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Abstract

A new method has been proposed to introduce an extra parameter to a family of dis-

tributions for more flexibility. A special case has been considered in details namely; one

parameter exponential distribution. Various properties of the proposed distribution,

including explicit expressions for the moments, quantiles, mode, moment generating

function, mean residual lifetime, stochastic orders, order statistics and expression of

the entropies are derived. The maximum likelihood estimators of unknown parame-

ters cannot be obtained in explicit forms, and they have to be obtained by solving

non-linear equations only. Further we consider an extension of the two-parameter ex-

ponential distribution also, mainly for data analysis purposes. Two data sets have been

analyzed to show how the proposed models work in practice.
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1 Introduction

Adding an extra parameter to an existing family of distribution functions, is very common

in the statistical distribution theory. Often introducing an extra parameter brings more

flexibility to a class of distribution functions, and it can be very useful for data analysis

purposes. For example, Azzalini (1985) introduced the skew normal distribution by intro-

ducing an extra parameter to the normal distribution to bring more flexibility to the normal

distribution. Azzalini (1985)’s skew normal distribution takes the following form for λ ∈ R;

f(x;λ) = 2φ(x)Φ(λx), x ∈ R. (1)

Here φ(x) and Φ(x) are the probability density function (PDF) and cumulative distribution

function (CDF) of a standard normal distribution, and λ is the skewness parameter. It can

be easily seen that f(x;λ) is a proper PDF for any λ ∈ R. Moreover, when λ = 0, f(x;λ)

becomes a standard normal PDF, and depending on the values of λ, it can be both positively

or negatively skewed. Hence, introducing λ brings more flexibility to the standard normal

distribution function. Although Azzalini (1985) introduced this method mainly for normal

distribution, but it can be easily used for other symmetric distributions also.

Mudholkar and Srivastava (1993) proposed a method to introduce an extra parameter to

a two-parameter Weibull distribution. If for α > 0 and λ > 0, (1− e−λxα

) denotes the CDF

of a two-parameter Weibull distribution, then the proposed model has the following CDF

for β > 0;

F (x;α, λ, β) = (1− e−λxα

)β, if x > 0, (2)

and 0 otherwise. The two-parameter Weibull distribution has one shape (α) and one scale (λ)

parameters. Mudholkar and Srivastava (1993)’s proposed exponentiated Weibull model has

two shape parameters and one scale parameter. Due to presence of an extra shape parameter,

the proposed exponentiated Weibull model is more flexible than the two-parameter Weibull
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model. In this case also, when β = 1, the proposed exponentiated Weibull distribution

coincides with the two-parameter Weibull distribution. Although, Mudholkar and Srivastava

(1993) proposed the exponentiated Weibull distribution, later several other exponentiated

distributions have been introduced by several authors, see for example Gupta et al. (1998).

Marshall and Olkin (1997) proposed another method to introduce an additional pa-

rameter to any distribution function as follows. If g(x) and G(x) are the PDF and CDF,

respectively of a random variable X, then the new proposed family of distribution functions

has the following PDF for any θ ∈ (0,∞).

f(x; θ) =
θg(x)

(1− (1− θ)(1−G(x)))2
; x ∈ R (3)

Marshall and Olkin (1997) considered two special cases namely when X follows exponential

or Weibull distribution and derived several properties of this proposed model. They had also

provided some interesting physical interpretations also. It is clear that when θ = 1, f(x; θ)

matches with g(x), and for different values of θ, f(x) can be more flexible than g(x).

Eugene et al. (2002) proposed the beta generated method that uses the beta distribution

with parameters α and β as the generator to develop the beta generated distributions. The

CDF of a beta-generated random variable X is defined as

G(x) =

∫ F (x)

0

b(t)dt, (4)

where b(t) is the PDF of a beta random variable and F (x) is the CDF of any random

variable X. Alzaatreh et al. (2013) introduced a new method for generating families of

continuous distributions called T-X family by replacing the beta PDF with a PDF, r(t), of

a continuous random variable and applying a function W (F (x)) that satisfies some specific

conditions. Recently Aljarrah et al. (2014) used quantile functions to generate T-X family

of distributions. For more survey about methods to generating distributions see Lee et al.

(2013) and Jones (2014).
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The aim of this paper is to introduce an extra parameter to a family of distributions

functions to bring more flexibility to the given family. We call this new method as α-

power transformation (APT) method. The proposed APT method is very easy to use, hence

it can be used quite effectively for data analysis purposes. First we discuss some general

propoerties of this class of distribution functions. Then, we apply the APT method to a one-

parameter exponential distribution and generated a two-parameter (scale and shape) α-power

exponential (APE) distribution. It is observed that the two-parameter APE distribution has

several desirable properties. It behaves very much like two parameter Weibull, gamma or

generalized exponential (GE) distributions. The PDF and the hazard functions of APE

distribution can take similar shapes as the Weibull, gamma or GE distributions. Hence,

it can be used as an alternative to the well known Weibull, gamma or GE distributions.

The CDF of APE distribution can be expressed in explicit form, hence it can be used quite

conveniently for analyzing censored or truncated data also. Further we introduce three-

parameter APE distribution mainly for data analysis purposes, and discuss the maximum

likelihood estimation procedure of the unknown parameters. One real data set has been

analyzed for illustrative purposes.

The rest of the paper is organized as follows. In Section 2, we introduce the APT method,

and discuss some general properties of this family of distributions. In Section 3, we consider

the APE distribution and discuss its different properties. Maximum likelihood estimators of

the unknown parameters and some inferential issues are discussed in Section 4. The analysis

of one real data set has been presented in Section 5. We introduce the three-parameter APE

model and discuss the maximum likelihood estimation procedure of the unknown parameters

in Section 6. Finally in Section 7 we conclude the paper.
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2 APT Method

Let F (x) be the CDF of a continuous random variable X, then the α-power transformation

of F (x) for x ∈ R, is defined as follows:

FAPT (x) =





αF (x)
−1

α−1
if α > 0, α 6= 1

F (x) if α = 1.

(5)

It is immediate that FAPT (x) is a proper CDF. If F (x) is an absolute continuous distribution

function with the probability density function (PDF) f(x), then FAPT (x) is also an absolute

continuous distribution function with the PDF:

fAPT (x) =





logα
α−1

f(x)αF (x) if α > 0, α 6= 1

f(x) if α = 1.
(6)

It is clear that for α 6= 1, fAPT (x) is a weighted version of f(x), where the weight function

w(x) = αF (x), (7)

and fAPT (x) can be written as

fAPT (x) =
f(x)w(x;α)

c
. (8)

Here the normalizing constant c = E(w(X)).

Weighted distributions play an important role in the statistical distribution theory, see

for example Patil and Rao (1978) or Patil (2002). In this case the weight function w(x)

can be increasing or decreasing depending on whether α > 1 or α < 1. For a non-negative

random variable X, fAPT (x) has the following interpretations. Suppose a realization x of X

enters the investigator’s record with probability proportional to w(x;α), so that

Prob(Recording|X = y)

Prob(Recording|X = x)
=

w(y;α)

w(x;α)
.

Here the parameter α represents recording mechanism. If Y represents the random variable

of the investigator’s records, then Y has the PDF fAPT (x).
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The survival reliability function SAPT (x) and the hazard rate function (HRF) hAPT (x)

for APT distribution are in the following forms

SAPT (x) =





α
α−1

(1− αF (x)−1) if α 6= 1

1− F (x) if α = 1,
(9)

hAPT (x) =





f(x) αF (x)−1

1−αF (x)−1 logα if α 6= 1

f(x)
S(x)

if α = 1.
(10)

The p-th quantile yp of FAPT (x), for α 6= 1, can be obtained as

yp = F−1

{
log(1 + (α− 1)p)

logα

}
. (11)

If xp denotes the p-th quantile for F (x), then from (11) it follows that for α 6= 1,

yp ≤ xp if
log(1 + (α− 1)p)

logα
≤ p. (12)

Using (12) it is possible to determine for what values of α, FAPT (x) will be heavier tail than

F (x). For example, using Taylor series expansion of log(1 + x), it easily follows that for α

close to 1,

yp < xp if α < 1 and yp > xp if α > 1. (13)

Therefore, for α close to 1, if α < 1, then F (x) has a heavier tail than FAPT (x), and for

α > 1, it is the other way.

If F−1(·) exists in explicit form, then for α 6= 1, a random sample from FAPT (x) can be

easily obtained as

Y = F−1

{
log(1 + (α− 1)U)

logα

}
,

where U is a uniform (0, 1). On the other hand if F−1(·) does not exist in explicit form, but

it is possible to generate a random sample from F (x), then from the relation for α 6= 1,

fAPT (x) ≤
α logα

α− 1
f(x),
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and using acceptance-rejection principle, a random sample from FAPT (x) can be generated.

If the hazard function and survival function of X are denoted by h(x) and S(x), respectively,

then from (10), for α 6= 1, the hazard function FAPT (x) can be written as

hAPT (x) = h(x)× logα S(x)

αS(x) − 1
. (14)

Therefore,

lim
x→−∞

hAPT (x) =
logα

α− 1
lim

x→−∞

h(x) and lim
x→∞

hAPT (x) = lim
x→∞

h(x).

From (14) it follows that hAPT (x)/h(x) is an increasing function of x for all α > 1, and it is

a decreasing function of x, for all 0 < α < 1.

We have the following results for a general distribution function F (x).

Result 1: If f(x) is a decreasing function, and α ≤ 1, then fAPT (x) is a decreasing function.

Proof: The result easily follows by taking log fAPT (x), and by using the fact that sum of

two decreasing functions is a decreasing function.

Result 2: If f(x) is a decreasing function, and f(x) is log-convex, then for α ≤ 1, the

hazard function hAPT (x) is a decreasing function.

Proof: Since

d2 log fAPT (x)

dx2
=

d2 log f(x)

dx2
+ logα

df(x)

dx
,

and both the terms on the right hand side are positive, it implies that fAPT (x) is log-convex.

Hence the result follows from Bartow and Prochan (1975).

Using Results 1 and 2, it easily follows that if F (x) is a gamma, Weibull or generalized

exponential distribution with shape parameter less than one, then for α ≤ 1, fAPT (x) and

hAPT (x) are both decreasing functions.
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Figure 1: (a) the PDF of Weibull APT family. (b) the PDF of Beta APT family. (c) the
PDF of Normal APT family.

In Figure 1, we plot the PDFs of some APT families such as when f(x) is the PDFs

of Weibull distribution with density function f(x) = (a/b)(x/b)(a−1)exp(−(x/b)a) , Beta

distribution and Normal distribution. We consider in Weibull case scale parameter b = 1, in

Beta case a = b = 2 and in the last case its standard form.

3 APE Distribution and its Properties

In this section we apply the APT method to a specific class of distribution functions, namely

to an exponential distribution, and call this new distribution as the two-parameter APE

distribution.

Definition 1: The random variable Y is said to have a two-parameter APE distribution de-

noted by APE(α, λ) , with the shape and scale parameters as α > 0 and λ > 0, respectively,

if the PDF of Y for y > 0, is

f(y;α, λ) =





logα
α−1

λe−λyα1−e−λy

if α 6= 1

λe−λy if α = 1,
(15)

and 0 otherwise.
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The CDF of Y for y > 0, becomes

F (y;α, λ) =





α(1−e−λy))
−1

α−1
if α 6= 1

1− e−λy if α = 1,

(16)

and 0 otherwise. Also, the survival reliability function, S(y), and the hazard rate function,

h(y), for APE distribution for y > 0, are in the following forms

S(y;α, λ) =





α
α−1

(1− α−e−λy

) if α 6= 1

e−λy if α = 1,
(17)

h(y;α, λ) =





λe−λyα−e−λy
logα

1−α−e−λy if α 6= 1

λ if α = 1.

(18)

It can be easily seen that if α ≤ e, then f(y;α, λ) is a decreasing function of y > 0, and for

α > e, f(y;α, λ) is a unimodal function with mode at (log(logα))/λ. The following result

provides the shape of the HRF of an APE distribution.

Result 3: If α ≤ 1, then h(y;α, λ) is a decreasing function of y > 0, and for α > 1,

h(y;α, λ) is an increasing function of y > 0.

Proof: By taking the second derivative of log f(x;α, λ), it easily follows that the PDF of

APE(α, λ) is log-convex if α < 1 and log-concave if α > 1, hence the result follows from

Bartow and Prochan (1975).

It follows that for α < 1, h(y;α, λ) decreases from λ logα/(α − 1) to λ, and for α > 1, it

increases from λ logα/(α − 1) to λ. The following Table 1 provides the comparison of the

hazard function of the APE distribution with the corresponding hazard functions of Weibull,

gamma and GE distributions. In all these cases the shape and scale parameters are assumed

to be α and λ, respectively. It is clear from Table 1 that although the hazard function of the

APE distribution is a decreasing or an increasing function depending on the shape parameter

similarly as the gamma, Weibull or GE distributions, the ranges are quite different.
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Table 1: Behavior of the hazard functions of the four distributions.

Parameter Gamma Weibull GE APE
α = 1 λ λ λ λ

α > 1 Increasing from Increasing from Increasing from Increasing from
0 to λ 0 to ∞ 0 to λ λ to λ logα/(α− 1)

α < 1 Decreasing from Decreasing from Decreasing from Decreasing from
∞ to λ ∞ to 0 ∞ to λ λ to λ logα/(α− 1)
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Figure 2: (a) and (b) the PDF and HRF of APE distribution with various shape parameter
and fixed scale parameter λ = 1.

Figure 2 provides the PDFs and HRFs of a APE(α, λ) distribution for different values of

α when the scale parameter λ = 1.

APE distribution has the following mixture representation for α > 1. log(α)/(α − 1) is a

decreasing function from 1- to 0, as α varies from 1+ to ∞. If Y ∼ APE(α, λ), then it can

be represented as follows:

Y =

{
Y1 with probability log(α)

α−1

Y2 with probability 1− log(α)
α−1

,
(19)

where Y1 and Y2 have the following PDFs

fY1(y) = λe−λy; y > 0

fY2(y) =
log(α)

α− 1− log(α)
λe−λy

(
α1−e−λy − 1

)
; y > 0,
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respectively. It is clear from the representation (19) that as α approaches 1, Y behaves like

an exponential distribution, and α increases, it behaves like Y2. Further, the random variable

Y2 has a a hidden truncation model interpretation similarly as the Azzalini’s skew-normal

model, see Arnold and Beaver (2000).

The generation from a APE distribution is very simple. By inverting (16), we obtain

Y =
−1

λ
log

{
log α

(α−1)U+1

logα

}
. (20)

Therefore if U follows uniform (0,1), then Y ∼ APE(α, λ). The p-th quantile function of

APE(α, λ) is given by

yp =
−1

λ
log

{
log α

(α−1)p+1

logα

}
, (21)

hence the median can be obtained as

y1/2 =
−1

λ
log

{
log 2α

α+1

logα

}
. (22)

Using the series representations

α−u =
∞∑

k=0

(− logα)kuk

k!
, (23)

and ∫
∞

0

un(log u)mdu = un+1

m∑

k=0

(−1)k
m!(log u)m−k

(m− k)!(n+ 1)k+1
, (24)

the moment-generating function (MGF) of APE(α, λ) can be obtained as

MY (t) =
λα

1− α

∞∑

k=0

(− logα)k+1

(kλ− t+ λ)k!
, t < λ. (25)

Hence, the n-th moment of Y becomes

E(Y n) =
αn!

λn(1− α)

∞∑

k=1

(− logα)k

knk!
. (26)
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Suppose that Y is a random variable representing a lifetime of an object. The expected

additional lifetime given that a component has survived until time t is called mean residual

life (MRL). The MRL function, µ(t), of a random variable Y is given by

µ(t) =
1

P (Y > t)

∫
∞

t

P (Y > x)dx, t ≥ 0. (27)

Using (23) the MRL of X ∼ APE(α, λ) for α 6= 1, is given by

µ(t) =
−1

λ(1− α−e−λt)

∞∑

k=1

(− logα)k

k!k
e−kλt, t ≥ 0. (28)

It follows that µ(t), t ≥ 0 is an increasing function in t for 0 < α < 1 and it is a decreasing

function in t for α > 1.

Ordering of distributions, particularly among lifetime distributions play an important

role in the statistical literature. Johnson et al. (1995) have a major section on ordering of

different lifetime distributions. It is already known that both gamma and GE family have

likelihood ratio ordering (<LR), which implies that both of them have ordering in hazard rate

(<HAZ) and also in distribution (<ST ). It may be recalled that if a family has a likelihood

ratio ordering, it has the monotone likelihood ratio property. This implies there exists a

uniformly most powerful test for any one sided hypothesis when the other parameters are

known. It can be easily verified that if Y1 ∼ APE(α1, λ) and Y2 ∼ APE(α2, λ), then for

α1 < α2,

Y1 ≤LR Y2 ⇒ Y1 ≤HAZ Y2 ⇒ Y1 ≤ST Y2.

And if Y1 ∼ APE(α, λ1, µ) and Y2 ∼ APE(α, λ2, µ), then for λ1 < λ2,

Y2 ≤LR Y1 ⇒ Y2 ≤HAZ Y1 ⇒ Y2 ≤ST Y1,

if 0 < α < e.

The entropy of a random variable measures the variation of the uncertainty. A large value

of entropy indicates the greater uncertainty in the data. Some popular entropy measures
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are Rényi entropy (Rrnyi, 1961) or Shannon entropy (Shannon, 1951). If X is an absolute

continuous random variable with PDF f(x), then the Rényi entropy of X, REX(ρ) for ρ > 0

and ρ 6= 1, is defined as

REX(ρ) =
1

1− ρ
log

{∫
∞

−∞

f(x)ρdx

}
, (29)

and Shannon entropy is defined as SEX = E[− log f(X)]. If Y ∼ APE(α, λ, 0) then the

Rényi entropy of Y for ρ > 0 and ρ 6= 1, can be obtained as

REY (ρ) =

(
ρ

1− ρ

)
log

(
α logα

α− 1

)
− log λ+

1

1− ρ
log

{
∞∑

k=0

ρk(− logα)k

k!(ρ+ k)

}
. (30)

Further, the Shannon entropy of Y becomes

SEY = log

(
α− 1

λα logα

)
+

α

1− α

∞∑

k=1

{
(− logα)k

kk!
− (− logα)k+1

(k + 1)(k − 1)!

}
.

Finally we provide an order statistics result. Let Y1, Y2, ..., Yn be a random sample from

a APE(α, λ), and let Yk:n denote the k-th order statistic. The PDF of Yk:n for y > 0 is given

by

fYk:n
(y) =

n! logα

(α− 1)n(k − 1)!(n− k)!
λe−λy(α1−e−λy − 1)k−1(1− α−e−λy

)n−kαn−k+1−e−λy

.

The q-th moment of Yk:n can be expressed as

E(Y q
k:n) =

n!q!(−1)kαn−k+1

λq(α− 1)n

k−1∑

l=0

n−k∑

m=0

∞∑

r=0

(−1)m−lαl(l +m+ 1)r(− logα)r+1

l!m!r!(k − 1− l)!(n− k −m)!(r + 1)q+1
. (31)

Now we discuss about the stress-strength parameter. Suppose Y1 ∼ APE(α1, λ) and Y2 ∼

APE(α2, λ), and Y1 and Y2 are independently distributed, then

Case 1: α1 6= 1 and α2 6= 1:

P (Y1 < Y2) =
logα2

(α1 − 1)(α2 − 1)

∫
∞

0

λe−λyα1−e−λy

2 (α
(1−e−λy)
1 − 1)dy

=
logα2

(α1 − 1)(α2 − 1)

∫ 1

0

αz
2(α

z
1 − 1)dz (by using 1− e−λy = z)

=
logα2

(α1 − 1)(α2 − 1)

[
α1α2 − 1

log(α1α2)
− α2 − 1

logα2

]
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Case 2: α1 = 1, α2 6= 1:

P (Y1 < Y2) =
logα2

(α2 − 1)

∫
∞

0

λe−λyα1−e−λy

2 (1− e−λy)dy

=
logα2

(α2 − 1)

∫ 1

0

zαz
2dz (by using 1− e−λy = z)

=
logα2

(α2 − 1)

[
1 + α2

logα2

− α2

(logα2)2

]

Case 3: α1 6= 1, α2 = 1:

P (Y1 < Y2) =
1

(α1 − 1)

∫
∞

0

λe−λy(α1−e−λy

1 − 1)dy

=
1

(α1 − 1)

[∫ 1

0

αz
1dz − 1

]
(by using 1− e−λy = z)

=
1

(α1 − 1)

[
α1 − 1

logα1

− 1

]
.

Case 4: α1 = α2 = 1

P (Y1 < Y2) =

∫
∞

0

λ2e
−λ2y(1− e−λ1y)dy = 1− λ2

λ1 + λ2

=
λ1

λ1 + λ2

.

4 Statistical Inference

4.1 Maximum Likelihood Estimators

Let y1, y2, . . . , yn be a random sample from APE(α, λ), then the log-likelihood function be-

comes

l(α, λ) = n logα + n log

(
logα

α− 1

)
+ n log λ− λ

n∑

i=1

yi − (logα)
n∑

i=1

e−λyi . (32)

The two normal equations become

∂l(α, λ)

∂α
=

n

α
+

n(α− 1− α logα)

α(α− 1) logα
− 1

α

n∑

i=1

e−λyi = 0, (33)

∂l(α, λ)

∂λ
=

n

λ
−

n∑

i=1

yi + (logα)
n∑

i=1

yie
−λyi = 0. (34)
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The MLEs of α and λ can be obtained by solving (33) and (34) simultaneously, and they will

be denoted by α̂ and λ̂. Standard algorithm like Newton-Raphson method may be used to

solve these non-linear equations. Alternatively, any two dimensional optimization method

may be used to maximize the log-likelihood function l(α, λ) directly. Since it is a simple

two-dimensional optimization problem, getting some initial guesses is also not difficult. We

proceed as follows. For a fixed λ obtain α̂(λ) from (34) as

α̂(λ) = exp

{ 1
n

∑n
i=1 yi − 1

λ
1
n

∑n
i=1 yie

−λyi

}
,

and then obtain λ̂ from (33) by solving

1 +
(α̂(λ)− 1− α̂(λ) log α̂(λ))

α̂(λ)(α̂(λ)− 1) log α̂(λ)
− 1

n

n∑

i=1

e−λyi = 0. (35)

Equation (35) can be solved by simple bisection method. Once λ̂ is obtained α̂ can be

obtained as α̂ = α̂(λ̂).

Two-parameter APE distribution is a regular family, hence we have the following asymp-

totic result: As n → ∞,
√
n(α̂− α, λ̂− λ) converges to a bivariate normal distribution with

mean vector 0 and the variance co-variance matrix I
−1
2 , where I2 = ((Iij)) is the Fisher

information matrix. The elements of I2 = ((Iij)) are given by

I11 =
n

α2
− n

(α− 1)2
+

n(logα + 1)

(α logα)2
− n

α(1− α)

∞∑

k=0

(− logα)k+1

(k + 2)k!
,

I22 =
n

λ2
+

2nα

λ2(α− 1)

∞∑

k=0

(− logα)k+2

(k + 2)3k!
,

I12 = I21 =
n

λ(α− 1)

∞∑

k=0

(− logα)k+1

(k + 2)2k!
. (36)

Using the above result, asymptotic confidence intervals of the unknown parameters can be

easily obtained.
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4.2 Testing of Hypothesis

In this section we consider different testing of hypothesis problems which are of interest. It

is assumed that we have a random sample {y1, . . . , yn} from APE(α, λ). First let us consider

the following testing problem on α, when the scale parameter λ is assumed to be known.

Without loss of generality it is assumed that λ = 1.

Test 1: H0 : α = α0 vs. α > α0. (37)

Note that when λ is known, then T1 =
n∑

i=1

e−yi is a complete sufficient statistic. The

uniformly most powerful (UMP) test will be of the following form: Reject H0 if T1 < c.

To determine c we need to know the distribution of T1 under H0. The exact distribution

of T1 is difficult to obtain, hence we can proceed in two different ways. Obtain the critical

value by generating samples from yi, alternatively use the large sample approximation of T1.

Similarly, the uniformly most powerful unbiased test of the following testing problem

Test 2: H0 : α = α0 vs. α 6= α0, (38)

can be easily performed.

5 Application: coal-mining dataset

In this section, we analyze one data set to show the performance of the proposed model. The

uncensored data set corresponding to intervals in days between 109 successive coal-mining

disasters in Great Britain, for the period 1875-1951, published by Maguire et al. (1952). The

sorted data are given as follows: 1 4 4 7 11 13 15 15 17 18 19 19 20 20 22 23 28 29 31 32 36

37 47 48 49 50 54 54 55 59 59 61 61 66 72 72 75 78 78 81 93 96 99 108 113 114 120 120 120

123 124 129 131 137 145 151 156 171 176 182 188 189 195 203 208 215 217 217 217 224 228

233 255 271 275 275 275 286 291 312 312 312 315 326 326 329 330 336 338 345 348 354 361

364 369 378 390 457 467 498 517 566 644 745 871 1312 1357 1613 1630.
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Figure 3: Relative histogram of the coal mine data set.
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Figure 4: Scaled TTT plot of the coal mine data set.

The minimum, maximum, first quartile, median, third quartile of the above data set

are: 1, 1630, 54, 145, 312, respectively. It clearly indicates that the data are skewed. The

histogram and the scaled TTT plots are provided in Figure 3 and Figure 4, respectively, also

indicate that the data are right skewed and the empirical hazard function is a decreasing

function of time.

Now we would like to fit the proposed APE(α, λ) to the above data set. To get an idea

about the MLEs λ, we plot the function provided on the left hand side of the equation (33),

and it gives an idea about the initial guess value of the MLE of λ. We finally obtain the MLEs
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of λ and α as 0.0030 and 0.2807 with the associated log-likelihood value as -701.2132. The

corresponding 95% confidence intervals based on Fisher information matrix become (0.2280,

0.3334) and (0.0028, 0.0032), respectively.

For comparison purposes, we have fitted four other two-parameter models to the same

data set. In all these four distributions, the hazard function can be a decreasing function

depending on the shape parameter. In all these cases it is assumed that α > 0 and λ > 0.

They respective PDFs are as follows:

• gamma distribution with PDF

fGA(x;α, λ) =
λα

Γα
xα−1e−λx x > 0.

• Weibull distribution with PDF

fWE(x;α, λ)) = αλ(λx)α−1e−(λx)α , x > 0.

• exponentiated exponential distribution (EE) with PDF

fEE(x;α, λ) = αλ(1− e−λx)α−1e−λx, x > 0,

see for example Gupta et al. (1998) or Gupta and Kundu (1999).

• weighted exponential distribution (WE) proposed by Gupta and Kundu (2009) with

the PDF

f(x) =
α + 1

α
λe−λx(1− e−αλx), x > 0.

We have computed the MLEs of α and λ and the associated log-likelihood values in all

these cases. We have also obtained the Kolmogorov-Smirnov (K-S) distance between the

empirical cumulative distribution function and the fitted distribution function in each case

and the associated p value. The results are reported in Table 2.
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Table 2: The maximum likelihood estimates and Kolmogorov-Smirnov statistics and p-values
for coal-mining data.

The model MLEs of the parameters Log-likelihood K-S statistic p-value

gamma α̂ = 0.8555, λ̂ = 0.0037 -702.4007 0.0823 0.4517

Weibull α̂ = 0.8848, λ̂ = 0.0046 -701.7724 0.0784 0.5135

EE α̂ = 0.8605, λ̂ = 0.0039 -702.5524 0.0830 0.4402

WE α̂ = 35.2748, λ̂ = 0.0045 -705.1641 0.0836 0.4313

APE α̂ = 0.2807, λ̂ = 0.0030 -701.2132 0.0742 0.5852
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Figure 5: (a) the histogram and the fitted APE distribution. (b) the fitted APE survival
function and empirical survival function for coal-mining data.

It is clear from the Table 2 that based on the log-likelihood value and also based on the

K-S statistic, the proposed APE model provides a better fit than gamma, Weibull, EE, WE

models to this specific data set. The relative histogram and the fitted APE distribution

are plotted in Figure 5 (a). In order to assess if the model is appropriate, the plots of the

fitted APE survival function and empirical survival function are displayed in Figure 5 (b).

Although, it is not guaranteed that the proposed model always provides a better fit than the

other models, but at least in certain cases it definitely can provide a better fit. Therefore,

the APE model can be used as a possible alternative to the well known gamma, Weibull or

EE models.
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6 Three-Parameter APE Distribution

In this section we introduce three-parameter APE distribution and analyze one data set

based on three-parameter APE distribution.

Definition 2: The random variable Y is said to have a three-parameter APE distribution,

and will be denoted by APE(α, λ, µ), with the shape, scale and location parameters as α > 0,

λ > 0 and −∞ < µ < ∞, if the PDF of Y , for y > µ is

f(y;α, λ, µ) =

{
logα
α−1

λe−λ(y−µ)α1−e−λ(y−µ)
if α 6= 1

λe−λ(y−µ) if α = 1.
(39)

The associated CDF becomes

F (y;α, λ, µ) =

{
α1−e−λ(x−µ)

−1
α−1

if α 6= 1

1− e−λ(x−µ) if α = 1.
(40)

Clearly, the shape of the PDF and the hazard function of APE(α, λ, µ) are same as

APE(α, λ). Moreover, the generation of a random sample from APE(α, λ, µ) can be obtained

similarly as APE(α, λ). Different moments of APE(α, λ, µ) distribution can be obtained from

the different moments of APE(α, λ).

Now we discuss the maximum likelihood estimators of α, λ and µ based on a random

sample, {y1, . . . , yn}, of size n, from APE(α, λ, µ). The log-likelihood function can be written

as

l(α, λ, µ) = n logα + n log

(
logα

α− 1

)
+ n log λ− λ

n∑

i=1

(yi − µ)− (logα)
n∑

i=1

e−λ(yi−µ). (41)

Therefore, the MLEs of α, λ and µ can be obtained by maximizing (41) with respect to the

unknown parameters, and we denote them as α̂, λ̂ and µ̂, respectively. It is immediate from

(41), that for α < 1, µ̂ = y(1), the lowest order statistic of the sample. Hence α̂ and λ̂ can

be obtained by maximizing (32) based on the sample y1 − y(1), . . . , yn − y(1). For α > 1, the
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normal equations become

∂l(α, λ)

∂α
=

n

α
+

n(α− 1− α logα)

α(α− 1) logα
− 1

α

n∑

i=1

e−λ(yi−µ) = 0, (42)

∂l(α, λ)

∂λ
=

n

λ
−

n∑

i=1

(yi − µ) + (logα)
n∑

i=1

yie
−λ(yi−µ) = 0, (43)

∂l(α, λ)

∂µ
= nλ− λ(logα)

n∑

i=1

yie
−λ(yi−µ) = 0. (44)

The MLEs cannot be obtained in explicit forms, we need to solve the above non-linear

equations to compute the MLEs. For α > 1, the APE(α, λ, µ) is a regular family, hence as

n → ∞,
√
n(α̂ − α, λ̂ − λ, µ̂ − µ) converges to a trivariate normal distribution with mean

vector 0 and the variance co-variance matrix I
−1
3 , where I3 = ((Iij)) is the Fisher information

matrix. The elements of I3 can be obtained similarly as I2, the details are avoided.

Now we provide the analysis of a data set to see how APE(α, λ, µ) behaves in a practical

situation. The data set has been obtained from Bader and Priest (1982), and it represents

the strength for the single carbon fibers and impregnated 1000-carbon fiber tows, measured

in GPa. We report the data of single carbon fiber tested at gauge length 1mm. The data

are presented below: 2.247, 2.64, 2.908, 3.099, 3.126, 3.245, 3.328, 3.355, 3.383, 3.572, 3.581,

3.681, 3.726 3.727, 3.728, 3.783, 3.785, 3.786, 3.896, 3.912, 3.964, 4.05, 4.063, 4.082, 4.111,

4.118, 4.141, 4.246, 4.251, 4.262, 4.326, 4.402, 4.457, 4.466, 4.519, 4.542, 4.555, 4.614, 4.632,

4.634, 4.636, 4.678, 4.698, 4.738, 4.832, 4.924, 5.043, 5.099, 5.134, 5.359, 5.473, 5.571, 5.684,

5.721, 5.998, 6.06.

The preliminary data analysis indicates that the data are skewed and the scaled TTT

plot, see Figure 6 indicates that the empirical hazard function is an increasing function.

Therefore, α > 1. Finally we obtain the MLEs of the unknown parameters and they are as

follows: α̂ = 673.8379, λ̂ = 1.1562 and µ̂ = 2.247. The associated 95% confidence intervals are

(659.2312,691.2256), (0.9312,1.3519), (1.916,2.247), respectively. We also the obtain the KS

distance between the empirical CDF and the fitted CDF and it is 0.0925 and the associated
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p value is 0.7243. The empirical and fitted survival functions are provided in Figure 7. The

p-value of the KS statistic indicates that the three-parameter APE model provides a good

fit to the data set.
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Figure 6: Scaled TTT plot of the single fiber strength data set.
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Figure 7: Empirical and fitted survival function for the single fiber strength data set.

7 Conclusion

A new APT method has been introduced to incorporate skewness to a family of distribution

functions. We have used that method to the exponential family of distribution functions,

and a new two-parameter APE distribution has been introduced. This proposed distribution

has several desirable properties, and they are quite similar to the corresponding properties

of the well known gamma or Weibull family. One data analysis has been performed, and it

is observed that the proposed model provides a better fit than some of the existing mod-

els. Further we consider three-parameter APE distribution also, and discuss the maximum
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likelihood estimation procedure of the unknown parameters. One data analysis has been per-

formed based on three-parameter APE distribution. It is observed that the three-parameter

APE distribution provides a good fit to the data set.

It should be mentioned that although we have used the APT method to the exponential

distribution function, similar method can be used to the normal distribution also. It will

introduce a skewness parameter to a normal distribution similar to the skew-normal distri-

bution of Azzalini (1985). It will be interesting to study the properties of this skew-normal

distribution and also to develop the inferential procedures. The work is in progress, it will

be reported later.
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