

Title: Bioframe: Operations on Genomic Intervals in Pandas Dataframes

Authors: Open2C*1, Nezar Abdennur*2, Geoffrey Fudenberg*3, Ilya Flyamer4, 5, Aleksandra A.

Galitsyna6,7, Anton Goloborodko*8, Maxim Imakaev2, Sergey V. Venev9

Contact: open.chromosome.collective@gmail.com, nezar@mit.edu, fudenber@usc.edu,

anton.goloborodko@imba.oeaw.ac.at

Affiliations (authors listed alphabetically after Open2C):

1. https://open2c.github.io/

2. Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology (MIT),

Cambridge, MA, 02139, USA

3. Department of Computational and Quantitative Biology, University of Southern California, Los

Angeles, CA, USA

4. MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh,

Crewe Road, Edinburgh, EH4 2XU, UK

5. Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel,

Switzerland

6. Skolkovo Institute of Science and Technology, Skolkovo, 143026, Russia

7. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow,

127051, Russia

8. Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter

(VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria

9. Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA,

01605, USA

Abstract

Motivation

Genomic intervals are one of the most prevalent data structures in computational genome biology,

and used to represent features ranging from genes, to DNA binding sites, to disease variants.

Operations on genomic intervals provide a language for asking questions about relationships

between features. While there are excellent interval arithmetic tools for the command line, they are

not smoothly integrated into Python, one of the most popular general-purpose computational and

visualization environments.

Results

Bioframe is a library to enable flexible and performant operations on genomic interval dataframes

in Python. Bioframe extends the Python data science stack to use cases for computational genome

biology by building directly on top of two of the most commonly-used Python libraries, numpy and

pandas. The bioframe API enables flexible name and column orders, and decouples operations from

data formats to avoid unnecessary conversions, a common scourge for bioinformaticians. Bioframe

achieves these goals while maintaining high performance and a rich set of features.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 19, 2022. ; https://doi.org/10.1101/2022.02.16.480748doi: bioRxiv preprint

mailto:open.chromosome.collective@gmail.com
mailto:nezar@mit.edu
mailto:fudenber@usc.edu
mailto:anton.goloborodko@imba.oeaw.ac.at
https://open2c.github.io/
https://doi.org/10.1101/2022.02.16.480748
http://creativecommons.org/licenses/by/4.0/

Availability and implementation:

Bioframe is open-source under MIT license, cross-platform, and can be installed from the Python

package index. The source code is maintained by Open2C on Github at

https://github.com/open2c/bioframe.

Introduction

Genomic interval operations are fundamental to bioinformatic analyses. These operations can be

used to answer questions that include: Where is the closest enhancer to a gene of interest? How do

chromatin states change across cell types? Which repeat elements contain binding sites for

transcription factor motifs? Which annotations are enriched for SNVs associated with various

diseases? Which promoters contain eQTLs? Given the ubiquity of these sorts of queries in genomic

analysis, specialized interval arithmetic tools have been developed for the command line (Quinlan

and Hall 2010; Neph et al. 2012), which operate on genomic interval text files such as the BED

format. To facilitate interactive and programmatic use cases, there are also implementations for

popular programming environments, including Python (Stovner and Sætrom 2020; Dale, Pedersen,

and Quinlan 2011; Russell and Fiddes 2021), and R (Lawrence et al. 2013; Lee, Cook, and Lawrence

2019; Akalin et al. 2015).

The rich and robust set of data science and machine learning libraries in Python make it a popular

choice for computational biology and data science more broadly. Core libraries in the Python data

science stack, including pandas (Reback et al. 2020), numpy (Harris et al. 2020), matplotlib (Hunter

2007), and jupyter notebooks (Kluyver et al. 2016) offer nearly seamless integration. Other

disciplines have developed tools to leverage the rich python data science infrastructure, e.g.

GeoPandas (Jordahl 2014), SpatialPandas (Pothina, Pevey, and Lewis 2020), BioPandas (Raschka

2017) (for molecular structures). However, Python libraries for genomic intervals do not yet meet

this high standard of integration.

Current Python packages providing support for genomic interval operations have limitations that

impede smooth integration into Python data science workflows. For example, pybedtools (Dale,

Pedersen, and Quinlan 2011), the wrapper for bedtools (Quinlan and Hall 2010), relies on

interconversion between in-memory objects and text files stored on disk because data processing is

delegated to a command line program. Furthermore, it inherits an API designed for the command

line, and is restricted by rigid genomic interval schemas designed for storage (e.g. Browser

Extensible Data (BED) files1). This leads to lower expressivity and less flexibility than what can be

accomplished using Python-native (e.g. numpy and pandas) data structures and operations, as well

as terse arguments with unintuitive names (e.g. -wao). The consequences include decreased

performance, more boilerplate code, loss of metadata (such as column names), and code that is

more difficult to read and debug. More recently, PyRanges (Stovner and Sætrom 2020), addresses

many of these shortcomings, in particular by providing a 10-50x speed increase, but still has an API

that is somewhat insulated from the data science stack. Conversions are required to switch

1 https://genome.ucsc.edu/FAQ/FAQformat.html#format1

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 19, 2022. ; https://doi.org/10.1101/2022.02.16.480748doi: bioRxiv preprint

https://github.com/open2c/bioframe
https://paperpile.com/c/3PVG4h/VzUJ+i6tf
https://paperpile.com/c/3PVG4h/VzUJ+i6tf
https://paperpile.com/c/3PVG4h/Ox8w+vQlg+v3o4
https://paperpile.com/c/3PVG4h/Ox8w+vQlg+v3o4
https://paperpile.com/c/3PVG4h/lspW+oCsS+bVHO
https://paperpile.com/c/3PVG4h/lspW+oCsS+bVHO
https://paperpile.com/c/3PVG4h/Khgl
https://paperpile.com/c/3PVG4h/rH2Q
https://paperpile.com/c/3PVG4h/mJKN
https://paperpile.com/c/3PVG4h/mJKN
https://paperpile.com/c/3PVG4h/q0zQ
https://paperpile.com/c/3PVG4h/oE1C
https://paperpile.com/c/3PVG4h/ZsWr
https://paperpile.com/c/3PVG4h/QdXI
https://paperpile.com/c/3PVG4h/QdXI
https://paperpile.com/c/3PVG4h/vQlg
https://paperpile.com/c/3PVG4h/vQlg
https://paperpile.com/c/3PVG4h/VzUJ
https://paperpile.com/c/3PVG4h/Ox8w
https://genome.ucsc.edu/FAQ/FAQformat.html#format1
https://doi.org/10.1101/2022.02.16.480748
http://creativecommons.org/licenses/by/4.0/

between the custom PyRanges object used to perform genomic interval operations and standard

pandas DataFrames, and PyRanges columns have relatively strict naming conventions.

The growth of the Python data science ecosystem presents an opportunity to re-imagine the

implementation of genomic interval operations to smoothly interface with the full data science

stack. Integration with this ecosystem can enable new avenues for data visualization, modeling, and

insight into genomic data. Here we present bioframe (https://github.com/open2c/bioframe), a

Python library for operating on genomic interval sets built directly on top of the pandas data

analysis library. As a result, bioframe is fast and Pythonic, providing immediate access to a rich set

of DataFrame operations, enabling complex workflows as well as rapid iteration, inspection and

visualization of genomic analyses.

Design Principles

The goal of bioframe is to enable in-memory, programmatic workflows on sets of genomic intervals

using pandas DataFrames, integrating smoothly with the Python data science stack. With this in

mind, we aimed to:

1. Reuse existing Python data structures. We encode interval sets using pandas DataFrames and

avoid introducing new custom objects, e.g. ones based on interval trees.

2. Reuse existing Python methods. We delegate generic DataFrame operations to pandas, whenever

possible, and aim at the principle of least surprise2 for experienced pandas and numpy users.

3. Permit flexible data schemas. We avoid hard-coded column names, numbers and orderings.

Definitions

To implement genomic interval operations in Python, we required formal definitions, which we did

not readily find in one place in the literature. We thus put together definitions, starting from an

interval (https://bioframe.readthedocs.io/en/latest/guide-definitions.html). We implement these

definitions as specifications (https://bioframe.readthedocs.io/en/latest/api-validation.html) for

properties of genomic interval dataframes.

While aligning reads to the full set of scaffolds in an assembly is typically advisable3, using a subset

of scaffolds and/or breaking scaffolds into semantic subintervals (e.g. chromosome arms) is often

crucial for downstream genomic analyses. In bioframe we thus introduce the concept of a genomic

view to specify a unique genomic coordinate sub-system. A genomic view is an ordered set of

uniquely-named non-overlapping genomic intervals known as regions. There can be more than one

region from the same scaffold and multiple scaffolds represented in a view. Defining a view allows a

user to focus analysis on a well-characterized portion of an assembly and specify the order of

scaffolds and regions for effective visualization. Indeed, defining a view for downstream analysis

can be more important for non-model organisms, where assembly quality is often lower and thus

requires judicious choice of order and subset of scaffolds to analyze.

2 https://en.wikipedia.org/wiki/Principle_of_least_astonishment
3 https://lh3.github.io/2021/04/17/concepts-in-phased-assemblies

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 19, 2022. ; https://doi.org/10.1101/2022.02.16.480748doi: bioRxiv preprint

https://github.com/open2c/bioframe
https://en.wikipedia.org/wiki/Principle_of_least_astonishment
https://bioframe.readthedocs.io/en/latest/guide-definitions.html
https://bioframe.readthedocs.io/en/latest/api-validation.html
https://en.wikipedia.org/wiki/Principle_of_least_astonishment
https://lh3.github.io/2021/04/17/concepts-in-phased-assemblies
https://doi.org/10.1101/2022.02.16.480748
http://creativecommons.org/licenses/by/4.0/

Implementation

Bioframe is implemented using the machinery of numpy and pandas, making for a lightweight set of

dependencies and avoiding the need to compile custom C extensions or other external libraries. For

example, to determine overlaps between intervals (bioframe.overlap), as well as find pairs of nearby

intervals (bioframe.closest), bioframe uses sorting-based algorithms. First, intervals are split into

subsets by chromosome and optional columns like ‘strand’ (pandas.groupby). These interval

subsets are then sorted (numpy.lexsort), and overlaps (or neighbors) are detected via bisection

search operations (numpy.searchsorted). All user-facing operations are imported into the base

bioframe namespace.

Building directly on pandas allows bioframe to readily generalize the genomic interval model used

for Browser Extensible Data (BED) files4. Bioframe requires only genomic coordinate columns --

the equivalent of ‘chrom’, ‘start’, ‘stop’-- with flexible names, for a valid BED-like DataFrame, or

'bedframe'. Almost any number of additional annotations can be added to a set of intervals.

Functionality

The core genomic interval operations in bioframe are: overlap, cluster, closest, and complement.

bioframe additionally provides frequently-used operations that can be expressed as combinations

of these core operations and pandas dataframe operations, including: coverage, count_overlaps,

expand, merge, select, subtract, setdiff, trim. Building from the definition of genomic views, bioframe

provides functions to: assign intervals in a bedframe to regions in a genomic view, assign_view, and

sort a bedframe based on the order of regions specified in a view, sort_bedframe.

Building on pandas enables flexible control over column usage and selection. Bioframe includes a

context manager for setting default column-names for genomic coordinate columns. This flexibility

shines when dealing with BED-like files that can have variable headers or conventions for the

genomic coordinate columns (e.g. ‘chrom’ or ‘chromStart’ or ‘chr’ or ‘CHR#’), and variable orders of

other interval metadata columns (e.g. ‘score’, ‘color’, or ‘strand’). Since operations like overlap are

performed following a pandas groupby, bioframe also flexibly generalizes genomic operations that

consider strand to any list of common columns present in a pair of dataframes.

In addition to these features, bioframe provides functions for dataframe construction, checks, string

operations, and I/O. For example, there are wrappers and schemas for reading and writing common

binary and text genomic file formats to and from dataframes.

Performance

We profiled speed and memory usage for typical use cases using bioframe, and compared

performance with that of pybedtools and PyRanges. We intersected sets of random genomic

intervals stored as pandas DataFrames, accounting for format conversions needed in pybedtools and

PyRanges. For overlaps of up to 3*106 intervals, bioframe and PyRanges have comparable speeds

(Figure 1A), while pybedtools can be more than 100x slower. The memory consumption of

4 https://samtools.github.io/hts-specs/BEDv1.pdf

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 19, 2022. ; https://doi.org/10.1101/2022.02.16.480748doi: bioRxiv preprint

https://samtools.github.io/hts-specs/BEDv1.pdf
https://doi.org/10.1101/2022.02.16.480748
http://creativecommons.org/licenses/by/4.0/

bioframe is almost exactly 2x higher compared to PyRanges and pybedtools (Figure 1B) because it

stores coordinates as 64-bit integers, motivated by the emergence of sequenced genomes with >1e9

base pairs per chromosome (e.g. axolotl (Nowoshilow et al. 2018), lungfish (Meyer et al. 2021)). We

note that for chained operations, PyRanges offers further speedups by caching per-chromosome

interval tables, with the tradeoff of storing intervals as a custom object with its own API layer. To

conclude, both libraries offer reasonable performance (<1s for 105 intervals). For much larger sets

of genomic intervals (>107), users may also want to consider other high-performance options (Li

and Rong 2021; Neph et al. 2012).

Figure 1. Performance comparison of bioframe, PyRanges, and pybedtools for detecting overlapping

intervals between pairs of dataframes of randomly generated genomic intervals. (A) Run time and

(B) peak memory consumption of bioframe overlap vs. PyRanges join show comparable

performance up to millions of intervals. Pybedtools intersect shows slower performance and

comparable memory usage. Code for this performance comparison is available at

https://bioframe.readthedocs.io/en/latest/guide-performance.html

Discussion

In summary, bioframe provides a pure Python library for genomic interval operations. Bioframe

presents a Python-centered API for these operations, as opposed to inheriting syntax from the

command line. Working in Python with pandas dataframes enables flexible generalization of the

BED format, including flexible naming for genomic interval columns. Bioframe has already proven

useful for pandas-heavy genomic workflows, like cooltools (Venev et al. 2021). In the future,

providing tools specific to binned genomic intervals, paired genomic intervals, and out-of-core

dataframe operations (e.g. with Dask (Rocklin 2015) or Modin (Petersohn et al. 2020)) would be

valuable extensions to bioframe.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 19, 2022. ; https://doi.org/10.1101/2022.02.16.480748doi: bioRxiv preprint

https://paperpile.com/c/3PVG4h/MTIE
https://paperpile.com/c/3PVG4h/CnJo
https://paperpile.com/c/3PVG4h/QIeI+i6tf
https://paperpile.com/c/3PVG4h/QIeI+i6tf
https://bioframe.readthedocs.io/en/latest/guide-performance.html
https://paperpile.com/c/3PVG4h/nHqv
https://paperpile.com/c/3PVG4h/ThEX
https://paperpile.com/c/3PVG4h/mJU2
https://doi.org/10.1101/2022.02.16.480748
http://creativecommons.org/licenses/by/4.0/

Acknowledgements

The authors thank Sameer Abraham, Luis Chumpitaz, George Spracklin, and Aafke van den Berg for

repository suggestions and Endre Bakken Stovner for helpful comments. AG is supported by IMBA

and the Austrian Academy of Sciences (OeAW). GF is supported by R35 GM143116-01. IF

acknowledges funding support from the MRC University Unit grant MC_UU_00007/2.

Author Contributions

We welcome issues and questions on github https://github.com/open2c/bioframe/. For questions

about array operations / implementation, tag AG @golobor, for questions about front-end interval

operations, tag GF @gfudenberg, for questions about file I/O and resources tag NA @nvictus. IF,

AAG, MI, and SV made contributions as detailed in the Open2C authorship policy guide. All authors

are listed alphabetically, read, and approved the manuscript.

References

Akalin, Altuna, Vedran Franke, Kristian Vlahoviček, Christopher E. Mason, and Dirk Schübeler. 2015.
“Genomation: A Toolkit to Summarize, Annotate and Visualize Genomic Intervals.”
Bioinformatics 31 (7): 1127–29.

Dale, Ryan K., Brent S. Pedersen, and Aaron R. Quinlan. 2011. “Pybedtools: A Flexible Python
Library for Manipulating Genomic Datasets and Annotations.” Bioinformatics 27 (24): 3423–
24.

Harris, Charles R., K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, et al. 2020. “Array Programming with NumPy.” Nature 585 (7825):
357–62.

Hunter, J. D. 2007. “Matplotlib: A 2D Graphics Environment.” Computing in Science Engineering 9
(3): 90–95.

Jordahl, K. 2014. “GeoPandas: Python Tools for Geographic Data.” URL: Https://github.
Com/geopandas/geopandas.

Kluyver, Thomas, Benjamin Ragan-Kelley, Fernando Pérez, Brian E. Granger, Matthias Bussonnier,
Jonathan Frederic, Kyle Kelley, et al. 2016. “Jupyter Notebooks.” a publishing format for
reproducible computational workflows. In ELPUB.

Lawrence, Michael, Wolfgang Huber, Hervé Pagès, Patrick Aboyoun, Marc Carlson, Robert
Gentleman, Martin T. Morgan, and Vincent J. Carey. 2013. “Software for Computing and
Annotating Genomic Ranges.” PLoS Computational Biology 9 (8): e1003118.

Lee, Stuart, Dianne Cook, and Michael Lawrence. 2019. “Plyranges: A Grammar of Genomic Data
Transformation.” Genome Biology 20 (1): 4.

Li, Heng, and Jiazhen Rong. 2021. “Bedtk: Finding Interval Overlap with Implicit Interval Tree.”
Bioinformatics 37 (9): 1315–16.

Meyer, Axel, Siegfried Schloissnig, Paolo Franchini, Kang Du, Joost M. Woltering, Iker Irisarri, Wai
Yee Wong, et al. 2021. “Giant Lungfish Genome Elucidates the Conquest of Land by
Vertebrates.” Nature 590 (7845): 284–89.

Neph, Shane, M. Scott Kuehn, Alex P. Reynolds, Eric Haugen, Robert E. Thurman, Audra K. Johnson,
Eric Rynes, et al. 2012. “BEDOPS: High-Performance Genomic Feature Operations.”
Bioinformatics 28 (14): 1919–20.

Nowoshilow, Sergej, Siegfried Schloissnig, Ji-Feng Fei, Andreas Dahl, Andy W. C. Pang, Martin Pippel,
Sylke Winkler, et al. 2018. “The Axolotl Genome and the Evolution of Key Tissue Formation
Regulators.” Nature 554 (7690): 50–55.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 19, 2022. ; https://doi.org/10.1101/2022.02.16.480748doi: bioRxiv preprint

https://github.com/open2c/bioframe/issues
http://paperpile.com/b/3PVG4h/bVHO
http://paperpile.com/b/3PVG4h/bVHO
http://paperpile.com/b/3PVG4h/bVHO
http://paperpile.com/b/3PVG4h/bVHO
http://paperpile.com/b/3PVG4h/vQlg
http://paperpile.com/b/3PVG4h/vQlg
http://paperpile.com/b/3PVG4h/vQlg
http://paperpile.com/b/3PVG4h/vQlg
http://paperpile.com/b/3PVG4h/vQlg
http://paperpile.com/b/3PVG4h/rH2Q
http://paperpile.com/b/3PVG4h/rH2Q
http://paperpile.com/b/3PVG4h/rH2Q
http://paperpile.com/b/3PVG4h/rH2Q
http://paperpile.com/b/3PVG4h/rH2Q
http://paperpile.com/b/3PVG4h/mJKN
http://paperpile.com/b/3PVG4h/mJKN
http://paperpile.com/b/3PVG4h/mJKN
http://paperpile.com/b/3PVG4h/mJKN
http://paperpile.com/b/3PVG4h/oE1C
http://paperpile.com/b/3PVG4h/oE1C
http://paperpile.com/b/3PVG4h/oE1C
http://paperpile.com/b/3PVG4h/oE1C
http://paperpile.com/b/3PVG4h/q0zQ
http://paperpile.com/b/3PVG4h/q0zQ
http://paperpile.com/b/3PVG4h/q0zQ
http://paperpile.com/b/3PVG4h/lspW
http://paperpile.com/b/3PVG4h/lspW
http://paperpile.com/b/3PVG4h/lspW
http://paperpile.com/b/3PVG4h/lspW
http://paperpile.com/b/3PVG4h/lspW
http://paperpile.com/b/3PVG4h/oCsS
http://paperpile.com/b/3PVG4h/oCsS
http://paperpile.com/b/3PVG4h/oCsS
http://paperpile.com/b/3PVG4h/oCsS
http://paperpile.com/b/3PVG4h/QIeI
http://paperpile.com/b/3PVG4h/QIeI
http://paperpile.com/b/3PVG4h/QIeI
http://paperpile.com/b/3PVG4h/QIeI
http://paperpile.com/b/3PVG4h/CnJo
http://paperpile.com/b/3PVG4h/CnJo
http://paperpile.com/b/3PVG4h/CnJo
http://paperpile.com/b/3PVG4h/CnJo
http://paperpile.com/b/3PVG4h/CnJo
http://paperpile.com/b/3PVG4h/i6tf
http://paperpile.com/b/3PVG4h/i6tf
http://paperpile.com/b/3PVG4h/i6tf
http://paperpile.com/b/3PVG4h/i6tf
http://paperpile.com/b/3PVG4h/MTIE
http://paperpile.com/b/3PVG4h/MTIE
http://paperpile.com/b/3PVG4h/MTIE
http://paperpile.com/b/3PVG4h/MTIE
http://paperpile.com/b/3PVG4h/MTIE
https://doi.org/10.1101/2022.02.16.480748
http://creativecommons.org/licenses/by/4.0/

Petersohn, Devin, Stephen Macke, Doris Xin, William Ma, Doris Lee, Xiangxi Mo, Joseph E. Gonzalez,
Joseph M. Hellerstein, Anthony D. Joseph, and Aditya Parameswaran. 2020. “Towards Scalable
Dataframe Systems.” arXiv [cs.DB]. arXiv. http://arxiv.org/abs/2001.00888.

Pothina, Dharhas, Kim Pevey, and Adam Lewis. 2020. “Spatial Algorithms at Scale with
Spatialpandas.” Proceedings of the Python in Science Conference.
https://doi.org/10.25080/majora-342d178e-026.

Quinlan, Aaron R., and Ira M. Hall. 2010. “BEDTools: A Flexible Suite of Utilities for Comparing
Genomic Features.” Bioinformatics 26 (6): 841–42.

Raschka, Sebastian. 2017. “BioPandas: Working with Molecular Structures in Pandas DataFrames.”
Journal of Open Source Software 2 (14): 279.

Reback, Jeff, Wes McKinney, jbrockmendel, Joris Van den Bossche, Tom Augspurger, Phillip Cloud,
gfyoung, et al. 2020. Pandas-Dev/pandas: Pandas 1.0.3.
https://doi.org/10.5281/zenodo.3715232.

Rocklin, Matthew. 2015. “Dask: Parallel Computation with Blocked Algorithms and Task
Scheduling.” In Proceedings of the 14th Python in Science Conference, 130:136. Citeseer.

Russell, Pamela H., and Ian T. Fiddes. 2021. “BioCantor: A Python Library for Genomic Feature
Arithmetic in Arbitrarily Related Coordinate Systems.” bioRxiv.
https://doi.org/10.1101/2021.07.09.451743.

Stovner, Endre Bakken, and Pål Sætrom. 2020. “PyRanges: Efficient Comparison of Genomic
Intervals in Python.” Bioinformatics 36 (3): 918–19.

Venev, Sergey, Nezar Abdennur, Anton Goloborodko, Ilya Flyamer, Geoffrey Fudenberg, Johannes
Nuebler, Aleksandra Galitsyna, et al. 2021. open2c/cooltools: v0.4.1.
https://doi.org/10.5281/zenodo.5214125.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 19, 2022. ; https://doi.org/10.1101/2022.02.16.480748doi: bioRxiv preprint

http://paperpile.com/b/3PVG4h/mJU2
http://paperpile.com/b/3PVG4h/mJU2
http://paperpile.com/b/3PVG4h/mJU2
http://paperpile.com/b/3PVG4h/mJU2
http://paperpile.com/b/3PVG4h/mJU2
http://arxiv.org/abs/2001.00888
http://paperpile.com/b/3PVG4h/mJU2
http://paperpile.com/b/3PVG4h/ZsWr
http://paperpile.com/b/3PVG4h/ZsWr
http://paperpile.com/b/3PVG4h/ZsWr
http://paperpile.com/b/3PVG4h/ZsWr
http://paperpile.com/b/3PVG4h/ZsWr
http://dx.doi.org/10.25080/majora-342d178e-026
http://paperpile.com/b/3PVG4h/ZsWr
http://paperpile.com/b/3PVG4h/VzUJ
http://paperpile.com/b/3PVG4h/VzUJ
http://paperpile.com/b/3PVG4h/VzUJ
http://paperpile.com/b/3PVG4h/VzUJ
http://paperpile.com/b/3PVG4h/QdXI
http://paperpile.com/b/3PVG4h/QdXI
http://paperpile.com/b/3PVG4h/QdXI
http://paperpile.com/b/3PVG4h/QdXI
http://paperpile.com/b/3PVG4h/Khgl
http://paperpile.com/b/3PVG4h/Khgl
http://paperpile.com/b/3PVG4h/Khgl
http://paperpile.com/b/3PVG4h/Khgl
http://paperpile.com/b/3PVG4h/Khgl
http://dx.doi.org/10.5281/zenodo.3715232
http://paperpile.com/b/3PVG4h/Khgl
http://paperpile.com/b/3PVG4h/ThEX
http://paperpile.com/b/3PVG4h/ThEX
http://paperpile.com/b/3PVG4h/ThEX
http://paperpile.com/b/3PVG4h/ThEX
http://paperpile.com/b/3PVG4h/v3o4
http://paperpile.com/b/3PVG4h/v3o4
http://paperpile.com/b/3PVG4h/v3o4
http://paperpile.com/b/3PVG4h/v3o4
http://paperpile.com/b/3PVG4h/v3o4
http://dx.doi.org/10.1101/2021.07.09.451743
http://paperpile.com/b/3PVG4h/v3o4
http://paperpile.com/b/3PVG4h/Ox8w
http://paperpile.com/b/3PVG4h/Ox8w
http://paperpile.com/b/3PVG4h/Ox8w
http://paperpile.com/b/3PVG4h/Ox8w
http://paperpile.com/b/3PVG4h/nHqv
http://paperpile.com/b/3PVG4h/nHqv
http://paperpile.com/b/3PVG4h/nHqv
http://paperpile.com/b/3PVG4h/nHqv
http://paperpile.com/b/3PVG4h/nHqv
http://dx.doi.org/10.5281/zenodo.5214125
http://paperpile.com/b/3PVG4h/nHqv
https://doi.org/10.1101/2022.02.16.480748
http://creativecommons.org/licenses/by/4.0/

	Title: Bioframe: Operations on Genomic Intervals in Pandas Dataframes
	Introduction
	Design Principles
	Definitions
	Implementation
	Functionality
	Discussion
	Acknowledgements
	Author Contributions
	References

