 we also have some evidence that com-

plexity related concepts applied to music can capture aspects of relevance for human listeners in the context

of music collection organization or music similarity computation. In terms of implementation however, we

will need to find alternatives to the described models, sincethe state of the art in music transcription does

not allow their direct application on the material we intendto use. It seems more promising for now to avoid

sophisticated extraction processes and to concentrate instead on more accessible, less abstract levels in order

to assess complexity characteristics.

3.3 Computing Complexity on Audio Signals

The literature on musical audio analysis has been growing rapidly during recent years and research on this

field is still very active [see e. g. Smiraglia (2006)]. However, music complexity received only little atten-

tion on this side. As Pohle et al. (2005) showed, it does not work so easily to predict human complexity

judgements by using standard features from the music information retrieval domain. In their comparative

study of different feature sets in combination with machinelearning techniques, they found no configuration

that managed to reach significantly beyond the baseline level in predicting human complexity judgements

in the three categories low, medium, and high. This is a clearindication that music complexity needs to be

addressed directly, if a useful content description is supposed to be achieved. We will review in this section

a few other approaches that have been taken in the past to assess more or less direct the music complexity in

audio signals.
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3.3.1 Complexity of Short Musical Excerpts

Scheirer et al. (2000) directly utilize the statistical properties of psychoacoustic features of short musical

excerpts to model perceived complexity. The excerpts they used in their experiment were of only 5 s length,

in order to keep the computation time for the feature set in reasonable limits and to simulate a “scanning-the-

radio-dial” behavior. This also means that the more abstract levels, like melodic complexity or even structural

complexity, are not accessible. Consequentially, Scheirer et al. consider a joint complexity of the excerpts

and do not address individual facets.

They used a selection of 75 music tracks from different musical styles. From each track they extracted

two non-overlapping excerpts for the experiment. All excerpts were rated in a listening test by a total of 30

subjects according to their complexity perception. Afterwards, Scheirer et al. performed different statistical

analyses on the human ratings and the computed features withvery interesting results.

They found that overall subjects agreed on the judgment of complexity, although there was a lot of vari-

ability in the ratings. Since every track was presented withtwo different excerpts, Scheirer et al. also com-

pared the correlation between these two ratings for each subject. Withr2040 = 0.34, p < 0.001 they found a

strong correlation, which was even higher, when the averaged ratings of all users where used for each excerpt

(r150 = 0.502, p < 0.001).

Scheirer et al. then used multiple-regression on 16 computed psychoacoustic features (see table 3.1)

to predict the mean complexity ratings for each stimulus. The computation of these features is extensively

described in Scheirer (2000) (chapters 4-6). The prediction capabilities of the model were strongly significant,

more than 28% of the variance was explained by the features (R = 0.536, p < 0.001). When using a stepwise

regression procedure entering one feature after the other,a model with only five features already explained

almost 20% of the variance in the ratings. These five featuresare in order of predictive power:

1. coherence of spectral assignment to auditory streams2

2. variance of number of auditory streams

3. loudness of the loudest moment

4. most-likely tempo

5. variance of time between beats

If we look at this list with the idea of different complexity facets in mind, features one and two can be

assigned to timbral complexity, feature three to acoustic complexity, and features four and five to rhythmic

complexity. Tonality related features are missing, which is no big surprise, because they are not very promi-

nent in the list (in table 3.1 only 2 and 7 are related to pitch)and the excerpts are probably too short to allow

the listeners a proper assessment of the melodic and harmonic formation.

2This feature reflects the degree to which neighboring spectral bands are assigned to the same auditory stream. Its value is rather
high for noisy scenes and rather low for ones with a simple harmonic structure [see Scheirer (2000) for details].



3.3. COMPUTING COMPLEXITY ON AUDIO SIGNALS 39

1. Coherence of spectral assignment to auditory streams
2. Stability of within-auditory-stream pitches over time
3. Mean number of auditory streams
4. Variance of number of auditory streams
5. Mean amount of modulation (spectrotemporal change)
6. Entropy of loudness estimates in auditory streams
7. Entropy of pitch estimates in auditory streams
8. Loudness of loudest moment
9. Dynamic range (measured in loudness)
10. Most-likely tempo
11. Entropy of tempo-energy distribution
12. Stability of tempo estimates over time
13. Centroid of tempo-energy distribution
14. Number of beats elicited from food-tapping model
15. Mean time between beats
16. Variance of time between beats

Table 3.1: Features used by Scheirer et al. (2000) in their experiment.

This approach is probably the closest to the research described in this dissertation. Scheirer et al. con-

sider music complexity to be asurface featurethat is experienced pre-consciously and immediately with no

involvement of high-level cognitive musical abilities. Intheir definition it consists in “the sense of how much

is going on” in the music, which is quite close to the understanding of music complexity underlying this dis-

sertation. But there are at least two important distinctions that we should point out. First, we want to consider

entire music tracks as the relevant units to be described in terms of complexity. That means although we also

want to exclude very high-level cognitive aspects from our algorithmic processing, ultimately the descriptors

should reflect a property of the entire piece. In contrast, Scheirer et al. consider music complexity in a much

more instantaneous way; it is immediately revealed to the listener after only a few seconds of music and might

very well change when a different part of the song starts. Secondly, the algorithmic approach of Scheirer ori-

ents more towards mimicking the actual processes taking place in the auditory system during auditory scene

analysis. Central points in his system are for example the separation of auditory streams and the identification

of beats, all based on the autocorrelogram. Despite targeting a surface feature, this means a high amount of

sophisticated computation, which is clearly reflected in the processing time of his system. In Scheirer (2000)

he reports about 3 hours of processing time for 10 seconds of audio with non-optimized code on a 450 MHz

Pentium processor. Considering the quantities of musical audio data that we are targeting, it is apparent that

even with modern computers we have to rely on simpler algorithms in order to arrive at something useable in

practice.

3.3.2 Power Laws

A more indirect approach to music complexity has been initiated by Voss and Clarke (1975) and since then

occasionally replicated or adapted by others [e. g. Yadegari (1992), Manaris et al. (2005)]. Their early article
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reports about their observation that certain properties ofmusic and speech signals reveal a power law behavior.

Power laws can be observed for many natural phenomena in different areas for example in physics, biol-

ogy, sociology and even in linguistics or in economy [see forexample Keshner (1982)]. They are also quite

usual in describing behavior and sensory processes. The Stevens Power Law [Stevens (1957)] for example

relates physical magnitudes to subjective sensations, or the Power Law of practice relates the time of practice

on a given behavior to the reaction time one needs when performing it. The basic form of a power law looks

like this:

y = α · x−β (3.2)

wherey andx are variables,α andβ are constants withβ being the interesting one. If we takex as a

frequency value andy as the spectral power of a signal at this frequency, there areseveral “pathological”

cases. Forβ = 0 we speak of awhite noisebehavior, forβ = 1 of pink noise, and forβ = 2 of brown noise.

It must be emphasized that the frequency values are of coursenot limited to the audible frequency range even

if we are considering audio signals. Also, for real-world signals the exponentβ usually is not exactly constant

for all possible frequencies, but often shows a certain scaling behavior only for particular frequency regions.

Typically, a double logarithmic plot is used for the representation, because ideal power law behavior appears

then as a straight line, since from equation 3.2 follows

log(y) = log(α · x−β) ⇔ log(y) = log(α) − β · log(x). (3.3)

The three types of noise can again be put in relation with a notion of complexity. White noise is a

completely random signal where the history has no effect at all on the future values. At each point in time

each value in the defined range has exactly the same probability to appear. The evolution is not predictable.

While still being non-deterministic, Brown noise on the other hand shows a high degree of trivial correlation.

It can be generated by integrating a white noise signal and resembles a much smoother curve than white

noise. Pink noise, also called1/f -noise, is in between the other two being less volatile than white noise but

more random than brown noise. It is in fact much more tricky togenerate pink noise compared to the other

two [Mandelbrot (1971)]. If we make again the analogy to the three diagrams presented in figure 2.1 on page

15, we could say that pink noise appears to be more complex than white and brown noise.

In their famous article Voss and Clarke (1975) describe experiments with several hours of recorded speech

and music signals from radio transmissions. The material was analyzed in terms of loudness fluctuations and

melodic pitch fluctuations — at least this is the terminologyof Voss and Clarke. For the former, the signal was

passed through a band-pass filter with cut-off frequencies at 100 Hz and 10 kHz. The filter output was then

squared and low-pass filtered at 20 Hz in order to eliminate the audible frequencies and the power spectrum

was computed for frequencies from 10 Hz down to10−3 Hz. For the pitch fluctuations they created a time

series by counting the zero crossings in the signal in a sliding window fashion. This series was then also low

pass filtered at 20 Hz and the power spectrum was computed. As shown in figure 3.3 in all cases a power law

behavior withβ ≈ 1 was observed. For the rag time music [graph a) in left diagram] the strong rhythmic
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Figure 3.3: Plots from Voss and Clarke (1975). Left:log10(loudness fluctuation) againstlog10(f) for
a) Scott Joplin piano rags, b) Classical radio station, c) Rock station, d) News and talk station; Right:
log10(pitch fluctuation) againstlog10(f) for a) Classical radio station, b) Jazz and Blues station, c)Rock
station, d) News and talk station.

organization is reflected in the deviations from the linear trend in the range of 1–10 Hz.

In another article Voss and Clarke (1978) report about a second experiment that builds up on their former

findings. They generated stochastic compositions where thenote durations and the pitches were controlled by

independent white, pink, or brown noise generators3. Voss and Clarke played these musical pieces to several

hundred people including professional musicians and composers as well as musical laymen. To their own

surprise the listeners very clearly preferred the music with 1/f and found it to be the most interesting among

the different versions. In the words of Voss and Clarke (1978):

The music obtained by this method was judged by most listeners to be much more pleasing than

that obtained using either a white noise source (which produced music that was “too random”) or

a1/f2 noise source (which produced music that was “too correlated”). Indeed the sophistication

of this “1/f music” (which was “just right”) extends far beyond what one might expect from

such a simple algorithm, suggesting that a “1/f noise” (perhaps that in nerve membranes?) may

have an essential role in the creative process.

Several other researchers conducted similar experiments as Voss and Clarke following their publication.

Especially an other form of this1/f behavior has been exploited, known as Zipf’s law [Zipf (1949)]. It is a

distribution law where the variabley of equation 3.2 corresponds to the frequency of occurrence of an event

andx corresponds to the position of the event in an ordered list for example according to size or –again– -

frequency of occurrence. The exponentβ should be close to 1 in the ideal case. In Manaris et al. (2005)for

3The output of the noise generators was quantized and scaled in order to trigger the selection from limited sets of note durations and
pitches.
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example this idea has been applied to music (in the symbolic domain) by establishing a set of metrics that

examine the degree to which Zipf’s law is followed. As Manaris et al. report, they can be used successfully

in order to perform artist classification and to predict human pleasantness judgments.

While all these findings are very interesting and certainly have relevance for music information retrieval

applications, the connection to music complexity is a rather abstract one. Although the complexity assignment

we did for the three noise types is somehow reasonable and is frequently found in the literature, it remains a

rather analytical one and a relationship to properties of human perception is not obvious.

3.3.3 Detrended Fluctuation Analysis

Recently, Jennings et al. (2004) published an article on musical genre classification based on a feature that has

not been used before in the music information retrieval domain. What makes this article stand out especially

is the fact that the authors used exclusively this one feature only instead of combinations with more common

ones. They refer to it as the “Detrended Variance Fluctuation Exponent”, since it originates from a technique

called “Detrended Fluctuation Analysis” (DFA). The technique was introduced by Peng et al. (1994) and

is intended for the analysis of chaotic time series. It was first applied by Peng in a biomedical context on

nucleotide and heartbeat rate time series. Other applications include financial time series [as reported in

Ausloos (2000)]. The method is related to the power law analysis we just discussed in section 3.3.2 in the

sense that it can also reveal correlation properties of white, pink, or brown noise in a time series. It has the

special quality that it works well for non-stationary data.

The method intends to identify thescaling behaviourof a time series. This is best explained by consid-

ering an unbounded time series (i. e. with no upper limit for its values). If we plot a portion of such a series

over the time axis, we will need a certain ranger1 of values on the y-axis in order to visualize all the elements

falling into the temporal segmentτ1. Imagine now that we are zooming in on the plot. This zoom can be

expressed as a factor on each axis, for example we can say thatthe new portion has 0.5 times the length of

the previous one, such thatτ2 = τ1/2. In this case we can expect that the range of values on the y-axis has

changed as well, fromr1 to r2. By taking the quotientlog(r1/r2)
log(τ1/τ2)

we obtain a scaling exponentα. This expo-

nent can be calculated for different time scales (i. e. for different values ofτ1 andτ2). If we systematically

increase or decrease the time scales and for each step calculate the scaling exponent, we obtain a function

α(τ). From this function we can get an insight into the scaling properties of the time series. For example

the scaling can be stable (constant level ofα) or it might expose irregularities. Also the general level of α

is significant. For a pure white noise signal it is 0.5, for pink noise it is 1.0, and for brown noise it is 1.5.α

levels below 0.5 indicate that the signal is anti-correlated [Matassini (2001) pp. 41–43].

However original the descriptor of Jennings et al. (2004) might be, it is not obvious on the first gaze

how it reflects semantic concepts of music that a listener canrelate to. Since their paper focusses on the

performance in genre classification, this aspect was not directly considered, because mainly the output of

the classifier was of interest. But they state that the strongperiodic trends in dance music styles like Techno

or Brazilian Forŕo) make it easily distinguishable in terms of the DFA exponent from high art music such as
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Figure 3.4: Average DFA exponentα for different music genres [from Jennings et al. (2004)]

Javanese Gamelan, Hindustani, or Western European Classical Tradition (WECT). The averageα value of the

ten tracks from each genre is clearly lower for the former as can be seen in figure 3.4. “Jazz, Rock and Roll,

and Brazilian popular music may occupy an intermediary position between high art music and dance music:

complex enough to listen to, but periodic enough to dance to,” Jennings et al. (2004) speculate. Hence, we

could think of this feature as a measure of “danceability”, which certainly is an aspect of rhythmic complexity

that is immediately accessible for human music perception.A very appealing property of the DFA method

for our needs is also that it can be applied directly to the audio file and does not rely on the extraction of other

descriptors like onsets or beats as a preprocessing step. Anadaptation of the algorithm with further details

will be described in section 4.5.1 of the next chapter.

3.3.4 Conclusion

To conclude we can state that the matter of music complexity estimation from audio signals has not been

studied to a great extent so far. Although we reviewed different approaches of this kind, it has to be noticed

that they either fall short of practicality for our context or have not been fully exploited yet in terms of their

usefulness for MIR applications. It has therefore been a goal of this dissertation to contribute with original

ideas and with adaptations of existing work to make music complexity better accessible for the current topics

of audio-based music information retrieval.
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Chapter 4

Complexity Facets and their

Implementation

In this chapter we will review in detail the algorithms that have been developed by the author in the course

of this dissertation. For each algorithm we will first explain the general idea behind it and then present the

actual implementation.

4.1 Working on Facets

As we said in section 1.2 already, we want to address music complexity in different facets. Why should

this be done? Didn’t we say that for complexity “the whole is more than the sum of its parts”? It is true,

but nevertheless there are good reasons to split the work up.A subdivision of music into separate facets is

a common practice in musical analysis. The divide and conquer strategy is widespread in many fields of

science. Our target of a naı̈ve listener on the other hand is not speaking in direct favorof such separation.

Such a listener should not be assumed to analyze the mentioned facets independently in order to arrive at

his judgement of complexity. But it is not our goal to mimic the process of obtaining a judgement of the

musical complexity. Our interest is rather that the final result of such a process is predicted correctly by the

algorithms. We can therefore look for a way that gives us the least trouble instead of trying to follow closely

every link in the human music processing chain.

With respect to music complexity, in Finnäs (1989) we find the statement that “unusual harmonies and

timbres, irregular tempi and rhythms, unexpected tone sequences and variations in volume” raise the level

of perceived complexity in music. We can see that the facets of music (harmony, rhythm, volume, . . . )

mentioned by Finn̈as are at least partly independent from each other. For example one music track can

contain very sophisticated rhythm patterns, but no melodicvoice at all. Another one might have unexpected

changes in volume and timbre, but very straightforward melody and chord sequences. Which one should

45
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be rated more complex in a direct comparison? Looking at the problem this way calls for a multi-faceted

approach with an individual complexity estimation for eachfacet. A joint measure of global complexity does

not necessarily make sense under these circumstances. The separation of facets also gives us the opportunity

to account up to a certain degree for the subjectivity that has been mentioned in chapter 2. If different people

consider the different facets to be of different importance, then they can assign weights to them according

to their personal preference, while the single values stillremain objectively comparable for any user of the

descriptors. Finally, the break down into facets is also a matter of practicality in terms of algorithm design.

A holistic model that computes a single, overall complexityvalue without individual analysis of the different

musical aspects would be much more difficult to build and to test. We therefore deal with music complexity

individually in the facets described below.

4.2 Acoustic Complexities

UnderAcoustic Complexitywe want to capture two different aspects of a musical audio track: the dynamic

and the spatial properties. The former are related to the loudness evolution throughout a musical recording,

while the latter correspond to the rendering of the auditoryscene. From these explanations it is clear al-

ready that acoustic complexity is not completely intrinsicto the music, but rather to the recording and the

performance. Nevertheless, we found it worthwhile to include this complexity facet, because digital music

tracks only exist as recorded performances1 of music. So it is not possible to listen to one without noticing

characteristics of the other.

The dynamic complexity component relates to the propertiesof the loudness evolution within a musical

track. We refer to it in terms ofabruptnessandrate of changesin dynamic level. Also thedynamic rangehas

to be considered here, since a sudden jump by 6dB will be considered more surprising than one by only 1dB.

A major design decision for the complexity model is the definition of the time scope. By keeping the frame

size small one can find the distinction between dynamically compressed and uncompressed material. The

former has less rapid changes in loudness than the latter andcan therefore be considered less complex. As we

will see later in this chapter, there is some overlap with therhythmic complexity descriptor here. With longer

windows one detects fades and dynamic changes between larger segments, for example a very soft passage

embedded between two rather loud ones. By looking at this time scope we can for example distinguish

between music in the classical style, which often uses a widerange of loudness levels within one piece, and

mainstream popular music that has been made to fit modern radio broadcasting by keeping continuously a

very high loudness level throughout the entire track.

For the spatial complexity component we consider only stereo recordings and no advanced multi-channel

formats for the time being. Currently, two channel stereo tracks form by far the majority of items in digital

music file databases, whereas 5.1 recordings, for example, are still very rare. A straight-forward example

for spatial complexity thus is thedisparity of the stereo channels. A quasi mono situation with the same

1For electronic music the concepts of “recording” and “performing” have to be understood in a slightly wider sense here.
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signal in both channels reveals less complexity than a recording that has only little correlation between the

two channels. But also more advanced aspects are to be considered, such as the movement of the acoustical

center of effect within the stereo image, and sound effects changing the spatial impression (e. g. delay and

reverberation effects). In simpler words we could say that spatial complexity should be a measure of the

wideness and the amount of fluctuation in the stereo image. Aswith the dynamic component already, spatial

complexity again depends to a great extent on the quality of the recording.

4.2.1 Implementation of the Dynamic Component

The first step towards dynamic complexity computation is thecalculation of an accurate estimate of the

perceived loudness. Psychoacoustics are a well studied field and quite reliable measures exist in the literature

for loudness estimation of isolated sounds, like sinusoidsor noise [Zwicker and Fastl (1990), Moore et al.

(1997)]. For the complex sounds that form a musical performance however accurate loudness estimation is

a very complicated task. Not only temporal and spectral masking have an influence here, but also subjective

components play a role [Skovenborg and Nielsen (2004)]. Finally, the playback level of a digital track cannot

be known, so we can only achieve an estimation of the loudnesslevel relative to an arbitrary reference. For

our needs it is also important to keep computational efficiency in mind, since the goal is to be able to use the

descriptors on large collections of music tracks. We therefore want to pay more attention to a simple and fast

approximation than to a very sophisticated and more accurate procedure.

In the course of this dissertation two different implementations for dynamic complexity have been devel-

oped. The first one was chosen, because of its easy implementation. It is operative in the time domain and

utilizes a simplified loudness model as described in Vickers(2001). Some modifications and additions have

been made in order to make the algorithm fit for the desired task. The second one uses a slightly more sophis-

ticated approach based on Pampalk’s implementation of Stevens’ method [Stevens (1956), Stevens (1961)]

including a modified version of the outer ear filter from Terhardt’s pitch perception model [Terhardt (1979)].

This implementation has the advantage that the computed intermediate results can also be used for the timbre

complexity estimation (see section 4.3.1).

Implementation using Vickers’ loudness estimation

As a first step the algorithm applies a very simplified “B” weighting function to the audio signal in order to

account for the human ear’s transfer function. For efficiency reasons this weighting is done by a first-order

Butterworth high-pass filter with a cut-off frequency of 200Hz. So actually only the low end of the weighting

function is approximated. In the case of music signals this is tolerable, since they have much more energy in

the bass and mid-range compared to the high frequencies.

The pre-emphasized signalxpre(n) is then fed into a root-mean-square level detector with an integrated

smoothing function. This level detector consists of a running averageVms (eq. 4.1) that is downsampled



48 CHAPTER 4. COMPLEXITY FACETS AND THEIR IMPLEMENTATION

according to the chosen frame lengthN .

Vms(n) = c · Vms(n − 1) + (1 − c) · x2
pre(n) , with (4.1)

c = e−
1

τFs

n is the sample (or time) index,Fs corresponds to the sampling frequency andτ is the time constant for the

smoothing (35 ms in this implementation). The downsamplingis done according to equation 4.2.

Vrms(i) =
√

Vms(N · i + N − 1) (4.2)

We chose a framesize of 200 ms corresponding toN = 8820 for a sampling rate of 44.1 kHz,i corre-

sponds to the new sample index after downsampling. This timespan roughly resembles the energy integration

function of the human hearing system [Zwicker and Fastl (1990)]. The instantaneous level is then converted

to dB by calculating

VdB(i) = 20 · log10 (Vrms(i)) . (4.3)

In order to avoid silence at the end or the beginning of the track to have an effect on the complexity estimation,

successive frames with a level of -90 dB or below are deleted when they appear at either end. Afterwards, the

global loudness levelL according to Vickers is calculated.L is a weighted average of allM instantaneous

level estimates, where the louder ones are given a higher weight:

L =

M−1
∑

i=0

w(i) · VdB(i) , with (4.4)

w(i) =
u(i)

∑M−1
j=0 u(j)

and

u(j) = 0.9−VdB(j)

The emphasis on the loud frames is grounded in psychoacoustic findings. Zwicker and Fastl (1990) for

example suggest that the global loudness of a dynamically changing sound can be characterized by the loud-

ness level which is reached only by the highest 5% of the instantaneous loudness values for that sound.

In this implementation a variation of Vickers’dynamic spreadis used as the final dynamic complexity

measure. It is a simplified complexity estimation in the sense that periodic loudness variation and the sud-

denness of changes are not explicitly considered. Instead the algorithm basically uses the average distance

from the global loudness level (eq. 4.5) as an indicator so that high values correspond to higher complexity

and vice versa.

CdynI =
1

M

M−1
∑

i=0

|VdB(i) − L| (4.5)

Figure 4.1 shows the computational results of the algorithmfor four prototypical music tracks. The dots

resemble the instantaneous loudness values, the grey line marks the estimated global loudness level, and the
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Figure 4.1: Instantaneous loudness as in eq. 4.3 (dots), global loudness as in eq. 4.4 (grey solid line), and
average distance margin as in eq. 4.5 (dashed lines) for fourexample tracks.



50 CHAPTER 4. COMPLEXITY FACETS AND THEIR IMPLEMENTATION

dashed lines indicates the average distance margin. In figure 4.1 a we see a highly saturated heavy metal track

with a basically flat dynamic level. The global loudness was estimated as -14.9 dB and the average deviation

CdynI from this level is only 1.37 dB. Figure 4.1 d shows another extreme, a recording of classical music

that changes in loudness between -50 dB and -20 dB. The algorithm estimates a clearly lower global loudness

of -24.8 dB and an average deviation of 8.05 dB. In between there is a pop song (figure 4.1 b) moderately

varying in loudness with a global level of -16.4 dB and an average deviation of 3.71 dB. The jazz guitar solo

from figure 4.1 c is recorded at very low volume. The estimatedglobal loudness is only -25 dB. Despite some

singular drops down to -50 dB due to short pauses between played notes, the average deviation amounts only

to 4.5 dB and is thus considerably smaller than that of the classical recording.

Implementation based on Pampalk’s approach

Alternatively, an implementation based on thema sone function of Pampalk’sMA Toolbox2 has been done.

Apart from allowing for a more accurate loudness estimation, the reason for this is also that the preprocessing

is similar to the one used for the timbre complexity computation we will discuss in section 4.3. Despite

the more expensive processing steps, this way is therefore computationally more efficient if both descriptors

(dynamic complexity and timbre complexity) are to be computed for the same track.

The processing starts by breaking the input signal down intooverlapping frames of roughly 16 ms length.

We use a Hann window (eq. 4.6) for weighting the samplesx(n) within each frame in order to avoid edge

effects of the Fourier Transform. The overlap factor is 0.5 giving us a relatively high temporal resolution of

8 ms.

w(n) = 0.5 ·

(

1 − cos(2π
n

N − 1
)

)

, with 0 ≤ n < N (4.6)

After a frame is transformed into the frequency domain via the Fast Fourier Transform, the normalized power

spectrumP (k) is computed:

P (k) =

∣

∣

∣

∣

∣

2 · X(k)
∑N−1

n=0 w(n)

∣

∣

∣

∣

∣

2

(4.7)

where

X(k) =

N−1
∑

n=0

x(n) · w(n) · e−
2πj

N
kn , with 0 ≤ k ≤

N

2
.3 (4.8)

The power spectrum is then weighted with a curve that is inspired by the frequency response of the outer ear.

As can be seen in figure 4.2 the modified version we use is more balanced and gives a milder emphasis on

the frequency region between 2 kHz and 5 kHz than Terhardt’s original curve [Terhardt (1979)] that is also

depicted. The curve assigns a weightA(f) to each frequency valuef (measured in kHz) according to the

following formula:

A(f) = 10

(

0.5·e−0.6·(f−3.3)2−5·f4·10−5−2.184·f−0.8
)

. (4.9)

2http://www.ofai.at/ elias.pampalk/ma/index.html
3Since we only deal with real valued input signals, the valuesfor N

2
< k < N are redundant and therefore omitted in the further

processing steps.
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Figure 4.2: Frequency weighting curves for the outer ear.

Evaluating equation 4.9 only at the center frequencies of the bins from the discrete Fourier spectrum we

obtained from equation 4.8, we can create an array of weight valuesA(k). The weighting of the power

spectrum itself can then be described by the simple multiplication:

Pw(k) = P (k) · A(k)2. (4.10)

From this weighted power spectrum we compute then the bark band energiesPcb(l) by summing up the

values ofPw(k) falling in between the lower boundlowB(l) and the upper boundhighB(l) of each of the

24 bark bands as defined in Zwicker and Fastl (1990):

Pcb(l) =

highB(l)
∑

k=lowB(l)

Pw(k) (4.11)

Once the bark band energies are computed, a heuristic spreading function s(l) following Schroeder et al.

(1979) is applied to account for spectral masking effects inhuman sound perception. Temporal masking

effects, that also exist in human perception are not accounted for at this point. The spreading is realized by

convoluting the bark band energiesPcb(l) with the spreading function

s(l) = 10(0.75·l+1.937−1.75·
√

l2+0.948·l+1.225) (4.12)
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resulting in the spread energy distribution

Pspread(m) =
24
∑

l=1

Pcb(l) · s(m − l) , with 1 ≤ m ≤ 24. (4.13)

We then limit the lower bound of the obtained band energies to1 in order to avoid numerical problems with

the following conversion to decibel scale, which is given by

PdB(m) = 10 · log10(Pspread(m)). (4.14)

The total instantaneous loudness is then estimated following the method described in Stevens (1956) and

Stevens (1961) for the case of third octave bands. To do so we first need to convert the energy values of

each band from the decibel scale to the sone scale. The sone scale was proposed by Stevens (1957) to

provide a linear correspondence to human loudness perception (i. e. if a sound has twice as much sones as

a reference sound, then it is also perceived as being twice asloud). Pampalk’s implementation is not 100%

accurate at this point, since the decibel values would need to be converted into phons first [as described in

Bladon and Lindblom (1981)]. This is a non-linear operation, which would make it necessary to quantize

the values according to equal loudness curves obtained froma voluminous lookup table or through a set of

heuristic approximations. For simplicity, we use the conversion formula directly on the band energy values,

considering that the sound sensitivity of the human ear at different frequencies has been accounted for already

partly in equation 4.9:

L(m) =

{

20.1·(PdB(m)−40) for PdB(m) ≥ 40 (4.15)

(PdB(m) − 40)2.642 else. (4.16)

Finally, we arrive at the total loudness estimate for each frame by evaluating

Ltotal = 0.85 · L(mmax) + 0.15 ·

24
∑

i=1

L(i), (4.17)

wheremmax is the index of the band with the biggest loudness in the frame. Before proceeding with the

complexity estimation it is first necessary to smoothen the loudness evolution, since so far we have been

considering only isolated frames representing 16 ms excerpts. As with Vickers’ method, we again apply an

exponential decay function in a sliding window fashion exactly as shown in equation 4.1, but with a time

constant corresponding to 800 ms or 100 overlapped frames. This value was empirically found and results

from the aim to reduce the influence of loud, but regular percussion events in front of a lower overall loudness

level. In a second smoothing step we are then calculating therunning average over 200 consecutive values,

corresponding to 1.6 s. We decimate the sequence to a resolution of 2.5 values per second by computing this

operation only for every 50th value.
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As we are not estimating a global loudness level for the entire track, this time the complexity estimation

is calculated slightly different. We consider the average fluctuation of successive loudness values as the

complexity indicator. So it is now more the suddenness and the amount of loudness changes, that determine

the complexity, while with the approach following Vickers the focus was more one the duration and distance

away from the global loudness level of the track. It was foundadvantageous to move back to the decibel

level again before evaluating the complexity measure, so with Ltotsd(n) being the smoothed, decimated total

loudness values we obtain:

CdynII =
1

N − 1

N−1
∑

n=1

|log10(Ltotsd(n)) − log10(Ltotsd(n + 1))| , (4.18)

with N being the number of decimated loudness values for the entiretrack. The use of the logarithm in this

equation actually means that we are looking at loudness fluctuation in terms of ratios on the sone scale rather

than in terms of absolute deviations. This makes sense, because a jump that doubles the perceived loudness

will (at least ideally) always result in a ratio of 1:2 no matter at which level it starts.

Figure 4.3 shows the resulting loudness curves for the four example tracks we already saw in figure

4.1. Again, the heavy metal track depicted in figure 4.3 a shows a very flat loudness curve over time. The

complexity in terms of the average absolute difference between consecutive values (eq. 4.18) is therefore

quite low and amounts only to 0.134. Looking at figure 4.3 b, the pop song, we can observe the stronger

smoothing compared to the method based on Vickers’ algorithm. There is much less fluctuation visible than

in the instantaneous loudness in figure 4.1 b. Still, the complexity is clearly higher than for the heavy metal

track withCdynII = 0.247. In figure 4.3 c, the jazz guitar piece, the effect of the smoothing is even more

visible. The short sudden drops in loudness have been averaged out, but compared to the pop song there is

clearly a higher amount of fluctuation in the signal. This is also reflected in the complexity value, which

reaches 0.304 for this track. Finally, for figure 4.3 d we see again the strong changes in the loudness level,

which are typical for many recordings of classical music. This track yields again the highest complexity with

a value of 0.488.

4.2.2 Implementation of the Spatial Component

The spatial component of acoustic complexity estimation is, as we said, mainly focusing on the disparity of

the stereo channels and the amount of fluctuation in the stereo image. While methods exist to calculate the po-

sition of a single sound source in space when it is recorded byan array of microphones [e. g. Silverman et al.

(2005)], the identification of the center of effect in the stereo panorama is a somewhat different problem.

Since usually complex mixtures of sounds are involved in each channel, some kind of source separation tech-

nique would be needed in order to obtain very accurate results. However, this type of auditory scene analysis

usually involves very heavy processing and the quality of the separation can vary a lot with different types of

input signals and an unknown number of mixed sources.
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Figure 4.3: Instantaneous total loudness values (eq. 4.17)on logarithmic scale for the same four tracks shown
in figure 4.1.

A work-around for this bottleneck can be found in methods that are commonly used in room acoustic

measurements to quantify the reverberation or the spaciousness of an acoustic environment. Although we

cannot hope to find the wideness or the amount of fluctuation inthe stereo image directly being reflected

in these measures, we might at least obtain a rough estimation of the “size” of the auditory scene. A good

overview over several methods in use can be found in Griesinger (1999). Usually, these measures take the

room impulse response as their input and are thus not suited for a continuous signal as music. An exception

is the InterAural Difference (IAD) introduced by Griesinger, which, as he states, can also be computed as

a continuous function for music signals. It is computed according to equation 4.19, whereL(t) andR(t)

refer to the audio signal in the left and the right channel, and the equalizationeq consists of a low frequency

enhancement of 6dB per octave below 300Hz.

IAD(t) = 10 · log10

(

eq(L(t) − R(t))2

L(t)2 + R(t)2

)

(4.19)
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As a function of time, theIAD indicates the direction from which the main acoustical energy is coming. A

simple measure of complexity would therefore be the variance of IAD(t).

A slightly more sophisticated alternative accounting for stereo effects based on a delay between the chan-

nels involves the cross-correlation functionCCR(τ) =
∑tend

tstart
L(t) ·R(t− τ) between the channels, where

the lagτ should be evaluated within the boundaries of±2 ms. Delays greater than 2 ms are not perceived

as a shift of the source in the stereo image anymore, but are identified as an echo. Often, the function is

normalized by the square root of the product of the sound energies in the two channels and then known as

the Inter Aural Cross-Correlation Coefficient (IACC). Thisfunction needs to be computed on short fragments

of the signal (e. g.tend − tstart = 80 ms), since the stereo image cannot be assumed to be stable over long

periods of time in a music recording. We would then need to identify the lagτmax that maximizes the cross-

correlation function for a given fragment. A measure of the spatial complexity could be seen in the variance

of τmax across all the fragments of the entire music track.

It must be stated again that the originally intended use of these measures is somewhat different from our

needs. The measures are supposed to reveal information about the acoustic properties of a real room when an

impulse or a (dry) sound is played back inside. The two channels in equation 4.19 correspond to the signal

recorded by two microphones (e. g. inside an artificial head)in the room. We, on the contrary, already have

a stereo recording, which was produced with very different techniques, but we would simply have to treat

it as the recording of the dummy head in a “virtual” room. An extensive discussion of this problem and

some experimental results can be found in Mason (2002). It can basically be said, that this approach is only

successful when very special conditions apply to the recording (e. g. a solo instrument recorded with a stereo

room microphone). With very rich mixtures of sources and studio edited material the results become more

and more arbitrary.

Given these shortcomings we looked for a compromise betweena very costly and difficult, complete

auditory scene analysis and the simple but inaccurate direct comparison of the stereo channels. The choice

fell on a method proposed in Barry et al. (2004) that has been further developed for human-assisted source

separation by Vinyes et al. (2006) at Pompeu Fabra University. The basic idea is to compare the short-time

Fourier spectra of the two stereo channels in order to identify the energy distribution in the stereo image

across the audible frequency range. While the actual separation of the sources based on this distribution still

requires human interaction or very advanced heuristics, for our needs this representation is already sufficient.

We can analyze the fluctuation in this distribution over timeas a cue for the amount of changes in the auditory

scene. And we can also compute the sharpness or flatness of this distribution as an indicator for the width of

the stereo image. Strictly speaking, this method is only applicable with accuracy, in cases where the stereo

image is created through intensity differences between thechannels and not through a temporal delay. As

intensity stereophony is the most common practice in studioproduction and even with a delay between the

channels there is often also an intensity difference, the method can be considered much more versatile in our

context than the afore-mentioned measures from room acoustics.

As mentioned, the basis for the processing is once more a segmentation of the audio signal into frames
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followed by the multiplication with a window functionw(n) and a Fourier transformation (eq. 4.8 on page

50). The chosen frame length and overlap factor correspond this time to 93 ms and 0.5 respectively. In

contrast to the dynamic complexity processing, we are now obtaining pairs of valuesXL(k) andXR(k),

since we are processing the left and the right channel separately in a synchronized manner. Again we compute

the power spectraPL(k) = |XL(k)|2 andPR(k) = |XR(k)|2, this time without normalizing by the window

weight. For each of these pairs of values we estimate now the angletan(α(k)) corresponding to the direction

of the acoustic energy source in a horizontal 180°range:

tan(α(k)) =
PR(k) − PL(k)

2
√

PR(k) · PL(k)
(4.20)

In a second step these values are quantized and converted with a reference table mapping them into the range

1 ≤ αq(k) ≤ 180, with αq(k) being a natural number. A value of 1 would thus refer to the acoustic energy

in the respective frequency bin being concentrated in the left channel only, for a value of 180 it would be

the right channel, and for the others something in between. Now we use this information to compute the

instantaneous energy distributionEspatial for each frame. First we obtain the instantaneous energies in the

individual frequency bins

E(k) = log10(PR(k)) + log10(PL(k)) + 14, (4.21)

where the constant 14 corresponds to an empirical offset used for noise suppression, since we limit the values

E(k) to a lower bound of zero before proceeding with the calculations. The energy distribution is then

obtained by summing all valuesE(k) of one frame that have the same valueαq(k):

Espatial(m) =
∑

k∈{k|αq(k)=m}
E(k) , with 1 ≤ m ≤ 180. (4.22)

Figure 4.4 shows two snapshots of such distributions. In track one the stereo image is rather wide and there is

a lot of fluctuation. In the snapshot we can clearly see that, at that position in time, the left channel contains

overall much more energy and one source seems to be playing atroughly 40°to the left from the center. In

contrast, for track two, a historic jazz recording, there isa big peak in the center with more or less balanced

and relatively low wings on either side indicating an auditory image close to a mono recording. Before the

actual complexity is estimated, we apply several steps of cleaning and smoothing to reduce effects of noise

and inaccuracies in the calculation of the distributions. First the distribution of each framei is normalized by

the total frame energy:

E[i]
norm(m) =

E
[i]
spatial(m)

2048 +
∑180

k=1 E[i](k)
, with 1 ≤ m ≤ 180. (4.23)

The constant 2048 has two functions. First, it is a simple numerical trick to avoid the problem of dividing

by zero in the case of silent frames. Second, it gives additional emphasis to louder frames, since now we
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Figure 4.4: Snapshots of energy distributions on 180°horizontal plane for two example tracks (track1= mod-
ern electronic music, track2= historic jazz recording).

are assigning the weightg[i] =
∑180

m=1 E
[i]
norm(m) to each framei. The normalized distributions can be

represented in form of a matrix, where the first dimension refers to the angleαq and the second to the frame

index. To this matrix we apply now a 3x3 median filter that removes extreme outliers in the distribution.

Afterwards we use a box filter4 of size 7x11. That means for each element we are computing theaverage for

the neighborhood of±3◦ and±230 ms, which significantly reduces the details leaving onlythe major shifts

in the distribution.

Now we can readily apply the following formula to estimate the spatial fluctuation as an indicator for

complexity in terms of changes in the stereo image over time:

CspatF luc =
1

N − 1

N−1
∑

i=1

g[i] · g[i+1] ·

180
∑

j=1

∣

∣

∣
E[i]

norm(j) − E[i+1]
norm(j)

∣

∣

∣
, (4.24)

whereN is the total number of frames of the track. While this measure is well suited to identify static images

from those that constantly change, it does not account for the wideness of the acoustical scene. Whether a

source is moving only several degrees away from the center orit changes from the extreme left to the extreme

right is not very well reflected despite it can be considered arelevant difference in terms of complexity.

Also, two static images will yield the same score even thoughone might be a mono recording and the other

uses the entire available stereo panorama. For this reason the obtained energy distributions have been used

for a second complexity measure. As an auxiliary result we first compute the “center of mass”c
[i]
g of each

distribution. If we consider the distribution as a one-dimensional object with 180 partitions, where the weight

4A box filter is the equivalent to a moving average filter in two dimensions. In our case it smoothes simultaneously the temporal and
the directional evolution.
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of each partition is given by the corresponding energyE
[i]
norm(m), then we have

c[i]
g =

∑180
m=1 m · E

[i]
norm(m)

E
[i]
sum

, with E[i]
sum =

180
∑

m=1

E[i]
norm(m). (4.25)

For numerical reasons we have to take care of the caseE
[i]
sum = 0, which can occur for silent or extremely

soft frames. For these cases the centroidc
[i]
g will be set to the neutral position, which is 90. Likewise, inthe

following processing we will replace the corresponding values ofE[i]
sum with the equivalent to∞. We now

define the second complexity measure as the average spatial spread according to the formula:

CspatSpread =
1

N

N
∑

i=1

∑180
m=1 E

[i]
norm(m) ·

∣

∣

∣
m − c

[i]
g

∣

∣

∣

E
[i]
sum

. (4.26)

We tried to linearly combine the two complexities to a singlevalue or to multiply them, but the results were

not convincing. Therefore, they remain as separate components of spatial complexity.

4.3 Timbral Complexity

There is no clear and precise definition of timbre that could be regarded as a common agreement on the music

analysis field. By the American Standards Association [American Standards Association (1960) p. 45] the

following statement was released: ”[Timbre is] that attribute of auditory sensation in terms of which a listener

can judge that two sounds similarly presented and having thesame loudness and pitch are dissimilar.” For

our purpose we will consider timbre as the entity that is the most tightly knitted with sound production (i. e.

the source of the sound and the way this source is excited). However, this concept of source should not be

treated in a strictly physical sense here. In the case of a group of 20 violinists playing unison for example we

would rather refer to the group as the sound source rather than to every individual violin.

We can then derive several specifications of the general ideas of complexity itemized in chapter 2. This

gives us features like the number of distinguishable instruments or sound textures present in the music, the

rate at which the leading instruments change, or the amount of modulation of the sound sources. As reported

in Herrera et al. (2003) a universal instrument recognitionsystems for arbitrary polyphonic music signals is

not yet available. In any case, the exact classification of individual instruments is not really necessary for our

purposes, because we rather want to look at the perceivable changes in the timbral texture of a track without

the need for official labels.

4.3.1 Implementations of Timbre Complexity

The main difficulty with timbre lies in the fact that it is not easily translated into a single low-dimensional

feature and thus lacks a simple representation. Commonly insignal processing applications it is addressed

in terms of the spectral shape and the temporal envelope, theformer being significantly easier to obtain in
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general and therefore much more in use than the latter. Timbre is typically encoded in a multi-dimensional

feature like the Mel Frequency Cepstral coefficients or the Linear Prediction coefficients, but occasionally

also sets of different one-dimensional features can be found, like the spectral centroid, the spectral flatness,

or the spectral skewness [see e. g. Eronen (2001)].

Hidden Markov Models

In a first attempt it was tried to utilize machine-learning and clustering techniques in an unsupervised manner

to produce something like a finite set of timbre models for a given input signal. Aucouturier and Sandler

(2001) report about applying HMMs for music segmentation without explicit supervision of the training

process. HMMs are particularly interesting for this task, because as we mentioned timbre has not only a static,

but also a temporal aspect to it. As HMMs are working on observation sequences by default, this duality can

be accounted for to a certain degree. Extending the ideas from Aucouturier and Sandler (2001) a bit further

we first tried an approach that is depicted schematically in figure 4.5. Based on the Mel Frequency Cepstral

coefficients as a feature that is computed on overlapping frames for the entire track, we try in a second stage

to automatically build up an optimal set of models that fits well with the given observations. We might start

with only one model and a flat or random initialization. If we want to be a bit more sensible we also might

use a k-means clustering of the features to obtain an initialization of the Gaussian mixtures in the model.

The EM-Algorithm is utilized to optimize the model parameters iteratively on short segments of the feature

sequence until no significant improvement in the log-likelihood is reached anymore for the given segment.

We can then use a threshold for the total improvement of the log-likelihood before and after the training

(loglikelihood1 − loglikelihood2) to decide, whether we just want to update the original model, or we keep

it and use the new parameters for a new, additional model. With the next segment we start by selecting the

best model from the ones we have trained so far (i. e. the one that gives the highest log-likelihood) and then

repeat the EM-training and the update procedure until we reach the end of the entire feature sequence. As

an indication of the timbre complexity we might consider thenumber of models that have been created in

the process, which we could very roughly translate into the number of different instrument textures that have

been identified. We can also consider the average improvement in log-likelihood through the EM-Algorithm

as an indication for the amount of variability in the timbre throughout the piece. If we want to reduce the

computational complexity, we can also restrict the number of HMMs to one and simply consider the final

log-likelihood of the entire feature sequence directly as acomplexity measure.

The methods were tested with a mixed set of 100 songs and excerpts from different genres ranging in

length between 20 s and 2 min. Since annotations were not available, the performance was assessed by look-

ing at the ranking of the tracks according to the computed timbral complexity. Some items with subjectively

extreme properties in terms of timbral complexity were included in the set as reference points. These items

consisted for example in a segment of applause, a speech segment of robotic voice, and a solo cembalo piece

(all low timbral complexity). On the other extreme end therewere for instance an experimental piece featur-

ing a variety of different acoustic instruments and a classical orchestra piece with different sections playing
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Figure 4.5: Schema for timbre complexity estimation with unsupervised HMM training

sequentially. It emerged from the rankings that the low complexity range was consistent with the subjective

human impression of timbre complexity. The applause samplealways appeared at the bottom end of the list

and the cembalo piece was also ranked among the lowest 20% of the tracks in all variations of the setup.

For the higher end, however, the results were not so nice. Usually, the robot voice sample would appear at

a rather high position together with other songs that were dominated by a singing voice. The two reference

samples, which contained no singing voice, managed to get into the top ten of the list, but not until the first

positions. It became clear from these observations that a way needed to be found to reduce the influence of

the formants in speech and singing voice on the timbre descriptor computation.

In any case, it is apparent that this approach has a few weak points. The most obvious one is of course

the computational cost, since the repeated training on top of the required feature extraction is relatively

expensive. More problematic even is the fact that we have to believe blindly in the thresholds and the choices

of fixed parameters that we set once for any type of input. As the whole process is unsupervised we have no

clue at all whether the different HMMs that are created during the process really correspond to perceptually

meaningful timbre models, or they are rather arbitrary artifacts of the log-likelihood optimization. A general

problem with HMMs, that also applies in this case, is the number of free parameters. For each HMM there

is the matrixA with the probabilities of transitions between the states. Each state then has a set of vectors

µ and matricesσ that specify the means and the variances of the Gaussian mixtures in the feature space.

Furthermore each Gaussian has a valuew assigned that determines its weight in the mixture. So in total the

number of choices that have to be made by the training algorithm is very high considering the relatively small

amount of training material we are using. For all these reasons it was decided to move towards a simpler,

more controlled approach.
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LZ77 compression gain

The next thing we tried was built on the idea that timbre complexity could be measured in terms of entropy

or information rate, if it was possible to convert the audio signal into a string of “timbre symbols”. With such

a representation it was then possible to apply techniques from information theory like entropy estimation or

compression algorithms, for example the LZ77 algorithm by Ziv and Lempel (1977). The basic idea of this

compression algorithm is to apply a sliding window on the sequence of symbols that is to be encoded. The

window is split into two parts, the memory buffer with a substring A of fixed length that has been encoded

already, and the look-ahead buffer with substringB of fixed length that still needs to be encoded. In each

step the algorithm searches for the longest prefix ofB beginning inA. This prefix is then encoded as a code

word composed of three parts. It contains the offset (numberof symbols between prefix and match), the

length (number of matching symbols), and the terminating symbol of the prefix inB (the first symbol that

doesn’t match anymore). If there is no match found, offset and length are set to zero in the code word. The

encoded symbols are then shifted into the memory buffer and the procedure starts again until the entire string

is encoded.

This algorithm is particularly interesting for us, becausein a certain way it shows similarities to the way

human memory works with music. According to Snyder (2000) our short-term memory for music can capture

only about 3-5 s of audio. So this is the time scale on which we build chunks, which can then be processed on

a higher level (e. g. to be stored as patterns in long term memory). The sliding window of the LZ77 algorithm

can be considered –again, very simplified– to resemble the functionality of short-term memory, because it

puts a limitation to the maximum ”chunk length”. So considering our goal being the estimation of perceived

timbral complexity, it seems a very promising choice to lookat the compression gainrc of LZ77 applied to

timbre sequences:

rc =
nc · lc

ns
(4.27)

lc is the length of the code words relative to the length of the symbols in the original source alphabet. Since

we don’t change the size of the buffer this is a fixed quantity and therefore has no influence when comparing

the compression gain for different timbre strings.nc andns are the number of code words and the number

of symbols respectively that are needed to represent the string. A low compression factor means that a lot

of redundancy was removed in the compression process, and thus the source entropy is low. A compression

factor close to one means, that the compression algorithm was not able to take much advantage of redundancy,

thus the source entropy is supposed to be high.

The key problem of course is the creation of the timbre stringin the first place. To achieve this we

proceeded in the following way. In order to obtain a compact representation of timbre only four scalar

features describing aspects of the spectral envelope were used. All features were derived from the spectral

representation of the audio signal, which was obtained by a frame-by-frame short-time Fourier transform

(STFT). The window size was 1024 samples corresponding to roughly 23ms. The chosen features are:
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Bass The intensity ratio of spectral content below 100 Hz to the full spectrum. This feature reflects the

amount of low frequency content in the signal (originating for example from bass drums, bass guitars,

or humming noises).

PresenceThe intensity ratio of spectral content between 1.6 and 4 kHzto the full spectrum. This feature

reflects a sensation of “closeness” and brilliance of the sound, especially noticeable with singing voices

and certain leading instruments.

Spectral Roll-Off The frequency below which 85% of the spectral energy are accumulated This feature is

related with the perceived bandwidth of the sound. In music it reacts to the presence of strong drum

sounds, which push the spectral roll-off up [Tzanetakis andCook (2000)].

Spectral Flatness MeasureThe spectral flatness between 250 Hz and 16 kHz reflects whether the sound

is more tonal or noiselike. It is the ratio between the geometric mean and the arithmetic mean of the

intensities within the specified frequency range [Allamanche et al. (2001)].

This selection of features is due to the practical consideration that we would like to have relevant timbral

characteristics reflected directly in the individual feature values. In contrast, isolated Mel Frequency Cepstral

coefficients (MFCCs) for example are much more difficult to interpret although they contain very similar

information when used as a multi-dimensional feature. We also tried to achieve a good trade-off between

covering the different relevant aspects of timbre and keeping the number of features small. The latter is a

pre-requisite for utilizing the LZ77 compression in our context, as we will see later.

In order to reduce noise and fluctuations originating from speech (or singing) we grouped 40 consecutive

values together and only kept the median of them. So we obtainfor each feature a new value roughly for

every second of audio material. The median is preferred overthe mean, since it is not sensitive to single

outliers. The idea is to focus rather on the longer term, stable texture than on very fast changes in the timbre.

We also applied a silence detector based on the audio signal energy to exclude silent segments from further

computation5. The most critical part of the conversion consisted now in the mapping of the continuous valued

features into a finite domain of symbols. Since the strings are rather short and we need exact correspondences

in order to have observable compression effects, we need to massively simplify the representation of our

data. This was achieved by a sophisticated quantization procedure including a hysteresis behavior (i. e. the

thresholds that separate the partitions are sensitive to the direction in which the data sequence is evolving).

For each of the four continuous features we computed the quartile boundaries for a database of 100 music

tracks with lengths between 20 s and 2 min. The hysteresis wasintroduced to avoid fast oscillation between

neighboring partitions. In order to change into a differentpartition it is therefore not sufficient for a value

just to fall beyond the boundary. The change is only initiated, when one value reaches more than 25% of the

corresponding partition size beyond the boundary.

5It is arguable whether silent frames should be kept instead and assigned a unique timbre label. Practically this has littlerelevance
however, since long segments of silence are not that frequentin most musical recordings.
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Figure 4.6: Timbre symbol sequences for excerpts of a) Baroque cembalo music, b) a modern Musical song
with orchestra.

After this procedure we need only 2 Bits to represent the actual partition for each of the four features. The

resulting timbre symbol string therefore has symbols of 8 Bits at a rate of roughly 1 symbol/s. The reason

for being so restrictive in the number of different featuresand in the number of partitions for the quantization

lies simply in keeping the number of symbols at a reasonable level. Would we choose for example 6 different

features instead of 4 and quantize each to 4 Bits instead of 2,we would already obtain symbols of 24 Bits.

In other words, there would be a total of224 = 16, 777, 216 different symbols available. As the LZ77

compression relies on exact repetitions there would be verylow chances we would observe any significant

compression ratio considering the rather short strings that we are using. Figure 4.6 shows two example results

of the quantization process. It should be noted that there isnot much sense in the distance of the symbols

as they appear in the plots. The intention is to distinguish only between equal or not equal, a concept of

similarity does not exist here.

As a result of the compression gain estimation we observed, that in general the ranking of the test files

coincided relatively well with a subjective impression of timbre complexity. Especially at the low complexity

end there was little confusion, as it was already the case with the HMM-based methods. The test example

consisting of recorded applause only was clearly identifiedas having the lowest complexity by the method.

Particularly at the higher end of the scale however the results are more ambiguous again with several cases

being clearly ranked to high. The general problem that signals with a strong human voice are ranked higher

than they should (e. g. speech, rap, or solo singers) still remained despite of the median filtering. This is not

very surprising, because the discrimination of vowels in speech and singing is determined by the position

of the formants, which basically means by the form of the spectral envelope. In human perception these

changes are not perceived as changes in timbre when they appear in a human(like) voice. It is therefore a

systematic problem, which might be overcome by cancelling the voice as much as possible from the signal

or by applying a voice detector and treating the segments dominated by voice like silence.
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In any case, the described method still has some unfortunateproperties. Despite being much less arbitrary

than the HMM approach, because we have full control over all parameters, the conversion of the signal into

a symbol string is still rather rough and very technical. While we can assume that with such a coarse quan-

tization we can guarantee different symbols to correspond to a different perceptual impression, the reverse is

very questionable. Also, the placement of the boundaries was purely driven by the testing data instead of a

perceptually motivated choice. For these reasons a third approach was tried and finally chosen as the most

useful one.

Spectral envelope matching

With this third method we tried to reuse the idea of the LZ77 compression, but in a less rigorous way. The

main goals in the design were to avoid the necessity of a hard quantization and to move closer to the human

perception of timbre. Following Winckel (1967), it takes a change of at least 4 dB in the higher harmonics

and even 10 dB in the low harmonics in order to make the timbre of two tones distinguishable. If we apply

this to the spectral envelope rather than to single harmonics, we already have a very practical criterion for

identifying textures that are perceptually at least very similar and those that can be considered different. This

classification can then be used to count how many different timbres appear within a given temporal window

in the signal, which we will consider an indicator for the timbre complexity.

For the implementation we utilize again thema sone function of Pampalk’sMA Toolboxthat we already

referred to in section 4.2.1 starting on page 50. Figure 4.7 shows a block diagram of the algorithm with

references to the corresponding formulas. As mentioned before, the preprocessing steps coincide exactly

with those for the described dynamic complexity until the computation of the band energiesPdB in equation

4.14 on page 52 (block 3 in figure 4.7). Before we proceed with the complexity calculation we first apply a

median filter (block 4) across the temporal dimension on these values in order to reduce noise and to smooth

the loudness evolution, since temporal aspects were not considered in the processing up to this point. The

filter takes the median of nine consecutive frames for each ofthe bands individually, which corresponds to

approximately 72 ms at the chosen hopsize. It is applied as a moving window without downsampling the

results.

Since we are going to compare the loudness values of successive frames in order to find changes in the

spectral shape, we would like to be indifferent to changes inloudness, where simply the entire envelope is

moving up or down. This is not as trivial as it sounds, becausethere might be bands with close to no spectral

content that remain unchanged even if all other bands might move up or down by the same amount. In such

a case, we would still like to measure that there is no change in the spectral envelope despite the relative

positions of the bands in fact are different. The (not perfect) solution we developed consists in two steps.

For each frame we first select those bandsR that have a loudness bigger than 5 dB and that are not less than

20 dB below the mean loudness of all bands in the frame. In the second step we compute the mean loudness

only of the bands inR and subtract it from them.
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Figure 4.7: Block diagram of timbral complexity computation based on spectral envelope matching.

The obtained loudness valuesP
[i]
sub of each framei are then compared to those of a group of preceding

frames (block 5):

S[i] =

i−500
∑

k=i−10

css
(

P
[i]
sub, P

[k]
sub

)

, (4.28)

where the functioncss(a, b) returns 1 if the absolute difference of all corresponding values in the vectorsa

andb is smaller than 6, and zero otherwise. We chose the value of 6 dB, because with 4 dB the tolerance

appeared too small and only very few frames were found as being similar in timbre. The respective time

window starts 80 ms before the current frame and reaches backuntil 4 s, resembling again roughly human

short-term memory.

In figure 4.8 we see three examples of the resulting functionS[i]. The plots emphasize more on the

amount of similar frames that have been found with the method, which is only one way to look at the timbre

complexity or the timbre simplicity rather. We found it morerobust however, to consider the percentage of

frames that have no similar frame in the given time window as the indicator of timbre complexity (block 7).

For the bagpipe music in plot a) there are most of the time a considerable amount of similar frames in the past.

It is rare that no similar frame at all can be found and the function reaches zero (8.5% of the frames). The

excerpt of the classical symphony played by a full orchestrashown in plot b) is usually on slightly lower level

than the bagpipe music indicating a higher variability in the timbre. It also touches the zero mark a bit more

often, which means there are more often timbres appearing that have no correspondence in the recent history

of the signal (11.3%). All this reflects very well the perceived impression when listening to the excerpts. Plot

c) with the rap excerpt marks an extreme case. Despite the perceived timbre does not change that much, the

spectral envelope is completely dominated by the fast changing formants of the speaking voice. Only at the
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Figure 4.8: Band loudness similarities (eq. 4.28) for threemusic excerpts: a) bagpipe ensemble, b) classical
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therefore left out in the complexity computation). The timbral complexity is calculated as the percentage of
frames where the similarity is equal to zero.

short breaks, when the instrumental background is featuredwe can see that a certain amount of similar frames

is found, but otherwise we always stay at very low values. Thepercentage of zero-frames is extremely high

with 56.3%.

We are already familiar with this problem, but now we are going to look at an attempt to reduce this effect

(block 6). The heuristic we apply is simply that for the case of instrumental music we will usually find frames

regularly that have several similar ones in the recent history. This type of behavior is not common for passages

with a dominant voice, where it can happen over long segmentsthat only a few similar frames are found. We

therefore select regions that don’t exceed the level of 12 similar frames within 60 or more consecutive frames

(480 ms) for not contributing to the increase of complexity.In plot c) the corresponding regions are marked,

in the other two plots there exist no regions that fulfill thiscriterion. The corrected percentage for plot c) is

now 4.8%, so it would be attributed a lower level of timbral complexity than the other two examples (8.5%

and 11.3% respectively).
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4.4 Tonal Complexity

In section 3.2.1 of the previous chapter we saw that very wellstudied models are available for the assessment

of melodic complexity based on a symbolic representation. When it comes to musical audio however, this

facet of complexity can be considered the most difficult one.This is due to melody being a very abstract de-

scription which is hard to access from the audio signal. As pointed out, there is no extraction algorithm avail-

able yet, that can reliably transcribe the melody of just anymusical audio file. The situation with harmonic

complexity gives a similar picture. While it is still possible to handle the complexity of chord progressions

that are given as symbolic sequences, we are facing big problems if we need to start from the audio signal

level. It was therefore decided in this dissertation to giveup the separation between a melodic and a harmonic

component of music complexity. Instead we only want to consider a tonal complexity facet that accounts for

both, but on a very low level of abstraction. The idea is to work with a signal representation that contains

the important characteristics of the tonal content while not aiming for an exact transcription of single notes

and chords. Based on this representation we can then apply again principles of complexity estimation that we

discussed before.

4.4.1 Implementations of Tonal Complexity

We chose to work with the harmonic pitch class profile feature(HPCP) that has been extensively studied

and developed by Gomez (2004). Its abilities in characterizing tonal content have been demonstrated in

terms of key detection, version identification [Gomez (2006)], and musical structure analysis [Ong (2006)].

Also several approaches towards chord segmentation and recognition rely on this or very similar features

[e. g. Fujishima (1999), Sheh and Ellis (2003)]. We will recapitulate the computation of this feature only

briefly here and refer to the given references for a detailed description. The HPCP is computed frame-wise

in the frequency domain, so the audio signal needs to be segmented into frames, weighted with a window

function, and transformed via Fourier transform. Our settings for frame and hop size are 93 ms and 46 ms

respectively. In order to reduce the influence of non-tonal components in the spectrum, only the local maxima

within a certain frequency range (in our case from 40 Hz to 5 kHz) are considered for further processing.

Some spectral envelope adjustments are done on these peaks to compensate for effects of timbre and for the

presence of overtones. The final feature is then obtained by accumulating the spectral content mapped down

into the range of one octave. We are using a resolution of 36 bins for the pitch classes, which means that each

semitone step covers 3 bins in our HPCP feature vector.

The HPCP vectors can now be used in different ways to arrive athigher semantic levels related with

music tonality. Gomez (2006) correlates them (averaged along time) with ring-shifted key profiles for minor

and for major keys. If the maximum correlation among these alternatives exceeds a certain threshold, she

takes it as an indicator for the key and mode of the musical piece. Depending on the time frame one uses

for the averaging it is possible to move from the global key ofthe entire piece towards more and more

detailed representations, where modulations to other keysor even individual chords become recognizable.
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Gomez and Herrera (2004) proposed to use the maximum correlation value of the entire file as a descriptor

they namedtonal strength. This idea is very straightforward, since it is based on the threshold of this value she

is able to distinguish atonal from tonal music in her key detection processing. A piece where the distribution

of energy on the pitch classes matches very well with the general profile would thus be considered as having

a high tonal strength. The concept behind this is very close to what we are looking for in terms of tonal

complexity, especially considering that the general profiles are inspired from probe tone experiments with

human listeners [Krumhansl (1990)]. So we could think of theprofiles as a kind of prototype for the “common

sense” of musical key properties that can be (or not) matchedby an actual composition. We therefore included

the tonal strength descriptor into our set of complexity descriptors.

But the descriptor does not cover every aspect of tonal complexity that could be relevant to a human

listener. By its nature, the “tonal strength” is very focused on a statistical picture of tonality. This means

however, that the temporal aspects are not accounted for at all. The rate of changes or the perceptual distance

between consecutive chords for example are not reflected in the tonal strength while they should contribute to

the overall tonal complexity description. We therefore chose an additional approach particularly targeting the

temporal aspects of tonality evolution. If we consider the quantification of tonal change from a musicological

point of view this is not at all trivial. Not only would we needto identify the boundaries where a tonal

unit6 starts and ends, we would also need to label these units. Based on these labels we could then apply a

distance measure like for example the one proposed by Chew (2003) to assess the tonal distances covered in

the course of the piece. Since both, the segmentation and thelabeling, are very error-prone with currently

available algorithms, we tried to look for an alternative ona lower abstraction level. As a first idea we

considered to map the sequence of HPCP vectors directly intothe three-dimensional space of Chew’s spiral

array. This representation is particularly attractive, since Chew claims that spatial distances in her model

coincide with musicological ones. By assigning each pitch class on the spiral a virtual mass based on the

accumulated energy of the corresponding HPCP element, we were able to compute a virtual center of gravity

for each vector. From the distance of consecutive centers wehoped then to get an estimation of the tonal

distance. It turned out, however, that the contrast betweenrelevant and irrelevant pitch classes in the HPCP

vector often was not high enough and that even for a perceptually stable tonal unit the proportion of the pitch

classes could vary considerably. As a result, the virtual centers of gravity were located most of the time rather

close to the center of the spiral and their movement did not reflect the tonal properties as expected.

For this reason we modified the approach putting less emphasis on the musicological distance in an

absolute space and more on the amount of relevant fluctuationin the HPCP feature relative to the recent

history of the tonal evolution in the piece. As a preprocessing step we first excluded silent and transient

(i. e. not tonal) frames from the computation. This was done by applying a threshold for the minimum frame

energy and the minimum contrast within each HPCP vector. Fora tonal frame we can expect a concentration

of energy in only a few elements of the vector, whereas in transient frames the energy is more equally

distributed yielding a lower contrast. We then compute two moving averagesT [i]
1 (m) and T

[i]
2 (m) with

6This can be either in the concrete sense of a specific group of pitches sounding simultaneously, or more abstract in the senseof
harmonic functions of chords.
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different window sizes individually on each of the HPCP vector dimensions.T [i]
1 (m) is supposed to reflect

the local tonal context and covers 250 frames (approx. 11.5 s), T
[i]
2 (m) corresponds to the instantaneous

tonal content and covers 25 frames (approx. 1.15 s). Each vector of the two series is then normalized to a

maximum of one.

Now we compute two different distance measures between the corresponding elements ofT1 andT2. That

means for each framei we compare the instantaneous tonal contentT
[i]
2 averaged over the past 25 frames to

the bigger tonal contextT [i]
1 established during the past 250 frames. One criterion for the comparison is the

overall similarity of the shape. We measure this with the Pearson correlation coefficient:

r[i] =

∑M
m=1(T

[i]
1 (m) − T̄

[i]
1 )(T

[i]
2 (m) − T̄

[i]
2 )

(M − 1) · T̃
[i]
1 T̃

[i]
2

, (4.29)

where x̄ and x̃ denote the mean and the standard deviation of a vectorx, respectively. M refers to the

dimensionality of the pitch class vectors, which is 36 in ourcase. Negative values forr[i] are set to zero,

since we are only interested in the degree to which the two vectors are similar in shape. Negative correlations

are therefore not relevant for us. Since we want a distance rather than a similarity measure, we then invert the

correlation throughD[i]
1 = 1 − r[i].

We found in empirical tests that the Pearson correlation alone did not yield the desired results under

certain circumstances. If for example a chord is sounding for some time and then one of its pitches is

disappearing or an additional one joins in while the rest remains, then the correlation measure does not show

a clear response. Overall it appears to react mainly to majorshifts and changes in the tonal configuration

and to be rather insensitive to changes of only single pitches. An example of this can be seen in figure 4.9

shortly before frame number 400. While there are changes taking place in the lowest HPCP bins and around

bin number 19, the correlation measure does not show any reaction.

For this reason we included a second distance measure that shows a higher sensitivity to these types of

fluctuations. For this purpose we first quantize the two vector sequencesT1 andT2 to three levels. Values

bigger than 0.5 are considered relevant tonal components and are assigned a value of 2. Values below 0.001

are most certainly irrelevant components and therefore assigned a value of zero. The rest of the values cannot

be assigned to either group with high certainty or belong into transition periods and therefore are assigned a

value of 1. We then compute the city block distances between the corresponding vectors of either sequence

D
[i]
2 =

36
∑

m=1

∣

∣

∣
T

[i]
q1 (m) − T

[i]
q2 (m)

∣

∣

∣
. (4.30)

The city block metric is preferred at this point over the euclidian or other distance measures. This is because

it corresponds more directly to the number of elements that changed in the vector, which is in fact what we

want to be reflected better in our complexity measure. We can see in figure 4.9 that this measure responds

with a clear peak to the changes that take place shortly before frame number 400. However, when there are

many active pitches the indications of this measure are lessreliable. For example the major shift around
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frame 600 is detected much clearer by the correlation measure. As a final indicator for the tonal complexity,

we take therefore the average of the combined distance measures over allN frames7 of the piece:

Ctonal =
1

N

N
∑

i=1

D
[i]
1 · D

[i]
2 . (4.31)

4.5 Rhythmic Complexity

With the PS-measure, that we reviewed in section 3.2.2, we have already seen a model for rhythmic complex-

ity that even has been assessed to a certain degree in tests with human subjects. But as we observed already,

the applicability of the model in our context is questionable, since it operates on an abstraction level which

is not easy to achieve when starting from the audio signal. Furthermore, 3.2.2 performed their experiments

with short rhythm patterns in isolation. It is not clear whether the perceived complexity of such a pattern is

exactly the same when it is part of a complete musical performance in a larger temporal context.

We therefore will put our focus more on questions like: Is there a clear rhythm in the music? Is it strongly

induced? Is it stable? Does it happen in a usual speed? On a rather näıve level, we could also formulate: Is it

easy to clap along with the music? Is the music easy to dance to?

These questions lead us to the conclusion that the type of rhythmic complexity we are after has to be

found on a level of lower abstraction and specialization than that of the PS-Measure. The danceability de-

scriptor based on the detrended fluctuation analysis that wealready mentioned in section 3.3.3 is therefore an

interesting candidate as it works directly on the time domain signal without making any assumptions about

the metric grid or even note onsets. The error-prone transcription or event detection procedures can thus be

avoided.

4.5.1 Implementation of Danceability

The implementation described here is following the description by Jennings et al. (2004). Where exact spec-

ifications were missing, we integrated reasonable solutions. The experimental findings obtained with this im-

plementation on a large music database were also reported atthe 118th AES Convention [Streich and Herrera

(2005)].

As a first step the audio signal is segmented into non-overlapping blocks of 10 ms length. For each

block the standard deviations(n) of the amplitude is computed. The valuess(n) resemble a bounded, non-

stationary time series, which can be associated with the averaged physical intensity of the audio signal in

each block (see figure 4.10). In order to obtain the unboundedtime seriesy(m), s(n) is integrated:

y(m) =

m
∑

n=1

s(n) (4.32)

7As we said, only the presumably tonal frames are considered here.
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Figure 4.10: Excerpts from the time seriess(n) for three example pieces from different musical genres.

This integration step is crucial in the process of DetrendedFluctuation Analysis (DFA) computation,

because for bounded time series the DFA exponent (our final feature) would always be 0 when time scales of

greater size are considered. This effect is explained in more detail in Peng (2005).

The seriesy(m) can be thought of as a random walk in one dimension.y(m) is now again segmented

into blocks ofτ elements length. This time, we advance only by one sample from one block to the next in the

manner of a sliding window. There are two reasons for this extreme overlap. First, we obtain more blocks

from the signal, which is of interest, since we will obtain better statistics from a larger number of blocks.

Secondly, we avoid possible synchronization with the rhythmical structure of the audio signal, which would

lead to arbitrary results depending on the offset we happen to have. However, performing the computation in

this manner the number of operations is increased enormously8.

From each block we now remove the linear trendŷk and computeD(k, τ), the mean of the squared

residual:

D(k, τ) =
1

τ

τ−1
∑

m=0

(y(k + m) − ŷk(m))
2 (4.33)

We then obtain the detrended fluctuationF (τ) of the time series by computing the square root of the

8In order to reduce the computational load it was found empirically that gently increasing the hopsize with growing window size
does not affect the quality of the results too much (e. g.hopsize = windowsize/50).
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Figure 4.11: Double logarithmic plots of mean residual overtime scales.

mean ofD(k, τ) for all K blocks:

F (τ) =

√

√

√

√

1

K

K
∑

k=1

D(k, τ) (4.34)

As indicated, the fluctuationF is a function ofτ (i. e. of the time scale in focus). The goal of DFA is

to reveal correlation properties on different time scales.We therefore repeat the process above for different

values ofτ that are within the range of our interest. Jennings et al. (2004) use a range from 310 ms (τ = 31)

to 10 s not specifying the step size in their paper. Relating these time scales to the musical signal they cover

the beat level to the bar level and reach further up to the level of longer rhythmical patterns.

The DFA exponentα is defined as the slope of the double logarithmic graph ofF over τ (eq. 4.35)

as shown in figure 4.11 for the three example tracks. It therefore makes sense to increaseτ by a constant

multiplication factor rather than a fixed step size. Apart from giving equally-spaced supporting points on

the logarithmic axis it also reduces the computational operations without affecting the accuracy greatly. We

chose a factor of 1.1 giving us 36 different values forτ covering time scales from 310 ms to 8.8 s.

For small values ofτ an adjustment is needed in the denominator when computingα (see Buldyrev et al.

(1995)) giving us the following formula for the DFA exponent:

α(i) =
log10 (F (τi+1)/F (τi))

log10 ((τi+1 + 3)/(τi + 3))
(4.35)
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Figure 4.12: DFA exponent functions for the three example tracks from figure 4.10.

As τ grows, the influence of the correction becomes negligible. In the case where the time series has

stable fractal scaling properties within the examined range, the double log graph ofF over τ is a straight

line makingα(i) a constant function. We find a constant value of 0.5 for a completely random series (white

noise), a value of 1 for a series with1/f -type noise, and 1.5 for a Brown noise series (integrated white noise)

[Peng (2005)].

For music signals normally we do not have stable scaling properties (see figure 4.12). Unlike heart rate

time series, for example, there is much more variance inα(i) for music. Nevertheless, we can find that music

with sudden jumps in intensity is generally yielding a lowerlevel ofα(i) than music with a smoother varying

series of intensity values. Thus, music with pronounced percussion events and emphasized note onsets shows

lower α values than music with a more floating, steady nature. There is also a relationship between strong

periodic trends and theα function. Figure 4.12 shows the evolution ofα over the different time scales for

three musical pieces. As can be seen, the DFA exponent variessignificantly within each single piece.

The most stable scaling behavior is found for the classical piece at short time scales –in contrast– the pop

piece shows an intermediate, and the techno piece shows a high instability. This is due to the presence of a

strong and regular beat pattern in the two latter cases (see figure 4.10). In the techno piece the periodic beat

dominates the intensity fluctuation completely since intensity variations on larger time scales are negligible in

comparison. This strong periodic trend deteriorates the scaling properties of the series and causesα to drop

significantly. Towards larger time scales however, the influence of the periodic intensity variation disappears

andα raises back towards its normal level. In the pop music piece there is also a regular beat, but it is less

dominant than in the techno piece. As can be seen in figure 4.10, there are also some noticeable changes in
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intensity on a larger time scale. Still,α is clearly decreased by the periodic trend. Towards larger time scales,

we can observe the same effect as in the techno piece. For the classical piece no dominant, regular beat

pattern can be identified in the time series. Thus, the scaling properties are not affected in the corresponding

range. But in contrast to the other two examples the series reveals a larger scale pattern in some parts, which

can also be seen in figure 4.10. This causesα to drop in the upper range.

In order to arrive at an indicator for the danceability and thus a certain aspect of the rhythmic complexity

theα values have to be further reduced. While different ways are possible, in the first implementation simply

the averageα level was computed for each track. A high value refers to a high complexity (not danceable),

a low value refers to a low complexity (highly danceable). Ina slightly more sophisticated approach we also

tried to separate the component related to the beat from the one referring to the larger time scales. As can

be clearly observed in figure 4.12 a strong and steady beat causes strong oscillations in the scaling curve.

The stronger the dominance of the induced beat in the music, the lower does the curve ofalpha values reach.

Therefore we use the height of the lowest local minimum in thescaling curve for time scales below 1.5 s as an

indicator for the beat strength. As the minima appear roughly at the time scale that corresponds to 1.5 times

the inter-beat interval, the limit of 1.5 s is a lower bound for the tempo coinciding with approximately 60

BPM. This does not necessarily resemble the real perceived tempo, as the strong downbeats might occur only

on every second or third counted beat. We applied a ceiling of1 for these minima, because values beyond this

limit didn’t seem to reflect anything related with the beat strength anymore. For the part of the curve beyond

the 1.5 s boundary it was not possible to identify any straightforward processing that was more useful than the

simple average. While the beat strength alone can already be considered an alternative rhythmic complexity

descriptor, we also used the linear combination of the beat strength and the averageα above 1.5 s.
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Chapter 5

Evaluation

The evaluation of the achievements, which means the critical assessment and determination of worth and

validity, is of fundamental importance in scientific activity. While such a statement is pretty much a com-

monplace it is in fact not always easy in practice to settle this claim in an uncompromising manner. Especially

when dealing with music, which comes in countless styles, forms, and fashions, it is often hard to provide

a test or an experimental setup of far-ranging, solid validity. Furthermore a researcher with a background in

engineering (like the author) might suddenly see himself confronted with the need to borrow methods from

other domains intersecting the MIR field, in order to accountfor the human factor that enters the equation

when semantic concepts are to be explored.

Only relatively recently have there been efforts in the domain of music information retrieval research to

establish standard-like data sets and metrics for evaluation [e. g. Goto et al. (2002) or Cano et al. (2006)1].

Of course these joint efforts concentrate on “hot topics” orproblems that are dealt with by relatively many

researchers from different institutions. This is not the case for music complexity estimation. During this

dissertation different means of evaluation were applied tothe developed algorithms. In the following sections

we will first describe these methods before the actual results are reported.

5.1 Methods of Evaluation

The obvious method to validate the developed algorithms of course is an assessment of the agreement between

human complexity perception and the algorithmic predictions. While this is the most direct evaluation it also

involves certain inconveniences. The biggest challenge isthe fact that a reasonably big database with music

tracks and the corresponding human complexity ratings is needed. The term “big” is relevant in three different

ways here: First, we need to include music tracks from a variety of styles, since we are after complexity

beyond genre limits. A selection of tracks that is truly representative of the universe of music available in

digital format is hard to establish, but to select multiple examples from many different styles is the least one

1See also http://ismir2004.ismir.net/ISMIRContest.html and http://www.music-ir.org/mirex2006/

77
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can do to approximate generality. Secondly, we would like tohave complexity ratings for each item by many

different subjects. This is because we are interested in a “common sense” of complexity. By combining the

ratings of a group of subjects we can reduce the influence of outlier responses due to individual preference

or peculiarity. Thirdly, it would be ideal to assess complexity ratings separately for each of the facets we

are considering. In this way, it would be possible to evaluate each of the algorithms in isolation and avoid

mediating effects among the facets. However, human ratingsof good quality are not so easy to obtain. Due

to practical necessities and limitations we need to accept compromises regarding these three aspects. We will

talk in detail about this way of evaluation in section 5.2. A very similar approach would be to pay a group of

people for manually labelling a set of songs according to thedifferent facets of complexity. This is dangerous

since the quality of the annotations is difficult to check andsomebody assigning random labels could spoil

the entire data set. One could overcome this effect by using many people in order to identify outliers, but this

makes the approach very costly.

Although the mentioned assessment is the most straightforward one, it could be interesting as well, to

focus more on the usefulness of complexity descriptors in the MIR context. After all, we are not after

music complexity as a stand-alone quality for its own sake. The application of this research is in facilitating

the management of music collections in terms of organization, visualization, and browsing for example.

From this point of view there are of course other ways of evaluation that come to mind. It is possible for

example to use selected complexity descriptors together with machine learning methods in order to evaluate

their discriminative power in genre, artist, or other classification based on semantic labels. Although the

descriptors might not be used in exactly the same way in a finalapplication, at least an experimental proof

of relevance can be established if the classification reaches significantly beyond chance level. This approach

is of course less powerful in terms of scientific argument, but it bears the advantage that there is no need

for costly annotations or user experiments, since many semantic labels are easily available in existing test

collections. This strategy of evaluation will be reported in section 5.3. Another option along the same line

is the testing of user preferences in an actual music selection task. So rather than comparing the algorithmic

predictions with human ratings of complexity, one can directly use the computed descriptors for organizing

a collection and then test whether this facilitates measurably the users’ interaction with the music compared

to alternative ways of organization. Section 5.4 will describe briefly such an experiment and the obtained

results.

Probably the weakest, but also the easiest method of evaluation is through artificial test cases. We can

select, compose, generate, or modify music material in order to match a specific level of complexity according

to our own definitions. This is basically reversing the process of annotating a ground truth to a given set of

data. Instead, we start by deciding on the label and only afterwards look for the right content. We mentioned

this type of evaluation already in section 4.3 of the previous chapter. There we selected several music samples

according to specified levels of timbral complexity and usedthem as reference points in our experiments.

However, this approach cannot avoid to be subjected to criticism. The reasoning about the validity of the

algorithms can become circular, if we orient ourselves too close to the algorithm itself during the creation or
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selection of the test data. In such a case, we will only be ableto verify that the implementation is correct.

Whether the algorithm really has anything to say about music complexity however could not be proved

this way. But even if the test material is chosen with more care, as in the case of our timbral complexity

experiments, there is always the question of objectivity overshadowing the results. In fact there would be

the need to validate the test material with a separate evaluation in order to prove that it is not biased. This

of course closes the circle to the first method of evaluation that was mentioned above with all its problems.

Since we are dealing with music, the easiness of the generation is also very relative. It can be quite difficult

to control all the mentioned facets of complexity.

5.2 Evaluation with Human Ratings

As mentioned above, ideally we would like to have the complexity ratings for hundreds of pieces of music

from hundreds of people broken down into all of the facets that we have been considering in the previous

chapter. We would appreciate a wide range of musical styles being represented and having people with very

different musical preference and experience, as long as they belong to our targeted group (i. e. they have a

western cultural musical background). However, we are not living in an ideal world and therefore we have to

accept compromises. As it was not feasible to obtain ground truth complexity ratings locally from “annotation

mercenaries”, the alternative of a web-based survey was realized instead.

5.2.1 Survey Design, Material, and Subjects

The survey was adapted from the version used in Sandvold and Herrera (2005) and consisted of two parts.

First, subjects had to fill in some data regarding their age, sex, musical experience, and music listening habits.

The second part consisted of the actual rating phase where 30s excerpts of music recordings were presented

in a randomized order. Subjects had to indicate their familiarity with the music, their complexity judgement

and their liking of it. They were allowed repeated playback and correction of their ratings until they clicked

on the “Continue” button. Figure 5.1 shows a screen-shot of the second part of the survey.

The survey was provided in three languages (English, Spanish and German) in order to encourage as many

subjects as possible for participation. This way we also intended to avoid misunderstandings due to language

problems. The order of question 2 and 3 (complexity and liking) was switched for every other subject in

order to check for an influence in the ratings. As the explicitrating of music complexity is not a common

task, we provided some guidance to the participants on how they might come to a decision. By clicking on

“help” next to the question about complexity the subjects could open a window with the following text:

Judging Music Complexity

The complexity of music is not as intuitive as liking or famil iarity.

We therefore want to give you some help on how to find an answer .

When listening to the music try to consider the following que stions:

• How much is going on in the music?
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Figure 5.1: Screenshot from the second part of the websurvey.
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• Is it completely predictable or very surprising?

• Can you easily follow the music?

• Or is it demanding a high effort?

With this in mind you will hopefully be able to select the appr opriate

option without difficulty. The music examples presented he re were

chosen to cover the entire range of complexity levels. Don’t feel

shy to use the extreme ratings if you consider it appropriate .

The total number of music excerpts was 82, out of which a maximum of 30 were randomly selected for

each participant. The disadvantage of this procedure is that we have a different subset of songs rated by

each subject, which limits in a certain way the possibilities for analyses. We chose this design, because it

allows for a larger number of songs to be rated while keeping the time subjects had to spent answering the

survey in reasonable limits. For the selection of audio material we took care of having very diverse musical

styles in the data set including a few famous songs that participants are very likely to be familiar with. The

majority of songs however was taken from less famous artists, while still being at a professional level of

musical and technical quality. The styles included some branches of classical music, diverse productions

from the Pop and Rock genres, Techno and Electronic Dance Music, Jazz and World Music, and several

modern compositions of electro-acoustic music. In selecting the music for this experiment we put a higher

emphasis on covering a wide range of complexity levels in thedifferent facets rather than on a proportional or

representative distribution of the styles. The excerpts were extracted in an automatic fashion, by cutting out a

30 s segment from the recording starting at 20 s after the beginning. We used RMS power normalization on

the excerpts in order to achieve a more or less similar loudness level for all stimuli. The excerpts were checked

afterwards and those considered not appropriate for the survey were replaced by a manually selected segment

from the corresponding track. For reasons of bandwidth economy the tracks were made available only in

the compressed ISO-MPEG-1 layer 3 format commonly known as MP3 [Brandenburg and Stoll (1994)]. We

used an implementation derived from the LAME2 project for this purpose applying a fixed bit rate of 128 kbps

in stereo mode. At this bit rate setting, the audio signal is only preserved up to roughly 17 kHz, which results

in a very good but not totally transparent quality. As many ofthe tracks had been compressed before and

were not available to us in their original release format, there was a danger of audible transcoding artifacts.

It was made sure through inspection of the files that they werefree of such disturbing effects.

We invited friends, students, and colleagues by email to participate. An announcement in the Freesound

forum3 proved to be the most effective way to win participants. Although participation was completely volun-

tary and there was no benefit for the subjects other than satisfying their curiosity and potentially discovering

new music, there was a relatively big interest in the topic. 207 subjects started answering and 124 of them fin-

ished the entire experiment consisting in the rating of 30 music excerpts. Table 5.1 shows some statistics for

2http://lame.sourceforge.net/
3http://freesound.iua.upf.edu/index.php
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gender age in years musical knowledge total
male female 15-24 25-35 36-63 none basic advanced professional

Count: 125 17 57 58 27 10 22 70 40 142
%: 88.0 12.0 40.1 40.8 19.0 7.0 15.5 49.3 28.2

Table 5.1: Statistics about the subjects who answered the web survey.

the subjects whose ratings have been used in the evaluation4. One disadvantage of a web survey revealed here

is that the composition of subjects is unbalanced. We have a strong prevalence of male and young subjects.

Probably the most disadvantageous condition for our needs is the low number of subjects with low musical

training, since we are preferably interested in the complexity perception of non-expert listeners. But as the

presented excerpts have been taken from a wide variety of styles we hope that even for the highly trained

subjects the effects of expertise are not predominant.

5.2.2 The Obtained Data

As a first step after the survey page was closed we did some statistical analysis on the subjects’ data and the

ratings. As mentioned in table 5.1 we used the ratings of a total of 142 subjects in our analyses. With a total

of 3545 ratings we had on average about 43 ratings per excerptto work with. Comparing the averaged ratings

of complexity and liking per song for the two groups with and without switched question order there was no

significant difference. Neither had the order of presentation of the excerpts any significant effect on these

ratings.

When we performed a one-way ANOVA on either type of ratings with the stimulus (the excerpt ID) being

the independent variable we obtained a significant F-score in both cases. Precisely we gotF = 16.09 for

the complexity ratings andF = 7.57 for the ratings of liking. With 81 degrees of freedom both values

are strongly significant (p < 0.001) suggesting that the individual excerpts are indeed receiving clearly

distinguishable responses in the statistical sense. With the much higher F-score for the complexity ratings

we further have evidence that the agreement on complexity judgements among the subjects is higher than

for judgements of liking, since the amount of variance explained by selecting the stimulus is bigger. This

goes along well with our idea of a “common sense” of music complexity perception opposed to the different

personal tastes and therefore higher subjectivity reflected in the ratings of liking for the stimuli.

We computed a set of 12 complexity descriptors that were presented in the previous chapter on all 82

music excerpts. A standardization to zero mean and unity variance was performed before proceeding with

the analyses. The descriptor set consisted of:

CdynI the dynamic component of acoustic complexity based on Vickers’ method (eq. 4.5, page 47).

CdynII the dynamic component of acoustic complexity based on Pampalk’s implementation (eq. 4.18, page

50).

4All subjects that submitted at least five ratings were considered.
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CspatF luc the spatial fluctuation as a component of acoustic complexity (eq. 4.24, page 57).

CspatSpread the spatial spread (wideness) as a component of acoustic complexity (eq. 4.26, page 58).

Ctimbre the timbre complexity measured as the percentage of frames with dissimilar spectral shape to recent

signal history (explanations on page 64).

Stonal the tonal strength as an inverse measure of tonal complexity(explanations on page 67).

Ctonal the average local dissimilarity of the HPCP feature as a measure of tonal complexity (eq. 4.31, page

71).

Ptonal the percentage of frames considered as tonal as a measure of tonal complexity5 (explanations on page

68).

CdanceI the average DFA exponent as a measure of rhythmic complexity(eq. 4.35, page 73).

Cbeat the minimal DFA exponent in the inter-beat interval time scales as a measure of rhythmic complexity

(explanations on page 75).

Cphrase the average DFA exponent for the musical phrase time scales as a measure of rhythmic complexity

(explanations on page 75).

CdanceII the linear combination ofCbeat andCphrase as a measure of rhythmic complexity(explanations on

page 75).

5.2.3 Results of the Analysis

The gathered data allowed for a variety of different methodsof statistical analysis. We followed partly the

procedure used in Scheirer et al. (2000) in order to have a reference point for comparisons. However, when

making these comparisons we have to keep in mind that we are using not only a different set of descriptors,

but also a different set of music samples and ratings.

Pearson correlations

As a first step we looked at the Pearson correlation of all possible pairings of the descriptors including the

averaged ratings for complexity and liking of each excerpt.With 82 excerpts this gives us a threshold for sig-

nificance on thep < 0.01 level atr = ±0.284. Not surprisingly, the strongest correlations were found among

the four different rhythmic complexity descriptors, with all pairings exceeding a value of 0.82 except for the

pair Cphrase/Cbeat which still reaches 0.679. The two dynamic descriptors are correlated withr = 0.822,

the two spatial ones only reachr = 0.384. There is only one significant negative correlation, which occurs

5This can be expected to be a rather weak indicator. However, apiece with tonal components in every frame certainly has a higher
potential for tonal complexity than a piece consisting of transient sounds only.
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Complexity Liking
CdynI 0.192 0.145
CdynII 0.150 0.225

CspatF luc 0.012 -0.006
CspatSpread 0.226 0.094

Ctimbre -0.079 0.088
Stonal -0.044 0.077
Ctonal 0.359 0.230
Ptonal 0.355 0.397

CdanceI 0.394 0.271
Cbeat 0.418 0.353

Cphrase 0.342 0.216
CdanceII 0.416 0.313

Table 5.2: Pearson correlation for the complexity descriptors with averaged ratings of complexity and liking
(significance atp < 0.01 is indicated byitalics).

for the combination ofStonal andCtonal (r = −0.358) and is also expected from the conceptual point of

view. Looking across the facet groups it is most remarkable that the four rhythmic complexity descriptors are

positively correlated (aroundr = 0.5) with the two dynamic descriptors and the tonal complexity descriptors

except for tonal strengthStonal, where the correlation is not significant. The descriptor that is least correlated

with the others is the spatial fluctuationCspatF luc, which has no significant correlations other than with the

spatial spreadCspatSpread.

In table 5.2 we show the correlations between the complexitydescriptors and the averaged ratings for

complexity and liking for each excerpt. The averaged likingcan be interpreted as an indicator for the overall

popularity of an excerpt. It appears that half of the descriptor set is not significantly correlated in this simple

way with the overall complexity judgements or the overall liking. We have to consider however, that the

Pearson correlation assumes a linear relationship betweenthe variables. We therefore converted the values

also to a logarithmic scale and recomputed the correlations. The effect was an overall slight increase inr for

the descriptors that already showed significant correlations. From the others onlyCdynII made a major shift

and reachedr = 0.307 andr = 0.353 for complexity and liking respectively. These results suggest that for

the overall impression of complexity of real musical compositions the rhythmic and the tonal facet appear

to be the most significant when seen in isolation. It is remarkable that the single descriptorCdanceI alone

accounts for more than 22% of the variance in the averaged complexity (r = 0.473 when both are on the

logarithmic scale).

Multiple regression on averaged ratings

It is of course not very reasonable to predict the overall complexity and liking of music based on an isolated

facet or descriptor only. They can be expected to depend rather on a combination of the different facets.

We therefore also examined the results of a multiple regression with the entire set of complexity descriptors

entered together. The obtained models for complexity and liking were both strongly significant withR =
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0.771 andR = 0.736 (p < 0.001), which means that roughly 60% and 54% of the variance in the data

can be explained by them. For comparison, Scheirer et al. (2000) reachedR = 0.536 with their set of 16

psychoacoustic features on 150 musical excerpts (see section 3.3.1 in chapter 3).

While these results are relatively impressive in direct comparison, this also means that around 40% of the

variance in mean complexity per song originate from factorsthat are not covered by the linear combination

of our descriptor set. One such factor could be the lyrics of the music, which can form an important aspect

in musical judgements [see e. g. Rentfrow and Gosling (2003)]. Another such factor would be the melody, a

facet which is only partly reflected in our tonal complexity descriptors. In general, the sociocultural compo-

nent related with music complexity judgements is not accessed at all by the descriptors in our set (for example

the image of certain musical styles or particular artists).Another very possible source of unexplained vari-

ance is the subjectivity in the ratings, which might have an effect despite averaging over approximately 40

responses per excerpt. The critical point of the chosen survey design in this sense is that the subjects that rated

one particular song are a random sample of the non-homogeneous, non-representative body of participants.

As an example, of two songs that have objectively very similar properties, one might be rated by a sample

dominated by music professionals with an aversion to this musical style, and the other by a sample dominated

by musical laymen who feel indifferent about it.

Logistic regression on individual ratings

We therefore tried also a different analysis by consideringindividual subject models. Such a model would

try to predict the ratings of only one subject and could therefore adapt better to individual peculiarities in

music complexity judgements. Following Scheirer’s methodology we created two binary variables from the

individual ratings of complexity and liking indicating only whether they were above or below the mean

rating of each subject. We then built a logistic regression models for each individual subject trying to predict

the binarized complexity and liking variables respectively. The models used the complete set of available

complexity descriptors to calculate their predictions. Only the 124 subjects who finished the whole survey

and gave the maximum amount of 30 ratings were considered in this experiment.

With the obtained models 83.0% of the binary complexity ratings and 82.6% of the binary liking ratings

could be predicted correctly (see figure 5.2). Scheirer et al. (2000) obtained 73.6% of correct responses in

their experiment stating that 46.7% of their models gave statistically significant predictions (p < 0.05). In our

case 55.4% of the user models for complexity predictions and47.1% of the user models for liking predictions

were significant. Similar to Scheirer we also observed that the use of a single model for all subjects reaches

only slightly above chance level in predicting the ratings of complexity or liking.

The results show on one hand, that by combining the complexity descriptors in different ways we can

adapt to individual peculiarities in the perception of complexity and liking for music and very successfully

predict subjective judgments. On the other hand, for about half of the subjects it was not possible to predict

their ratings significantly better than through guessing. From figure 5.2 we can see the influence of some of

the demographic variables on the performance of the logistic regression models. Most of them are statistically
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Figure 5.2: Average percentage of correct predictions withsubject models for the binary complexity (top)
and liking ratings (bottom) according to different demographic groups.
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not significant (again in accordance with Scheirer’s findings). It is interesting to note that for the group with

no music education both types of models are most successful in predicting the ratings. This would coincide

very well with our idea of a näıve approach to music complexity. However, the ratings of the group with

basic music education are much less successfully predictedon average than all the others, which goes rather

against this interpretation.

5.3 Evaluation with Existing Labels

As an alternative way of evaluation for the danceability descriptorCdanceI (section 4.5.1), general statistical

methods and machine learning methods were applied in order to explore its relations to semantic labels

obtained from AllMusic6 and to certain artists directly. The rationale behind this is to prove a systematic

variation of the DFA exponent subject to certain semantic attributes assigned to the music. More details

about the methodology and the findings are provided in the following sections.

5.3.1 The Dataset

The described implementation was computed on a large music collection. A data set of 7750 tracks from

MTG-DB [Cano et al. (2004)], a digital music collection fromthe MTG lab, was used in the experiment.

Each track refers to a full piece of music. The dataset also contained annotated semantic labels for each item,

which were obtained from music experts and afficionados, andhad been manually assigned to the tracks.

In our experiments we used the artist names and also “tone” labels consisting in abstract attributes that are

associated with the music, such as “Rousing”, “Sentimental”, or “Theatrical”. The list of “tone” labels is

composed of a total of 172 different entries. In the statistical analysis only a subset of 136 labels were

considered, because the remaining ones appeared less than 100 times each. It must be noted that these labels

are originally assigned to the artists and not to the individual tracks. Therefore a certain degree of fuzziness

has to be accepted with these descriptions when working on the track level. The data set contained very

different, mostly popular styles of music from a total of 289different artists. A maximum of 34 labels were

assigned to a single artist, while the average was 11 labels per artists. Figure 5.3 shows a bar plot of the eight

labels that were assigned to the highest number of artists. The average number of artists sharing a label was

18.

5.3.2 Results

By small group informal listening tests it was found that thecomplexity estimations at the extreme ends were

the most consistent ones. Comparing the tracks from these regions with each other and with the intermediate

ones the underlying concept of “danceability” immediatelybecame apparent. This effect can be easily seen

in figure 5.4, where the 60 highly danceable Techno music tracks can be almost perfectly separated from the

6http://www.allmusic.com
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Figure 5.3: Top-eight labels with the highest number of assigned artists.

60 non-danceable film score tracks only by considering theiraverageα value. The fine grain ranking within

a local region however did not appear clearly interpretablein many cases. This was especially noticeable in

the very dense area of intermediate values. So rather a coarse classification into 3–5 complexity levels than a

continuous ordering of the entire collection was achieved.This is a reasonable number of discrete classes for

a semantic descriptor considering human memory capabilities.

The results of the statistical tests for the danceability descriptor support the findings from manual random

evaluation. Strong coherence of high statistical significance was found for several of the “tone” labels that

are semantically close to the concept “danceable” or “not danceable” respectively. For example the labels

“Party/Celebratory” and “Energetic” in the context of music have a clear relation with danceability, whereas

“Plaintive” and “Reflective” appear more appropriate descriptions for music that is not well suited for danc-

ing.

The results reveal a consistency on a high abstraction leveleven exceeding the aspect of danceability.

Figure 5.5 shows how the distribution of some labels on the deciles starting from the lowest to the highest

α values in the collection. A strong skew is apparent here withcertain labels being highly over-represented

either in the highest or the lowest deciles.

The distribution ofα values on the whole collection was normal with a mean of 0.863and a standard

deviation of 0.022. The tracks assigned to each label were tested for significant deviations from this distribu-

tion with the generalized t-test (eq. 5.1). Only those with normal distributions were considered. Of these, 24
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Figure 5.4:α-levels for 60 techno (o) and 60 film score tracks (x), unordered.

Label ᾱ n Label ᾱ n
Party/Celebratory 0.796 706 Romantic 0.911 1399

Clinical 0.761 489 Wistful 0.909 1308
Hypnotic 0.804 951 Plaintive 0.922 659
Energetic 0.820 898 Reflective 0.901 1805
Visceral 0.808 422 Calm/Peaceful 0.908 1102
Trippy 0.824 998 Autumnal 0.916 604

Outrageous 0.781 102 Intimate 0.897 1709
Exuberant 0.839 1383 Stately 0.908 730
Irreverent 0.830 657 Gentle 0.892 1327
Sparkling 0.790 116 Elegant 0.886 2506

Table 5.3: The ten most significantly deviating labels in each direction.
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Figure 5.5: Distributions on deciles for the twelve labels with most significant deviation from equal distribu-
tion (solid horizontal lines).
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showed a significantly higher and 35 a significantly lower mean value.

− 2.58 <
0.863 − ᾱlabel

√

0.0222

7750 +
σ2

label

nlabel

< 2.58 (5.1)

The valueᾱlabel is the meanα value for the considered label,σ2
label is the corresponding variance, andnlabel

is the number of tracks having this label assigned. Table 5.3shows the ten labels that yielded the highest sig-

nificance in their deviation from the global distribution ineither direction. When looking at the two complete

lists of labels a certain affinity can be noted in many cases oneither side. The group of labels for higherα

wakes associations ofSoftness, Warmness, Tranquility, andMelancholy. For the others we might form two

subgroups, one around terms likeExuberanceand Vehemence(e. g. “Party/Celebratory”,“Energetic”, and

“Outrageous” ), the other aroundTediumandColdness(e. g. “Clinical” and “Hypnotic”). Comparing labels

from both lists with each other, we can identify several almost antonymous pairs, for example: “Clinical”

– “Intimate”, “Outrageous” – “Refined/Mannered”, “Boisterous” – “Calm/Peaceful”, “Carefree” – “Melan-

cholic”.

In the machine learning experiments, two artist classification tasks were tried. It must be stated again

here, that the “tone” labels mentioned above originally also belong to the artists and thus only indirectly to

the individual tracks. In a two class decision experiment weused 238 Frank Sinatra tracks and 238 tracks

from nine other artists who either had the labels “Brittle” or “Outrageous” assigned to them. For the artist

“Sinatra” a total of 18 labels were listed in our data set, among them “Romantic”, “Calm/Peaceful”, and

“Sentimental”. From the results of the statistical analysis we would expect the Sinatra songs to be distributed

around a greater value ofα than the other ones. The classes should therefore be separable up to a certain

degree. It must be noted, that among the nine selected artists we also found assigned labels like “Wistful” and

“Reflective”, which are linked to higherα values as well (see table 5.3). The classification with a decision

table yielded a success rate of 73%, which is clearly above the 50% chance level.

In a second experiment we used three different classes: 108 tracks composed by Henry Mancini, 65 tracks

composed by Bernard Herrmann, and 52 tracks of dance music with a strong beat. We purposely did not use

the labels for selecting the artists in this case. Mancini and Herrmann were both film music composers,

but while Herrmann mainly uses ”classical” orchestration,Mancini often arranges his music in a jazz–like

style. We had to select dance music from different artists, because there was no single one with a sufficient

number of tracks in the collection. In terms of the DFA exponent we would expect to find the highest values

associated with Herrmann’s music, because it is the least danceable in general terms. Intermediate values can

be expected for Mancini’s tracks, since there are many whichat least possess a pronounced beat. The lowest

values should be found for the dance music, which has strong and regular beat patterns. With a success

rate of 67% the classification reached again clearly above chance level (48%). Furthermore the confusion

matrix (table 5.4) shows exactly the expected situation: While the classes “Herrmann” and “Dance” are

almost perfectly separable, “Mancini” takes an intermediate position showing a considerable overlap with

both neighboring classes. The decision table identified theoptimal thresholds between the classes to be

αHM = 1.0 (between “Herrmann” and “Mancini”) andαMD = 0.7 (between “Mancini” and “Dance”).
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Predicted class
True class Herrmann Mancini Dance
Herrmann 41 23 1
Mancini 18 84 6
Dance 1 25 26

Table 5.4: Confusion matrix of three class machine learningexperiment.

5.3.3 Concluding Remarks

Summarizing, we can say that there is a strong evidence for the danceability descriptor being related with

semantic properties of the music tracks it was computed on. From our experiments and observations the

hypothesis put forward by Jennings et al. (2004) seems to be valid, and the DFA exponent can be considered

a good indicator for the danceability of music. However, this should be seen rather in the broad sense,

classifying music into a small number of categories from “extremely easy” over “moderately easy” to “very

difficult” to dance to. A fine grain ordering based on the DFA exponent inside such a category is not beneficial.

Due to subjectivity effects such an ordering might not proveuseful anyway. It can further be concluded from

our results, that the DFA exponent shows to be meaningful also in revealing even higher level attributes of

music. It thus might form a valuable addition for different music classification tasks, like artist identification,

musical genre recognition, or music similarity computation.

5.4 Evaluation through Simulated Searching

In cooperation with colleagues from the Music Technology group and other researchers from the State Uni-

versity of Milan and from Microsoft Research, we tested several descriptors in simulated music searching

experiments [Andric et al. (2006)], involving innovative ways of interfacing music collections.

5.4.1 Experimental Setup

The experiments consisted in subjects searching for a song with specific characteristics (given by the in-

structor) within a music collection of 3500 tracks. For different searching interfaces the searching time and

user satisfaction was assessed. In particular, an eyes-free, ”search by ear” browsing paradigm was compared

to the established, text-based navigation in a tree or list structure. For the latter, the Apple iPod7 and the

Samsung Portable Media Center YH-9998 (PMC) were used in the experiments. For the former, a prototype

implementation of the new interface was installed on a laptop, that participants carried in a backpack during

the experiment. Playback and searching was controlled by a trackball device. The collection was represented

as a 2-dimensional space – similar to figure 1.2 on page 5 – witha different computed feature assigned to the

7http://www.apple.com/ipod/ipod.html
8http://www.samsung.com/Products/MP3Player/ArchivedMP3Players/YH999GSXAA.asp
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x- and y-axis. By movements of the trackball the participants were able to navigate in this space having the

playback of seconds 40 to 45 as an acoustic feedback.

The participants received a list with verbal descriptions of the music they were supposed to find, for

example “I’d like something more joyful.” These descriptions were obtained from a pilot study, where subjects

had been asked to describe the type of music they would like tohear in specific situations (e. g. when being

alone, or when having friends for visit). The list containedthe following descriptions: joyful, energetic,

danceable, relaxing, funny, rhythmic, intimate, exciting, sensual, and melancholic. The order of the list was

randomized for each participant. They were instructed to find – one-by-one – songs in the collection that

matched two criteria: 1. the song had to fit the description (in the perception of the participant), 2. the

participant was supposed to like the song. The participantswere allowed to give up the search if they felt

frustrated and unable to find the desired song. An instructormeasured the search time for each of the ten

searches and also recorded a rating of the participant for the song he/she found. The ratings were done on a

five-point scale with 5 corresponding to the highest satisfaction, 1 to the lowest.

The computed features were the Tick and the Beat following the implementation from Gouyon (2005), the

Tonal Strength (see section 4.4.1), and the Danceability (see section 4.5.1). Tick and Beat both correspond to

the tempo of the music, the former referring to the mean velocity of the fastest audible rhythmical pulsation

and the latter to the mean velocity of the strongest rhythmical pulsation. The other two features have been

explained already in chapter 4. These features were used in the three combinations given in table 5.5 to create

the 2-D representation.

setup y-axis x-axis
Trackball I Beat Danceability
Trackball II Tick Tonal Strength

Table 5.5: Feature combinations used in the trackball experiments.

Each interface setup was tested with 8 different participants, giving a total number of 32 subjects. The

participants were partly familiar with the collection, since each of them brought a CD with 100 songs from

his/her own collection that were combined to build the collection of the experiment. The music consisted

mainly of songs from the rock, pop, heavy metal, and alternative genres. Tracks from jazz and classical

genres formed only a small fraction. The search space of the trackball setups was explicitly explained to

the corresponding participants, and they were given a half an hour training period to get accustomed to the

device, and another half an hour to examine the collection ona desktop computer, using Windows Media

Player. The iPod and PMC users navigated their devices in thetraditional way by viewing the metadata on

the screen.

5.4.2 Results

As table 5.6 shows, the two setups with the trackball allowedthe participants to reach significantly faster at a

satisfying song. It is especially remarkable, that the Tonal Strength in combination with the Tick scores best
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despite this descriptor by itself was not very successful inpredicting human complexity ratings (see table 5.2

on page 84).

Overall the results indicate that the usage of a 2-D representation containing a music complexity descrip-

tor allows for faster navigation in a collection. The mean search time for the two conventional interfaces with

90.6 s is significantly higher than for the two “eyes-free” interfaces with an average search time of only 59.5 s.

There was no significant difference observed in the ratings of satisfaction or in the number of failed searches

for the different setups, which means that the shorter search time does not come from a faster frustration, but

really yields the same level of quality in the results.

Subjects reported that they felt comfortable with the “eyes-free” interface after a period of getting used

to it. They also observed that it worked better to take largersteps to keep the orientation, because with

small steps it became more difficult to identify the differences between the songs and the orientation became

blurred.

iPod PMC Trackball I Trackball II
Mean 90.1 91.3 67.9 51.1

Standard deviation 52.1 48.5 56.5 40.8
95% significance ±11.6 ±11.6 ±12.5 ±7.7

Table 5.6: Mean, standard deviation, and significance margin for the search time in seconds of each setup
[Andric et al. (2006)].

5.5 Conclusion

In this chapter we saw very different methods of evaluation.Each one focussed on a slightly different aspect

of music complexity descriptions. We reviewed several analyses regarding the direct predictions of human

complexity judgements, the estimation of semantic labels that have indirect relations with music complexity,

and the usefulness of music complexity descriptors in a collection navigation task. The overall picture that

can be obtained from these evaluations seems to suggest thatthe developed algorithms indeed manage to

contribute to the solution of the problems around digital music collections we identified in the first chapter

of this thesis. While the obtained figures of performance might not give rise to the conclusion that there is

nothing left to improve, they do clearly show that significant achievements have been made. So, to close

the circle to the opening of this chapter, the critical assessment and the determination of worth and validity

have been satisfied with a positive result. In the final chapter we will now summarize the conclusions and

achievements of this research work and point to some perspectives of continuations.



Chapter 6

Conclusions and Future Work

“Complexity is more and more acknowledged to be a key characteristic of the world we live in

and of the systems that cohabit our world.”

[Simon (2001), p. 181]

In this dissertation a set of special semantic descriptors for music audio content has been conceptually and

algorithmically presented. We have spent some time elaborating on the motivation for these descriptors from

the side of intended applications and from the side of scientific findings in music psychology and musicology.

This way we pointed to some evidence that there indeed is a usefor music complexity descriptors. Music

complexity appears to play a role for human judgments of music preference and pleasantness. This alone

already makes music complexity an interesting means to navigate through a collection or to select tracks

for a user. Other aspects speaking in favor of the proposed complexity descriptors are their compactness in

representation (important for storage and visualization)and their intuitiveness (important for querying and

navigation), which was demonstrated for instance in section 5.4 on page 92.

We also discussed extensively the termcomplexityitself, seeing that it is an autological term; the term

complexity is a complex term. We have seen that there are quite a few different notions of it especially when

comparing its formal use in technical sciences with the everyday understanding. From these observations

it is apparent that we cannot simply apply a “one size fits all”formula on the musical audio data and hope

for results that coincide with human perception. Instead weneed to carefully find the balance between the

computationally feasible and the perceptually accurate when developing the algorithms for music complexity

estimations.

Especially the former, the computationally feasible, remains a very limiting factor at present when dealing

with polyphonic audio recordings. None of the existing models for music complexity facets that we reviewed

in section 3.2 of chapter 3 can be directly applied to audio signals and reliable methods to reach the required

symbolic levels are still an unsolved problem in the ongoingresearch. Therefore the proposed algorithms
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have been designed in a way that circumvents these symbolic representations as much as possible and relies

rather on the computationally accessible, lower abstraction levels.

Finally we have looked at the details of the algorithms that emerged during the work on this dissertation

and also at the different ways they have been evaluated. In the next section we will summarize briefly what

can be considered the achievements of this dissertation followed by another section with some pointers to

possible future directions that remained unexplored in this work.

6.1 Summary of the Achievements

• With the proposed set of algorithms an original contribution has been made to open the door and reach

beyond the score-inspired descriptors that are most commonin the MIR research field nowadays. While

more transcription-oriented approaches certainly have their place and merit, it is important to consider

alternatives when addressing the current challenges of ourfield. With this thesis one such alternative

has been explored and described.

• The clearest achievement that has been made during this dissertation is probably the exploitation and

evaluation of the Detrended Fluctuation Analysis for the use in rhythmic complexity estimation. The

connection to collective complexity ratings and high-level semantic concepts, and the usefulness in

music navigation tasks have been demonstrated for this descriptor. It thus forms a significant contri-

bution to music information retrieval applications and is already implemented in a commercial music

similarity software tool.

• For the other complexity facets the evaluation also revealed significance in predicting human complex-

ity ratings of music. Compared to Scheirer’s results the amount of variance that could be explained by

the descriptors was increased. When directly comparing these figures one has to bear in mind however,

that the data sets (the music and the ratings) were not the same.

• For timbre complexity and the tonal complexity completelynew algorithms have been developed and

tuned with manually selected reference examples. The acoustic complexities are based on previously

published algorithmic approaches, which have been adaptedand extended during this dissertation in

order to reach the chosen goals.

• The theoretical and practical potential of music complexity as a description of music audio content has

been exploited and demonstrated resulting in a set of algorithms for future research and application in

the music information retrieval domain.
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6.2 Open issues

Of course the problem of music complexity estimation and itsapplication in human interaction with music

collections is still far from being solved after this dissertation has been finished. Although substantial and

encouraging results have been accomplished there remain open issues to be addressed in future research.

6.2.1 Structural Complexity

One of them is the important facet of musical structure, thatis not represented in the set of descriptors we

have been discussing here. Musical structure forms one of the highest levels of abstraction in content analysis.

It is unique compared to the other musical facets in the sensethat all of them are potentially relevant for the

detection of structural boundaries and the recognition of structural segments. We can try to identify structural

elements by looking at the timbre, the chords, or the melodicline for example. Thinking along the line of

what we have developed so far we might want to refer to structure on a rather macroscopic level (i. e. in

terms of intro, verse, and chorus rather than motive or theme). We could then identify attributes of structural

complexity such as thenumber of distinguishable parts, or theirdissimilarityaccording to a given similarity

measure. A large number of structural parts with very contrasting properties would be considered to enhance

the perceived complexity.

There are also other ways how musical structure could becomea part of the complexity processing.

Instead of using entire tracks as units, we might take as wellthe structure information into account. Silence

at the beginning and at the end could be ignored, we could compute the complexity facets separately on

the different structural segments. This hints at the possibility of using the complexity descriptors as well

for content modification applications. Remixing of parts from several songs based on matching complexity

levels would be one example of this.

Once again, however, we have to face the fact that before we can perform any structural complexity

processing, the structure itself has to be extracted first. Various approaches to this problem have been taken

and are still explored [see e. g. Chai and Vercoe (2003), Steelant et al. (2002), or Ong (2006)]. The general

purpose solution has yet to be found.

6.2.2 Other Facets to be considered

Apart from musical structure there are also other facets that might well be included into the set. An important

one would consist in the complexity of the lyrics, which could in fact be a central descriptor inside certain

musical genres. However, with current signal processing methods this is simply an unattainable goal, unless

one would allow the system to rely on other resources than only the audio signal. But even then it is a long

way to arrive at a level where the computer can make enough sense out of the words in order to assign a

meaningful complexity label to the text.

Not quite that unattainable, but still out of reach with current methods is another potentially very useful
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facet: the melodic complexity. This facet was considered only indirectly within the tonal complexity de-

scriptors in this research work. However, the melody plays avery important role in our perception of music

and therefore would deserve individual treatment. As mentioned, the automatic extraction of the melody is

a very active area of research that has seen quite impressiveprogress over the past years. For this facet we

have the advantage that a theoretical framework for the complexity estimation is quite readily available once

a score-like representation of the melody is obtained.

6.2.3 Application-oriented Evaluation

As the user experiments with the trackball (section 5.4) have shown it can be useful to evaluate descriptors

not just against a ground truth, which might be very difficultto obtain. Since the ultimate goal of the type

of research which is the core of this dissertation lies in a practical application with a certain functionality, it

makes a lot of sense to assess the performance also in some kind of simulated practical application like the

song searching. We also thought of a different experiment with a similar philosophy behind that could be

done with the complexity descriptors.

If a user is supposed to be able to navigate within a collection based on complexity descriptors, then

instead of predicting users’ ratings with our algorithms weshould rather be interested in the users’ abilities

to “predict” the algorithms’ output for a given musical piece. In other words, the user has to be able to see

and understand a relation between the algorithms’ results and the music. To test this we might present a few

example cases to a subject in a listening test revealing at which position of the algorithm’s scale each one

was positioned. It might be sufficient to use only a very roughscale here like “above average” and “below

average”. If we then present a music track to the user and ask him to predict the algorithm’s output, we are

able to verify that the underlying concept of the algorithm is understandable and therefore potentially useful

in a navigation task.

6.3 Music Complexity in the Future of Music Content Processing

We have seen big changes that came with the spreading of perceptual audio coding technology in combination

with fast network connections during the past decade. The next revolution should be one that helps us to

manage this incredible amount of digital content. The call is for intelligent devices and services that can

actively assist us in our needs and interests in relaxation,entertainment, and culture whenever and wherever

we want. By providing access to semantic aspects of musical audio signals without the need for manual

annotation we are giving another spin to the wheel of innovation. This dissertation will hopefully help to

bring our vision a bit closer to reality, by providing means for a multi-faceted content description in a multi-

faceted field of research.
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